

CHAPTER 13

Complex Numbers and Functions. Complex Differentiation

The transition from "real calculus" to "complex calculus" starts with a discussion of *complex numbers* and their geometric representation in the *complex plane*. We then progress to *analytic functions* in Sec. 13.3. We desire functions to be analytic because these are the "useful functions" in the sense that they are differentiable in some domain and operations of complex analysis can be applied to them. The most important equations are therefore the Cauchy–Riemann equations in Sec. 13.4 because they allow a test of analyticity of such functions. Moreover, we show how the Cauchy–Riemann equations are related to the important *Laplace equation*.

The remaining sections of the chapter are devoted to elementary complex functions (exponential, trigonometric, hyperbolic, and logarithmic functions). These generalize the familiar real functions of calculus. Detailed knowledge of them is an absolute necessity in practical work, just as that of their real counterparts is in calculus.

Prerequisite: Elementary calculus. *References and Answers to Problems:* App. 1 Part D, App. 2.

13.1 Complex Numbers and Their Geometric Representation

The material in this section will most likely be familiar to the student and serve as a review.

Equations without *real* solutions, such as $x^2 = -1$ or $x^2 - 10x + 40 = 0$, were observed early in history and led to the introduction of complex numbers.¹ By definition, a **complex number** z is an ordered pair (x, y) of real numbers x and y, written

$$z = (x, y)$$

¹First to use complex numbers for this purpose was the Italian mathematician GIROLAMO CARDANO (1501–1576), who found the formula for solving cubic equations. The term "complex number" was introduced by CARL FRIEDRICH GAUSS (see the footnote in Sec. 5.4), who also paved the way for a general use of complex numbers.

x is called the **real part** and y the **imaginary part** of z, written

$$x = \operatorname{Re} z, \qquad y = \operatorname{Im} z$$

By definition, two complex numbers are **equal** if and only if their real parts are equal and their imaginary parts are equal.

(0, 1) is called the **imaginary unit** and is denoted by *i*,

(1)
$$i = (0, 1).$$

Addition, Multiplication. Notation z = x + iy

Addition of two complex numbers $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$ is defined by

(2)
$$z_1 + z_2 = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

Multiplication is defined by

(3)
$$z_1 z_2 = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1).$$

These two definitions imply that

$$(x_1, 0) + (x_2, 0) = (x_1 + x_2, 0)$$

and

$$(x_1, 0)(x_2, 0) = (x_1x_2, 0)$$

as for real numbers x_1, x_2 . Hence the complex numbers "*extend*" the real numbers. We can thus write

$$(x, 0) = x.$$
 Similarly, $(0, y) = iy$

because by (1), and the definition of multiplication, we have

$$iy = (0, 1)y = (0, 1)(y, 0) = (0 \cdot y - 1 \cdot 0, 0 \cdot 0 + 1 \cdot y) = (0, y).$$

Together we have, by addition, (x, y) = (x, 0) + (0, y) = x + iy. In practice, complex numbers z = (x, y) are written

(4)

$$= x + i y$$

or z = x + yi, e.g., 17 + 4i (instead of i4).

Electrical engineers often write *j* instead of *i* because they need *i* for the current. If x = 0, then z = iy and is called **pure imaginary**. Also, (1) and (3) give

(5)
$$i^2 = -1$$

because, by the definition of multiplication, $i^2 = ii = (0, 1)(0, 1) = (-1, 0) = -1$.

For addition the standard notation (4) gives [see (2)]

$$(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$$

For **multiplication** the standard notation gives the following very simple recipe. Multiply each term by each other term and use $i^2 = -1$ when it occurs [see (3)]:

$$\begin{aligned} (x_1 + iy_1)(x_2 + iy_2) &= x_1x_2 + ix_1y_2 + iy_1x_2 + i^2y_1y_2 \\ &= (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1). \end{aligned}$$

This agrees with (3). And it shows that x + iy is a more practical notation for complex numbers than (x, y).

If you know vectors, you see that (2) is vector addition, whereas the multiplication (3) has no counterpart in the usual vector algebra.

EXAMPLE 1

Real Part, Imaginary Part, Sum and Product of Complex Numbers

Let
$$z_1 = 8 + 3i$$
 and $z_2 = 9 - 2i$. Then Re $z_1 = 8$, Im $z_1 = 3$, Re $z_2 = 9$, Im $z_2 = -2$ and
 $z_1 + z_2 = (8 + 3i) + (9 - 2i) = 17 + i$,
 $z_1 z_2 = (8 + 3i)(9 - 2i) = 72 + 6 + i(-16 + 27) = 78 + 11i$.

Subtraction, Division

Subtraction and **division** are defined as the inverse operations of addition and multiplication, respectively. Thus the **difference** $z = z_1 - z_2$ is the complex number z for which $z_1 = z + z_2$. Hence by (2),

(6)
$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2).$$

The quotient $z = z_1/z_2$ ($z_2 \neq 0$) is the complex number z for which $z_1 = zz_2$. If we equate the real and the imaginary parts on both sides of this equation, setting z = x + iy, we obtain $x_1 = x_2x - y_2y$, $y_1 = y_2x + x_2y$. The solution is

(7*)
$$z = \frac{z_1}{z_2} = x + iy, \quad x = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2}, \quad y = \frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}$$

The *practical rule* used to get this is by multiplying numerator and denominator of z_1/z_2 by $x_2 - iy_2$ and simplifying:

(7)
$$z = \frac{x_1 + iy_1}{x_2 + iy_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)} = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + i\frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}.$$

EXAMPLE 2

Difference and Quotient of Complex Numbers

For $z_1 = 8 + 3i$ and $z_2 = 9 - 2i$ we get $z_1 - z_2 = (8 + 3i) - (9 - 2i) = -1 + 5i$ and

$$\frac{z_1}{z_2} = \frac{8+3i}{9-2i} = \frac{(8+3i)(9+2i)}{(9-2i)(9+2i)} = \frac{66+43i}{81+4} = \frac{66}{85} + \frac{43}{85}i.$$

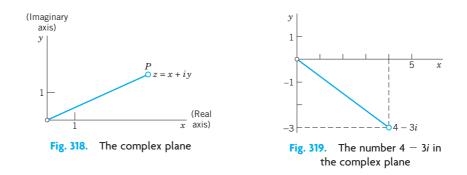
Check the division by multiplication to get 8 + 3i.

nmutative associative and distributive laws as re

Complex numbers satisfy the same commutative, associative, and distributive laws as real numbers (see the problem set).

Complex Plane

So far we discussed the algebraic manipulation of complex numbers. Consider the geometric representation of complex numbers, which is of great practical importance. We choose two perpendicular coordinate axes, the horizontal *x*-axis, called the **real axis**, and the vertical *y*-axis, called the **imaginary axis**. On both axes we choose the same unit of length (Fig. 318). This is called a **Cartesian coordinate system**.



We now plot a given complex number z = (x, y) = x + iy as the point *P* with coordinates *x*, *y*. The *xy*-plane in which the complex numbers are represented in this way is called the **complex plane**.² Figure 319 shows an example.

Instead of saying "the point represented by z in the complex plane" we say briefly and simply "*the point z in the complex plane*." This will cause no misunderstanding.

Addition and subtraction can now be visualized as illustrated in Figs. 320 and 321.

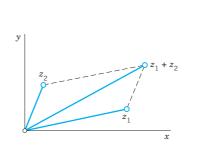
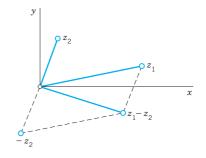
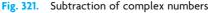


Fig. 320. Addition of complex numbers





²Sometimes called the **Argand diagram**, after the French mathematician JEAN ROBERT ARGAND (1768–1822), born in Geneva and later librarian in Paris. His paper on the complex plane appeared in 1806, nine years after a similar memoir by the Norwegian mathematician CASPAR WESSEL (1745–1818), a surveyor of the Danish Academy of Science.

Complex Conjugate Numbers

The complex conjugate \overline{z} of a complex number z = x + iy is defined by

 $\overline{z} = x - iy.$

It is obtained geometrically by reflecting the point z in the real axis. Figure 322 shows this for z = 5 + 2i and its conjugate $\overline{z} = 5 - 2i$.

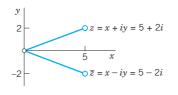


Fig. 322. Complex conjugate numbers

The complex conjugate is important because it permits us to switch from complex to real. Indeed, by multiplication, $z\overline{z} = x^2 + y^2$ (verify!). By addition and subtraction, $z + \overline{z} = 2x$, $z - \overline{z} = 2iy$. We thus obtain for the real part x and the imaginary part y (not *iy*!) of z = x + iy the important formulas

(8) Re
$$z = x = \frac{1}{2}(z + \overline{z})$$
, Im $z = y = \frac{1}{2i}(z - \overline{z})$.

If z is real, z = x, then $\overline{z} = z$ by the definition of \overline{z} , and conversely. Working with conjugates is easy, since we have

$$\overline{(z_1 + z_2)} = \overline{z}_1 + \overline{z}_2, \qquad \overline{(z_1 - z_2)} = \overline{z}_1 - \overline{z}_2,$$
$$\overline{(z_1 z_2)} = \overline{z}_1 \overline{z}_2, \qquad \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}.$$

EXAMPLE 3

Illustration of (8) and (9)

Let $z_1 = 4 + 3i$ and $z_2 = 2 + 5i$. Then by (8),

Im
$$z_1 = \frac{1}{2i}[(4+3i) - (4-3i)] = \frac{3i+3i}{2i} = 3.$$

Also, the multiplication formula in (9) is verified by

$$\overline{(z_1 z_2)} = \overline{(4+3i)(2+5i)} = \overline{(-7+26i)} = -7 - 26i,$$

$$\overline{z_1}\overline{z_2} = (4-3i)(2-5i) = -7 - 26i.$$

PROBLEM SET 13.1

(9)

- **1. Powers of i.** Show that $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, \cdots and 1/i = -i, $1/i^2 = -1$, $1/i^3 = i$, \cdots .
- **2. Rotation.** Multiplication by *i* is geometrically a counterclockwise rotation through $\pi/2$ (90°). Verify

this by graphing z and iz and the angle of rotation for z = 1 + i, z = -1 + 2i, z = 4 - 3i.

3. Division. Verify the calculation in (7). Apply (7) to (26 - 18i)/(6 - 2i).

- **4. Law for conjugates.** Verify (9) for $z_1 = -11 + 10i$, $z_2 = -1 + 4i$.
- 5. Pure imaginary number. Show that z = x + iy is pure imaginary if and only if $\overline{z} = -z$.
- **6. Multiplication**. If the product of two complex numbers is zero, show that at least one factor must be zero.
- **7. Laws of addition and multiplication.** Derive the following laws for complex numbers from the corresponding laws for real numbers.

 $z_1 + z_2 = z_2 + z_1, z_1 z_2 = z_2 z_1$ (Commutative laws) (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3),

 $(Associative \ laws)$ $(z_1 z_2) z_3 = z_1 (z_2 z_3)$

 $z_1(z_2 + z_3) = z_1z_2 + z_1z_3$ (Distributive law) 0 + z = z + 0 = z,

$$z + (-z) = (-z) + z = 0,$$
 $z \cdot 1 = z.$

8–15 **COMPLEX ARITHMETIC**

Let $z_1 = -2 + 11i$, $z_2 = 2 - i$. Showing the details of your work, find, in the form x + iy: **8.** z_1z_2 , $\overline{(z_1z_2)}$ **9.** Re (z_1^2) , $(\text{Re } z_1)^2$ **10.** Re $(1/z_2^2)$, $1/\text{Re}(z_2^2)$ **11.** $(z_1 - z_2)^2/16$, $(z_1/4 - z_2/4)^2$ **12.** z_1/z_2 , z_2/z_1 **13.** $(z_1 + z_2)(z_1 - z_2)$, $z_1^2 - z_2^2$

14. $\overline{z}_1/\overline{z}_2$, $\overline{(z_1/z_2)}$ **15.** $4(z_1 + z_2)/(z_1 - z_2)$

16–20 Let z = x + iy. Showing details, find, in terms of x and y:

16. Im (1/z), Im $(1/z^2)$ **17.** Re $z^4 - (\text{Re } z^2)^2$ **18.** Re $[(1 + i)^{16}z^2]$ **19.** Re (z/\bar{z}) , Im (z/\bar{z}) **20.** Im $(1/\bar{z}^2)$

13.2 Polar Form of Complex Numbers. Powers and Roots

We gain further insight into the arithmetic operations of complex numbers if, in addition to the *xy*-coordinates in the complex plane, we also employ the usual polar coordinates r, θ defined by

(1)
$$x = r \cos \theta, \quad y = r \sin \theta.$$

We see that then z = x + iy takes the so-called **polar form**

(2)
$$z = r(\cos \theta + i \sin \theta).$$

r is called the **absolute value** or **modulus** of z and is denoted by |z|. Hence

(3)
$$|z| = r = \sqrt{x^2 + y^2} = \sqrt{z\overline{z}}.$$

Geometrically, |z| is the distance of the point z from the origin (Fig. 323). Similarly, $|z_1 - z_2|$ is the distance between z_1 and z_2 (Fig. 324).

 θ is called the **argument** of z and is denoted by arg z. Thus $\theta = \arg z$ and (Fig. 323)

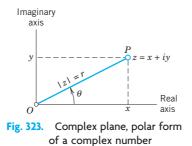
(4)
$$\tan \theta = \frac{y}{x} \qquad (z \neq 0)$$

Geometrically, θ is the directed angle from the positive *x*-axis to *OP* in Fig. 323. Here, as in calculus, all *angles are measured in radians and positive in the counterclockwise sense*.

For z = 0 this angle θ is undefined. (Why?) For a given $z \neq 0$ it is determined only up to integer multiples of 2π since cosine and sine are periodic with period 2π . But one often wants to specify a unique value of arg z of a given $z \neq 0$. For this reason one defines the **principal value** Arg z (with capital A!) of arg z by the double inequality

$$(5) \qquad -\pi < \operatorname{Arg} z \leq \pi.$$

Then we have Arg z = 0 for positive real z = x, which is practical, and Arg $z = \pi$ (not $-\pi$!) for negative real z, e.g., for z = -4. The principal value (5) will be important in connection with roots, the complex logarithm (Sec. 13.7), and certain integrals. Obviously, for a given $z \neq 0$, the other values of arg z are arg $z = \text{Arg } z \pm 2n\pi (n = \pm 1, \pm 2, \cdots)$.



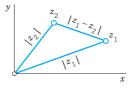


Fig. 324. Distance between two points in the complex plane

Fig. 325. Example 1

EXAMPLE 1

Polar Form of Complex Numbers. Principal Value Arg z

z = 1 + i (Fig. 325) has the polar form $z = \sqrt{2} \left(\cos \frac{1}{4} \pi + i \sin \frac{1}{4} \pi \right)$. Hence we obtain

$$|z| = \sqrt{2}, \quad \arg z = \frac{1}{4}\pi \pm 2n\pi \ (n = 0, 1, \cdots), \qquad \text{and} \qquad \operatorname{Arg} z = \frac{1}{4}\pi \quad (\text{the principal value}).$$

Similarly, $z = 3 + 3\sqrt{3}i = 6 \ (\cos \frac{1}{3}\pi + i \sin \frac{1}{3}\pi), \ |z| = 6, \text{ and } \operatorname{Arg} z = \frac{1}{3}\pi.$

CAUTION! In using (4), we must pay attention to the quadrant in which z lies, since $\tan \theta$ has period π , so that the arguments of z and -z have the same tangent. *Example:* for $\theta_1 = \arg(1 + i)$ and $\theta_2 = \arg(-1 - i)$ we have $\tan \theta_1 = \tan \theta_2 = 1$.

Triangle Inequality

(6)

Inequalities such as $x_1 < x_2$ make sense for *real* numbers, but not in complex because *there* is no natural way of ordering complex numbers. However, inequalities between absolute values (which are real!), such as $|z_1| < |z_2|$ (meaning that z_1 is closer to the origin than z_2) are of great importance. The daily bread of the complex analyst is the **triangle inequality**

$$|z_1 + z_2| \le |z_1| + |z_2|$$
 (Fig. 326)

which we shall use quite frequently. This inequality follows by noting that the three points 0, z_1 , and $z_1 + z_2$ are the vertices of a triangle (Fig. 326) with sides $|z_1|$, $|z_2|$, and $|z_1 + z_2|$, and one side cannot exceed the sum of the other two sides. A formal proof is left to the reader (Prob. 33). (The triangle degenerates if z_1 and z_2 lie on the same straight line through the origin.)



Fig. 326. Triangle inequality

By induction we obtain from (6) the generalized triangle inequality

(6*)
$$|z_1 + z_2 + \dots + z_n| \leq |z_1| + |z_2| + \dots + |z_n|;$$

that is, the absolute value of a sum cannot exceed the sum of the absolute values of the terms.

EXAMPLE 2

Triangle Inequality

If $z_1 = 1 + i$ and $z_2 = -2 + 3i$, then (sketch a figure!) $|z_1 + z_2| = |-1 + 4i| = \sqrt{17} = 4.123 < \sqrt{2} + \sqrt{13} = 5.020.$

Multiplication and Division in Polar Form

This will give us a "geometrical" understanding of multiplication and division. Let

$$z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$$
 and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$

Multiplication. By (3) in Sec. 13.1 the product is at first

$$z_1 z_2 = r_1 r_2 [(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i (\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2)].$$

The addition rules for the sine and cosine [(6) in App. A3.1] now yield

(7)
$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)].$$

Taking absolute values on both sides of (7), we see that *the absolute value of a product* equals the **product** of the absolute values of the factors,

(8)
$$|z_1z_2| = |z_1||z_2|.$$

Taking arguments in (7) shows that the argument of a product equals the sum of the arguments of the factors,

(9)
$$\arg(z_1z_2) = \arg z_1 + \arg z_2$$
 (up to multiples of 2π).

Division. We have $z_1 = (z_1/z_2)z_2$. Hence $|z_1| = |(z_1/z_2)z_2| = |z_1/z_2||z_2|$ and by division by $|z_2|$

(10)
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
 $(z_2 \neq 0).$

Similarly, arg $z_1 = \arg [(z_1/z_2)z_2] = \arg (z_1/z_2) + \arg z_2$ and by subtraction of arg z_2

(11)
$$\arg \frac{z_1}{z_2} = \arg z_1 - \arg z_2 \qquad \text{(up to multiples of } 2\pi\text{)}.$$

Combining (10) and (11) we also have the analog of (7),

(12)
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos \left(\theta_1 - \theta_2\right) + i \sin \left(\theta_1 - \theta_2\right) \right]$$

To comprehend this formula, note that it is the polar form of a complex number of absolute value r_1/r_2 and argument $\theta_1 - \theta_2$. But these are the absolute value and argument of z_1/z_2 , as we can see from (10), (11), and the polar forms of z_1 and z_2 .

EXAMPLE 3 Illustration of Formulas (8)–(11)

Let $z_1 = -2 + 2i$ and $z_2 = 3i$. Then $z_1z_2 = -6 - 6i$, $z_1/z_2 = \frac{2}{3} + (\frac{2}{3})i$. Hence (make a sketch)

$$|z_1 z_2| = 6\sqrt{2} = 3\sqrt{8} = |z_1||z_2|, \qquad |z_1/z_2| = 2\sqrt{2}/3 = |z_1|/|z_2|,$$

and for the arguments we obtain Arg $z_1 = 3\pi/4$, Arg $z_2 = \pi/2$,

Arg
$$(z_1 z_2) = -\frac{3\pi}{4} = \text{Arg } z_1 + \text{Arg } z_2 - 2\pi, \qquad \text{Arg}\left(\frac{z_1}{z_2}\right) = \frac{\pi}{4} = \text{Arg } z_1 - \text{Arg } z_2.$$

EXAMPLE 4 Integer Powers of z. De Moivre's Formula

From (8) and (9) with $z_1 = z_2 = z$ we obtain by induction for $n = 0, 1, 2, \cdots$

Similarly, (12) with $z_1 = 1$ and $z_2 = z^n$ gives (13) for $n = -1, -2, \cdots$. For |z| = r = 1, formula (13) becomes **De Moivre's formula**³

 $z^n = r^n (\cos n\theta + i \sin n\theta).$

(13*)
$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta.$$

We can use this to express $\cos n\theta$ and $\sin n\theta$ in terms of powers of $\cos \theta$ and $\sin \theta$. For instance, for n = 2 we have on the left $\cos^2 \theta + 2i \cos \theta \sin \theta - \sin^2 \theta$. Taking the real and imaginary parts on both sides of (13*) with n = 2 gives the familiar formulas

 $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$, $\sin 2\theta = 2 \cos \theta \sin \theta$.

