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C H A P T E R 1 3

Complex Numbers 
and Functions. Complex
Differentiation

The transition from “real calculus” to “complex calculus” starts with a discussion of
complex numbers and their geometric representation in the complex plane. We then
progress to analytic functions in Sec. 13.3. We desire functions to be analytic because
these are the “useful functions” in the sense that they are differentiable in some domain
and operations of complex analysis can be applied to them. The most important equations
are therefore the Cauchy–Riemann equations in Sec. 13.4 because they allow a test of
analyticity of such functions. Moreover, we show how the Cauchy–Riemann equations
are related to the important Laplace equation.

The remaining sections of the chapter are devoted to elementary complex functions
(exponential, trigonometric, hyperbolic, and logarithmic functions). These generalize the
familiar real functions of calculus. Detailed knowledge of them is an absolute necessity
in practical work, just as that of their real counterparts is in calculus.

Prerequisite: Elementary calculus.
References and Answers to Problems: App. 1 Part D, App. 2.

13.1 Complex Numbers and 
Their Geometric Representation

The material in this section will most likely be familiar to the student and serve as a
review.

Equations without real solutions, such as or were
observed early in history and led to the introduction of complex numbers.1 By definition,
a complex number z is an ordered pair (x, y) of real numbers x and y, written

z ! (x, y).

x2 " 10x # 40 ! 0,x2 ! "1

1First to use complex numbers for this purpose was the Italian mathematician GIROLAMO CARDANO
(1501–1576), who found the formula for solving cubic equations. The term “complex number” was introduced
by CARL FRIEDRICH GAUSS (see the footnote in Sec. 5.4), who also paved the way for a general use of
complex numbers.
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x is called the real part and y the imaginary part of z, written

By definition, two complex numbers are equal if and only if their real parts are equal
and their imaginary parts are equal.

(0, 1) is called the imaginary unit and is denoted by i,

(1)

Addition, Multiplication. Notation 
Addition of two complex numbers and is defined by

(2)

Multiplication is defined by

(3)

These two definitions imply that

and

as for real numbers Hence the complex numbers “extend” the real numbers. We
can thus write

because by (1), and the definition of multiplication, we have

Together we have, by addition, 
In practice, complex numbers are written

(4)

or e.g., (instead of i4).
Electrical engineers often write j instead of i because they need i for the current.
If then and is called pure imaginary. Also, (1) and (3) give

(5)

because, by the definition of multiplication, i2 ! ii ! (0, 1)(0, 1) ! ("1, 0) ! "1.

i2 ! "1

z ! iyx ! 0,

17 # 4iz ! x # yi,

z ! x # iy

z ! (x, y)
(x, y) ! (x, 0) # (0, y) ! x # iy.

iy ! (0, 1)y ! (0, 1)( y, 0) ! (0 # y " 1 # 0, 0 # 0 # 1 # y) ! (0, y).

(x, 0) ! x.   Similarly,   (0, y) ! iy

x1, x2.

(x1, 0)(x2, 0) ! (x1x2, 0)

(x1, 0) # (x2, 0) ! (x1 # x2, 0)

z1z2 ! (x1, y1)(x2, y2) ! (x1x2 " y1y2, x1y2 # x2y1).

z1 # z2 ! (x1, y1) # (x2, y2) ! (x1 # x2, y1 # y2).

z2 ! (x2, y2)z1 ! (x1, y1)

z ! x # iy

i ! (0, 1).

x ! Re z,   y ! Im z.

SEC. 13.1 Complex Numbers and Their Geometric Representation 609
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For addition the standard notation (4) gives [see (2)]

For multiplication the standard notation gives the following very simple recipe. Multiply
each term by each other term and use when it occurs [see (3)]:

This agrees with (3). And it shows that is a more practical notation for complex
numbers than (x, y).

If you know vectors, you see that (2) is vector addition, whereas the multiplication (3)
has no counterpart in the usual vector algebra.

E X A M P L E  1 Real Part, Imaginary Part, Sum and Product of Complex Numbers

Let and . Then and

Subtraction, Division
Subtraction and division are defined as the inverse operations of addition and multipli-
cation, respectively. Thus the difference is the complex number z for which

Hence by (2),

(6)

The quotient is the complex number z for which If we
equate the real and the imaginary parts on both sides of this equation, setting 
we obtain The solution is

The practical rule used to get this is by multiplying numerator and denominator of 
by and simplifying:

(7)

E X A M P L E  2 Difference and Quotient of Complex Numbers

For and we get and

Check the division by multiplication to get !8 # 3i.

z1

z2
!

8 # 3i

9 " 2i
!

(8 # 3i)(9 # 2i)

(9 " 2i)(9 # 2i)
!

66 # 43i

81 # 4
!

66

85
#

43

85
 i.

z1 " z2 ! (8 # 3i) " (9 " 2i) ! "1 # 5iz2 ! 9 " 2iz1 ! 8 # 3i

z !
x1 # iy1

x2 # iy2
!

(x1 # iy1)(x2 " iy2)

(x2 # iy2)(x2 " iy2)
!

x1x2 # y1 y2

x2
2 # y2

2 # i 
x2 y1 " x1 y2

x2
2 # y2

2  .

x2 " iy2

z1>z2

z !
z1

z2
! x # iy,  x !

x1x2 # y1 y2

x2
2 # y2

2
 ,  y !

x2 y1 " x1 y2

x2
2 # y2

2
 .(7*)

x1 ! x2x " y2y, y1 ! y2x # x2y.
z ! x # iy,

z1 ! zz2.z ! z1>z2 (z2 $ 0)

z1 " z2 ! (x1 " x2) # i ( y1 " y2).

z1 ! z # z2.
z ! z1 " z2

!z1z2 ! (8 # 3i)(9 " 2i) ! 72 # 6 # i ("16 # 27) ! 78 # 11i.

z1 # z2 ! (8 # 3i) # (9 " 2i) ! 17 # i,

Re z1 ! 8, Im z1 ! 3, Re z2 ! 9, Im z2 ! "2z2 ! 9 " 2iz1 ! 8 # 3i

x # iy

 ! (x1x2 " y1 y2) # i(x1 y2 # x2 y1).

 (x1 # iy1)(x2 # iy2) ! x1x2 # ix1 y2 # iy1x2 # i2y1 y2

i2 ! "1

(x1 # iy1) # (x2 # iy2) ! (x1 # x2) # i( y1 # y2).

610 CHAP. 13 Complex Numbers and Functions. Complex Differentiation
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Complex numbers satisfy the same commutative, associative, and distributive laws as real
numbers (see the problem set).

Complex Plane
So far we discussed the algebraic manipulation of complex numbers. Consider the
geometric representation of complex numbers, which is of great practical importance. We
choose two perpendicular coordinate axes, the horizontal x-axis, called the real axis, and
the vertical y-axis, called the imaginary axis. On both axes we choose the same unit of
length (Fig. 318). This is called a Cartesian coordinate system.