This shows that *complex* methods often simplify the derivation of *real* formulas. Try n = 3.

Roots

If $z = w^n$ (n = 1, 2, ...), then to each value of w there corresponds *one* value of z. We shall immediately see that, conversely, to a given $z \neq 0$ there correspond precisely n distinct values of w. Each of these values is called an **nth root** of z, and we write

³ABRAHAM DE MOIVRE (1667–1754), French mathematician, who pioneered the use of complex numbers in trigonometry and also contributed to probability theory (see Sec. 24.8).

(14)
$$w = \sqrt[n]{z}$$

Hence this symbol is *multivalued*, namely, *n*-valued. The *n* values of $\sqrt[n]{z}$ can be obtained as follows. We write *z* and *w* in polar form

$$z = r(\cos \theta + i \sin \theta)$$
 and $w = R(\cos \phi + i \sin \phi)$.

Then the equation $w^n = z$ becomes, by De Moivre's formula (with ϕ instead of θ),

$$w^n = R^n(\cos n\phi + i\sin n\phi) = z = r(\cos \theta + i\sin \theta).$$

The absolute values on both sides must be equal; thus, $R^n = r$, so that $R = \sqrt[n]{r}$, where $\sqrt[n]{r}$ is positive real (an absolute value must be nonnegative!) and thus uniquely determined. Equating the arguments $n\phi$ and θ and recalling that θ is determined only up to integer multiples of 2π , we obtain

$$n\phi = \theta + 2k\pi$$
, thus $\phi = \frac{\theta}{n} + \frac{2k\pi}{n}$

where k is an integer. For $k = 0, 1, \dots, n-1$ we get *n* distinct values of w. Further integers of k would give values already obtained. For instance, k = n gives $2k\pi/n = 2\pi$, hence the w corresponding to k = 0, etc. Consequently, $\sqrt[n]{z}$, for $z \neq 0$, has the *n* distinct values

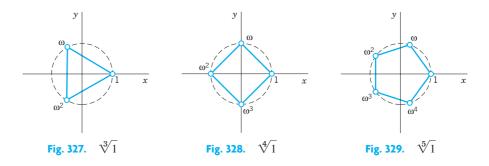
(15)
$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right)$$

where $k = 0, 1, \dots, n-1$. These *n* values lie on a circle of radius $\sqrt[n]{r}$ with center at the origin and constitute the vertices of a regular polygon of *n* sides. The value of $\sqrt[n]{z}$ obtained by taking the principal value of arg *z* and k = 0 in (15) is called the **principal value** of $w = \sqrt[n]{z}$.

Taking z = 1 in (15), we have |z| = r = 1 and Arg z = 0. Then (15) gives

(16)
$$\sqrt[n]{1} = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, \qquad k = 0, 1, \dots, n-1.$$

These *n* values are called the *n*th roots of unity. They lie on the circle of radius 1 and center 0, briefly called the **unit circle** (and used quite frequently!). Figures 327–329 show $\sqrt[3]{1} = 1, -\frac{1}{2} \pm \frac{1}{2}\sqrt{3}i, \sqrt[4]{1} = \pm 1, \pm i, \text{ and } \sqrt[5]{1}$.



If ω denotes the value corresponding to k = 1 in (16), then the *n* values of $\sqrt[n]{1}$ can be written as

$$1, \omega, \omega^2, \cdots, \omega^{n-1}$$

More generally, if w_1 is any *n*th root of an arbitrary complex number $z \neq 0$, then the *n* values of $\sqrt[n]{z}$ in (15) are

(17) $w_1, w_1\omega, w_1\omega^2, \cdots, w_1\omega^{n-1}$

because multiplying w_1 by ω^k corresponds to increasing the argument of w_1 by $2k\pi/n$. Formula (17) motivates the introduction of roots of unity and shows their usefulness.

PROBLEM SET 13.2

1–8 POLAR FORM

4 4 1 1

Represent in polar form and graph in the complex plane as in Fig. 325. Do these problems very carefully because polar forms will be needed frequently. Show the details.

•

4 . 4.

1.
$$1 + i$$
 2. $-4 + 4i$

 3. $2i, -2i$
 4. -5

 5. $\frac{\sqrt{2} + i/3}{-\sqrt{8} - 2i/3}$
 6. $\frac{\sqrt{3} - 10i}{-\frac{1}{2}\sqrt{3} + 5i}$

 7. $1 + \frac{1}{2}\pi i$
 8. $\frac{-4 + 19i}{2 + 5i}$

9–14 **PRINCIPAL ARGUMENT**

Determine the principal value of the argument and graph it as in Fig. 325.

9. $-1 + i$	10. -5 , $-5 - i$, $-5 + i$
11. 3 ± 4 <i>i</i>	12. $-\pi - \pi i$
13. $(1 + i)^{20}$	14. $-1 + 0.1i$, $-1 - 0.1i$

15–18 **CONVERSION TO** x + iy

Graph in the complex plane and represent in the form x + iy: **15.** $3(\cos \frac{1}{2}\pi - i \sin \frac{1}{2}\pi)$ **16.** $6(\cos \frac{1}{3}\pi + i \sin \frac{1}{3}\pi)$

- 17. $\sqrt{8} \left(\cos \frac{1}{4} \pi + i \sin \frac{1}{4} \pi \right)$
- 18. $\sqrt{50} \left(\cos \frac{3}{4} \pi + i \sin \frac{3}{4} \pi \right)$

ROOTS

19. CAS PROJECT. Roots of Unity and Their Graphs. Write a program for calculating these roots and for graphing them as points on the unit circle. Apply the program to $z^n = 1$ with $n = 2, 3, \dots, 10$. Then extend the program to one for arbitrary roots, using an idea near the end of the text, and apply the program to examples of your choice. **20. TEAM PROJECT. Square Root.** (a) Show that $w = \sqrt{z}$ has the values

(18)

$$w_{1} = \sqrt{r} \left[\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \right],$$

$$w_{2} = \sqrt{r} \left[\cos \left(\frac{\theta}{2} + \pi \right) + i \sin \left(\frac{\theta}{2} + \pi \right) \right]$$

$$= -w_{1}.$$

(b) Obtain from (18) the often more practical formula

(19) $\sqrt{z} = \pm \left[\sqrt{\frac{1}{2}(|z|+x)} + (\operatorname{sign} y)i\sqrt{\frac{1}{2}(|z|+x)}\right]$ where sign y = 1 if $y \ge 0$, sign y = -1 if y < 0, and all square roots of positive numbers are taken with positive sign. *Hint:* Use (10) in App. A3.1 with $x = \theta/2$. (c) Find the square roots of -14i, -9 - 40i, and $1 + \sqrt{48i}$ by both (18) and (19) and comment on the work involved.

(d) Do some further examples of your own and apply a method of checking your results.

21–27 **ROOTS**

Find and graph all roots in the complex plane.

21.
$$\sqrt[3]{1+i}$$
 22. $\sqrt[3]{3+4i}$

23.
$$\sqrt[4]{216}$$
 24. $\sqrt[4]{-4}$

25.
$$\forall i$$
 26. $\forall 1$ **27.** $\forall -1$

28–31 EQUATIONS

Solve and graph the solutions. Show details.

28.
$$z^2 - (6 - 2i)z + 17 - 6i = 0$$

29. $z^2 + z + 1 - i = 0$

30. $z^4 + 324 = 0$. Using the solutions, factor $z^4 + 324$ into quadratic factors with *real* coefficients.

31. $z^4 - 6iz^2 + 16 = 0$

32–35 INEQUALITIES AND EQUALITY

- **32. Triangle inequality.** Verify (6) for $z_1 = 3 + i$, $z_2 = -2 + 4i$
- **33. Triangle inequality.** Prove (6).

34. Re and Im. Prove $|\text{Re } z| \leq |z|$, $|\text{Im } z| \leq |z|$.

35. Parallelogram equality. Prove and explain the name

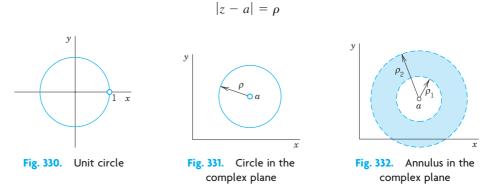
 $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2).$

13.3 Derivative. Analytic Function

Just as the study of calculus or real analysis required concepts such as domain, neighborhood, function, limit, continuity, derivative, etc., so does the study of complex analysis. Since the functions live in the complex plane, the concepts are slightly more difficult or *different* from those in real analysis. This section can be seen as a reference section where many of the concepts needed for the rest of Part D are introduced.

Circles and Disks. Half-Planes

The **unit circle** |z| = 1 (Fig. 330) has already occurred in Sec. 13.2. Figure 331 shows a general circle of radius ρ and center *a*. Its equation is



because it is the set of all z whose distance |z - a| from the center a equals ρ . Accordingly, its interior ("**open circular disk**") is given by $|z - a| < \rho$, its interior plus the circle itself ("**closed circular disk**") by $|z - a| \le \rho$, and its exterior by $|z - a| > \rho$. As an example, sketch this for a = 1 + i and $\rho = 2$, to make sure that you understand these inequalities.

An open circular disk $|z - a| < \rho$ is also called a **neighborhood** of *a* or, more precisely, a ρ -neighborhood of *a*. And *a* has infinitely many of them, one for each value of ρ (> 0), and *a* is a point of each of them, by definition!

In modern literature *any set* containing a ρ -neighborhood of *a* is also called a *neighborhood* of *a*.

Figure 332 shows an **open annulus** (circular ring) $\rho_1 < |z - a| < \rho_2$, which we shall need later. This is the set of all z whose distance |z - a| from a is greater than ρ_1 but less than ρ_2 . Similarly, the **closed annulus** $\rho_1 \leq |z - a| \leq \rho_2$ includes the two circles.

Half-Planes. By the (open) *upper* half-plane we mean the set of all points z = x + iy such that y > 0. Similarly, the condition y < 0 defines the *lower half-plane*, x > 0 the *right half-plane*, and x < 0 the *left half-plane*.

For Reference: Concepts on Sets in the Complex Plane

To our discussion of special sets let us add some general concepts related to sets that we shall need throughout Chaps. 13–18; keep in mind that you can find them here.

By a **point set** in the complex plane we mean any sort of collection of finitely many or infinitely many points. Examples are the solutions of a quadratic equation, the points of a line, the points in the interior of a circle as well as the sets discussed just before.

A set *S* is called **open** if every point of *S* has a neighborhood consisting entirely of points that belong to *S*. For example, the points in the interior of a circle or a square form an open set, and so do the points of the right half-plane Re z = x > 0.

A set *S* is called **connected** if any two of its points can be joined by a chain of finitely many straight-line segments all of whose points belong to *S*. An open and connected set is called a **domain**. Thus an open disk and an open annulus are domains. An open square with a diagonal removed is not a domain since this set is not connected. (Why?)

The **complement** of a set *S* in the complex plane is the set of all points of the complex plane that *do not belong* to *S*. A set *S* is called **closed** if its complement is open. For example, the points on and inside the unit circle form a closed set ("closed unit disk") since its complement |z| > 1 is open.

A **boundary point** of a set S is a point every neighborhood of which contains both points that belong to S and points that do not belong to S. For example, the boundary points of an annulus are the points on the two bounding circles. Clearly, if a set S is open, then no boundary point belongs to S; if S is closed, then every boundary point belongs to S. The set of all boundary points of a set S is called the **boundary** of S.

A **region** is a set consisting of a domain plus, perhaps, some or all of its boundary points. WARNING! "Domain" is the *modern* term for an open connected set. Nevertheless, some authors still call a domain a "region" and others make no distinction between the two terms.

Complex Function

Complex analysis is concerned with complex functions that are differentiable in some domain. Hence we should first say what we mean by a complex function and then define the concepts of limit and derivative in complex. This discussion will be similar to that in calculus. Nevertheless it needs great attention because it will show interesting basic differences between real and complex calculus.

Recall from calculus that a *real* function f defined on a set S of real numbers (usually an interval) is a rule that assigns to every x in S a real number f(x), called the *value* of f at x. Now in complex, S is a set of *complex* numbers. And a **function** f defined on S is a rule that assigns to every z in S a complex number w, called the *value* of f at z. We write

$$w = f(z).$$

Here z varies in S and is called a **complex variable**. The set S is called the *domain of definition* of f or, briefly, the **domain** of f. (In most cases S will be open and connected, thus a domain as defined just before.)

Example: $w = f(z) = z^2 + 3z$ is a complex function defined for all z; that is, its domain S is the whole complex plane.

The set of all values of a function f is called the **range** of f.

w is complex, and we write w = u + iv, where *u* and *v* are the real and imaginary parts, respectively. Now *w* depends on z = x + iy. Hence *u* becomes a real function of *x* and *y*, and so does *v*. We may thus write

w = f(z) = u(x, y) + iv(x, y).

This shows that a *complex* function f(z) is equivalent to a *pair* of *real* functions u(x, y) and v(x, y), each depending on the two real variables x and y.

EXAMPLE 1 Func

Function of a Complex Variable

Let $w = f(z) = z^2 + 3z$. Find u and v and calculate the value of f at z = 1 + 3i. **Solution.** $u = \operatorname{Re} f(z) = x^2 - y^2 + 3x$ and v = 2xy + 3y. Also,

 $f(1+3i) = (1+3i)^2 + 3(1+3i) = 1 - 9 + 6i + 3 + 9i = -5 + 15i.$

This shows that u(1, 3) = -5 and v(1, 3) = 15. Check this by using the expressions for u and v.

EXAMPLE 2 Function of a Complex Variable

Let $w = f(z) = 2iz + 6\overline{z}$. Find *u* and *v* and the value of *f* at $z = \frac{1}{2} + 4i$. **Solution.** f(z) = 2i(x + iy) + 6(x - iy) gives u(x, y) = 6x - 2y and v(x, y) = 2x - 6y. Also,

$$f(\frac{1}{2} + 4i) = 2i(\frac{1}{2} + 4i) + 6(\frac{1}{2} - 4i) = i - 8 + 3 - 24i = -5 - 23i.$$

Check this as in Example 1.

Remarks on Notation and Terminology

1. Strictly speaking, f(z) denotes the value of f at z, but it is a convenient abuse of language to talk about *the function* f(z) (instead of *the function* f), thereby exhibiting the notation for the independent variable.

2. We assume all functions to be *single-valued relations*, as usual: to each z in S there corresponds but *one* value w = f(z) (but, of course, several z may give the same value w = f(z), just as in calculus). Accordingly, we shall *not use* the term "multivalued function" (used in some books on complex analysis) for a multivalued relation, in which to a z there corresponds more than one w.

Limit, Continuity

A function f(z) is said to have the **limit** l as z approaches a point z_0 , written

(1)
$$\lim_{z \to z_0} f(z) = l$$

if f is defined in a neighborhood of z_0 (except perhaps at z_0 itself) and if the values of f are "close" to l for all z "close" to z_0 ; in precise terms, if for every positive real ϵ we can find a positive real δ such that for all $z \neq z_0$ in the disk $|z - z_0| < \delta$ (Fig. 333) we have

$$(2) |f(z) - l| < \epsilon;$$

geometrically, if for every $z \neq z_0$ in that δ -disk the value of f lies in the disk (2).

Formally, this definition is similar to that in calculus, but there is a big difference. Whereas in the real case, x can approach an x_0 only along the real line, here, by definition, z may approach z_0 *from any direction* in the complex plane. This will be quite essential in what follows.

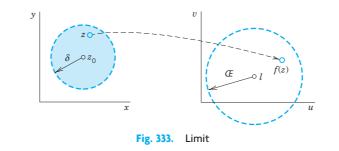
If a limit exists, it is unique. (See Team Project 24.)

A function f(z) is said to be **continuous** at $z = z_0$ if $f(z_0)$ is defined and

(3)
$$\lim_{z \to z_0} f(z) = f(z_0).$$

Note that by definition of a limit this implies that f(z) is defined in some neighborhood of z_0 .

f(z) is said to be *continuous in a domain* if it is continuous at each point of this domain.



Derivative

The **derivative** of a complex function f at a point z_0 is written $f'(z_0)$ and is defined by

(4)
$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

provided this limit exists. Then *f* is said to be **differentiable** at z_0 . If we write $\Delta z = z - z_0$, we have $z = z_0 + \Delta z$ and (4) takes the form

(4')
$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

Now comes an *important point*. Remember that, by the definition of limit, f(z) is defined in a neighborhood of z_0 and z in (4') may approach z_0 from any direction in the complex plane. Hence differentiability at z_0 means that, along whatever path z approaches z_0 , the quotient in (4') always approaches a certain value and all these values are equal. This is important and should be kept in mind.

EXAMPLE 3 Differentiability. Derivative

The function $f(z) = z^2$ is differentiable for all z and has the derivative f'(z) = 2z because

$$f'(z) = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z} = \lim_{\Delta z \to 0} \frac{z^2 + 2z \,\Delta z + (\Delta z)^2 - z^2}{\Delta z} = \lim_{\Delta z \to 0} (2z + \Delta z) = 2z.$$

The differentiation rules are the same as in real calculus, since their proofs are literally the same. Thus for any differentiable functions f and g and constant c we have

$$(cf)' = cf', \quad (f+g)' = f'+g', \quad (fg)' = f'g+fg', \quad \left(\frac{f}{g}\right)' = \frac{f'g-fg'}{g^2}$$

as well as the chain rule and the power rule $(z^n)' = nz^{n-1}$ (*n* integer). Also, if f(z) is differentiable at z_0 , it is continuous at z_0 . (See Team Project 24.)

EXAMPLE 4

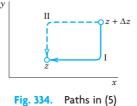
DEFINITION

\overline{z} not Differentiable

It may come as a surprise that there are many complex functions that do not have a derivative at any point. For instance, $f(z) = \overline{z} = x - iy$ is such a function. To see this, we write $\Delta z = \Delta x + i \Delta y$ and obtain

(5)
$$\frac{f(z+\Delta z)-f(z)}{\Delta z} = \frac{\overline{(z+\Delta z)}-\overline{z}}{\Delta z} = \frac{\overline{\Delta z}}{\Delta z} = \frac{\Delta x - i\Delta y}{\Delta x + i\Delta y}.$$

If $\Delta y = 0$, this is +1. If $\Delta x = 0$, this is -1. Thus (5) approaches +1 along path I in Fig. 334 but -1 along path II. Hence, by definition, the limit of (5) as $\Delta z \rightarrow 0$ does not exist at any z.



Surprising as Example 4 may be, it merely illustrates that differentiability of a *complex* function is a rather severe requirement.

The idea of proof (approach of z from different directions) is basic and will be used again as the crucial argument in the next section.

Analytic Functions

Complex analysis is concerned with the theory and application of "analytic functions," that is, functions that are differentiable in some domain, so that we can do "calculus in complex." The definition is as follows.

Analyticity

A function f(z) is said to be *analytic in a domain D* if f(z) is defined and differentiable at all points of *D*. The function f(z) is said to be *analytic at a point* $z = z_0$ in *D* if f(z) is analytic in a neighborhood of z_0 .

Also, by an **analytic function** we mean a function that is analytic in *some* domain.

Hence analyticity of f(z) at z_0 means that f(z) has a derivative at every point in some neighborhood of z_0 (including z_0 itself since, by definition, z_0 is a point of all its neighborhoods). This concept is *motivated* by the fact that it is of no practical interest if a function is differentiable merely at a single point z_0 but not throughout some neighborhood of z_0 . Team Project 24 gives an example.

A more modern term for *analytic in D* is *holomorphic in D*.

EXAMPLE 5 Polynomials, Rational Functions

The nonnegative integer powers 1, z, z^2 , \cdots are analytic in the entire complex plane, and so are **polynomials**, that is, functions of the form

$$f(z) = c_0 + c_1 z + c_2 z^2 + \dots + c_n z^n$$

where c_0, \dots, c_n are complex constants.

The quotient of two polynomials g(z) and h(z),

$$f(z) = \frac{g(z)}{h(z)}$$

is called a **rational function**. This *f* is analytic except at the points where h(z) = 0; here we assume that common factors of *g* and *h* have been canceled.

Many further analytic functions will be considered in the next sections and chapters.

The concepts discussed in this section extend familiar concepts of calculus. Most important is the concept of an analytic function, the exclusive concern of complex analysis. Although many simple functions are not analytic, the large variety of remaining functions will yield a most beautiful branch of mathematics that is very useful in engineering and physics.