SEC. 13.1 Complex Numbers and Their Geometric Representation 611

y

x

1

1

P
z = x + iy

(Imaginary
axis)

(Real
axis)

Fig. 318. The complex plane Fig. 319. The number 4 " 3i in
the complex plane

y

x

1

5

–1

–3 4 – 3i

We now plot a given complex number as the point P with coordinates
x, y. The xy-plane in which the complex numbers are represented in this way is called the
complex plane.2 Figure 319 shows an example.

Instead of saying “the point represented by z in the complex plane” we say briefly and
simply “the point z in the complex plane.” This will cause no misunderstanding.

Addition and subtraction can now be visualized as illustrated in Figs. 320 and 321.

z ! (x, y) ! x # iy

y

x

z2

z1

z1 + z2

y

x

z1– z2

z1

z2

– z2

Fig. 320. Addition of complex numbers Fig. 321. Subtraction of complex numbers

2Sometimes called the Argand diagram, after the French mathematician JEAN ROBERT ARGAND
(1768–1822), born in Geneva and later librarian in Paris. His paper on the complex plane appeared in 1806,
nine years after a similar memoir by the Norwegian mathematician CASPAR WESSEL (1745–1818), a surveyor
of the Danish Academy of Science. 
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Fig. 322. Complex conjugate numbers

y

x5

2

–2

z = x + iy = 5 + 2i

z = x – iy = 5 – 2i

Complex Conjugate Numbers
The complex conjugate of a complex number is defined by

It is obtained geometrically by reflecting the point z in the real axis. Figure 322 shows
this for and its conjugate z ! 5 " 2i.z ! 5 # 2i

z ! x " iy.

z ! x # iyz

612 CHAP. 13 Complex Numbers and Functions. Complex Differentiation

The complex conjugate is important because it permits us to switch from complex
to real. Indeed, by multiplication, (verify!). By addition and subtraction,

We thus obtain for the real part x and the imaginary part y
(not iy!) of the important formulas

(8)

If z is real, then by the definition of and conversely. Working with
conjugates is easy, since we have

(9)

E X A M P L E  3 Illustration of (8) and (9)

Let and Then by (8),

Also, the multiplication formula in (9) is verified by

! z1z2 ! (4 " 3i)(2 " 5i) ! "7 " 26i.

 (z1z2) ! (4 # 3i)(2 # 5i) ! ("7 # 26i) ! "7 " 26i,

Im z1 !
1

2i
 [(4 # 3i) " (4 " 3i)] !

3i # 3i

2i
! 3.

z2 ! 2 # 5i.z1 ! 4 # 3i

 (z1z2) ! z1z2,    az1

z2
b !

z1

z2
  .

 (z1 # z2) ! z1 # z2,  (z1 " z2) ! z1 " z2,

z,z ! zz ! x,

Re z ! x ! 1
2 (z # z),  Im z ! y !

1
2i (z " z).

z ! x # iy
z " z ! 2iy.z # z ! 2x,

zz ! x2 # y2

1. Powers of i. Show that 
and 

2. Rotation. Multiplication by i is geometrically a
counterclockwise rotation through . Verifyp>2 (90°)

1>i ! "i, 1>i2 ! "1, 1>i3 ! i, Á .i5 ! i, Á
i2 ! "1, i3 ! "i, i4 ! 1, this by graphing z and iz and the angle of rotation for

3. Division. Verify the calculation in (7). Apply (7) to
(26 " 18i)>(6 " 2i).

z ! 1 # i, z ! "1 # 2i, z ! 4 " 3i.

P R O B L E M  S E T  1 3 . 1
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13.2 Polar Form of Complex Numbers. 
Powers and Roots

We gain further insight into the arithmetic operations of complex numbers if, in addition
to the xy-coordinates in the complex plane, we also employ the usual polar coordinates
r, defined by

(1)

We see that then takes the so-called polar form

(2)

r is called the absolute value or modulus of z and is denoted by Hence

(3)

Geometrically, is the distance of the point z from the origin (Fig. 323). Similarly,
is the distance between and (Fig. 324).

is called the argument of z and is denoted by arg z. Thus and (Fig. 323)

(4)

Geometrically, is the directed angle from the positive x-axis to OP in Fig. 323. Here, as
in calculus, all angles are measured in radians and positive in the counterclockwise sense.

u

(z $ 0).tan u !
y
x  

u ! arg zu
z2z1ƒ z1 " z2 ƒ

ƒ z ƒ

ƒ z ƒ ! r ! 2x2 # y2 ! 1zz.

ƒ z ƒ .

z ! r(cos u # i sin u).

z ! x # iy

x ! r cos u,   y ! r sin u.

u

SEC. 13.2 Polar Form of Complex Numbers. Powers and Roots 613

4. Law for conjugates. Verify (9) for 

5. Pure imaginary number. Show that is
pure imaginary if and only if 

6. Multiplication. If the product of two complex numbers
is zero, show that at least one factor must be zero.

7. Laws of addition and multiplication. Derive the
following laws for complex numbers from the cor-
responding laws for real numbers.

(Commutative laws)

(Associative laws)

(Distributive law)

z # ("z) ! ("z) # z ! 0,    z # 1 ! z.

0 # z ! z # 0 ! z,

z1(z2 # z3) ! z1z2 # z1z3

(z1z2)z3 ! z1(z2z3)

(z1 # z2) # z3 ! z1 # (z2 # z3),

z1 # z2 ! z2 # z1, z1z2 ! z2z1

z ! "z.
z ! x # iy

z2 ! "1 # 4i.
z1 ! "11 # 10i, 8–15 COMPLEX ARITHMETIC

Let Showing the details of
your work, find, in the form 
8. 9.

10.
11.
12.
13.
14.
15.

16–20 Let Showing details, find, in terms
of x and y:

16. 17.
18. 19.
20. Im (1>z2)

Re (z>z), Im (z>z)Re [(1 # i)16z2]
Re z4 " (Re z2)2Im (1>z), Im (1>z2)

z ! x # iy.

4 (z1 # z2)>(z1 " z2)
z1>z2, (z1>z2)
(z1 # z2)(z1 " z2), z1

2 " z2
2

z1>z2, z2>z1

(z1 " z2)2>16, (z1>4 " z2>4)2

Re (1>z2
2), 1>Re (z2

2)
Re (z1

2), (Re z1)2z1z2, (z1z2)
x # iy:

z1 ! "2 # 11i, z2 ! 2 " i.
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For this angle is undefined. (Why?) For a given it is determined only up
to integer multiples of since cosine and sine are periodic with period . But one
often wants to specify a unique value of arg z of a given . For this reason one defines
the principal value Arg z (with capital A!) of arg z by the double inequality

(5)

Then we have Arg for positive real which is practical, and Arg (not
) for negative real z, e.g., for The principal value (5) will be important in

connection with roots, the complex logarithm (Sec. 13.7), and certain integrals. Obviously,
for a given the other values of arg z ! Arg z % 2np (n ! %1, %2, Á ).arg z arez $ 0,

z ! "4."p!
z ! pz ! x,z ! 0

"p & Arg z ' p.

z $ 0
2p2p

z $ 0uz ! 0

614 CHAP. 13 Complex Numbers and Functions. Complex Differentiation

E X A M P L E  1 Polar Form of Complex Numbers. Principal Value Arg z

(Fig. 325) has the polar form . Hence we obtain

and (the principal value).