PROBLEM SET 13.3

1-8 **REGIONS OF PRACTICAL INTEREST**

Determine and sketch or graph the sets in the complex plane given by

1. $|z + 1 - 5i| \leq \frac{3}{2}$

2.
$$0 < |z| < 1$$

3. $\pi < |z - 4 + 2i| < 3\pi$

4.
$$-\pi < \text{Im } z < \pi$$

5. $|\arg z| < \frac{1}{4}\pi$

6. Re
$$(1/z) < 1$$

- **7.** Re $z \ge -1$
- 8. $|z + i| \ge |z i|$
- **9. WRITING PROJECT. Sets in the Complex Plane.** Write a report by formulating the corresponding portions of the text in your own words and illustrating them with examples of your own.

COMPLEX FUNCTIONS AND THEIR DERIVATIVES

10–12 Function Values. Find Re f, and Im f and their values at the given point z.

10.
$$f(z) = 5z^2 - 12z + 3 + 2i$$
 at $4 - 3i$

11. f(z) = 1/(1 - z) at 1 - i

12.
$$f(z) = (z - 2)/(z + 2)$$
 at 8*i*

13. CAS PROJECT. Graphing Functions. Find and graph Re *f*, Im *f*, and |f| as surfaces over the *z*-plane. Also graph the two families of curves Re f(z) = const and

Im f(z) = const in the same figure, and the curves |f(z)| = const in another figure, where (a) $f(z) = z^2$, (b) f(z) = 1/z, (c) $f(z) = z^4$.

14–17 Continuity. Find out, and give reason, whether f(z) is continuous at z = 0 if f(0) = 0 and for $z \neq 0$ the function *f* is equal to:

14.
$$(\text{Re } z^2)/|z|$$
15. $|z|^2 \text{ Im } (1/z)$
16. $(\text{Im } z^2)/|z|^2$
17. $(\text{Re } z)/(1 - |z|)$

18–23 Differentiation. Find the value of the derivative of

18. (z - i)/(z + i) at *i* **19.** $(z - 4i)^8$ at = 3 + 4i

20. (1.5z + 2i)/(3iz - 4) at any z. Explain the result.

21. $i(1-z)^n$ at 0

22.
$$(iz^3 + 3z^2)^3$$
 at $2i$ **23.** $z^3/(z+i)^3$ at i

24. TEAM PROJECT. Limit, Continuity, Derivative(a) Limit. Prove that (1) is equivalent to the pair of relations

$$\lim_{z \to z_0} \operatorname{Re} f(z) = \operatorname{Re} l, \qquad \lim_{z \to z_0} \operatorname{Im} f(z) = \operatorname{Im} l.$$

(b) Limit. If $\lim_{z\to z_0} f(x)$ exists, show that this limit is unique.

(c) Continuity. If z_1, z_2, \cdots are complex numbers for which $\lim_{n \to \infty} z_n = a$, and if f(z) is continuous at z = a, show that $\lim_{n \to \infty} f(z_n) = f(a)$.

(d) Continuity. If f(z) is differentiable at z_0 , show that f(z) is continuous at z_0 .

(e) Differentiability. Show that f(z) = Re z = x is not differentiable at any z. Can you find other such functions? (f) Differentiability. Show that $f(z) = |z|^2$ is differentiable only at z = 0; hence it is nowhere analytic.

(1)

25. WRITING PROJECT. Comparison with Calculus. Summarize the second part of this section beginning with *Complex Function*, and indicate what is conceptually analogous to calculus and what is not.

13.4 Cauchy–Riemann Equations. Laplace's Equation

As we saw in the last section, to do complex analysis (i.e., "calculus in the complex") on any complex function, we require that function to be *analytic on some domain* that is differentiable in that domain.

The Cauchy–Riemann equations are the most important equations in this chapter and one of the pillars on which complex analysis rests. They provide a criterion (a test) for the analyticity of a complex function

$$w = f(z) = u(x, y) + iv(x, y).$$

Roughly, *f* is analytic in a domain *D* if and only if the first partial derivatives of *u* and *v* satisfy the two **Cauchy–Riemann equations**⁴

 $u_x = v_y, \qquad \qquad u_y = -v_x$

everywhere in D; here $u_x = \partial u/\partial x$ and $u_y = \partial u/\partial y$ (and similarly for v) are the usual notations for partial derivatives. The precise formulation of this statement is given in Theorems 1 and 2.

Example: $f(z) = z^2 = x^2 - y^2 + 2ixy$ is analytic for all z (see Example 3 in Sec. 13.3), and $u = x^2 - y^2$ and v = 2xy satisfy (1), namely, $u_x = 2x = v_y$ as well as $u_y = -2y = -v_x$. More examples will follow.

THEOREM 1

Cauchy–Riemann Equations

Let f(z) = u(x, y) + iv(x, y) be defined and continuous in some neighborhood of a point z = x + iy and differentiable at z itself. Then, at that point, the first-order partial derivatives of u and v exist and satisfy the Cauchy–Riemann equations (1). Hence, if f(z) is analytic in a domain D, those partial derivatives exist and satisfy (1) at all points of D.

⁴The French mathematician AUGUSTIN-LOUIS CAUCHY (see Sec. 2.5) and the German mathematicians BERNHARD RIEMANN (1826–1866) and KARL WEIERSTRASS (1815–1897; see also Sec. 15.5) are the founders of complex analysis. Riemann received his Ph.D. (in 1851) under Gauss (Sec. 5.4) at Göttingen, where he also taught until he died, when he was only 39 years old. He introduced the concept of the integral as it is used in basic calculus courses, and made important contributions to differential equations, number theory, and mathematical physics. He also developed the so-called Riemannian geometry, which is the mathematical foundation of Einstein's theory of relativity; see Ref. [GenRef9] in App. 1.

PROOF By assumption, the derivative f'(z) at z exists. It is given by

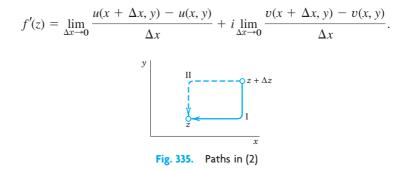
(2)
$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

The idea of the proof is very simple. By the definition of a limit in complex (Sec. 13.3), we can let Δz approach zero along any path in a neighborhood of *z*. Thus we may choose the two paths I and II in Fig. 335 and equate the results. By comparing the real parts we shall obtain the first Cauchy–Riemann equation and by comparing the imaginary parts the second. The technical details are as follows.

We write $\Delta z = \Delta x + i \Delta y$. Then $z + \Delta z = x + \Delta x + i(y + \Delta y)$, and in terms of *u* and *v* the derivative in (2) becomes

(3)
$$f'(z) = \lim_{\Delta z \to 0} \frac{[u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y)] - [u(x, y) + iv(x, y)]}{\Delta x + i\,\Delta y}.$$

We first choose path I in Fig. 335. Thus we let $\Delta y \rightarrow 0$ first and then $\Delta x \rightarrow 0$. After Δy is zero, $\Delta z = \Delta x$. Then (3) becomes, if we first write the two *u*-terms and then the two *v*-terms,



Since f'(z) exists, the two real limits on the right exist. By definition, they are the partial derivatives of *u* and *v* with respect to *x*. Hence the derivative f'(z) of f(z) can be written

(4)

Similarly, if we choose path II in Fig. 335, we let $\Delta x \rightarrow 0$ first and then $\Delta y \rightarrow 0$. After Δx is zero, $\Delta z = i \Delta y$, so that from (3) we now obtain

 $f'(z) = u_x + iv_x.$

$$f'(z) = \lim_{\Delta y \to 0} \frac{u(x, y + \Delta y) - u(x, y)}{i \,\Delta y} + i \lim_{\Delta y \to 0} \frac{v(x, y + \Delta y) - v(x, y)}{i \,\Delta y}.$$

Since f'(z) exists, the limits on the right exist and give the partial derivatives of u and v with respect to y; noting that 1/i = -i, we thus obtain

$$f'(z) = -iu_y + v_y.$$

The existence of the derivative f'(z) thus implies the existence of the four partial derivatives in (4) and (5). By equating the real parts u_x and v_y in (4) and (5) we obtain the first

Cauchy–Riemann equation (1). Equating the imaginary parts gives the other. This proves the first statement of the theorem and implies the second because of the definition of analyticity.

Formulas (4) and (5) are also quite practical for calculating derivatives f'(z), as we shall see.

EXAMPLE 1

Cauchy-Riemann Equations

 $f(z) = z^2$ is analytic for all z. It follows that the Cauchy–Riemann equations must be satisfied (as we have verified above).

For $f(z) = \overline{z} = x - iy$ we have u = x, v = -y and see that the second Cauchy–Riemann equation is satisfied, $u_u = -v_x = 0$, but the first is not: $u_x = 1 \neq v_y = -1$. We conclude that $f(z) = \overline{z}$ is not analytic, confirming Example 4 of Sec. 13.3. Note the savings in calculation!

The Cauchy-Riemann equations are fundamental because they are not only necessary but also sufficient for a function to be analytic. More precisely, the following theorem holds.

THEOREM 2

Cauchy–Riemann Equations

If two real-valued continuous functions u(x, y) and v(x, y) of two real variables x and y have continuous first partial derivatives that satisfy the Cauchy-Riemann equations in some domain D, then the complex function f(z) = u(x, y) + iv(x, y) is analytic in D.

The proof is more involved than that of Theorem 1 and we leave it optional (see App. 4). Theorems 1 and 2 are of great practical importance, since, by using the Cauchy-Riemann equations, we can now easily find out whether or not a given complex function is analytic.

EXAMPLE 2 Cauchy–Riemann Equations. Exponential Function

Is $f(z) = u(x, y) + iv(x, y) = e^x(\cos y + i \sin y)$ analytic?

Solution. We have $u = e^x \cos y$, $v = e^x \sin y$ and by differentiation

$u_x = e^x \cos y,$	$v_y = e^x \cos y$
$u_y = -e^x \sin y,$	$v_x = e^x \sin y.$

We see that the Cauchy–Riemann equations are satisfied and conclude that f(z) is analytic for all z. (f(z) will be the complex analog of e^x known from calculus.)

EXAMPLE 3

An Analytic Function of Constant Absolute Value Is Constant

The Cauchy-Riemann equations also help in deriving general properties of analytic functions. For instance, show that if f(z) is analytic in a domain D and |f(z)| = k = const in D, then f(z) = const in D. (We shall make crucial use of this in Sec. 18.6 in the proof of Theorem 3.)

Solution. By assumption, $|f|^2 = |u + iv|^2 = u^2 + v^2 = k^2$. By differentiation,

 $uu_x + vv_x = 0,$ $uu_u + vv_u = 0.$

Now use $v_x = -u_y$ in the first equation and $v_y = u_x$ in the second, to get

(a) $uu_x - vu_y = 0$, (6)

(b) $uu_y - vu_x = 0.$

To get rid of u_y , multiply (6a) by u and (6b) by v and add. Similarly, to eliminate u_x , multiply (6a) by -v and (6b) by u and add. This yields

 $(u^2 + v^2)u_x = 0,$ $(u^2 + v^2)u_y = 0.$

If $k^2 = u^2 + v^2 = 0$, then u = v = 0; hence f = 0. If $k^2 = u^2 + v^2 \neq 0$, then $u_x = u_y = 0$. Hence, by the Cauchy-Riemann equations, also $u_x = v_y = 0$. Together this implies u = const and v = const; hence f = const.

We mention that, if we use the polar form $z = r(\cos \theta + i \sin \theta)$ and set $f(z) = u(r, \theta) + iv(r, \theta)$, then the **Cauchy–Riemann equations** are (Prob. 1)

(7)

$$u_r = \frac{1}{r} v_{\theta}, \qquad (r > v_r = -\frac{1}{r} u_{\theta})$$

0).

Laplace's Equation. Harmonic Functions

The great importance of complex analysis in engineering mathematics results mainly from the fact that both the real part and the imaginary part of an analytic function satisfy Laplace's equation, the most important PDE of physics. It occurs in gravitation, electrostatics, fluid flow, heat conduction, and other applications (see Chaps. 12 and 18).

THEOREM 3 La

Laplace's Equation

If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then both u and v satisfy **Laplace's equation**

(8)
$$\nabla^2 u = u_{xx} + u_{yy} = 0$$

 $(\nabla^2 \text{ read "nabla squared"})$ and

(9)
$$\nabla^2 v = v_{xx} + v_{yy} = 0,$$

in D and have continuous second partial derivatives in D.

PROOF Differentiating $u_x = v_y$ with respect to x and $u_y = -v_x$ with respect to y, we have

$$(10) u_{xx} = v_{yx}, u_{yy} = -v_{xy}.$$

Now the derivative of an analytic function is itself analytic, as we shall prove later (in Sec. 14.4). This implies that u and v have continuous partial derivatives of all orders; in particular, the mixed second derivatives are equal: $v_{yx} = v_{xy}$. By adding (10) we thus obtain (8). Similarly, (9) is obtained by differentiating $u_x = v_y$ with respect to y and $u_y = -v_x$ with respect to x and subtracting, using $u_{xy} = u_{yx}$.

Solutions of Laplace's equation having *continuous* second-order partial derivatives are called **harmonic functions** and their theory is called **potential theory** (see also Sec. 12.11). Hence the real and imaginary parts of an analytic function are harmonic functions.

If two harmonic functions u and v satisfy the Cauchy–Riemann equations in a domain D, they are the real and imaginary parts of an analytic function f in D. Then v is said to be a **harmonic conjugate function** of u in D. (Of course, this has absolutely nothing to do with the use of "conjugate" for \overline{z} .)

EXAMPLE 4

How to Find a Harmonic Conjugate Function by the Cauchy–Riemann Equations

Verify that $u = x^2 - y^2 - y$ is harmonic in the whole complex plane and find a harmonic conjugate function v of u.

Solution. $\nabla^2 u = 0$ by direct calculation. Now $u_x = 2x$ and $u_y = -2y - 1$. Hence because of the Cauchy–Riemann equations a conjugate v of u must satisfy

 $v_y = u_x = 2x,$ $v_x = -u_y = 2y + 1.$

Integrating the first equation with respect to y and differentiating the result with respect to x, we obtain

$$v = 2xy + h(x),$$
 $v_x = 2y + \frac{dh}{dx}$

A comparison with the second equation shows that dh/dx = 1. This gives h(x) = x + c. Hence v = 2xy + x + c (*c* any real constant) is the most general harmonic conjugate of the given *u*. The corresponding analytic function is

$$f(z) = u + iv = x^{2} - y^{2} - y + i(2xy + x + c) = z^{2} + iz + ic.$$

Example 4 illustrates that a conjugate of a given harmonic function is uniquely determined up to an arbitrary real additive constant.

The Cauchy–Riemann equations are the most important equations in this chapter. Their relation to Laplace's equation opens a wide range of engineering and physical applications, as shown in Chap. 18.

PROBLEM SET 13.4

1. Cauchy–Riemann equations in polar form. Derive (7) from (1).

2–11 CAUCHY–RIEMANN EQUATIONS

Are the following functions analytic? Use (1) or (7).

2. $f(z) = iz\overline{z}$ 3. $f(z) = e^{-2x} (\cos 2y - i \sin 2y)$ 4. $f(z) = e^x (\cos y - i \sin y)$ 5. $f(z) = \operatorname{Re}(z^2) - i \operatorname{Im}(z^2)$ 6. $f(z) = 1/(z - z^5)$ 7. $f(z) = i/z^8$ 8. $f(z) = \operatorname{Arg} 2\pi z$ 9. $f(z) = 3\pi^2/(z^3 + 4\pi^2 z)$ 10. $f(z) = \ln |z| + i \operatorname{Arg} z$ 11. $f(z) = \cos x \cosh y - i \sin x \sinh y$

12–19 HARMONIC FUNCTIONS

Are the following functions harmonic? If your answer is yes, find a corresponding analytic function f(z) = u(x, y) + iv(x, y).

12.
$$u = x^2 + y^2$$
 13. $u = xy$

14. v = xy**15.** $u = x/(x^2 + y^2)$ **16.** $u = \sin x \cosh y$ **17.** v = (2x + 1)y

18.
$$u = x^3 - 3xy^2$$

19.
$$v = e^{\omega} \sin 2y$$

20. Laplace's equation. Give the details of the derivative of (9).

21–24 Determine a and b so that the given function is harmonic and find a harmonic conjugate.

- **21.** $u = e^{\pi x} \cos av$
- **22.** $u = \cos ax \cosh 2y$
- **23.** $u = ax^3 + bxy$
- 24. $u = \cosh ax \cos y$
- **25.** CAS PROJECT. Equipotential Lines. Write a program for graphing equipotential lines u = const of a harmonic function u and of its conjugate v on the same axes. Apply the program to (a) $u = x^2 y^2$, v = 2xy, (b) $u = x^3 3xy^2$, $v = 3x^2y y^3$.
- **26.** Apply the program in Prob. 25 to $u = e^x \cos y$, $v = e^x \sin y$ and to an example of your own.

- **27. Harmonic conjugate.** Show that if u is harmonic and v is a harmonic conjugate of u, then u is a harmonic conjugate of -v.
- 28. Illustrate Prob. 27 by an example.
- **29.** Two further formulas for the derivative. Formulas (4), (5), and (11) (below) are needed from time to time. Derive

(11)
$$f'(z) = u_x - iu_y, \qquad f'(z) = v_y + iv_x.$$

- **30. TEAM PROJECT. Conditions for** f(z) = const. Let f(z) be analytic. Prove that each of the following conditions is sufficient for f(z) = const.
 - (a) $\operatorname{Re} f(z) = \operatorname{const}$ (b) $\operatorname{Im} f(z) = \operatorname{const}$
 - (c) f'(z) = 0
 - (c) f(z) = 0
 - (d) |f(z)| = const (see Example 3)

13.5 Exponential Function

In the remaining sections of this chapter we discuss the basic elementary complex functions, the exponential function, trigonometric functions, logarithm, and so on. They will be counterparts to the familiar functions of calculus, to which they reduce when z = x is real. They are indispensable throughout applications, and some of them have interesting properties not shared by their real counterparts.

We begin with one of the most important analytic functions, the complex **exponential function**

$$e^z$$
, also written exp z.

The definition of e^z in terms of the real functions e^x , $\cos y$, and $\sin y$ is

(1)
$$e^z = e^x(\cos y + i \sin y).$$

This definition is motivated by the fact the e^z extends the real exponential function e^x of calculus in a natural fashion. Namely:

(A) $e^z = e^x$ for real z = x because $\cos y = 1$ and $\sin y = 0$ when y = 0.

(B) e^z is analytic for all z. (Proved in Example 2 of Sec. 13.4.)

(C) The derivative of e^z is e^z , that is,

$$(2) \qquad \qquad (e^z)' = e^z.$$

This follows from (4) in Sec. 13.4,

$$(e^{z})' = (e^{x} \cos y)_{x} + i(e^{x} \sin y)_{x} = e^{x} \cos y + ie^{x} \sin y = e^{z}.$$

REMARK. This definition provides for a relatively simple discussion. We could define e^z by the familiar series $1 + x + x^2/2! + x^3/3! + \cdots$ with x replaced by z, but we would then have to discuss complex series at this very early stage. (We will show the connection in Sec. 15.4.)

Further Properties. A function f(z) that is analytic for all z is called an **entire function**. Thus, e^z is entire. Just as in calculus the *functional relation*

(3)
$$e^{z_1+z_2} = e^{z_1}e^{z_2}$$

630

holds for any $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. Indeed, by (1),

$$e^{z_1}e^{z_2} = e^{x_1}(\cos y_1 + i \sin y_1)e^{x_2}(\cos y_2 + i \sin y_2).$$

Since $e^{x_1}e^{x_2} = e^{x_1+x_2}$ for these *real* functions, by an application of the addition formulas for the cosine and sine functions (similar to that in Sec. 13.2) we see that

$$e^{z_1}e^{z_2} = e^{x_1 + x_2}[\cos(y_1 + y_2) + i\sin(y_1 + y_2)] = e^{z_1 + z_2}$$

as asserted. An interesting special case of (3) is $z_1 = x$, $z_2 = iy$; then

(4)
$$e^z = e^x e^{iy}.$$

Furthermore, for z = iy we have from (1) the so-called **Euler formula**

(5)
$$e^{iy} = \cos y + i \sin y.$$

Hence the **polar form** of a complex number, $z = r(\cos \theta + i \sin \theta)$, may now be written

$$z = re^{i\theta}.$$

From (5) we obtain

$$e^{2\pi i} = 1$$

as well as the important formulas (verify!)