Similarly, and 

CAUTION! In using (4), we must pay attention to the quadrant in which z lies, since
has period , so that the arguments of z and have the same tangent. Example:

for and we have tan u1 ! tan u2 ! 1.u2 ! arg ("1 " i)u1 ! arg (1 # i)
"zptan u

!Arg z ! 1
3p.z ! 3 # 323i ! 6 (cos 13p # i sin 13p), ƒ z ƒ ! 6,

Arg z ! 1
4pƒ z ƒ ! 22, arg z ! 1

4p % 2np (n ! 0, 1, Á ),

z ! 22 (cos 14p # i sin 14p)z ! 1 # i

Fig. 323. Complex plane, polar form Fig. 324. Distance between two 
of a complex number points in the complex plane 

y

x

z2

z1

|z
1 – z

2|

|z 1|

|z
2|

y

xO

P

θ
|z| = r

Imaginary
axis

Real
axis

z = x + iy

Triangle Inequality
Inequalities such as make sense for real numbers, but not in complex because there
is no natural way of ordering complex numbers. However, inequalities between absolute values
(which are real!), such as (meaning that is closer to the origin than ) are of
great importance. The daily bread of the complex analyst is the triangle inequality

(6) (Fig. 326)

which we shall use quite frequently. This inequality follows by noting that the three
points 0, and are the vertices of a triangle (Fig. 326) with sides and

and one side cannot exceed the sum of the other two sides. A formal proof is
left to the reader (Prob. 33). (The triangle degenerates if and lie on the same straight
line through the origin.)

z2z1

ƒ z1 # z2 ƒ ,
ƒ z1 ƒ , ƒ z2 ƒ ,z1 # z2z1,

ƒ z1 # z2 ƒ ' ƒ z1 ƒ # ƒ z2 ƒ

z2z1ƒ z1 ƒ & ƒ z2 ƒ

x1 & x2

y

x

1

1

1 + i

/4π

2

Fig. 325. Example 1
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By induction we obtain from (6) the generalized triangle inequality

(6*)

that is, the absolute value of a sum cannot exceed the sum of the absolute values of the terms.

E X A M P L E  2 Triangle Inequality

If and then (sketch a figure!)

Multiplication and Division in Polar Form
This will give us a “geometrical” understanding of multiplication and division. Let

Multiplication. By (3) in Sec. 13.1 the product is at first

The addition rules for the sine and cosine [(6) in App. A3.1] now yield

(7)

Taking absolute values on both sides of (7), we see that the absolute value of a product
equals the product of the absolute values of the factors,

(8)

Taking arguments in (7) shows that the argument of a product equals the sum of the
arguments of the factors,

(9) (up to multiples of ).

Division. We have Hence and by
division by 

(10) (z2 $ 0).` z1

z2
` !

ƒ z1 ƒ
ƒ z2 ƒ

ƒ z2 ƒ
ƒ z1 ƒ ! ƒ (z1>z2) z2 ƒ ! ƒ z1>z2 ƒ ƒ z2 ƒz1 ! (z1>z2)z2.

2parg (z1z2) ! arg z1 # arg z2

ƒ z1z2 ƒ ! ƒ z1 ƒ ƒ z2 ƒ .

z1z2 ! r1r2 [cos (u1 # u2) # i sin (u1 # u2)].

z1z2 ! r1r2[(cos u1 cos u2 " sin u1 sin u2) # i (sin u1 cos u2 # cos u1 sin u2)].

z1 ! r1(cos u1 # i sin u1)   and   z2 ! r2(cos u2 # i sin u2).

!ƒ z1 # z2 ƒ ! ƒ "1 # 4i ƒ ! 117 ! 4.123 & 12 # 113 ! 5.020.

z2 ! "2 # 3i,z1 ! 1 # i

ƒ z1 # z2 # Á # zn ƒ ' ƒ z1 ƒ # ƒ z2 ƒ  # Á # ƒ zn ƒ ;
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y

x

z2

z1

z1 + z2

Fig. 326. Triangle inequality
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Similarly, and by subtraction of arg 

(11) (up to multiples of ).

Combining (10) and (11) we also have the analog of (7),

(12)

To comprehend this formula, note that it is the polar form of a complex number of absolute
value and argument But these are the absolute value and argument of 
as we can see from (10), (11), and the polar forms of and 

E X A M P L E  3 Illustration of Formulas (8)–(11)

Let and Then . Hence (make a sketch)

and for the arguments we obtain 

.

E X A M P L E  4 Integer Powers of z. De Moivre’s Formula

From (8) and (9) with we obtain by induction for 

(13)

Similarly, (12) with and gives (13) for For formula (13) becomes
De Moivre’s formula3

(13*)

We can use this to express and in terms of powers of and . For instance, for we
have on the left Taking the real and imaginary parts on both sides of 
with gives the familiar formulas

This shows that complex methods often simplify the derivation of real formulas. Try .

Roots
If then to each value of w there corresponds one value of z. We
shall immediately see that, conversely, to a given there correspond precisely n
distinct values of w. Each of these values is called an nth root of z, and we write

z $ 0
z ! wn (n ! 1, 2, Á ),

!n ! 3

cos 2u ! cos2 u " sin2 u,  sin 2u ! 2 cos u sin u.

n ! 2
(13*)cos2 u # 2i cos u sin u " sin2 u.

n ! 2sin ucos usin nucos nu

(cos u # i sin u)n ! cos nu # i sin nu.

ƒ z ƒ ! r ! 1,n ! "1, "2, Á .z2 ! znz1 ! 1

zn ! r n (cos nu # i sin nu).

n ! 0, 1, 2, Áz1 ! z2 ! z

!Arg (z1z2) ! " 
3p

4
! Arg z1 # Arg z2 " 2p,  Arg az1

z2
b !
p

4
! Arg z1 " Arg z2

Arg z1 ! 3p>4, Arg z2 ! p>2,

ƒ z1z2 ƒ ! 612 ! 318 ! ƒ z1 ƒ ƒ z2 ƒ ,  ƒ z1>z2 ƒ ! 212>3 ! ƒ z1 ƒ > ƒ z2 ƒ ,

z1z2 ! "6 " 6i, z1>z2 ! 2
3 # (2

3)iz2 ! 3i.z1 ! "2 # 2i

z2.z1

z1>z2,u1 " u2.r1>r2

z1

z2
!

r1

r2
 [cos (u1 " u2) # i sin (u1 " u2)].

2parg 
z1

z2
! arg z1 " arg z2

z2arg z1 ! arg [(z1>z2)z2] ! arg (z1>z2) # arg z2

616 CHAP. 13 Complex Numbers and Functions. Complex Differentiation

3ABRAHAM DE MOIVRE (1667–1754), French mathematician, who pioneered the use of complex numbers
in trigonometry and also contributed to probability theory (see Sec. 24.8).
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(14)

Hence this symbol is multivalued, namely, n-valued. The n values of can be obtained
as follows. We write z and w in polar form

Then the equation becomes, by De Moivre’s formula (with instead of ),

The absolute values on both sides must be equal; thus, so that where
is positive real (an absolute value must be nonnegative!) and thus uniquely determined.