(8)
$$e^{\pi i/2} = i$$
, $e^{\pi i} = -1$, $e^{-\pi i/2} = -i$, $e^{-\pi i} = -1$.

Another consequence of (5) is

(9)
$$|e^{iy}| = |\cos y + i \sin y| = \sqrt{\cos^2 y + \sin^2 y} = 1.$$

That is, for pure imaginary exponents, the exponential function has absolute value 1, a result you should remember. From (9) and (1),

(10)
$$|e^z| = e^x$$
. Hence $\arg e^z = y \pm 2n\pi$ $(n = 0, 1, 2, \cdots),$

since $|e^z| = e^x$ shows that (1) is actually e^z in polar form. From $|e^z| = e^x \neq 0$ in (10) we see that

(11)
$$e^x \neq 0$$
 for all z.

So here we have an entire function that never vanishes, in contrast to (nonconstant) polynomials, which are also entire (Example 5 in Sec. 13.3) but always have a zero, as is proved in algebra.

Periodicity of e^x with period $2\pi i$,

(12)
$$e^{z+2\pi i} = e^z \quad \text{for all } z$$

is a basic property that follows from (1) and the periodicity of $\cos y$ and $\sin y$. Hence all the values that $w = e^z$ can assume are already assumed in the horizontal strip of width 2π

$$-\pi < y \le \pi$$
 (Fig. 336).

This infinite strip is called a **fundamental region** of e^{z} .

EXAMPLE 1 Function Values. Solution of Equations

Computation of values from (1) provides no problem. For instance,

$$e^{1.4-0.6i} = e^{1.4}(\cos 0.6 - i \sin 0.6) = 4.055(0.8253 - 0.5646i) = 3.347 - 2.289i$$

 $|e^{1.4-1.6i}| = e^{1.4} = 4.055, \qquad \text{Arg } e^{1.4-0.6i} = -0.6.$

To illustrate (3), take the product of

$$e^{2+i} = e^2(\cos 1 + i \sin 1)$$
 and $e^{4-i} = e^4(\cos 1 - i \sin 1)$

and verify that it equals $e^2 e^4 (\cos^2 1 + \sin^2 1) = e^6 = e^{(2+i) + (4-i)}$.

To solve the equation $e^z = 3 + 4i$, note first that $|e^z| = e^x = 5$, $x = \ln 5 = 1.609$ is the real part of all solutions. Now, since $e^x = 5$,

 $e^x \cos y = 3$, $e^x \sin y = 4$, $\cos y = 0.6$, $\sin y = 0.8$, y = 0.927.

Ans. $z = 1.609 + 0.927i \pm 2n\pi i$ ($n = 0, 1, 2, \dots$). These are infinitely many solutions (due to the periodicity of e^z). They lie on the vertical line x = 1.609 at a distance 2π from their neighbors.

To summarize: many properties of $e^z = \exp z$ parallel those of e^x ; an exception is the periodicity of e^z with $2\pi i$, which suggested the concept of a fundamental region. Keep in mind that e^z is an *entire function*. (Do you still remember what that means?)

Fig. 336. Fundamental region of the exponential function e^z in the *z*-plane

PROBLEM SET 13	. 5
----------------	-----

1. *e^z* is entire. Prove this.

2–7 Function Values. Find e^z in the form u + iv and $|e^z|$ if z equals

2. $3 + 4i$	3. $2\pi i(1+i)$
4. 0.6 - 1.8 <i>i</i>	5. $2 + 3\pi i$
6. $11\pi i/2$	7. $\sqrt{2} + \frac{1}{2}\pi i$

8–13	Polar Form. Write in exponential form (6):	
8. $\sqrt[n]{z}$	9. $4 + 3i$	
10. \sqrt{i} ,	$\sqrt{-i}$ 11. -6.3	
12. 1/(1	(-z) 13. 1 + i	
14–17 Real and Imaginary Parts. Find Re and Im of		
14. $e^{-\pi z}$	15. $\exp(z^2)$	

17. $\exp(z^3)$

16. $e^{1/z}$

18. TEAM PROJECT. Further Properties of the Exponential Function. (a) Analyticity. Show that e^z is entire. What about $e^{1/z}$? $e^{\overline{z}}$? $e^x(\cos ky + i \sin ky)$? (Use the Cauchy–Riemann equations.)

(b) Special values. Find all z such that (i) e^z is real,
(ii) |e^{-z}| < 1, (iii) e^{z̄} = e^{z̄}.

(c) Harmonic function. Show that $u = e^{xy} \cos (x^2/2 - y^2/2)$ is harmonic and find a conjugate.

(d) Uniqueness. It is interesting that $f(z) = e^z$ is uniquely determined by the two properties $f(x + i0) = e^x$ and f'(z) = f(z), where *f* is assumed to be entire. Prove this using the Cauchy–Riemann equations.

19–22 Equations. Find all solutions and graph some of them in the complex plane.

19. $e^z = 1$ **20.** $e^z = 4 + 3i$ **21.** $e^z = 0$ **22.** $e^z = -2$

13.6 Trigonometric and Hyperbolic Functions. Euler's Formula

Just as we extended the real e^x to the complex e^z in Sec. 13.5, we now want to extend the familiar *real* trigonometric functions to *complex trigonometric functions*. We can do this by the use of the Euler formulas (Sec. 13.5)

$$e^{ix} = \cos x + i \sin x$$
, $e^{-ix} = \cos x - i \sin x$.

By addition and subtraction we obtain for the real cosine and sine

$$\cos x = \frac{1}{2}(e^{ix} + e^{-ix}), \qquad \sin x = \frac{1}{2i}(e^{ix} - e^{-ix}).$$

This suggests the following definitions for complex values z = x + iy:

(1)
$$\cos z = \frac{1}{2}(e^{iz} + e^{-iz}), \qquad \sin z = \frac{1}{2i}(e^{iz} - e^{-iz}).$$

It is quite remarkable that here in complex, functions come together that are unrelated in real. This is not an isolated incident but is typical of the general situation and shows the advantage of working in complex.

Furthermore, as in calculus we define

(2)
$$\tan z = \frac{\sin z}{\cos z}, \qquad \cot z = \frac{\cos z}{\sin z}$$

and

(3)
$$\sec z = \frac{1}{\cos z}, \qquad \csc z = \frac{1}{\sin z}.$$

Since e^z is entire, $\cos z$ and $\sin z$ are entire functions. $\tan z$ and $\sec z$ are not entire; they are analytic except at the points where $\cos z$ is zero; and $\cot z$ and $\csc z$ are analytic except

where sin z is zero. Formulas for the derivatives follow readily from $(e^z)' = e^z$ and (1)–(3); as in calculus,

(4)
$$(\cos z)' = -\sin z$$
, $(\sin z)' = \cos z$, $(\tan z)' = \sec^2 z$,

etc. Equation (1) also shows that Euler's formula is valid in complex:

(5)
$$e^{iz} = \cos z + i \sin z$$
 for all z.

The real and imaginary parts of $\cos z$ and $\sin z$ are needed in computing values, and they also help in displaying properties of our functions. We illustrate this with a typical example.

EXAMPLE 1 Real and Imaginary Parts. Absolute Value. Periodicity

Show that

(6)	(a) (b)	$\cos z = \cos x \cosh y - i \sin x \sinh y$ $\sin z = \sin x \cosh y + i \cos x \sinh y$
and		
(7)		a) $ \cos z ^2 = \cos^2 x + \sinh^2 y$ b) $ \sin z ^2 = \sin^2 x + \sinh^2 y$

and give some applications of these formulas.

Solution. From (1),

$$\cos z = \frac{1}{2}(e^{i(x+iy)} + e^{-i(x+iy)})$$

= $\frac{1}{2}e^{-y}(\cos x + i\sin x) + \frac{1}{2}e^{y}(\cos x - i\sin x)$
= $\frac{1}{2}(e^{y} + e^{-y})\cos x - \frac{1}{2}i(e^{y} - e^{-y})\sin x.$

This yields (6a) since, as is known from calculus,

(8)

EXAMPLE 2

(6b) is obtained similarly. From (6a) and $\cosh^2 y = 1 + \sinh^2 y$ we obtain

$$|\cos z|^2 = (\cos^2 x)(1 + \sinh^2 y) + \sin^2 x \sinh^2 y.$$

 $\cosh y = \frac{1}{2}(e^y + e^{-y}), \quad \sinh y = \frac{1}{2}(e^y - e^{-y});$

Since $\sin^2 x + \cos^2 x = 1$, this gives (7a), and (7b) is obtained similarly.

For instance, $\cos (2 + 3i) = \cos 2 \cosh 3 - i \sin 2 \sinh 3 = -4.190 - 9.109i$.

From (6) we see that sin z and cos z are *periodic with period* 2π , just as in real. Periodicity of tan z and cot z with period π now follows.

Formula (7) points to an essential difference between the real and the complex cosine and sine; whereas $|\cos x| \le 1$ and $|\sin x| \le 1$, the complex cosine and sine functions are *no longer bounded* but approach infinity in absolute value as $y \to \infty$, since then sinh $y \to \infty$ in (7).

Solutions of Equations. Zeros of cos z and sin z

Solve (a) $\cos z = 5$ (which has no real solution!), (b) $\cos z = 0$, (c) $\sin z = 0$.

Solution. (a) $e^{2iz} - 10e^{iz} + 1 = 0$ from (1) by multiplication by e^{iz} . This is a quadratic equation in e^{iz} , with solutions (rounded off to 3 decimals)

$$e^{iz} = e^{-y+ix} = 5 \pm \sqrt{25-1} = 9.899$$
 and 0.101.

Thus $e^{-y} = 9.899$ or 0.101, $e^{ix} = 1$, $y = \pm 2.292$, $x = 2n\pi$. Ans. $z = \pm 2n\pi \pm 2.292i$ $(n = 0, 1, 2, \dots)$. Can you obtain this from (6a)? (b) $\cos x = 0$, $\sinh y = 0$ by (7a), y = 0. Ans. $z = \pm \frac{1}{2}(2n + 1)\pi$ ($n = 0, 1, 2, \cdots$). (c) $\sin x = 0$, $\sinh y = 0$ by (7b), Ans. $z = \pm n\pi$ ($n = 0, 1, 2, \cdots$). Hence the only zeros of $\cos z$ and $\sin z$ are those of the real cosine and sine functions.

General formulas for the real trigonometric functions continue to hold for complex values. This follows immediately from the definitions. We mention in particular the addition rules

(9)

$$\begin{aligned}
\cos(z_1 \pm z_2) &= \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2 \\
\sin(z_1 \pm z_2) &= \sin z_1 \cos z_2 \pm \sin z_2 \cos z_1
\end{aligned}$$

and the formula

(10)
$$\cos^2 z + \sin^2 z = 1.$$

Some further useful formulas are included in the problem set.

Hyperbolic Functions

The complex hyperbolic cosine and sine are defined by the formulas

(11)
$$\cosh z = \frac{1}{2}(e^z + e^{-z}), \qquad \sinh z = \frac{1}{2}(e^z - e^{-z}).$$

This is suggested by the familiar definitions for a real variable [see (8)]. These functions are entire, with derivatives

(12)
$$(\cosh z)' = \sinh z, \qquad (\sinh z)' = \cosh z,$$

as in calculus. The other hyperbolic functions are defined by

(13)
$$\tan z = \frac{\sinh z}{\cosh z}, \qquad \coth z = \frac{\cosh z}{\sinh z},$$
$$\operatorname{sech} z = \frac{1}{\cosh z}, \qquad \operatorname{csch} z = \frac{1}{\sinh z}.$$

Complex Trigonometric and Hyperbolic Functions Are Related. If in (11), we replace z by iz and then use (1), we obtain

(14)
$$\cosh iz = \cos z, \quad \sinh iz = i \sin z.$$

Similarly, if in (1) we replace z by iz and then use (11), we obtain conversely

(15)
$$\cos iz = \cosh z$$
, $\sin iz = i \sinh z$.

Here we have another case of *unrelated* real functions that have *related* complex analogs, pointing again to the advantage of working in complex in order to get both a more unified formalism and a deeper understanding of special functions. This is one of the main reasons for the importance of complex analysis to the engineer and physicist.

PROBLEM SET 13.6

1–4 FORMULAS FOR HYPERBOLIC FUNCTIONS Show that

- 1. $\cosh z = \cosh x \cos y + i \sinh x \sin y$ $\sinh z = \sinh x \cos y + i \cosh x \sin y.$
- 2. $\cosh (z_1 + z_2) = \cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2$ $\sinh (z_1 + z_2) = \sinh z_1 \cosh z_2 + \cosh z_1 \sinh z_2.$
- **3.** $\cosh^2 z \sinh^2 z = 1$, $\cosh^2 z + \sinh^2 z = \cosh 2z$
- **4. Entire Functions.** Prove that cos *z*, sin *z*, cosh *z*, and sinh *z* are entire.
- **5. Harmonic Functions.** Verify by differentiation that Im cos *z* and Re sin *z* are harmonic.

6–12 Function Values. Find, in the form u + iv,

- **6.** $\sin 2\pi i$ **7.** $\cos i$, $\sin i$
- 8. $\cos \pi i$, $\cosh \pi i$
- **9.** $\cosh(-1+2i), \quad \cos(-2-i)$
- **10.** $\sinh(3 + 4i)$, $\cosh(3 + 4i)$

11. $\sin \pi i$, $\cos (\frac{1}{2}\pi - \pi i)$ **12.** $\cos \frac{1}{2}\pi i$, $\cos [\frac{1}{2}\pi(1+i)]$

13–15 Equations and Inequalities. Using the definitions, prove:

- **13.** $\cos z$ is even, $\cos (-z) = \cos z$, and $\sin z$ is odd, $\sin (-z) = -\sin z$.
- 14. |sinh y| ≤ |cos z| ≤ cosh y, |sinh y| ≤ |sin z| ≤ cosh y. Conclude that the complex cosine and sine are not bounded in the whole complex plane.
- **15.** $\sin z_1 \cos z_2 = \frac{1}{2} [\sin(z_1 + z_2) + \sin(z_1 z_2)]$

16–19 Equations. Find all solutions.

16.
$$\sin z = 100$$
 17. $\cosh z = 0$

18. $\cosh z = -1$ **19.** $\sinh z = 0$

20. Re tan z and Im tan z. Show that

Re
$$\tan z = \frac{\sin x \cos x}{\cos^2 x + \sinh^2 y}$$
,
Im $\tan z = \frac{\sinh y \cosh y}{\cos^2 x + \sinh^2 y}$.

13.7 Logarithm. General Power. Principal Value

We finally introduce the *complex logarithm*, which is more complicated than the real logarithm (which it includes as a special case) and historically puzzled mathematicians for some time (so if you first get puzzled—which need not happen!—be patient and work through this section with extra care).

The **natural logarithm** of z = x + iy is denoted by $\ln z$ (sometimes also by $\log z$) and is defined as the inverse of the exponential function; that is, $w = \ln z$ is defined for $z \neq 0$ by the relation

$$e^w = z$$
.

(Note that z = 0 is impossible, since $e^{w} \neq 0$ for all w; see Sec. 13.5.) If we set w = u + iv and $z = re^{i\theta}$, this becomes

$$e^w = e^{u+iv} = re^{i\theta}.$$

Now, from Sec. 13.5, we know that e^{u+iv} has the absolute value e^u and the argument v. These must be equal to the absolute value and argument on the right:

$$e^u = r, \quad v = \theta.$$

 $e^{u} = r$ gives $u = \ln r$, where $\ln r$ is the familiar *real* natural logarithm of the positive number r = |z|. Hence $w = u + iv = \ln z$ is given by

(1)
$$\ln z = \ln r + i\theta \qquad (r = |z| > 0, \quad \theta = \arg z).$$

Now comes an important point (without analog in real calculus). Since the argument of z is determined only up to integer multiples of 2π , the complex natural logarithm $\ln z \ (z \neq 0)$ is infinitely many-valued.

The value of $\ln z$ corresponding to the principal value Arg z (see Sec. 13.2) is denoted by Ln z (Ln with capital L) and is called the **principal value** of ln z. Thus

(2)
$$\operatorname{Ln} z = \ln |z| + i \operatorname{Arg} z \qquad (z \neq 0).$$

The uniqueness of Arg z for given $z \neq 0$ implies that Ln z is single-valued, that is, a function in the usual sense. Since the other values of arg z differ by integer multiples of 2π , the other values of $\ln z$ are given by

(3)
$$\ln z = \operatorname{Ln} z \pm 2n\pi i \qquad (n = 1, 2, \cdots).$$

They all have the same real part, and their imaginary parts differ by integer multiples of 2π .

If z is positive real, then $\operatorname{Arg} z = 0$, and $\operatorname{Ln} z$ becomes identical with the real natural logarithm known from calculus. If z is negative real (so that the natural logarithm of calculus is not defined!), then Arg $z = \pi$ and

$$\operatorname{Ln} z = \ln |z| + \pi i$$
 (z negative real).

From (1) and $e^{\ln r} = r$ for positive real *r* we obtain

$$(4a) e^{\ln z}$$

as expected, but since arg $(e^z) = y \pm 2n\pi$ is multivalued, so is

(4b)
$$\ln(e^z) = z \pm 2n\pi i, \qquad n = 0, 1, \cdots.$$

= z

EXAMPLE 1 Natural Logarithm. Principal Value

$$\begin{aligned} \ln 1 &= 0, \pm 2\pi i, \pm 4\pi i, \cdots & \ln 1 &= 0 \\ \ln 4 &= 1.386294 \pm 2n\pi i & \ln 4 &= 1.386294 \\ \ln (-1) &= \pm \pi i, \pm 3\pi i, \pm 5\pi i, \cdots & \ln (-1) &= \pi i \\ \ln (-4) &= 1.386294 \pm (2n+1)\pi i & \ln (-4) &= 1.386294 + \pi i \\ \ln i &= \pi i/2, -3\pi/2, 5\pi i/2, \cdots & \ln i &= \pi i/2 \\ \ln 4i &= 1.386294 + \pi i/2 \pm 2n\pi i & \ln 4i &= 1.386294 + \pi i/2 \\ \ln (-4i) &= 1.386294 - \pi i/2 \pm 2n\pi i & \ln (-4i) &= 1.386294 - \pi i/2 \\ \ln (3 - 4i) &= \ln 5 + i \arg (3 - 4i) & \ln (3 - 4i) &= 1.609438 - 0.927295i \\ &= 1.609438 - 0.927295i \pm 2n\pi i & (Fig. 337) \end{aligned}$$

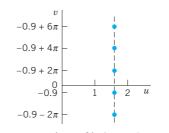


Fig. 337. Some values of $\ln(3 - 4i)$ in Example 1

The familiar relations for the natural logarithm continue to hold for complex values, that is,

(5) (a)
$$\ln(z_1z_2) = \ln z_1 + \ln z_2$$
, (b) $\ln(z_1/z_2) = \ln z_1 - \ln z_2$

but these relations are to be understood in the sense that each value of one side is also contained among the values of the other side; see the next example.

Illustration of the Functional Relation (5) in Complex

Let

$$z_1 = z_2 = e^{\pi i} = -1.$$

If we take the principal values

$$\operatorname{Ln} z_1 = \operatorname{Ln} z_2 = \pi i,$$

then (5a) holds provided we write $\ln (z_1 z_2) = \ln 1 = 2\pi i$; however, it is not true for the principal value, $\ln (z_1 z_2) = \ln 1 = 0$.

THEOREM 1

EXAMPLE 2

Analyticity of the Logarithm

For every $n = 0, \pm 1, \pm 2, \cdots$ formula (3) defines a function, which is analytic, except at 0 and on the negative real axis, and has the derivative

(6) $(\ln z)' = \frac{1}{z}$ (z not 0 or negative real).

PROOF We show that the Cauchy–Riemann equations are satisfied. From (1)–(3) we have

$$\ln z = \ln r + i(\theta + c) = \frac{1}{2}\ln(x^2 + y^2) + i\left(\arctan\frac{y}{x} + c\right)$$

where the constant c is a multiple of 2π . By differentiation,

$$u_x = \frac{x}{x^2 + y^2} = v_y = \frac{1}{1 + (y/x)^2} \cdot \frac{1}{x}$$
$$u_y = \frac{y}{x^2 + y^2} = -v_x = -\frac{1}{1 + (y/x)^2} \left(-\frac{y}{x^2}\right).$$

Hence the Cauchy–Riemann equations hold. [Confirm this by using these equations in polar form, which we did not use since we proved them only in the problems (to Sec. 13.4).] Formula (4) in Sec. 13.4 now gives (6),

$$(\ln z)' = u_x + iv_x = \frac{x}{x^2 + y^2} + i\frac{1}{1 + (y/x)^2} \left(-\frac{y}{x^2}\right) = \frac{x - iy}{x^2 + y^2} = \frac{1}{z}.$$

Each of the infinitely many functions in (3) is called a **branch** of the logarithm. The negative real axis is known as a **branch cut** and is usually graphed as shown in Fig. 338. The branch for n = 0 is called the **principal branch** of $\ln z$.