Equating the arguments and and recalling that is determined only up to integer
multiples of , we obtain

where k is an integer. For we get n distinct values of w. Further integers
of k would give values already obtained. For instance, gives , hence
the w corresponding to , etc. Consequently, for , has the n distinct values

(15)

where These n values lie on a circle of radius with center at the
origin and constitute the vertices of a regular polygon of n sides. The value of obtained
by taking the principal value of arg z and in (15) is called the principal value of

.
Taking in (15), we have and Arg Then (15) gives

(16)

These n values are called the nth roots of unity. They lie on the circle of radius 1 and
center 0, briefly called the unit circle (and used quite frequently!). Figures 327–329 show23 1 ! 1, "1

2 % 1
223i, 24 1 ! %1, %i, and25 1.

k ! 0, 1, Á , n " 1.2n 1 ! cos 
2kp

n # i sin 
2kp

n ,

z ! 0.ƒ z ƒ ! r ! 1z ! 1
w ! 1n z

k ! 0
1n z

1n rk ! 0, 1, Á , n " 1.

1n z ! 1n r acos 
u # 2kp

n # i sin 
u # 2kp

n b
z $ 01n z ,k ! 0

2kp>n ! 2pk ! n
k ! 0, 1, Á , n " 1

n! ! u # 2kp,   thus   ! !
u
n #

2kp
n

2p
uun!

1n r
R ! 1n r ,Rn ! r,

wn ! Rn(cos n! # i sin n!) ! z ! r(cos u # i sin u).

u!wn ! z

z ! r(cos u # i sin u)   and   w ! R(cos ! # i sin !).

1n z

w ! 1n z .  
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y

x1

ω2
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y

x1
ω2

ω3

ω

1

y

x

ω2

ω4

ω3

ω

Fig. 327. Fig. 328. Fig. 329. 25 124 123 1
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If denotes the value corresponding to in (16), then the n values of can be
written as

More generally, if is any nth root of an arbitrary complex number then the n
values of in (15) are

(17)

because multiplying by corresponds to increasing the argument of by .
Formula (17) motivates the introduction of roots of unity and shows their usefulness.

2kp>nw1vkw1

w1,  w1v,  w1v
2,  Á ,  w1v

n"1

1n z
z ($ 0),w1

1, v, v2, Á , vn"1.

2n 1k ! 1v
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1–8 POLAR FORM
Represent in polar form and graph in the complex plane as
in Fig. 325. Do these problems very carefully because polar
forms will be needed frequently. Show the details.
1. 2.
3. 4.

5. 6.

7. 8.

9–14 PRINCIPAL ARGUMENT
Determine the principal value of the argument and graph it
as in Fig. 325.
9. 10.

11. 12.
13. 14.

15–18 CONVERSION TO 
Graph in the complex plane and represent in the form 
15. 16.

17.

18.

ROOTS
19. CAS PROJECT. Roots of Unity and Their Graphs.

Write a program for calculating these roots and for
graphing them as points on the unit circle. Apply the
program to with Then extend
the program to one for arbitrary roots, using an idea
near the end of the text, and apply the program to
examples of your choice.

n ! 2, 3, Á , 10.zn ! 1

250 (cos 34p # i sin 34p)

28 (cos 14p # i sin 14p)

6 (cos 13p # i sin 13p)3 (cos 12p " i sin 12p)
x # iy:

x # iy

"1 # 0.1i, "1 " 0.1i(1 # i)20

"p " pi3 % 4i
"5, "5 " i, "5 # i"1 # i

"4 # 19i

2 # 5i
1 # 1

2pi

23 " 10i

"1
223 # 5i

22 # i>3
"28 " 2i>3

"52i, "2i
"4 # 4i1 # i

20. TEAM PROJECT. Square Root. (a) Show that
has the values

(18)

(b) Obtain from (18) the often more practical formula

(19)

where sign if sign if and
all square roots of positive numbers are taken with
positive sign. Hint: Use (10) in App. A3.1 with 
(c) Find the square roots of and

by both (18) and (19) and comment on the
work involved.
(d) Do some further examples of your own and apply
a method of checking your results.

21–27 ROOTS
Find and graph all roots in the complex plane.
21. 22.
23. 24.
25. 26. !8 1" 27.

28–31 EQUATIONS
Solve and graph the solutions. Show details.
28.
29.
30. Using the solutions, factor 

into quadratic factors with real coefficients.
31. z4 " 6iz2 # 16 ! 0

z4 # 324z4 # 324 ! 0.
z2 # z # 1 " i ! 0
z2 " (6 " 2i) z # 17 " 6i ! 0

25 "124 i
24 "423 216
23 3 # 4i23 1 # i

1 # 248i
"14i, "9 " 40i,

x ! u>2.

y & 0,y ! "1y ( 0,y ! 1

2z ! %[21
2( ƒ z ƒ # x) # (sign y)i21

2( ƒ z ƒ # x)]

 ! "w1.

 w2 ! 1r c cos au
2

# pb # i sin au
2

# pb d
 w1 ! 1r c cos  

u

2
# i sin 

u

2 d ,
w ! 1z

P R O B L E M  S E T  1 3 . 2
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13.3 Derivative. Analytic Function
Just as the study of calculus or real analysis required concepts such as domain,
neighborhood, function, limit, continuity, derivative, etc., so does the study of complex
analysis. Since the functions live in the complex plane, the concepts are slightly more
difficult or different from those in real analysis. This section can be seen as a reference
section where many of the concepts needed for the rest of Part D are introduced.

Circles and Disks. Half-Planes
The unit circle (Fig. 330) has already occurred in Sec. 13.2. Figure 331 shows a
general circle of radius and center a. Its equation is

ƒ z " a ƒ ! r

r
ƒ z ƒ ! 1

SEC. 13.3 Derivative. Analytic Function 619

32–35 INEQUALITIES AND EQUALITY
32. Triangle inequality. Verify (6) for 

33. Triangle inequality. Prove (6).
z2 ! "2 # 4i

z1 ! 3 # i,

34. Re and Im. Prove 

35. Parallelogram equality. Prove and explain the name

ƒ z1 # z2 ƒ 2 # ƒ z1 " z2 ƒ 2 ! 2 ( ƒ z1 ƒ 2 # ƒ z2 ƒ 2).

ƒ Re z ƒ ' ƒ z ƒ , ƒ Im z ƒ ' ƒ z ƒ .

y

x1

y

x

ρ
a

a

y

x

1ρ

2ρ

Fig. 330. Unit circle Fig. 331. Circle in the Fig. 332. Annulus in the 
complex plane complex plane

because it is the set of all z whose distance from the center a equals Accordingly,
its interior (“open circular disk”) is given by its interior plus the circle
itself (“closed circular disk”) by and its exterior by As an
example, sketch this for and to make sure that you understand these
inequalities.

An open circular disk is also called a neighborhood of a or, more precisely,
a -neighborhood of a. And a has infinitely many of them, one for each value of 
and a is a point of each of them, by definition!

In modern literature any set containing a -neighborhood of a is also called a neigh-
borhood of a.

Figure 332 shows an open annulus (circular ring) which we shall
need later. This is the set of all z whose distance from a is greater than but
less than . Similarly, the closed annulus includes the two circles.

Half-Planes. By the (open) upper half-plane we mean the set of all points 
such that . Similarly, the condition defines the lower half-plane, the
right half-plane, and the left half-plane.x & 0

x ) 0y & 0y ) 0
z ! x # iy

r1 ' ƒ z " a ƒ ' r2r2

r1ƒ z " a ƒ
r1 & ƒ z " a ƒ & r2,

r

r () 0),r
ƒ z " a ƒ & r

r ! 2,a ! 1 # i
ƒ z " a ƒ ) r.ƒ z " a ƒ ' r,

ƒ z " a ƒ & r,
r.ƒ z " a ƒ
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For Reference: Concepts on Sets 
in the Complex Plane
To our discussion of special sets let us add some general concepts related to sets that we
shall need throughout Chaps. 13–18; keep in mind that you can find them here.

By a point set in the complex plane we mean any sort of collection of finitely many
or infinitely many points. Examples are the solutions of a quadratic equation, the
points of a line, the points in the interior of a circle as well as the sets discussed just
before.

A set S is called open if every point of S has a neighborhood consisting entirely of
points that belong to S. For example, the points in the interior of a circle or a square form
an open set, and so do the points of the right half-plane Re 

A set S is called connected if any two of its points can be joined by a chain of finitely
many straight-line segments all of whose points belong to S. An open and connected set
is called a domain. Thus an open disk and an open annulus are domains. An open square
with a diagonal removed is not a domain since this set is not connected. (Why?)

The complement of a set S in the complex plane is the set of all points of the complex
plane that do not belong to S. A set S is called closed if its complement is open. For example,
the points on and inside the unit circle form a closed set (“closed unit disk”) since its
complement is open.

A boundary point of a set S is a point every neighborhood of which contains both points
that belong to S and points that do not belong to S. For example, the boundary points of
an annulus are the points on the two bounding circles. Clearly, if a set S is open, then no
boundary point belongs to S; if S is closed, then every boundary point belongs to S. The
set of all boundary points of a set S is called the boundary of S.

A region is a set consisting of a domain plus, perhaps, some or all of its boundary points.
WARNING! “Domain” is the modern term for an open connected set. Nevertheless, some
authors still call a domain a “region” and others make no distinction between the two terms.

Complex Function
Complex analysis is concerned with complex functions that are differentiable in some
domain. Hence we should first say what we mean by a complex function and then define
the concepts of limit and derivative in complex. This discussion will be similar to that in
calculus. Nevertheless it needs great attention because it will show interesting basic
differences between real and complex calculus.

Recall from calculus that a real function f defined on a set S of real numbers (usually an
interval) is a rule that assigns to every x in S a real number f(x), called the value of f at x.
Now in complex, S is a set of complex numbers. And a function f defined on S is a rule
that assigns to every z in S a complex number w, called the value of f at z. We write

Here z varies in S and is called a complex variable. The set S is called the domain of
definition of f or, briefly, the domain of f. (In most cases S will be open and connected,
thus a domain as defined just before.)

Example: is a complex function defined for all z; that is, its domain
S is the whole complex plane.

The set of all values of a function f is called the range of f.

w ! f (z) ! z2 # 3z

w ! f (z).

|z ƒ ) 1

z ! x ) 0.

620 CHAP. 13 Complex Numbers and Functions. Complex Differentiation
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w is complex, and we write where u and v are the real and imaginary
parts, respectively. Now w depends on Hence u becomes a real function of x
and y, and so does v. We may thus write

This shows that a complex function f (z) is equivalent to a pair of real functions 
and , each depending on the two real variables x and y.

E X A M P L E  1 Function of a Complex Variable

Let Find u and v and calculate the value of f at .

Solution. and Also,

This shows that and Check this by using the expressions for u and v.

E X A M P L E  2 Function of a Complex Variable

Let Find u and v and the value of f at 

Solution. gives and Also,

Check this as in Example 1.

Remarks on Notation and Terminology
1. Strictly speaking, f (z) denotes the value of f at z, but it is a convenient abuse of

language to talk about the function f (z) (instead of the function f ), thereby exhibiting the
notation for the independent variable.

2. We assume all functions to be single-valued relations, as usual: to each z in S there
corresponds but one value (but, of course, several z may give the same value

just as in calculus). Accordingly, we shall not use the term “multivalued
function” (used in some books on complex analysis) for a multivalued relation, in which
to a z there corresponds more than one w.

Limit, Continuity
A function f (z) is said to have the limit l as z approaches a point z0, written

(1)

if f is defined in a neighborhood of (except perhaps at z0 itself) and if the values of 
f are “close” to l for all z “close” to in precise terms, if for every positive real we can
find a positive real such that for all in the disk (Fig. 333) we have

(2)

geometrically, if for every in that -disk the value of f lies in the disk (2).
Formally, this definition is similar to that in calculus, but there is a big difference.

Whereas in the real case, x can approach an x0 only along the real line, here, by definition,

dz $ z0

ƒ f (z) " l ƒ & P;

ƒ z " z0 ƒ & dz $ z0d
Pz0;

z0

lim
z:z0  

f (z) ! l,

w ! f (z),
w ! f (z)

!

f (1
2 # 4i) ! 2i(1

2 # 4i) # 6(1
2 " 4i) ! i " 8 # 3 " 24i ! "5 " 23i.

v(x, y) ! 2x " 6y.u(x, y) ! 6x " 2yf (z) ! 2i(x # iy) # 6(x " iy)

z ! 1
2 # 4i.w ! f (z) ! 2iz # 6z.

!v(1, 3) ! 15.u(1, 3) ! "5

f (1 # 3i) ! (1 # 3i)2 # 3(1 # 3i) ! 1 " 9 # 6i # 3 # 9i ! "5 # 15i.

v ! 2xy # 3y.u ! Re f (z) ! x2 " y2 # 3x

z ! 1 # 3iw ! f (z) ! z2 # 3z.

v(x, y)
u(x, y)

w ! f (z) ! u(x, y) # iv(x, y).

z ! x # iy.
w ! u # iv,

SEC. 13.3 Derivative. Analytic Function 621
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Derivative
The derivative of a complex function f at a point is written and is defined by

(4)

provided this limit exists. Then f is said to be differentiable at . If we write ,
we have and (4) takes the form

Now comes an important point. Remember that, by the definition of limit, f (z) is defined
in a neighborhood of and z in ( ) may approach from any direction in the complex
plane. Hence differentiability at z0 means that, along whatever path z approaches , the
quotient in ( ) always approaches a certain value and all these values are equal. This is
important and should be kept in mind.