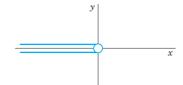


Fig. 338. Branch cut for ln z

General Powers

General powers of a complex number z = x + iy are defined by the formula

(7)
$$z^c = e^{c \ln z}$$
 (*c* complex, $z \neq 0$).

Since $\ln z$ is infinitely many-valued, z^c will, in general, be multivalued. The particular value

$$z^c = e^{c \ln z}$$

is called the **principal value** of z^c .

If $c = n = 1, 2, \dots$, then z^n is single-valued and identical with the usual *n*th power of *z*. If $c = -1, -2, \dots$, the situation is similar.

If c = 1/n, where $n = 2, 3, \cdots$, then

$$z^{c} = \sqrt[n]{z} = e^{(1/n)\ln z} \qquad (z \neq 0),$$

the exponent is determined up to multiples of $2\pi i/n$ and we obtain the *n* distinct values of the *n*th root, in agreement with the result in Sec. 13.2. If c = p/q, the quotient of two positive integers, the situation is similar, and z^c has only finitely many distinct values. However, if *c* is real irrational or genuinely complex, then z^c is infinitely many-valued.

EXAMPLE 3 General Power

$$i^{i} = e^{i \ln i} = \exp(i \ln i) = \exp\left[i\left(\frac{\pi}{2}i \pm 2n\pi i\right)\right] = e^{-(\pi/2)\mp 2n\pi}$$

All these values are real, and the principal value (n = 0) is $e^{-\pi/2}$. Similarly, by direct calculation and multiplying out in the exponent,

$$(1+i)^{2-i} = \exp\left[(2-i)\ln(1+i)\right] = \exp\left[(2-i)\left\{\ln\sqrt{2} + \frac{1}{4}\pi i \pm 2n\pi i\right\}\right]$$
$$= 2e^{\pi/4 \pm 2n\pi} \left[\sin\left(\frac{1}{2}\ln 2\right) + i\cos\left(\frac{1}{2}\ln 2\right)\right].$$

It is a *convention* that for real positive z = x the expression z^c means $e^{c \ln x}$ where $\ln x$ is the elementary real natural logarithm (that is, the principal value $\text{Ln } z \ (z = x > 0)$ in the sense of our definition). Also, if z = e, the base of the natural logarithm, $z^c = e^c$ is *conventionally* regarded as the unique value obtained from (1) in Sec. 13.5.

From (7) we see that for any complex number a,

$$a^z = e^{z \ln a}.$$

We have now introduced the complex functions needed in practical work, some of them $(e^z, \cos z, \sin z, \cosh z, \sinh z)$ entire (Sec. 13.5), some of them $(\tan z, \cot z, \tanh z, \coth z)$ analytic except at certain points, and one of them $(\ln z)$ splitting up into infinitely many functions, each analytic except at 0 and on the negative real axis.

For the inverse trigonometric and hyperbolic functions see the problem set.

PROBLEM SET 13.7

1–4 VERIFICATIONS IN THE TEXT

1. Verify the computations in Example 1.

2. Verify (5) for $z_1 = -i$ and $z_2 = -1$.

- **3.** Prove analyticity of Ln *z* by means of the Cauchy–Riemann equations in polar form (Sec. 13.4).
- **4.** Prove (4a) and (4b).

COMPLEX NATURAL LOGARITHM *In z*

5–11	Principal Value Ln z. Find Ln z when z equals
5. -1	1 6. $4 + 4i$
7.4 -	- $4i$ 8. 1 ± i
9. 0.6	$+ 0.8i$ 10. $-15 \pm 0.1i$

11. ei

12–16 All Values of ln *z*. Find all values and graph some of them in the complex plane.

12.	ln e	13.	ln 1
14.	ln (-7)	15.	$\ln{(e^i)}$

- **16.** $\ln(4 + 3i)$
- **17.** Show that the set of values of $\ln (i^2)$ differs from the set of values of 2 ln *i*.

18–21 Equations. Solve for *z*.

18. $\ln z = -\pi i/2$	19. $\ln z = 4 - 3i$
20. $\ln z = e - \pi i$	21. $\ln z = 0.6 + 0.4$

22–28 General Powers. Find the principal value. Show details.

22.	$(2i)^{2i}$	23. $(1 + i)^{1-i}$
24.	$(1 - i)^{1+i}$	25. $(-3)^{3-i}$

26. $(i)^{i/2}$ **27.** $(-1)^{2-i}$

28. $(3 + 4i)^{1/3}$

- **29.** How can you find the answer to Prob. 24 from the answer to Prob. 23?
- **30. TEAM PROJECT. Inverse Trigonometric and Hyperbolic Functions.** By definition, the **inverse sine** $w = \arcsin z$ is the relation such that $\sin w = z$. The **inverse cosine** $w = \arccos z$ is the relation such that $\cos w = z$. The **inverse tangent**, **inverse cotangent**, **inverse hyperbolic sine**, etc., are defined and denoted in a similar fashion. (Note that all these relations are *multivalued*.) Using $\sin w = (e^{iw} - e^{-iw})/(2i)$ and similar representations of $\cos w$, etc., show that

(a)
$$\arccos z = -i \ln (z + \sqrt{z^2 - 1})$$

(b)
$$\arcsin z = -i \ln (iz + \sqrt{1 - z^2})$$

(c)
$$\operatorname{arccosh} z = \ln (z + \sqrt{z^2 - 1})$$

(d)
$$\operatorname{arcsinh} z = \ln (z + \sqrt{z^2 + 1})$$

(e)
$$\arctan z = \frac{i}{2} \ln \frac{i+z}{i-z}$$

(f)
$$\operatorname{arctanh} z = \frac{1}{2} \ln \frac{1+z}{1-z}$$

(g) Show that $w = \arcsin z$ is infinitely many-valued, and if w_1 is one of these values, the others are of the form $w_1 \pm 2n\pi$ and $\pi - w_1 \pm 2n\pi$, $n = 0, 1, \cdots$. (The *principal value of* $w = u + iv = \arcsin z$ is defined to be the value for which $-\pi/2 \le u \le \pi/2$ if $v \ge 0$ and $-\pi/2 < u < \pi/2$ if v < 0.)

640

CHAPTER 13 REVIEW QUESTIONS AND PROBLEMS

- **1.** Divide 15 + 23i by -3 + 7i. Check the result by multiplication.
- **2.** What happens to a quotient if you take the complex conjugates of the two numbers? If you take the absolute values of the numbers?
- **3.** Write the two numbers in Prob. 1 in polar form. Find the principal values of their arguments.
- **4.** State the definition of the derivative from memory. Explain the big difference from that in calculus.
- 5. What is an analytic function of a complex variable?
- **6.** Can a function be differentiable at a point without being analytic there? If yes, give an example.
- **7.** State the Cauchy–Riemann equations. Why are they of basic importance?
- 8. Discuss how e^z , $\cos z$, $\sin z$, $\cosh z$, $\sinh z$ are related.
- **9.** ln z is more complicated than ln x. Explain. Give examples.
- **10.** How are general powers defined? Give an example. Convert it to the form x + iy.

11–16 Complex Numbers. Find, in the form x + iy, showing details,

11.
$$(2 + 3i)^2$$

12. $(1 - i)^{10}$
13. $1/(4 + 3i)$
14. \sqrt{i}

16. $e^{\pi i/2}$, $e^{-\pi i/2}$

17–20 Polar Form. Represent in polar form, with the principal argument.

17. -4 -	4 <i>i</i> 18. $12 + i$, $12 - i$
19. –15 <i>i</i>	20. $0.6 + 0.8i$
21–24	Roots. Find and graph all values of:
21. $\sqrt{81}$	22. $\sqrt{-32i}$
23. $\sqrt[4]{-1}$	24. $\sqrt[3]{1}$

25–30 Analytic Functions. Find f(z) = u(x, y) + iv(x, y) with *u* or *v* as given. Check by the Cauchy–Riemann equations for analyticity.

25 u = xy **26.** $v = y/(x^2 + y^2)$ **27.** $v = -e^{-2x} \sin 2y$ **28.** $u = \cos 3x \cosh 3y$ **29.** $u = \exp(-(x^2 - y^2)/2) \cos xy$

30. $v = \cos 2x \sinh 2y$

15. (1 + i)/(1 - i)

31–35 Special Function Values. Find the value of:

- **31.** $\cos (3 i)$ **32.** $\ln (0.6 + 0.8i)$ **33.** $\tan i$ **34.** $\sinh (1 + \pi i)$, $\sin (1 + \pi i)$
- **35.** $\cosh(\pi + \pi i)$

SUMMARY OF CHAPTER 13

Complex Numbers and Functions. Complex Differentiation

For arithmetic operations with complex numbers

(1)
$$z = x + iy = re^{i\theta} = r(\cos\theta + i\sin\theta),$$

 $r = |z| = \sqrt{x^2 + y^2}$, $\theta = \arctan(y/x)$, and for their representation in the complex plane, see Secs. 13.1 and 13.2.

A complex function f(z) = u(x, y) + iv(x, y) is **analytic** in a domain *D* if it has a **derivative** (Sec. 13.3)

(2)
$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

everywhere in *D*. Also, f(z) is *analytic at a point* $z = z_0$ if it has a derivative in a neighborhood of z_0 (not merely at z_0 itself).

If f(z) is analytic in D, then u(x, y) and v(x, y) satisfy the (very important!) **Cauchy–Riemann equations** (Sec. 13.4)

(3)
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

everywhere in D. Then u and v also satisfy Laplace's equation

(4)
$$u_{xx} + u_{yy} = 0, \quad v_{xx} + v_{yy} = 0$$

everywhere in *D*. If u(x, y) and v(x, y) are continuous and have *continuous* partial derivatives in *D* that satisfy (3) in *D*, then f(z) = u(x, y) + iv(x, y) is analytic in *D*. See Sec. 13.4. (More on Laplace's equation and complex analysis follows in Chap. 18.)

The complex exponential function (Sec. 13.5)

(5)
$$e^{z} = \exp z = e^{x} \left(\cos y + i \sin y\right)$$

reduces to e^x if z = x (y = 0). It is periodic with $2\pi i$ and has the derivative e^z . The **trigonometric functions** are (Sec. 13.6)

$$\cos z = \frac{1}{2}(e^{iz} + e^{-iz}) = \cos x \cosh y - i \sin x \sinh y$$
$$\sin z = \frac{1}{2i}(e^{iz} - e^{-iz}) = \sin x \cosh y + i \cos x \sinh y$$

and, furthermore,

(6)

$$\tan z = (\sin z)/\cos z$$
, $\cot z = 1/\tan z$, etc.

The hyperbolic functions are (Sec. 13.6)

(7)
$$\cosh z = \frac{1}{2}(e^z + e^{-z}) = \cos iz, \quad \sinh z = \frac{1}{2}(e^z - e^{-z}) = -i\sin iz$$

etc. The functions (5)–(7) are **entire**, that is, analytic everywhere in the complex plane.

The natural logarithm is (Sec. 13.7)

(8)
$$\ln z = \ln|z| + i \arg z = \ln|z| + i \operatorname{Arg} z \pm 2n\pi i$$

where $z \neq 0$ and $n = 0, 1, \cdots$. Arg z is the **principal value** of arg z, that is, $-\pi < \operatorname{Arg} z \leq \pi$. We see that $\ln z$ is infinitely many-valued. Taking n = 0 gives the **principal value** $\operatorname{Ln} z$ of $\ln z$; thus $\operatorname{Ln} z = \ln |z| + i \operatorname{Arg} z$.

General powers are defined by (Sec. 13.7)

(9)
$$z^c = e^{c \ln z}$$
 (c complex, $z \neq 0$).

CHAPTER 14

Complex Integration

Chapter 13 laid the groundwork for the study of complex analysis, covered complex numbers in the complex plane, limits, and differentiation, and introduced the most important concept of analyticity. A complex function is *analytic* in some domain if it is differentiable in that domain. Complex analysis deals with such functions and their applications. The Cauchy–Riemann equations, in Sec. 13.4, were the heart of Chapter 13 and allowed a means of checking whether a function is indeed analytic. In that section, we also saw that analytic functions satisfy Laplace's equation, the most important PDE in physics.

We now consider the next part of complex calculus, that is, we shall discuss the first approach to complex integration. It centers around the very important *Cauchy integral theorem* (also called the *Cauchy–Goursat theorem*) in Sec. 14.2. This theorem is important because it allows, through its implied *Cauchy integral formula* of Sec. 14.3, the evaluation of integrals having an analytic integrand. Furthermore, the Cauchy integral formula shows the surprising result that analytic functions have derivatives of all orders. Hence, in this respect, complex analytic functions behave much more simply than real-valued functions of real variables, which may have derivatives only up to a certain order.

Complex integration is attractive for several reasons. Some basic properties of analytic functions are difficult to prove by other methods. This includes the existence of derivatives of all orders just discussed. A main practical reason for the importance of integration in the complex plane is that such integration can evaluate certain real integrals that appear in applications and that are not accessible by real integral calculus.

Finally, complex integration is used in connection with special functions, such as gamma functions (consult [GenRef1]), the error function, and various polynomials (see [GenRef10]). These functions are applied to problems in physics.

The second approach to complex integration is integration by residues, which we shall cover in Chapter 16.

Prerequisite: Chap. 13.

Section that may be omitted in a shorter course: 14.1, 14.5. References and Answers to Problems: App. 1 Part D, App. 2.

14.1 Line Integral in the Complex Plane

As in calculus, in complex analysis we distinguish between definite integrals and indefinite integrals or antiderivatives. Here an **indefinite integral** is a function whose derivative equals a given analytic function in a region. By inverting known differentiation formulas we may find many types of indefinite integrals.

Complex definite integrals are called (complex) line integrals. They are written

 $\int f(z) dz.$

643

Here the **integrand** f(z) is integrated over a given curve *C* or a portion of it (an *arc*, but we shall say "*curve*" in either case, for simplicity). This curve *C* in the complex plane is called the **path of integration**. We may represent *C* by a parametric representation

(1)
$$z(t) = x(t) = iy(t) \qquad (a \le t \le b).$$

The sense of increasing t is called the **positive sense** on C, and we say that C is **oriented** by (1).

For instance, z(t) = t + 3it $(0 \le t \le 2)$ gives a portion (a segment) of the line y = 3x. The function $z(t) = 4 \cos t + 4i \sin t$ $(-\pi \le t \le \pi)$ represents the circle |z| = 4, and so on. More examples follow below.

We assume C to be a smooth curve, that is, C has a continuous and nonzero derivative

$$\dot{z}(t) = \frac{dz}{dt} = \dot{x}(t) + i\dot{y}(t)$$

at each point. Geometrically this means that C has everywhere a continuously turning tangent, as follows directly from the definition

$$\dot{z}(t) = \lim_{\Delta t \to 0} \frac{z(t + \Delta t) - z(t)}{\Delta t}$$
(Fig. 339).

Here we use a dot since a prime ' denotes the derivative with respect to z.

Definition of the Complex Line Integral

This is similar to the method in calculus. Let *C* be a smooth curve in the complex plane given by (1), and let f(z) be a continuous function given (at least) at each point of *C*. We now subdivide (we "*partition*") the interval $a \le t \le b$ in (1) by points

$$t_0 (= a), t_1, \cdots, t_{n-1}, t_n (= b)$$

where $t_0 < t_1 < \cdots < t_n$. To this subdivision there corresponds a subdivision of C by points

$$z_0, z_1, \cdots, z_{n-1}, z_n (= Z)$$
 (Fig. 340),

Fig. 339. Tangent vector $\dot{z}(t)$ of a curve C in the complex plane given by z(t). The arrowhead on the curve indicates the *positive sense* (sense of increasing t)

Fig. 340. Complex line integral

Z

where $z_j = z(t_j)$. On each portion of subdivision of *C* we choose an arbitrary point, say, a point ζ_1 between z_0 and z_1 (that is, $\zeta_1 = z(t)$ where *t* satisfies $t_0 \leq t \leq t_1$), a point ζ_2 between z_1 and z_2 , etc. Then we form the sum

(2)
$$S_n = \sum_{m=1}^n f(\zeta_m) \, \Delta z_m \quad \text{where} \quad \Delta z_m = z_m - z_{m-1}$$

We do this for each $n = 2, 3, \cdots$ in a completely independent manner, but so that the greatest $|\Delta t_m| = |t_m - t_{m-1}|$ approaches zero as $n \to \infty$. This implies that the greatest $|\Delta z_m|$ also approaches zero. Indeed, it cannot exceed the length of the arc of *C* from z_{m-1} to z_m and the latter goes to zero since the arc length of the smooth curve *C* is a continuous function of *t*. The limit of the sequence of complex numbers S_2, S_3, \cdots thus obtained is called the **line integral** (or simply the *integral*) of f(z) over the path of integration *C* with the orientation given by (1). This line integral is denoted by

(3)
$$\int_C f(z) \, dz, \quad \text{or by} \quad \oint_C f(z) \, dz$$

if C is a **closed path** (one whose terminal point Z coincides with its initial point z_0 , as for a circle or for a curve shaped like an 8).

General Assumption. All paths of integration for complex line integrals are assumed to be **piecewise smooth**, that is, they consist of finitely many smooth curves joined end to end.

Basic Properties Directly Implied by the Definition

1. Linearity. Integration is a linear operation, that is, we can integrate sums term by term and can take out constant factors from under the integral sign. This means that if the integrals of f_1 and f_2 over a path *C* exist, so does the integral of $k_1f_1 + k_2f_2$ over the same path and

(4)
$$\int_C [k_1 f_1(z) + k_2 f_2(z)] dz = k_1 \int_C f_1(z) dz + k_2 \int_C f_2(z) dz.$$

2. Sense reversal in integrating over the *same* path, from z_0 to Z (left) and from Z to z_0 (right), introduces a minus sign as shown,

(5)
$$\int_{z_0}^{Z} f(z) \, dz = -\int_{Z}^{z_0} f(z) \, dz.$$

3. Partitioning of path (see Fig. 341)

(6)

$$\int_{C} f(z) \, dz = \int_{C_1} f(z) \, dz + \int_{C_2} f(z) \, dz.$$

Fig. 341. Partitioning of path [formula (6)]

Existence of the Complex Line Integral

Our assumptions that f(z) is continuous and C is piecewise smooth imply the existence of the line integral (3). This can be seen as follows.

As in the preceding chapter let us write f(z) = u(x, y) + iv(x, y). We also set

$$\zeta_m = \xi_m + i\eta_m$$
 and $\Delta z_m = \Delta x_m + i\Delta y_m$.

Then (2) may be written

(7)
$$S_n = \sum (u + iv)(\Delta x_m + i\Delta y_m)$$

where $u = u(\zeta_m, \eta_m)$, $v = v(\zeta_m, \eta_m)$ and we sum over *m* from 1 to *n*. Performing the multiplication, we may now split up S_n into four sums:

$$S_n = \sum u \,\Delta x_m - \sum v \,\Delta y_m + i \left[\sum u \,\Delta y_m + \sum v \,\Delta x_m \right].$$

These sums are real. Since *f* is continuous, *u* and *v* are continuous. Hence, if we let *n* approach infinity in the aforementioned way, then the greatest Δx_m and Δy_m will approach zero and each sum on the right becomes a real line integral:

(8)
$$\lim_{n \to \infty} S_n = \int_C f(z) dz = \int_C u dx - \int_C v dy + i \left[\int_C u dy + \int_C v dx \right].$$

This shows that under our assumptions on *f* and *C* the line integral (3) exists and its value is independent of the choice of subdivisions and intermediate points ζ_m .

First Evaluation Method: Indefinite Integration and Substitution of Limits

This method is the analog of the evaluation of definite integrals in calculus by the well-known formula

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

where [F'(x) = f(x)].

It is simpler than the next method, but it is suitable for analytic functions only. To formulate it, we need the following concept of general interest.

A domain D is called **simply connected** if every **simple closed curve** (closed curve without self-intersections) encloses only points of D.

For instance, a circular disk is simply connected, whereas an annulus (Sec. 13.3) is not simply connected. (Explain!)