E X A M P L E  3 Differentiability. Derivative

The function is differentiable for all z and has the derivative because

!lim
¢z:0

 
z2 # 2z ¢z # (¢z)2 " z2

¢z
! lim

¢z:0
 (2z # ¢z) ! 2z.f r(z) ! lim

¢z:0
 
(z # ¢z)2 " z2

¢z
!

f r(z) ! 2zf (z) ! z2

4r
z0

z04rz0

f r(z0) ! lim
z:z0 

 
f (z) " f (z0)

z " z0
.(4r)

z ! z0 # ¢z
¢z ! z " z0z0

f r(z0) ! lim
¢z:0

 
f (z0 # ¢z) " f (z0)

¢z

f r(z0)z0

y

x

v

u

z

z0δ
f (z)

lŒ

Fig. 333. Limit

z may approach from any direction in the complex plane. This will be quite essential
in what follows.

If a limit exists, it is unique. (See Team Project 24.)

A function f (z) is said to be continuous at if is defined and

(3)

Note that by definition of a limit this implies that f (z) is defined in some neighborhood
of .

f (z) is said to be continuous in a domain if it is continuous at each point of this domain.
z0

lim
z:z0   

f (z) ! f (z0).

f (z0)z ! z0

z0
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The differentiation rules are the same as in real calculus, since their proofs are literally
the same. Thus for any differentiable functions f and g and constant c we have

as well as the chain rule and the power rule (n integer).
Also, if f(z) is differentiable at z0, it is continuous at . (See Team Project 24.)

E X A M P L E  4 not Differentiable

It may come as a surprise that there are many complex functions that do not have a derivative at any point. For
instance, is such a function. To see this, we write and obtain

(5)

If this is . If this is Thus (5) approaches along path I in Fig. 334 but along
path II. Hence, by definition, the limit of (5) as does not exist at any z. !¢z : 0

"1#1"1.¢x ! 0,#1¢y ! 0,

f (z # ¢z) " f (z)

¢z
!

(z # ¢z) " z

¢z
!

¢z

¢z
!

¢x " i ¢y

¢x # i ¢y
 .

¢z ! ¢x # i ¢yf (z) ! z ! x " iy

z

z0

(zn)r ! nzn"1

(cf )r ! cf r, ( f # g)r ! f r # gr, ( fg)r ! f rg # fgr, a f
gbr !

f rg " fgr
g2

SEC. 13.3 Derivative. Analytic Function 623

Fig. 334. Paths in (5)

y

x

ΙΙ

Ι

z + ∆z

z

Surprising as Example 4 may be, it merely illustrates that differentiability of a complex
function is a rather severe requirement.

The idea of proof (approach of z from different directions) is basic and will be used
again as the crucial argument in the next section.

Analytic Functions
Complex analysis is concerned with the theory and application of “analytic functions,”
that is, functions that are differentiable in some domain, so that we can do “calculus in
complex.” The definition is as follows.

D E F I N I T I O N Analyticity

A function is said to be analytic in a domain D if f (z) is defined and differentiable
at all points of D. The function f (z) is said to be analytic at a point in D if
f (z) is analytic in a neighborhood of .

Also, by an analytic function we mean a function that is analytic in some domain.

Hence analyticity of f (z) at means that f(z) has a derivative at every point in some
neighborhood of (including itself since, by definition, is a point of all its
neighborhoods). This concept is motivated by the fact that it is of no practical interest
if a function is differentiable merely at a single point but not throughout some
neighborhood of . Team Project 24 gives an example.

A more modern term for analytic in D is holomorphic in D.
z0

z0

z0z0z0

z0

z0

z ! z0

f (z)
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E X A M P L E  5 Polynomials, Rational Functions

The nonnegative integer powers are analytic in the entire complex plane, and so are polynomials,
that is, functions of the form

where are complex constants.
The quotient of two polynomials and 

is called a rational function. This f is analytic except at the points where here we assume that common
factors of g and h have been canceled.

Many further analytic functions will be considered in the next sections and chapters.

The concepts discussed in this section extend familiar concepts of calculus. Most
important is the concept of an analytic function, the exclusive concern of complex
analysis. Although many simple functions are not analytic, the large variety of remaining
functions will yield a most beautiful branch of mathematics that is very useful in
engineering and physics.

!

h(z) ! 0;

f (z) !
g(z)

h(z)
,

h(z),g(z)
c0, Á , cn

f (z) ! c0 # c1z # c2z2 # Á # cnzn

1, z, z2, Á
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1–8 REGIONS OF PRACTICAL INTEREST
Determine and sketch or graph the sets in the complex plane
given by
1.
2.
3.
4.
5.
6.
7.
8.
9. WRITING PROJECT. Sets in the Complex Plane.

Write a report by formulating the corresponding
portions of the text in your own words and illustrating
them with examples of your own.

COMPLEX FUNCTIONS AND THEIR DERIVATIVES

10–12 Function Values. Find Re f, and Im f and their
values at the given point z.

10.
11.
12.
13. CAS PROJECT. Graphing Functions. Find and graph

Re f, Im f, and as surfaces over the z-plane. Also
graph the two families of curves andRe f (z) ! const

ƒ f ƒ

f (z) ! (z " 2)>(z # 2) at 8i
f (z) ! 1>(1 " z) at 1 " i
f (z) ! 5z2 " 12z # 3 # 2i at 4 "  3i

ƒ z # i ƒ ( ƒ z " i ƒ
Re  z ( "1
Re (1>z) & 1
ƒ arg  z ƒ & 1

4p

"p & Im  z & p

p & ƒ z " 4 # 2i ƒ & 3p
0 & ƒ z ƒ & 1
ƒ z # 1 " 5i ƒ ' 3

2

in the same figure, and the curves
in another figure, where (a)

(b) , (c) 

14–17 Continuity. Find out, and give reason, whether
f (z) is continuous at and for the
function f is equal to:

14. 15.
16. 17.

18–23 Differentiation. Find the value of the derivative
of

18. 19.
20. at any z. Explain the result.
21. at 0
22. at 2i 23.
24. TEAM PROJECT. Limit, Continuity, Derivative

(a) Limit. Prove that (1) is equivalent to the pair of
relations

(b) Limit. If exists, show that this limit is
unique.
(c) Continuity. If are complex numbers for
which and if f(z) is continuous at 
show that lim

n:$   

f (zn) ! f (a).
z ! a,lim

n:$  
zn ! a,

z1, z2, Á

lim
z:z0   

f (x)

lim
z:z0  

Re f (z) ! Re l,  lim
z:z0  

Im f (z) !  Im l.

z3>(z # i)3 at i(iz3 # 3z2)3

i(1 " z)n
(1.5z # 2i)>(3iz " 4)

(z " 4i)8 at ! 3 # 4i(z " i)>(z # i) at i

(Re  z)>(1 " ƒ z ƒ )(Im z2)> ƒ z ƒ 2
ƒ z ƒ 2 Im (1>z)(Re z2)> ƒ z ƒ

z $ 0z ! 0 if f (0) ! 0

f (z) ! z4.f (z) ! 1>z f (z) ! z2,ƒ f (z) ƒ ! const
Im f (z) ! const

P R O B L E M  S E T  1 3 . 3
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13.4 Cauchy–Riemann Equations. 
Laplace’s Equation

As we saw in the last section, to do complex analysis (i.e., “calculus in the complex”) on
any complex function, we require that function to be analytic on some domain that is
differentiable in that domain.