THEOREM 1

Indefinite Integration of Analytic Functions

Let f(z) be analytic in a simply connected domain D. Then there exists an indefinite integral of f(z) in the domain D, that is, an analytic function F(z) such that F'(z) = f(z) in D, and for all paths in D joining two points z_0 and z_1 in D we have

(9)
$$\int_{z_0}^{z_1} f(z) \, dz = F(z_1) - F(z_0) \qquad [F'(z) = f(z)].$$

(Note that we can write z_0 and z_1 instead of C, since we get the same value for all those C from z_0 to z_1 .)

This theorem will be proved in the next section.

Simple connectedness is quite essential in Theorem 1, as we shall see in Example 5. Since analytic functions are our main concern, and since differentiation formulas will often help in finding F(z) for a given f(z) = F'(z), the present method is of great practical interest.

If f(z) is entire (Sec. 13.5), we can take for D the complex plane (which is certainly simply connected).

$$\sum_{0}^{i+i} z^2 dz = \frac{1}{3} z^3 \Big|_{0}^{1+i} = \frac{1}{3} (1+i)^3 = -\frac{2}{3} + \frac{2}{3} i$$

$$\int_{\pi i}^{\pi i} \cos z \, dz = \sin z \Big|_{-\pi i}^{\pi i} = 2 \sin \pi i = 2i \sinh \pi = 23.097i$$

EXAMPLE 3

EXAMPLE 1

EXAMPLE 2

EXAMPLE 4

$$\int_{8+\pi i}^{\sqrt{8-3\pi i}} e^{z/2} dz = 2e^{z/2} \Big|_{8+\pi i}^{8-3\pi i} = 2(e^{4-3\pi i/2} - e^{4+\pi i/2}) = 0$$

since e^z is periodic with period $2\pi i$.

$$\int_{-i}^{i} \frac{dz}{z} = \operatorname{Ln} i - \operatorname{Ln} (-i) = \frac{i\pi}{2} - \left(-\frac{i\pi}{2}\right) = i\pi.$$
 Here *D* is the complex plane without 0 and the negative real

axis (where Ln z is not analytic). Obviously, D is a simply connected domain.

Second Evaluation Method: Use of a Representation of a Path

This method is not restricted to analytic functions but applies to any continuous complex function.

THEOREM 2

Integration by the Use of the Path

Let C be a piecewise smooth path, represented by z = z(t), where $a \le t \le b$. Let f(z) be a continuous function on C. Then

(10)

z)
$$dz = \int_{a}^{b} f[z(t)]\dot{z}(t) dt$$
 $\left(\dot{z} = \frac{dz}{dt}\right).$

PROOF The left side of (10) is given by (8) in terms of real line integrals, and we show that the right side of (10) also equals (8). We have z = x + iy, hence $\dot{z} = \dot{x} + i\dot{y}$. We simply write u for u[x(t), y(t)] and v for v[x(t), y(t)]. We also have $dx = \dot{x} dt$ and $dy = \dot{y} dt$. Consequently, in (10)

$$\int_{a}^{b} f[z(t)]\dot{z}(t) dt = \int_{a}^{b} (u + iv)(\dot{x} + i\dot{y}) dt$$
$$= \int_{C} [u \, dx - v \, dy + i(u \, dy + v \, dx)]$$
$$= \int_{C} (u \, dx - v \, dy) + i \int_{C} (u \, dy + v \, dx).$$

COMMENT. In (7) and (8) of the existence proof of the complex line integral we referred to real line integrals. If one wants to avoid this, one can take (10) as a *definition* of the complex line integral.

Steps in Applying Theorem 2

- (A) Represent the path *C* in the form z(t) ($a \le t \le b$).
- **(B)** Calculate the derivative $\dot{z}(t) = dz/dt$.
- (C) Substitute z(t) for every z in f(z) (hence x(t) for x and y(t) for y).

(**D**) Integrate $f[z(t)]\dot{z}(t)$ over t from a to b.

EXAMPLE 5 A Basic Result: Integral of 1/z Around the Unit Circle

We show that by integrating 1/z counterclockwise around the unit circle (the circle of radius 1 and center 0; see Sec. 13.3) we obtain

(11)

 $\oint_C \frac{dz}{z} = 2\pi i$

(C the unit circle, counterclockwise).

This is a very important result that we shall need quite often.

Solution. (A) We may represent the unit circle C in Fig. 330 of Sec. 13.3 by

$$z(t) = \cos t + i\sin t = e^{it} \qquad (0 \le t \le 2\pi)$$

so that counterclockwise integration corresponds to an increase of t from 0 to 2π .

(B) Differentiation gives $\dot{z}(t) = ie^{it}$ (chain rule!).

(C) By substitution, $f(z(t)) = 1/z(t) = e^{-it}$.

(D) From (10) we thus obtain the result

$$\oint_C \frac{dz}{z} = \int_0^{2\pi} e^{-it} i e^{it} dt = i \int_0^{2\pi} dt = 2\pi i.$$

Check this result by using $z(t) = \cos t + i \sin t$.

Simple connectedness is essential in Theorem 1. Equation (9) in Theorem 1 gives 0 for any closed path because then $z_1 = z_0$, so that $F(z_1) - F(z_0) = 0$. Now 1/z is not analytic at z = 0. But any simply connected domain containing the unit circle must contain z = 0, so that Theorem 1 does not apply—it is not enough that 1/z is analytic in an annulus, say, $\frac{1}{2} < |z| < \frac{3}{2}$, because an annulus is not simply connected!

EXAMPLE 6 Integral of 1/z^m with Integer Power m

Let $f(z) = (z - z_0)^m$ where m is the integer and z_0 a constant. Integrate counterclockwise around the circle C of radius ρ with center at z_0 (Fig. 342).

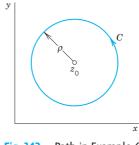


Fig. 342. Path in Example 6

Solution. We may represent C in the form

$$z(t) = z_0 + \rho(\cos t + i\sin t) = z_0 + \rho e^{it} \qquad (0 \le t \le 2\pi).$$

Then we have

$$(z - z_0)^m = \rho^m e^{imt}, \qquad dz = i\rho e^{it} dt$$

and obtain

$$\oint_C (z - z_0)^m dz = \int_0^{2\pi} \rho^m e^{imt} i\rho e^{it} dt = i\rho^{m+1} \int_0^{2\pi} e^{i(m+1)t} dt.$$

By the Euler formula (5) in Sec. 13.6 the right side equals

$$i\rho^{m+1}\left[\int_{0}^{2\pi}\cos{(m+1)t}\,dt + i\int_{0}^{2\pi}\sin{(m+1)t}\,dt\right].$$

If m = -1, we have $\rho^{m+1} = 1$, $\cos 0 = 1$, $\sin 0 = 0$. We thus obtain $2\pi i$. For integer $m \neq -1$ each of the two integrals is zero because we integrate over an interval of length 2π , equal to a period of sine and cosine. Hence the result is

(12)
$$\oint_C (z - z_0)^m dz = \begin{cases} 2\pi i & (m = -1), \\ 0 & (m \neq -1 \text{ and integer}). \end{cases}$$

Dependence on path. Now comes a very important fact. If we integrate a given function f(z) from a point z_0 to a point z_1 along different paths, the integrals will in general have different values. In other words, a complex line integral depends not only on the endpoints of the path but in general also on the path itself. The next example gives a first impression of this, and a systematic discussion follows in the next section.

EXAMPLE 7

Integral of a Nonanalytic Function. Dependence on Path

Integrate f(z) = Re z = x from 0 to 1 + 2*i* (a) along C* in Fig. 343, (b) along C consisting of C₁ and C₂. **Solution.** (a) C* can be represented by z(t) = t + 2it ($0 \le t \le 1$). Hence $\dot{z}(t) = 1 + 2i$ and f[z(t)] = 1 + 2i

$$x(t) = t$$
 on C^* . We now calculate

$$\int_{C^*} \operatorname{Re} z \, dz = \int_0^1 t(1+2i) \, dt = \frac{1}{2}(1+2i) = \frac{1}{2} + i$$

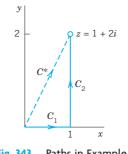


Fig. 343. Paths in Example 7

(b) We now have

 $C_1: z(t) = t,$ $\dot{z}(t) = 1$, f(z(t)) = x(t) = t $(0 \le t \le 1)$ $C_2: z(t) = 1 + it,$ $\dot{z}(t) = i,$ f(z(t)) = x(t) = 1 $(0 \le t \le 2).$

Using (6) we calculate

$$\int_{C} \operatorname{Re} z \, dz = \int_{C_1} \operatorname{Re} z \, dz + \int_{C_2} \operatorname{Re} z \, dz = \int_{0}^{1} t \, dt + \int_{0}^{2} 1 \cdot i \, dt = \frac{1}{2} + 2i$$

Note that this result differs from the result in (a).

Bounds for Integrals. ML-Inequality

There will be a frequent need for estimating the absolute value of complex line integrals. The basic formula is

. .

(13)
$$\left| \int_{C} f(z) \, dz \right| \leq ML \qquad (ML-\text{inequality});$$

L is the length of *C* and *M* a constant such that $|f(z)| \leq M$ everywhere on *C*.

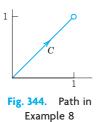
PROOF Taking the absolute value in (2) and applying the generalized inequality (6*) in Sec. 13.2, we obtain

$$|S_n| = \left|\sum_{m=1}^n f(\zeta_m) \Delta z_m\right| \le \sum_{m=1}^n |f(\zeta_m)| |\Delta z_m| \le M \sum_{m=1}^n |\Delta z_m|.$$

Now $|\Delta z_m|$ is the length of the chord whose endpoints are z_{m-1} and z_m (see Fig. 340). Hence the sum on the right represents the length L^* of the broken line of chords whose endpoints are z_0, z_1, \dots, z_n (= Z). If *n* approaches infinity in such a way that the greatest $|\Delta t_m|$ and thus $|\Delta z_m|$ approach zero, then L* approaches the length L of the curve C, by the definition of the length of a curve. From this the inequality (13) follows.

We cannot see from (13) how close to the bound *ML* the actual absolute value of the integral is, but this will be no handicap in applying (13). For the time being we explain the practical use of (13) by a simple example.

EXAMPLE 8 Estimation of an Integral



Solution. $L = \sqrt{2}$ and $|f(z)| = |z^2| \le 2$ on C gives by (13)

Find an upper bound for the absolute value of the integral

 $\int z^2 dz$,

$$\left| \int_{C} z^2 dz \right| \leq 2\sqrt{2} = 2.8284.$$

The absolute value of the integral is $\left|-\frac{2}{3} + \frac{2}{3}i\right| = \frac{2}{3}\sqrt{2} = 0.9428$ (see Example 1).

Summary on Integration. Line integrals of f(z) can always be evaluated by (10), using a representation (1) of the path of integration. If f(z) is analytic, indefinite integration by (9) as in calculus will be simpler (proof in the next section).

PROBLEM SET 14.1

1-10 FIND THE PATH and sketch it. **1.** $z(t) = (1 + \frac{1}{2}i)t$ $(2 \le t \le 5)$ **2.** z(t) = 3 + i + (1 - i)t $(0 \le t \le 3)$ **3.** $z(t) = t + 2it^2$ $(1 \le t \le 2)$ **4.** $z(t) = t + (1 - t)^2i$ $(-1 \le t \le 1)$ **5.** $z(t) = 3 - i + \sqrt{10}e^{-it}$ $(0 \le t \le 2\pi)$ **6.** $z(t) = 1 + i + e^{-\pi it}$ $(0 \le t \le 2)$ **7.** $z(t) = 2 + 4e^{\pi it/2}$ $(0 \le t \le 2)$ **8.** $z(t) = 5e^{-it}$ $(0 \le t \le \pi/2)$ **9.** $z(t) = t + it^3$ $(-2 \le t \le 2)$

10. $z(t) = 2\cos t + i\sin t$ $(0 \le t \le 2\pi)$

11–20 FIND A PARAMETRIC REPRESENTATION

and sketch the path.

- **11.** Segment from (-1, 1) to (1, 3)
- **12.** From (0, 0) to (2, 1) along the axes
- **13.** Upper half of |z 2 + i| = 2 from (4, -1) to (0, -1) **14.** Unit circle, clockwise
- **15.** $x^2 4y^2 = 4$, the branch through (2, 0)
- **16.** Ellipse $4x^2 + 9y^2 = 36$, counterclockwise
- **10.** Empse 4x + 3y = 30, counterclockwi
- **17.** |z + a + ib| = r, clockwise
- **18.** y = 1/x from (1, 1) to $(5, \frac{1}{5})$

19. Parabola
$$y = 1 - \frac{1}{4}x^2$$
 $(-2 \le x \le 2)$

20. $4(x-2)^2 + 5(y+1)^2 = 20$

21–30 INTEGRATION

Integrate by the first method or state why it does not apply and use the second method. Show the details.

21. $\int_C \operatorname{Re} z \, dz, C \text{ the shortest path from } 1 + i \text{ to } 3 + 3i$

22. $\int_{C} \operatorname{Re} z \, dz, \ C \text{ the parabola } y = 1 + \frac{1}{2}(x-1)^2 \text{ from}$ 1 + *i* to 3 + 3*i*

C the straight-line segment from 0 to 1 + i, Fig. 344.

- **23.** $\int_C e^z dz$, *C* the shortest path from πi to $2\pi i$
- 24. $\int_{C} \cos 2z \, dz, \ C \text{ the semicircle } |z| = \pi, x \ge 0 \text{ from}$ $-\pi i \text{ to } \pi i$
- **25.** $\int_C z \exp(z^2) dz$, C from 1 along the axes to i
- 26. $\int_C (z + z^{-1}) dz$, C the unit circle, counterclockwise

27.
$$\int_C \sec^2 z \, dz$$
, any path from $\pi/4$ to $\pi i/4$

28.
$$\int_C \left(\frac{5}{z-2i} - \frac{6}{(z-2i)^2}\right) dz, C \text{ the circle } |z-2i| = 4,$$

clockwise

- **29.** $\int_C \text{Im } z^2 dz \text{ counterclockwise around the triangle with vertices 0, 1,$ *i* $}$
- **30.** $\int_{C} \operatorname{Re} z^{2} dz \operatorname{clockwise} \text{ around the boundary of the square}$ with vertices 0, *i*, 1 + *i*, 1
- **31. CAS PROJECT. Integration.** Write programs for the two integration methods. Apply them to problems of your choice. Could you make them into a joint program that also decides which of the two methods to use in a given case?

- **32. Sense reversal.** Verify (5) for $f(z) = z^2$, where *C* is the segment from -1 i to 1 + i.
- **33.** Path partitioning. Verify (6) for f(z) = 1/z and C_1 and C_2 the upper and lower halves of the unit circle.
- **34. TEAM EXPERIMENT. Integration. (a) Comparison.** First write a short report comparing the essential points of the two integration methods.

(b) Comparison. Evaluate $\int_C f(z) dz$ by Theorem 1

and check the result by Theorem 2, where:

(i) $f(z) = z^4$ and C is the semicircle |z| = 2 from -2i to 2i in the right half-plane,

(ii) $f(z) = e^{2z}$ and C is the shortest path from 0 to 1 + 2i.

(c) Continuous deformation of path. Experiment with a family of paths with common endpoints, say, $z(t) = t + ia \sin t$, $0 \le t \le \pi$, with real parameter *a*. Integrate nonanalytic functions (Re *z*, Re (z^2), etc.) and explore how the result depends on *a*. Then take analytic functions of your choice. (Show the details of your work.) Compare and comment.

(d) Continuous deformation of path. Choose another family, for example, semi-ellipses $z(t) = a \cos t + i \sin t$, $-\pi/2 \le t \le \pi/2$, and experiment as in (c).

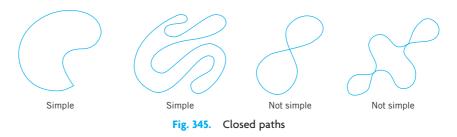
35. *ML***-inequality.** Find an upper bound of the absolute value of the integral in Prob. 21.

14.2 Cauchy's Integral Theorem

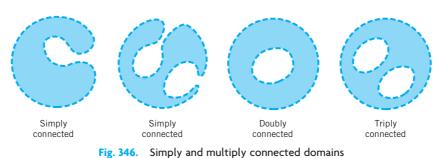
This section is the focal point of the chapter. We have just seen in Sec. 14.1 that a line integral of a function f(z) generally depends not merely on the endpoints of the path, but also on the choice of the path itself. This dependence often complicates situations. Hence conditions under which this does **not** occur are of considerable importance. Namely, if f(z) is analytic in a domain D and D is simply connected (see Sec. 14.1 and also below), then the integral will not depend on the choice of a path between given points. This result (Theorem 2) follows from Cauchy's integral theorem, along with other basic consequences that make **Cauchy's integral theorem the most important theorem in this chapter** and fundamental throughout complex analysis.

Let us continue our discussion of simple connectedness which we started in Sec. 14.1.

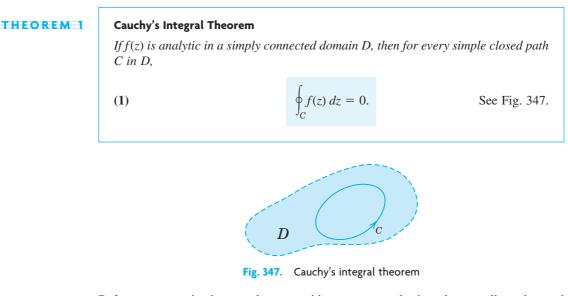
1. A simple closed path is a closed path (defined in Sec. 14.1) that does not intersect or touch itself as shown in Fig. 345. For example, a circle is simple, but a curve shaped like an 8 is not simple.



- 2. A simply connected domain *D* in the complex plane is a domain (Sec. 13.3) such that every simple closed path in *D* encloses only points of *D. Examples:* The interior of a circle ("open disk"), ellipse, or any simple closed curve. A domain that is not simply connected is called **multiply connected.** *Examples:* An annulus (Sec. 13.3), a disk without the center, for example, 0 < |z| < 1. See also Fig. 346.
 - More precisely, a **bounded domain** D (that is, a domain that lies entirely in some circle about the origin) is called *p***-fold connected** if its boundary consists of p closed



connected sets without common points. These sets can be curves, segments, or single points (such as z = 0 for 0 < |z| < 1, for which p = 2). Thus, D has p - 1 "holes," where "hole" may also mean a segment or even a single point. Hence an annulus is doubly connected (p = 2).



Before we prove the theorem, let us consider some examples in order to really understand what is going on. A simple closed path is sometimes called a *contour* and an integral over such a path a **contour integral**. Thus, (1) and our examples involve contour integrals.

EXAMPLE 1

Entire Functions

$$\oint_C e^z dz = 0, \qquad \oint_C \cos z \, dz = 0, \qquad \oint_C z^n \, dz = 0 \qquad (n = 0, 1, \cdots)$$

for any closed path, since these functions are entire (analytic for all *z*).

EXAMPLE 2

Points Outside the Contour Where f(x) is Not Analytic

$$\oint_C \sec z \, dz = 0, \qquad \oint_C \frac{dz}{z^2 + 4} = 0$$

~

where *C* is the unit circle, sec $z = 1/\cos z$ is not analytic at $z = \pm \pi/2, \pm 3\pi/2, \cdots$, but all these points lie outside *C*; none lies on *C* or inside *C*. Similarly for the second integral, whose integrand is not analytic at $z = \pm 2i$ outside *C*.

CHAP. 14 Complex Integration

EXAMPLE 3 Nonanalytic Function

$$\oint_C \overline{z} \, dz = \int_0^{2\pi} e^{-it} i e^{it} \, dt = 2\pi i$$

where C: $z(t) = e^{it}$ is the unit circle. This does not contradict Cauchy's theorem because $f(z) = \overline{z}$ is not analytic.

EXAMPLE 4 Analyticity Sufficient, Not Necessary

$$\oint_C \frac{dz}{z^2} = 0$$

where *C* is the unit circle. This result does *not* follow from Cauchy's theorem, because $f(z) = 1/z^2$ is not analytic at z = 0. Hence the condition that *f* be analytic in *D* is sufficient rather than necessary for (1) to be true.

EXAMPLE 5 Simple Connectedness Essential

$$\oint_C \frac{dz}{z} = 2\pi i$$

for counterclockwise integration around the unit circle (see Sec. 14.1). *C* lies in the annulus $\frac{1}{2} < |z| < \frac{3}{2}$ where 1/z is analytic, but this domain is not simply connected, so that Cauchy's theorem cannot be applied. Hence *the condition that the domain D be simply connected is essential.*

In other words, by Cauchy's theorem, if f(z) is analytic on a simple closed path *C* and everywhere inside *C*, with no exception, not even a single point, then (1) holds. The point that causes trouble here is z = 0 where 1/z is not analytic.