The Cauchy–Riemann equations are the most important equations in this chapter
and one of the pillars on which complex analysis rests. They provide a criterion (a test)
for the analyticity of a complex function

Roughly, f is analytic in a domain D if and only if the first partial derivatives of u and 
satisfy the two Cauchy–Riemann equations4

(1)

everywhere in D; here and (and similarly for v) are the usual
notations for partial derivatives. The precise formulation of this statement is given in
Theorems 1 and 2.

Example: is analytic for all z (see Example 3 in Sec. 13.3),
and and satisfy (1), namely, as well as 

. More examples will follow.

T H E O R E M  1 Cauchy–Riemann Equations

Let be defined and continuous in some neighborhood of a
point and differentiable at z itself. Then, at that point, the first-order
partial derivatives of u and v exist and satisfy the Cauchy–Riemann equations (1).

Hence, if is analytic in a domain D, those partial derivatives exist and satisfy
(1) at all points of D.

f (z)

z ! x # iy
f (z) ! u(x, y) # iv(x, y)

"2y ! "vx

uy !ux ! 2x ! vyv ! 2xyu ! x2 " y2
f (z) ! z2 ! x2 " y2 # 2ixy

uy ! 0u>0yux ! 0u>0x

ux ! vy,     uy ! "vx

v

w ! f (z) ! u(x, y) # iv(x, y).

SEC. 13.4 Cauchy–Riemann Equations. Laplace’s Equation 625

(d) Continuity. If is differentiable at show that
f (z) is continuous at 
(e) Differentiability. Show that is not
differentiable at any z. Can you find other such functions?
(f) Differentiability. Show that is dif-
ferentiable only at hence it is nowhere analytic.z ! 0;

f (z) ! ƒ z ƒ 2

f (z) ! Re z ! x
z0.

z0,f (z) 25. WRITING PROJECT. Comparison with Calculus.
Summarize the second part of this section beginning with
Complex Function, and indicate what is conceptually
analogous to calculus and what is not.

4The French mathematician AUGUSTIN-LOUIS CAUCHY (see Sec. 2.5) and the German mathematicians
BERNHARD RIEMANN (1826–1866) and KARL WEIERSTRASS (1815–1897; see also Sec. 15.5) are the
founders of complex analysis. Riemann received his Ph.D. (in 1851) under Gauss (Sec. 5.4) at Göttingen, where
he also taught until he died, when he was only 39 years old. He introduced the concept of the integral as it is
used in basic calculus courses, and made important contributions to differential equations, number theory, and
mathematical physics. He also developed the so-called Riemannian geometry, which is the mathematical
foundation of Einstein’s theory of relativity; see Ref. [GenRef9] in App. 1.
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P R O O F By assumption, the derivative at z exists. It is given by

(2)

The idea of the proof is very simple. By the definition of a limit in complex (Sec. 13.3),
we can let approach zero along any path in a neighborhood of z. Thus we may choose
the two paths I and II in Fig. 335 and equate the results. By comparing the real parts we
shall obtain the first Cauchy–Riemann equation and by comparing the imaginary parts the
second. The technical details are as follows.

We write . Then and in terms of u
and v the derivative in (2) becomes

(3) .

We first choose path I in Fig. 335. Thus we let first and then . After 
is zero, . Then (3) becomes, if we first write the two u-terms and then the two
v-terms,

f r(z) ! lim
¢x:0

 
u(x # ¢x, y) " u(x, y)

¢x
# i lim

¢x:0
 
v(x # ¢x, y) " v(x, y)

¢x
 .

¢z ! ¢x
¢y¢x : 0¢y : 0

f r(z) ! lim
¢z:0 

[u(x # ¢x, y # ¢y) # iv(x # ¢x, y # ¢y)] " [u(x, y) # iv(x, y)]

¢x # i ¢y

z # ¢z ! x # ¢x # i(y # ¢y),¢z ! ¢x # i ¢y

¢z

f r(z) ! lim
¢z:0

 
f (z # ¢z) " f (z)

¢z
 .

f r(z)
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y

x

ΙΙ

Ι

z + ∆z

z

Fig. 335. Paths in (2)

Since exists, the two real limits on the right exist. By definition, they are the partial
derivatives of u and v with respect to x. Hence the derivative of f(z) can be written

(4)

Similarly, if we choose path II in Fig. 335, we let first and then . After
is zero, , so that from (3) we now obtain

Since exists, the limits on the right exist and give the partial derivatives of u and v
with respect to y; noting that we thus obtain

(5)

The existence of the derivative thus implies the existence of the four partial derivatives
in (4) and (5). By equating the real parts and in (4) and (5) we obtain the firstvyux

f r(z)

f r(z) ! "iuy # vy.

1>i ! "i,
f r(z)

f r(z) ! lim
¢y:0

 
u(x, y # ¢y) " u(x, y)

i ¢y
# i lim

¢y:0
 
v(x, y # ¢y) " v(x, y)

i ¢y
 .

¢z ! i ¢y¢x
¢y : 0¢x : 0

f r(z) ! ux # ivx.

f r(z)
f r(z)
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Cauchy–Riemann equation (1). Equating the imaginary parts gives the other. This proves
the first statement of the theorem and implies the second because of the definition of
analyticity.

Formulas (4) and (5) are also quite practical for calculating derivatives as we shall see.

E X A M P L E  1 Cauchy–Riemann Equations

is analytic for all z. It follows that the Cauchy–Riemann equations must be satisfied (as we have
verified above).

For we have and see that the second Cauchy–Riemann equation is satisfied,
but the first is not: We conclude that is not analytic, confirming

Example 4 of Sec. 13.3. Note the savings in calculation!

The Cauchy–Riemann equations are fundamental because they are not only necessary but
also sufficient for a function to be analytic. More precisely, the following theorem holds.

T H E O R E M  2 Cauchy–Riemann Equations

If two real-valued continuous functions and of two real variables x
and y have continuous first partial derivatives that satisfy the Cauchy–Riemann
equations in some domain D, then the complex function is
analytic in D.

The proof is more involved than that of Theorem 1 and we leave it optional (see App. 4).
Theorems 1 and 2 are of great practical importance, since, by using the Cauchy–Riemann

equations, we can now easily find out whether or not a given complex function is analytic.

E X A M P L E  2 Cauchy–Riemann Equations. Exponential Function

Is analytic?

Solution. We have and by differentiation

We see that the Cauchy–Riemann equations are satisfied and conclude that f (z) is analytic for all z. ( f (z) will
be the complex analog of known from calculus.)