PROOF Cauchy proved his integral theorem under the additional assumption that the derivative f'(z) is continuous (which is true, but would need an extra proof). His proof proceeds as follows. From (8) in Sec. 14.1 we have

$$\oint_C f(z) dz = \oint_C (u dx - v dy) + i \oint_C (u dy + v dx).$$

Since f(z) is analytic in D, its derivative f'(z) exists in D. Since f'(z) is assumed to be continuous, (4) and (5) in Sec. 13.4 imply that u and v have *continuous* partial derivatives in D. Hence Green's theorem (Sec. 10.4) (with u and -v instead of F_1 and F_2) is applicable and gives

$$\oint_C (u \, dx - v \, dy) = \int_R \int \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx \, dy$$

where R is the region bounded by C. The second Cauchy–Riemann equation (Sec. 13.4) shows that the integrand on the right is identically zero. Hence the integral on the left is zero. In the same fashion it follows by the use of the first Cauchy–Riemann equation that the last integral in the above formula is zero. This completes Cauchy's proof.

Goursat's proof without the condition that f'(z) is continuous¹ is much more complicated. We leave it optional and include it in App. 4.

¹ÉDOUARD GOURSAT (1858–1936), French mathematician who made important contributions to complex analysis and PDEs. Cauchy published the theorem in 1825. The removal of that condition by Goursat (see *Transactions Amer. Math Soc.*, vol. 1, 1900) is quite important because, for instance, derivatives of analytic functions are also analytic. Because of this, Cauchy's integral theorem is also called Cauchy–Goursat theorem.

Independence of Path

We know from the preceding section that the value of a line integral of a given function f(z) from a point z_1 to a point z_2 will in general depend on the path *C* over which we integrate, not merely on z_1 and z_2 . It is important to characterize situations in which this difficulty of path dependence does not occur. This task suggests the following concept. We call an integral of f(z) **independent of path in a domain** *D* if for every z_1 , z_2 in *D* its value depends (besides on f(z), of course) only on the initial point z_1 and the terminal point z_2 , but not on the choice of the path *C* in *D* [so that every path in *D* from z_1 to z_2 gives the same value of the integral of f(z)].

THEOREM 2

Independence of Path

If f(z) is analytic in a simply connected domain D, then the integral of f(z) is independent of path in D.

PROOF Let z_1 and z_2 be any points in *D*. Consider two paths C_1 and C_2 in *D* from z_1 to z_2 without further common points, as in Fig. 348. Denote by C_2^* the path C_2 with the orientation reversed (Fig. 349). Integrate from z_1 over C_1 to z_2 and over C_2^* back to z_1 . This is a simple closed path, and Cauchy's theorem applies under our assumptions of the present theorem and gives zero:

(2')
$$\int_{C_1} f \, dz + \int_{C_2^*} f \, dz = 0, \quad \text{thus} \quad \int_{C_1} f \, dz = -\int_{C_2^*} f \, dz.$$

But the minus sign on the right disappears if we integrate in the reverse direction, from z_1 to z_2 , which shows that the integrals of f(z) over C_1 and C_2 are equal,

(2)
$$\int_{C_1} f(z) dz = \int_{C_2} f(z) dz$$
 (Fig. 348).

This proves the theorem for paths that have only the endpoints in common. For paths that have finitely many further common points, apply the present argument to each "loop" (portions of C_1 and C_2 between consecutive common points; four loops in Fig. 350). For paths with infinitely many common points we would need additional argumentation not to be presented here.

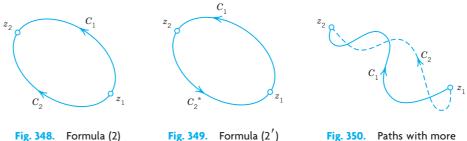


Fig. 350. Paths with more common points

Principle of Deformation of Path

This idea is related to path independence. We may imagine that the path C_2 in (2) was obtained from C_1 by continuously moving C_1 (with ends fixed!) until it coincides with C_2 . Figure 351 shows two of the infinitely many intermediate paths for which the integral always retains its value (because of Theorem 2). Hence we may impose a continuous deformation of the path of an integral, keeping the ends fixed. As long as our deforming path always contains only points at which f(z) is analytic, the integral retains the same value. This is called the **principle of deformation of path**.

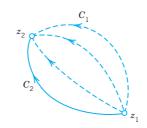


Fig. 351. Continuous deformation of path

EXAMPLE 6 A Basic Result: Integral of Integer Powers

From Example 6 in Sec. 14.1 and the principle of deformation of path it follows that

(3)

$$\oint (z - z_0)^m dz = \begin{cases} 2\pi i & (m = -1) \\ 0 & (m \neq -1 \text{ and integer} \end{cases}$$

for counterclockwise integration around *any simple closed path containing* z_0 *in its interior*. Indeed, the circle $|z - z_0| = \rho$ in Example 6 of Sec. 14.1 can be continuously deformed in two steps into a path as just indicated, namely, by first deforming, say, one semicircle and then the other one. (Make a sketch).

Existence of Indefinite Integral

We shall now justify our indefinite integration method in the preceding section [formula (9) in Sec. 14.1]. The proof will need Cauchy's integral theorem.

THEOREM 3

Existence of Indefinite Integral

If f(z) is analytic in a simply connected domain D, then there exists an indefinite integral F(z) of f(z) in D—thus, F'(z) = f(z)—which is analytic in D, and for all paths in D joining any two points z_0 and z_1 in D, the integral of f(z) from z_0 to z_1 can be evaluated by formula (9) in Sec. 14.1.

PROOF The conditions of Cauchy's integral theorem are satisfied. Hence the line integral of f(z) from any z_0 in D to any z in D is independent of path in D. We keep z_0 fixed. Then this integral becomes a function of z, call if F(z),

(4)
$$F(z) = \int_{z_0}^{z} f(z^*) dz$$

which is uniquely determined. We show that this F(z) is analytic in D and F'(z) = f(z). The idea of doing this is as follows. Using (4) we form the difference quotient

(5)
$$\frac{F(z+\Delta z)-F(z)}{\Delta z} = \frac{1}{\Delta z} \left[\int_{z_0}^{z+\Delta z} f(z^*) \, dz^* - \int_{z_0}^z f(z^*) \, dz^* \right] = \frac{1}{\Delta z} \int_z^{z+\Delta z} f(z^*) \, dz^*.$$

We now subtract f(z) from (5) and show that the resulting expression approaches zero as $\Delta z \rightarrow 0$. The details are as follows.

We keep z fixed. Then we choose $z + \Delta z$ in D so that the whole segment with endpoints z and $z + \Delta z$ is in D (Fig. 352). This can be done because D is a domain, hence it contains a neighborhood of z. We use this segment as the path of integration in (5). Now we subtract f(z). This is a constant because z is kept fixed. Hence we can write

$$\int_{z}^{z+\Delta z} f(z) dz^* = f(z) \int_{z}^{z+\Delta z} dz^* = f(z) \Delta z. \quad \text{Thus} \quad f(z) = \frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z) dz^*.$$

By this trick and from (5) we get a single integral:

$$\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)=\frac{1}{\Delta z}\int_{z}^{z+\Delta z}\left[f(z^{*})-f(z)\right]dz^{*}.$$

Since f(z) is analytic, it is continuous (see Team Project (24d) in Sec. 13.3). An $\epsilon > 0$ being given, we can thus find a $\delta > 0$ such that $|f(z^*) - f(z)| < \epsilon$ when $|z^* - z| < \delta$. Hence, letting $|\Delta z| < \delta$, we see that the *ML*-inequality (Sec. 14.1) yields

$$\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right| = \frac{1}{|\Delta z|} \left|\int_{z}^{z+\Delta z} \left[f(z^*)-f(z)\right] dz^*\right| \leq \frac{1}{|\Delta z|} \epsilon |\Delta z| = \epsilon.$$

By the definition of limit and derivative, this proves that

$$F'(z) = \lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = f(z)$$

Since z is any point in D, this implies that F(z) is analytic in D and is an indefinite integral or antiderivative of f(z) in D, written

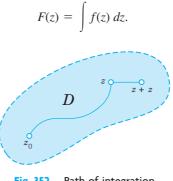


Fig. 352. Path of integration

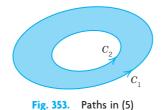
Also, if G'(z) = f(z), then $F'(z) - G'(z) \equiv 0$ in *D*; hence F(z) - G(z) is constant in *D* (see Team Project 30 in Problem Set 13.4). That is, two indefinite integrals of f(z) can differ only by a constant. The latter drops out in (9) of Sec. 14.1, so that we can use any indefinite integral of f(z). This proves Theorem 3.

Cauchy's Integral Theorem for Multiply Connected Domains

Cauchy's theorem applies to multiply connected domains. We first explain this for a **doubly connected domain** D with outer boundary curve C_1 and inner C_2 (Fig. 353). If a function f(z) is analytic in any domain D^* that contains D and its boundary curves, we claim that

$$\oint_{C_1} f(z) \, dz = \oint_{C_2} f(z) \, dz$$
 (Fig. 353)

both integrals being taken counterclockwise (or both clockwise, and regardless of whether or not the full interior of C_2 belongs to D^*).



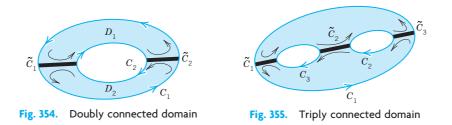
PROOF By two cuts \tilde{C}_1 and \tilde{C}_2 (Fig. 354) we cut *D* into two simply connected domains D_1 and D_2 in which and on whose boundaries f(z) is analytic. By Cauchy's integral theorem the integral over the entire boundary of D_1 (taken in the sense of the arrows in Fig. 354) is zero, and so is the integral over the boundary of D_2 , and thus their sum. In this sum the integrals over the cuts \tilde{C}_1 and \tilde{C}_2 cancel because we integrate over them in both directions—this is the key—and we are left with the integrals over C_1 (counterclockwise) and C_2 (clockwise; see Fig. 354); hence by reversing the integration over C_2 (to counterclockwise) we have

$$\oint_{C_1} f \, dz - \oint_{C_2} f \, dz = 0$$

and (6) follows.

(6)

For domains of higher connectivity the idea remains the same. Thus, for a **triply connected domain** we use three cuts \tilde{C}_1 , \tilde{C}_2 , \tilde{C}_3 (Fig. 355). Adding integrals as before, the integrals over the cuts cancel and the sum of the integrals over C_1 (counterclockwise) and C_2 , C_3 (clockwise) is zero. Hence the integral over C_1 equals the sum of the integrals over C_2 and C_3 , all three now taken counterclockwise. Similarly for quadruply connected domains, and so on.



PROBLEM SET 14.2

1–8 COMMENTS ON TEXT AND EXAMPLES

- 1. Cauchy's Integral Theorem. Verify Theorem 1 for the integral of z^2 over the boundary of the square with vertices $\pm 1 \pm i$. *Hint*. Use deformation.
- 2. For what contours C will it follow from Theorem 1 that

(a)
$$\int_C \frac{dz}{z} = 0$$
, (b) $\int_C \frac{\exp(1/z^2)}{z^2 + 16} dz = 0$?

- **3. Deformation principle.** Can we conclude from Example 4 that the integral is also zero over the contour in Prob. 1?
- 4. If the integral of a function over the unit circle equals 2 and over the circle of radius 3 equals 6, can the function be analytic everywhere in the annulus 1 < |z| < 3?
- 5. Connectedness. What is the connectedness of the domain in which $(\cos z^2)/(z^4 + 1)$ is analytic?
- 6. Path independence. Verify Theorem 2 for the integral of e^z from 0 to 1 + i (a) over the shortest path and (b) over the *x*-axis to 1 and then straight up to 1 + i.
- 7. Deformation. Can we conclude in Example 2 that the integral of $1/(z^2 + 4)$ over (a) |z 2| = 2 and (b) |z 2| = 3 is zero?
- TEAM EXPERIMENT. Cauchy's Integral Theorem.
 (a) Main Aspects. Each of the problems in Examples 1–5 explains a basic fact in connection with Cauchy's theorem. Find five examples of your own, more complicated ones if possible, each illustrating one of those facts.

(b) Partial fractions. Write f(z) in terms of partial fractions and integrate it counterclockwise over the unit circle, where

(i)
$$f(z) = \frac{2z+3i}{z^2+\frac{1}{4}}$$
 (ii) $f(z) = \frac{z+1}{z^2+2z}$

(c) **Deformation of path.** Review (c) and (d) of Team Project 34, Sec. 14.1, in the light of the principle of deformation of path. Then consider another family of paths

with common endpoints, say, $z(t) = t + ia(t - t^2)$, $0 \le t \le 1$, *a* a real constant, and experiment with the integration of analytic and nonanalytic functions of your choice over these paths (e.g., *z*, Im *z*, z^2 , Re z^2 , Im z^2 , etc.).

9–19 CAUCHY'S THEOREM APPLICABLE?

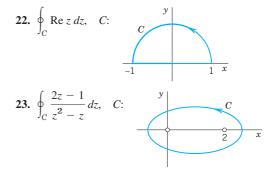
Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.

9. $f(z) = \exp(-z^2)$ 10. $f(z) = \tan \frac{1}{4}z$ 11. f(z) = 1/(2z - 1)12. $f(z) = \overline{z}^3$ 13. $f(z) = 1/(z^4 - 1.1)$ 14. $f(z) = 1/\overline{z}$ 15. $f(z) = \operatorname{Im} z$ 16. $f(z) = 1/(\pi z - 1)$ 17. $f(z) = 1/|z|^2$ 18. f(z) = 1/(4z - 3)19. $f(z) = z^3 \cot z$

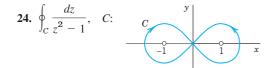
20–30 FURTHER CONTOUR INTEGRALS

Evaluate the integral. Does Cauchy's theorem apply? Show details.

- **20.** $\oint_C \text{Ln} (1 z) dz$, *C* the boundary of the parallelogram with vertices $\pm i, \pm (1 + i)$.
- 21. $\oint_C \frac{dz}{z 3i}$, C the circle $|z| = \pi$ counterclockwise.



Use partial fractions.



Use partial fractions.

- 25. $\oint_C \frac{e^z}{z} dz$, C consists of |z| = 2 counterclockwise and |z| = 1 clockwise.
- 26. $\oint_C \operatorname{coth} \frac{1}{2} z \, dz$, C the circle $|z \frac{1}{2} \pi i| = 1$ clockwise.

(1

- 27. $\oint_C \frac{\cos z}{z} dz$, C consists of |z| = 1 counterclockwise and |z| = 3 clockwise.
- **28.** $\oint_C \frac{\tan \frac{1}{2}z}{z^4 16} dz$, C the boundary of the square with vertices $\pm 1, \pm i$ clockwise.
- **29.** $\oint_C \frac{\sin z}{z + 2iz} dz, \quad C: |z 4 2i| = 5.5 \text{ clockwise.}$
- **30.** $\oint_C \frac{2z^3 + z^2 + 4}{z^4 + 4z^2} dz, \quad C: |z 2| = 4 \text{ clockwise. Use}$ partial fractions.

14.3 Cauchy's Integral Formula

Cauchy's integral theorem leads to Cauchy's integral formula. This formula is useful for evaluating integrals as shown in this section. It has other important roles, such as in proving the surprising fact that analytic functions have derivatives of all orders, as shown in the next section, and in showing that all analytic functions have a Taylor series representation (to be seen in Sec. 15.4).

THEOREM 1

Cauchy's Integral Formula

Let f(z) be analytic in a simply connected domain D. Then for any point z_0 in D and any simple closed path C in D that encloses z_0 (Fig. 356),

$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

(Cauchy's integral formula)

the integration being taken counterclockwise. Alternatively (for representing $f(z_0)$ by a contour integral, divide (1) by $2\pi i$),

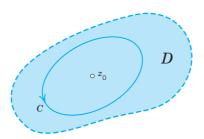
(1*)
$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$
 (Cauchy's integral formula).

PROOF By addition and subtraction, $f(z) = f(z_0) + [f(z) - f(z_0)]$. Inserting this into (1) on the left and taking the constant factor $f(z_0)$ out from under the integral sign, we have

(2)
$$\oint_C \frac{f(z)}{z - z_0} dz = f(z_0) \oint_C \frac{dz}{z - z_0} + \oint_C \frac{f(z) - f(z_0)}{z - z_0} dz.$$

The first term on the right equals $f(z_0) \cdot 2\pi i$, which follows from Example 6 in Sec. 14.2 with m = -1. If we can show that the second integral on the right is zero, then it would prove the theorem. Indeed, we can. The integrand of the second integral is analytic, except

at z_0 . Hence, by (6) in Sec. 14.2, we can replace C by a small circle K of radius ρ and center z_0 (Fig. 357), without altering the value of the integral. Since f(z) is analytic, it is continuous (Team Project 24, Sec. 13.3). Hence, an $\epsilon > 0$ being given, we can find a $\delta > 0$ such that $|f(z) - f(z_0)| < \epsilon$ for all z in the disk $|z - z_0| < \delta$. Choosing the radius ρ of K smaller than δ , we thus have the inequality



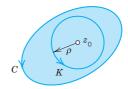


Fig. 356. Cauchy's integral formula

$$\left|\frac{f(z) - f(z_0)}{z - z_0}\right| < \frac{\epsilon}{\rho}$$

at each point of K. The length of K is $2\pi\rho$. Hence, by the ML-inequality in Sec. 14.1,

$$\left| \oint_{K} \frac{f(z) - f(z_0)}{z - z_0} \, dz \right| < \frac{\epsilon}{\rho} \, 2\pi\rho = 2\pi\epsilon.$$

Since ϵ (> 0) can be chosen arbitrarily small, it follows that the last integral in (2) must have the value zero, and the theorem is proved.

EXAMPLE 1 Cauchy's Integral Formula

$$\oint_C \frac{e^z}{z-2} dz = 2\pi i e^z \bigg|_{z=2} = 2\pi i e^2 = 46.4268i$$

for any contour enclosing $z_0 = 2$ (since e^z is entire), and zero for any contour for which $z_0 = 2$ lies outside (by Cauchy's integral theorem).

EXAMPLE 2 Cauchy's Integral Formula

$$\oint_C \frac{z^3 - 6}{2z - i} dz = \oint_C \frac{\frac{1}{2}z^3 - 3}{z - \frac{1}{2}i} dz$$
$$= 2\pi i [\frac{1}{2}z^3 - 3]|_{z = i/2}$$
$$= \frac{\pi}{8} - 6\pi i$$

 $(z_0 = \frac{1}{2}i \text{ inside } C).$

EXAMPLE 3

Integration Around Different Contours

Integrate

$$g(z) = \frac{z^2 + 1}{z^2 - 1} = \frac{z^2 + 1}{(z + 1)(z - 1)}$$

counterclockwise around each of the four circles in Fig. 358.

Solution. g(z) is not analytic at -1 and 1. These are the points we have to watch for. We consider each circle separately.

(a) The circle |z - 1| = 1 encloses the point $z_0 = 1$ where g(z) is not analytic. Hence in (1) we have to write

$$g(z) = \frac{z^2 + 1}{z^2 - 1} = \frac{z^2 + 1}{z + 1} \frac{1}{z - 1};$$

thus

$$f(z) = \frac{z^2 + 1}{z + 1}$$

and (1) gives

$$\oint_C \frac{z^2 + 1}{z^2 - 1} dz = 2\pi i f(1) = 2\pi i \left[\frac{z^2 + 1}{z + 1} \right]_{z=1} = 2\pi i dz$$

(b) gives the same as (a) by the principle of deformation of path.

(c) The function g(z) is as before, but f(z) changes because we must take $z_0 = -1$ (instead of 1). This gives a factor $z - z_0 = z + 1$ in (1). Hence we must write

$$g(z) = \frac{z^2 + 1}{z - 1} \frac{1}{z + 1};$$

thus

$$f(z) = \frac{z^2 + 1}{z - 1}$$

Compare this for a minute with the previous expression and then go on:

$$\oint_C \frac{z^2 + 1}{z^2 - 1} dz = 2\pi i f(-1) = 2\pi i \left[\frac{z^2 + 1}{z - 1} \right]_{z = -1} = -2\pi i.$$

(d) gives 0. Why?

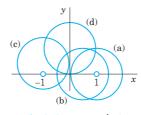
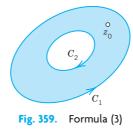


Fig. 358. Example 3

Multiply connected domains can be handled as in Sec. 14.2. For instance, if f(z) is analytic on C_1 and C_2 and in the ring-shaped domain bounded by C_1 and C_2 (Fig. 359) and z_0 is any point in that domain, then

(3)
$$f(z_0) = \frac{1}{2\pi i} \oint_{C_1} \frac{f(z)}{z - z_0} dz + \frac{1}{2\pi i} \oint_{C_2} \frac{f(z)}{z - z_0} dz,$$

where the outer integral (over C_1) is taken counterclockwise and the inner clockwise, as indicated in Fig. 359.



PROBLEM SET 14.3

1–4 **CONTOUR INTEGRATION**

Integrate $z^2/(z^2 - 1)$ by Cauchy's formula counterclockwise around the circle.

1. $ z + 1 = 1$	2. $ z - 1 - i = \pi/2$
3. $ z + i = 1.4$	4. $ z + 5 - 5i = 7$

5–8 Integrate the given function around the unit circle.

5.
$$(\cos 3z)/(6z)$$
 6. $e^{2z}/(\pi z - i)$
7. $z^{3}/(2z - i)$ **8.** $(z^{2} \sin z)/(4z - 1)$

- CAS EXPERIMENT. Experiment to find out to what extent your CAS can do contour integration. For this, use (a) the second method in Sec. 14.1 and (b) Cauchy's integral formula.
- 10. TEAM PROJECT. Cauchy's Integral Theorem. Gain additional insight into the proof of Cauchy's integral theorem by producing (2) with a contour enclosing z_0 (as in Fig. 356) and taking the limit as in the text. Choose

(a)
$$\oint_C \frac{z^3 - 6}{z - \frac{1}{2}i} dz,$$
 (b)
$$\oint_C \frac{\sin z}{z - \frac{1}{2}\pi} dz,$$

and (c) another example of your choice.

11–19 FURTHER CONTOUR INTEGRALS

Integrate counterclockwise or as indicated. Show the details.

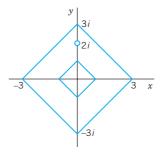
11.
$$\oint_C \frac{dz}{z^2 + 4}$$
, $C: 4x^2 + (y - 2)^2 = 4$

- 12. $\oint_C \frac{z}{z^2 + 4z + 3} dz$, C the circle with center -1 and radius 2
- **13.** $\oint_C \frac{z+2}{z-2} dz, \quad C: |z-1| = 2$ **14.** $\oint_C \frac{e^z}{ze^z - 2iz} dz, \quad C: |z| = 0.6$

- **15.** $\oint_C \frac{\cosh(z^2 \pi i)}{z \pi i} dz, \quad C \text{ the boundary of the square with vertices } \pm 2, \pm 2, \pm 4i.$
- 16. $\oint_C \frac{\tan z}{z-i} dz$, C the boundary of the triangle with vertices 0 and $\pm 1 + 2i$.

17.
$$\oint_C \frac{\ln(z+1)}{z^2+1} dz, \quad C: |z-i| = 1.4$$

18. $\oint_C \frac{\sin z}{4z^2 - 8iz} dz$, *C* consists of the boundaries of the squares with vertices $\pm 3, \pm 3i$ counterclockwise and $\pm 1, \pm i$ clockwise (see figure).



Problem 18

- **19.** $\oint_C \frac{\exp z^2}{z^2(z-1-i)} dz, \quad C \text{ consists of } |z| = 2 \text{ counter-clockwise and } |z| = 1 \text{ clockwise.}$
- **20.** Show that $\oint_C (z z_1)^{-1} (z z_2)^{-1} dz = 0$ for a simple closed path *C* enclosing z_1 and z_2 , which are arbitrary.

14.4 Derivatives of Analytic Functions

As mentioned, a surprising fact is that complex analytic functions have derivatives of all orders. This differs completely from real calculus. Even if a real function is once differentiable we cannot conclude that it is twice differentiable nor that any of its higher derivatives exist. This makes the behavior of complex analytic functions simpler than real functions in this aspect. To prove the surprising fact we use Cauchy's integral formula.

THEOREM 1

Derivatives of an Analytic Function

If f(z) is analytic in a domain D, then it has derivatives of all orders in D, which are then also analytic functions in D. The values of these derivatives at a point z_0 in D are given by the formulas

(1')
$$f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

(1")
$$f''(z_0) = \frac{2!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^3} dz$$

and in general

(1)
$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz \qquad (n=1,2,\cdots);$$

here C is any simple closed path in D that encloses z_0 and whose full interior belongs to D; and we integrate counterclockwise around C (Fig. 360).

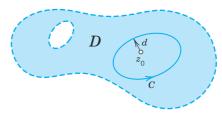


Fig. 360. Theorem 1 and its proof

COMMENT. For memorizing (1), it is useful to observe that these formulas are obtained formally by differentiating the Cauchy formula (1*), Sec. 14.3, under the integral sign with respect to z_0 .

PROOF We prove (1'), starting from the definition of the derivative

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

On the right we represent $f(z_0 + \Delta z)$ and $f(z_0)$ by Cauchy's integral formula:

$$\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{1}{2\pi i \Delta z} \left[\oint_C \frac{f(z)}{z - (z_0 + \Delta z)} dz - \oint_C \frac{f(z)}{z - z_0} dz \right].$$

We now write the two integrals as a single integral. Taking the common denominator gives the numerator $f(z)\{z - z_0 - [z - (z_0 + \Delta z)]\} = f(z) \Delta z$, so that a factor Δz drops out and we get

$$\frac{f(z_0+\Delta z)-f(z_0)}{\Delta z}=\frac{1}{2\pi i}\oint_C\frac{f(z)}{(z-z_0-\Delta z)(z-z_0)}\,dz.$$

Clearly, we can now establish (1') by showing that, as $\Delta z \rightarrow 0$, the integral on the right approaches the integral in (1'). To do this, we consider the difference between these two integrals. We can write this difference as a single integral by taking the common denominator and simplifying the numerator (as just before). This gives

$$\oint_C \frac{f(z)}{(z-z_0 - \Delta z)(z-z_0)} dz - \oint_C \frac{f(z)}{(z-z_0)^2} dz = \oint_C \frac{f(z) \Delta z}{(z-z_0 - \Delta z)(z-z_0)^2} dz$$

We show by the *ML*-inequality (Sec. 14.1) that the integral on the right approaches zero as $\Delta z \rightarrow 0$.

Being analytic, the function f(z) is continuous on *C*, hence bounded in absolute value, say, $|f(z)| \leq K$. Let *d* be the smallest distance from z_0 to the points of *C* (see Fig. 360). Then for all *z* on *C*,

$$|z - z_0|^2 \ge d^2$$
, hence $\frac{1}{|z - z_0|^2} \le \frac{1}{d^2}$.

Furthermore, by the triangle inequality for all z on C we then also have

$$d \le |z - z_0| = |z - z_0 - \Delta z + \Delta z| \le |z - z_0 - \Delta z| + |\Delta z|.$$

We now subtract $|\Delta z|$ on both sides and let $|\Delta z| \leq d/2$, so that $-|\Delta z| \geq -d/2$. Then

$$\frac{1}{2}d \leq d - |\Delta z| \leq |z - z_0 - \Delta z|. \quad \text{Hence} \quad \frac{1}{|z - z_0 - \Delta z|} \leq \frac{2}{d}.$$

Let *L* be the length of *C*. If $|\Delta z| \leq d/2$, then by the *ML*-inequality

$$\left| \oint_C \frac{f(z) \Delta z}{(z - z_0 - \Delta z)(z - z_0)^2} dz \right| \leq KL \left| \Delta z \right| \frac{2}{d} \cdot \frac{1}{d^2}.$$

This approaches zero as $\Delta z \rightarrow 0$. Formula (1') is proved.

Note that we used Cauchy's integral formula (1^*) , Sec. 14.3, but if all we had known about $f(z_0)$ is the fact that it can be represented by (1^*) , Sec. 14.3, our argument would have established the existence of the derivative $f'(z_0)$ of f(z). This is essential to the

continuation and completion of this proof, because it implies that (1'') can be proved by a similar argument, with f replaced by f', and that the general formula (1) follows by induction.

Applications of Theorem 1

EXAMPLE 1 Evaluation of Line Integrals

From (1'), for any contour enclosing the point πi (counterclockwise)

$$\oint_C \frac{\cos z}{\left(z-\pi i\right)^2} dz = 2\pi i (\cos z)' \Big|_{z=\pi i} = -2\pi i \sin \pi i = 2\pi \sinh \pi.$$

EXAMPLE 2 From (1''), for any contour enclosing the point -i we obtain by counterclockwise integration

$$\oint_C \frac{z^4 - 3z^2 + 6}{(z+i)^3} dz = \pi i (z^4 - 3z^2 + 6)'' \Big|_{z=-i} = \pi i [12z^2 - 6]_{z=-i} = -18\pi i.$$

EXAMPLE 3 By (1'), for any contour for which 1 lies inside and $\pm 2i$ lie outside (counterclockwise),

$$\oint_C \frac{e^z}{(z-1)^2(z^2+4)} dz = 2\pi i \left(\frac{e^z}{z^2+4}\right)' \Big|_{z=1}$$
$$= 2\pi i \frac{e^z(z^2+4) - e^z 2z}{(z^2+4)^2} \Big|_{z=1} = \frac{6e\pi}{25} i \approx 2.050i.$$

Cauchy's Inequality. Liouville's and Morera's Theorems

We develop other general results about analytic functions, further showing the versatility of Cauchy's integral theorem.

Cauchy's Inequality. Theorem 1 yields a basic inequality that has many applications. To get it, all we have to do is to choose for *C* in (1) a circle of radius *r* and center z_0 and apply the *ML*-inequality (Sec. 14.1); with $|f(z)| \leq M$ on *C* we obtain from (1)

$$|f^{(n)}(z_0)| = \frac{n!}{2\pi} \left| \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz \right| \le \frac{n!}{2\pi} M \frac{1}{r^{n+1}} 2\pi r.$$

This gives Cauchy's inequality

(2)

THEOREM 2

$$\left|f^{(n)}(z_0)\right| \le \frac{n!M}{r^n}.$$

To gain a first impression of the importance of this inequality, let us prove a famous theorem on entire functions (definition in Sec. 13.5). (For Liouville, see Sec. 11.5.)

Liouville's Theorem

If an entire function is bounded in absolute value in the whole complex plane, then this function must be a constant.

666

PROOF By assumption, |f(z)| is bounded, say, |f(z)| < K for all z. Using (2), we see that $|f'(z_0)| < K/r$. Since f(z) is entire, this holds for every r, so that we can take r as large as we please and conclude that $f'(z_0) = 0$. Since z_0 is arbitrary, $f'(z) = u_x + iv_x = 0$ for all z (see (4) in Sec. 13.4), hence $u_x = v_x = 0$, and $u_y = v_y = 0$ by the Cauchy–Riemann equations. Thus u = const, v = const, and f = u + iv = const for all z. This completes the proof.

Another very interesting consequence of Theorem 1 is

THEOREM 3

Morera's² Theorem (Converse of Cauchy's Integral Theorem)

If f(z) is continuous in a simply connected domain D and if

$$\oint_C f(z) \, dz = 0$$

for every closed path in D, then f(z) is analytic in D.

PROOF In Sec. 14.2 we showed that if f(z) is analytic in a simply connected domain D, then

$$F(z) = \int_{z_0}^z f(z^*) \, dz^*$$

is analytic in *D* and F'(z) = f(z). In the proof we used only the continuity of f(z) and the property that its integral around every closed path in *D* is zero; from these assumptions we concluded that F(z) is analytic. By Theorem 1, the derivative of F(z) is analytic, that is, f(z) is analytic in *D*, and Morera's theorem is proved.

This completes Chapter 14.

PROBLEM SET 14.4

1–7 CONTOUR INTEGRATION. UNIT CIRCLE

(3)

Integrate counterclockwise around the unit circle.

1.
$$\oint_C \frac{\sin z}{z^4} dz$$
2.
$$\oint_C \frac{z^6}{(2z-1)^6} dz$$
3.
$$\oint_C \frac{e^z}{dz} dz, \quad n = 1, 2, \cdots$$
4.
$$\oint_C \frac{e^z \cos z}{(2z-1)^6} dz$$

5.
$$\oint_C \frac{\cosh 2z}{(z-\frac{1}{2})^4} dz$$

6. $\oint_C \frac{dz}{(z-2i)^2(z-i/2)^2}$

7.
$$\oint_C \frac{\cos z}{z^{2n+1}} dz, \quad n = 0, 1, \cdots$$

8–19 INTEGRATION. DIFFERENT CONTOURS

Integrate. Show the details. *Hint*. Begin by sketching the contour. Why?

- 8. $\oint_C \frac{z^3 + \sin z}{(z i)^3} dz$, *C* the boundary of the square with vertices $\pm 2, \pm 2i$ counterclockwise.
- 9. $\oint_C \frac{\tan \pi z}{z^2} dz$, C the ellipse $16x^2 + y^2 = 1$ clockwise.
- 10. $\oint_C \frac{4z^3 6}{z(z 1 i)^2} dz$, C consists of |z| = 3 counterclockwise and |z| = 1 clockwise.

²GIACINTO MORERA (1856–1909), Italian mathematician who worked in Genoa and Turin.

- 11. $\oint_C \frac{(1+z)\sin z}{(2z-1)^2} dz, \quad C: |z-i| = 2 \text{ counterclockwise.}$
- 12. $\oint_C \frac{\exp(z^2)}{z(z-2i)^2} dz$, C: z-3i = 2 clockwise.
- 13. $\oint_C \frac{\ln z}{(z-2)^2} dz, \quad C: |z-3| = 2 \text{ counterclockwise.}$
- 14. $\oint_C \frac{\operatorname{Ln}(z+3)}{(z-2)(z+1)^2} dz$, *C* the boundary of the square with vertices ± 1.5 , $\pm 1.5i$, counterclockwise.
- 15. $\oint_C \frac{\cosh 4z}{(z-4)^3} dz$, C consists of |z| = 6 counterclockwise and |z-3| = 2 clockwise.
- 16. $\oint_C \frac{e^{4z}}{z(z-2i)^2} dz$, C consists of |z-i| = 3 counterclockwise and |z| = 1 clockwise.
- 17. $\oint_C \frac{e^{-z} \sin z}{(z-4)^3} dz, \quad C \text{ consists of } |z| = 5 \text{ counterclock-wise and } |z-3| = \frac{3}{2} \text{ clockwise.}$

- **18.** $\oint_C \frac{\sinh z}{z^n} dz, \quad C: |z| = 1 \text{ counterclockwise, } n \text{ integer.}$
- 19. $\oint_C \frac{e^{3z}}{(4z \pi i)^3} dz, \quad C: |z| = 1, \text{ counterclockwise.}$

20. TEAM PROJECT. Theory on Growth

- (a) Growth of entire functions. If f(z) is not a constant and is analytic for all (finite) z, and R and M are any positive real numbers (no matter how large), show that there exist values of z for which |z| > R and |f(z)| > M. *Hint*. Use Liouville's theorem.
- (b) Growth of polynomials. If f(z) is a polynomial of degree n > 0 and M is an arbitrary positive real number (no matter how large), show that there exists a positive real number R such that |f(z)| > M for all |z| > R.
- (c) Exponential function. Show that $f(z) = e^x$ has the property characterized in (a) but does not have that characterized in (b).
- (d) Fundamental theorem of algebra. If f(z) is a polynomial in z, not a constant, then f(z) = 0 for at least one value of z. Prove this. Hint. Use (a).

CHAPTER 14 REVIEW QUESTIONS AND PROBLEMS

- **1.** What is a parametric representation of a curve? What is its advantage?
- 2. What did we assume about paths of integration z = z(t)? What is $\dot{z} = dz/dt$ geometrically?
- **3.** State the definition of a complex line integral from memory.
- **4.** Can you remember the relationship between complex and real line integrals discussed in this chapter?
- **5.** How can you evaluate a line integral of an analytic function? Of an arbitrary continous complex function?
- 6. What value do you get by counterclockwise integration of 1/z around the unit circle? You should remember this. It is basic.
- **7.** Which theorem in this chapter do you regard as most important? State it precisely from memory.
- **8.** What is independence of path? Its importance? State a basic theorem on independence of path in complex.
- 9. What is deformation of path? Give a typical example.
- 10. Don't confuse Cauchy's integral theorem (also known as *Cauchy–Goursat theorem*) and Cauchy's integral formula. State both. How are they related?
- **11.** What is a doubly connected domain? How can you extend Cauchy's integral theorem to it?

- **12.** What do you know about derivatives of analytic functions?
- **13.** How did we use integral formulas for derivatives in evaluating integrals?
- **14.** How does the situation for analytic functions differ with respect to derivatives from that in calculus?
- **15.** What is Liouville's theorem? To what complex functions does it apply?
- **16.** What is Morera's theorem?
- 17. If the integrals of a function f(z) over each of the two boundary circles of an annulus *D* taken in the same sense have different values, can f(z) be analytic everywhere in *D*? Give reason.

18. Is Im
$$\oint_C f(z) dz = \oint_C \operatorname{Im} f(z) dz$$
? Give reason

19. Is
$$\left| \oint_C f(z) \, dz \right| = \oint_C |f(z)| \, dz$$
?

20. How would you find a bound for the left side in Prob. 19?

21–30 INTEGRATION

Integrate by a suitable method.

21.
$$\int_C z \sinh(z^2) dz$$
 from 0 to $\pi i/2$.

- 22. $\int_{C} (|z| + z) dz$ clockwise around the unit circle. 23. $\int_{C} z^{-5} e^{z} dz$ counterclockwise around $|z| = \pi$.
- **24.** $\int_C \operatorname{Re} z \, dz$ from 0 to 3 + 27*i* along $y = x^3$.
- 25. $\int_C \frac{\tan \pi z}{(z-1)^2} dz$ clockwise around |z-1| = 0.1.
- 26. $\int_{C} (z^2 + \overline{z}^2) dz$ from z = 0 horizontally to z = 2, then vertically upward to 2 + 2i.

27.
$$\int_{C} (z^2 + \overline{z}^2) dz \text{ from } 0 \text{ to } 2 + 2i, \text{ shortest path.}$$

28.
$$\oint_{C} \frac{\ln z}{(z - 2i)^2} dz \text{ counterclockwise around } |z - 1| = \frac{1}{2}.$$

- 29. $\oint_C \left(\frac{2}{z+2i} + \frac{1}{z+4i}\right) dz$ clockwise around |z-1| = 2.5.
- **30.** $\int_C \sin z \, dz$ from 0 to (1 + i).

SUMMARY OF CHAPTER **14** Complex Integration

The **complex line integral** of a function f(z) taken over a path *C* is denoted by

(1)
$$\int_C f(z) dz \quad \text{or, if } C \text{ is closed, also by} \quad \oint_C f(z) \quad (\text{Sec. 14.1}).$$

If f(z) is analytic in a simply connected domain D, then we can evaluate (1) as in calculus by indefinite integration and substitution of limits, that is,

(2)
$$\int_C f(z) \, dz = F(z_1) - F(z_0) \qquad [F'(z) = f(z)]$$

for every path C in D from a point z_0 to a point z_1 (see Sec. 14.1). These assumptions imply **independence of path**, that is, (2) depends only on z_0 and z_1 (and on f(z), of course) but not on the choice of C (Sec. 14.2). The existence of an F(z) such that F'(z) = f(z) is proved in Sec. 14.2 by Cauchy's integral theorem (see below).

A general method of integration, not restricted to analytic functions, uses the equation z = z(t) of *C*, where $a \le t \le b$,

(3)
$$\int_C f(z) dz = \int_a^b f(z(t))\dot{z}(t) dt \qquad \left(\dot{z} = \frac{dz}{dt}\right).$$

Cauchy's integral theorem is the most important theorem in this chapter. It states that if f(z) is analytic in a simply connected domain D, then for every closed path C in D (Sec. 14.2),

(4)
$$\oint_C f(z) \, dz = 0.$$

Under the same assumptions and for any z_0 in *D* and closed path *C* in *D* containing z_0 in its interior we also have **Cauchy's integral formula**

(5)
$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz.$$

Furthermore, under these assumptions f(z) has derivatives of all orders in D that are themselves analytic functions in D and (Sec. 14.4)

(6)
$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz \qquad (n = 1, 2, \cdots).$$

This implies *Morera's theorem* (the converse of Cauchy's integral theorem) and *Cauchy's inequality* (Sec. 14.4), which in turn implies *Liouville's theorem* that an entire function that is bounded in the whole complex plane must be constant.