E X A M P L E  3 An Analytic Function of Constant Absolute Value Is Constant

The Cauchy–Riemann equations also help in deriving general properties of analytic functions.
For instance, show that if is analytic in a domain D and in D, then in

D. (We shall make crucial use of this in Sec. 18.6 in the proof of Theorem 3.)

Solution. By assumption, By differentiation,

Now use in the first equation and in the second, to get

(6)
(a)

(b)  uuy " vux ! 0.

 uux " vuy ! 0,

vy ! uxvx ! "uy

 uuy # vvy ! 0.

 uux # vvx ! 0,

ƒ f ƒ 2 ! ƒ u # iv ƒ 2 ! u2 # v2 ! k2.

f (z) ! constƒ f (z) ƒ ! k ! constf (z)

!ex

 uy ! "ex sin y,    vx ! ex sin y.

 ux ! ex cos y,    vy ! ex cos y

u ! ex
 cos y, v ! ex sin y

f (z) ! u(x, y) # iv(x, y) ! ex(cos y # i sin y)

f (z) ! u(x, y) # iv(x, y)

v(x, y)u(x, y)

!
f (z) ! zux ! 1 $ vy ! "1.uy ! "vx ! 0,

u ! x, v ! "yf (z) ! z ! x " iy

f (z) ! z2

f r(z),

!
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To get rid of , multiply (6a) by u and (6b) by v and add. Similarly, to eliminate , multiply (6a) by and
(6b) by u and add. This yields

If then hence If then Hence, by the
Cauchy–Riemann equations, also Together this implies and ; hence

We mention that, if we use the polar form and set 
, then the Cauchy–Riemann equations are (Prob. 1)

(7)

Laplace’s Equation. Harmonic Functions
The great importance of complex analysis in engineering mathematics results mainly from
the fact that both the real part and the imaginary part of an analytic function satisfy Laplace’s
equation, the most important PDE of physics. It occurs in gravitation, electrostatics, fluid
flow, heat conduction, and other applications (see Chaps. 12 and 18).

T H E O R E M  3 Laplace’s Equation

If is analytic in a domain D, then both u and v satisfy
Laplace’s equation

(8)

( read “nabla squared”) and

(9) ,

in D and have continuous second partial derivatives in D.

P R O O F Differentiating with respect to x and with respect to y, we have

(10)

Now the derivative of an analytic function is itself analytic, as we shall prove later (in
Sec. 14.4). This implies that u and v have continuous partial derivatives of all orders; in
particular, the mixed second derivatives are equal: By adding (10) we thus
obtain (8). Similarly, (9) is obtained by differentiating with respect to y and

with respect to x and subtracting, using 

Solutions of Laplace’s equation having continuous second-order partial derivatives are called
harmonic functions and their theory is called potential theory (see also Sec. 12.11). Hence
the real and imaginary parts of an analytic function are harmonic functions.

!uxy ! uyx.uy ! "vx

ux ! vy

vyx ! vxy.

uxx ! vyx,     uyy ! "vxy.

uy ! "vxux ! vy

*2v ! vxx # vyy ! 0

*2

*2u ! uxx # uyy ! 0

f (z) ! u(x, y) # iv(x, y)

 vr ! " 
1
r  uu

(r ) 0). ur !
1
r  vu,

iv(r, u)
f (z) ! u(r, u) #z ! r(cos u # i sin u)

!f ! const.
v ! constu ! constux ! vy ! 0.

ux ! uy ! 0.k2 ! u2 # v2 $ 0,f ! 0.u ! v ! 0;k2 ! u2 # v2 ! 0,

 (u2 # v2)uy ! 0.

 (u2 # v2)ux ! 0 ,

"vuxuy
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If two harmonic functions u and v satisfy the Cauchy–Riemann equations in a domain
D, they are the real and imaginary parts of an analytic function f in D. Then v is said to
be a harmonic conjugate function of u in D. (Of course, this has absolutely nothing to
do with the use of “conjugate” for 

E X A M P L E  4 How to Find a Harmonic Conjugate Function by the Cauchy–Riemann Equations

Verify that is harmonic in the whole complex plane and find a harmonic conjugate function
v of u.

Solution. by direct calculation. Now and Hence because of the Cauchy–
Riemann equations a conjugate v of u must satisfy

Integrating the first equation with respect to y and differentiating the result with respect to x, we obtain

.

A comparison with the second equation shows that This gives . Hence 
(c any real constant) is the most general harmonic conjugate of the given u. The corresponding analytic function is

Example 4 illustrates that a conjugate of a given harmonic function is uniquely determined
up to an arbitrary real additive constant.

The Cauchy–Riemann equations are the most important equations in this chapter. Their
relation to Laplace’s equation opens a wide range of engineering and physical applications,
as shown in Chap. 18.

!f (z) ! u # iv ! x2 " y2 " y # i(2xy # x # c) ! z2 # iz # ic.

v ! 2xy # x # ch(x) ! x # cdh>dx ! 1.

v ! 2xy # h(x),   vx ! 2y #
dh

dx

vy ! ux ! 2x,   vx ! "uy ! 2y # 1.

uy ! "2y " 1.ux ! 2x*2u ! 0

u ! x2 " y2 " y

z.)
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1. Cauchy–Riemann equations in polar form. Derive (7)
from (1).

2–11 CAUCHY–RIEMANN EQUATIONS
Are the following functions analytic? Use (1) or (7).
2.
3.
4.
5.
6. 7.
8.
9.

10.
11.

12–19 HARMONIC FUNCTIONS
Are the following functions harmonic? If your answer
is yes, find a corresponding analytic function 

12. 13. u ! xyu ! x2 # y2

u(x, y) # iv(x, y).
f (z) !

f (z) ! cos x cosh y " i sin x sinh y
f (z) ! ln ƒ z ƒ # i Arg z
f (z) ! 3p2>(z3 # 4p2z)
f (z) ! Arg 2pz

f (z) ! i>z8f (z) ! 1>(z " z5)
f (z) ! Re (z2) " i Im (z2)
f (z) ! ex (cos y " i sin y)
f (z) ! e"2x (cos 2y " i sin 2y)
f (z) ! izz

14. 15.
16. 17.
18.
19.
20. Laplace’s equation. Give the details of the derivative

of (9).

21–24 Determine a and b so that the given function is
harmonic and find a harmonic conjugate.

21.
22.
23.
24.
25. CAS PROJECT. Equipotential Lines. Write a

program for graphing equipotential lines of
a harmonic function u and of its conjugate v on the
same axes. Apply the program to (a)

(b)
26. Apply the program in Prob. 25 to 

and to an example of your own.v ! ex sin y
u ! ex cos y,

u ! x3 " 3xy2, v ! 3x2y " y3.v ! 2xy,
u ! x2 " y2,

u ! const

u ! cosh ax cos y
u ! ax3 # bxy
u ! cos ax cosh 2y
u ! epx cos av

v ! ex sin 2y
u ! x3 " 3xy2

v ! (2x # 1)yu ! sin x cosh y
u ! x>(x2 # y2)v ! xy

P R O B L E M  S E T 1 3 . 4
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13.5 Exponential Function
In the remaining sections of this chapter we discuss the basic elementary complex
functions, the exponential function, trigonometric functions, logarithm, and so on. They
will be counterparts to the familiar functions of calculus, to which they reduce when 
is real. They are indispensable throughout applications, and some of them have interesting
properties not shared by their real counterparts.

We begin with one of the most important analytic functions, the complex exponential
function

also written exp z.

The definition of in terms of the real functions , and is

(1)

This definition is motivated by the fact the extends the real exponential function of
calculus in a natural fashion. Namely:

(A) for real because and when

(B) is analytic for all z. (Proved in Example 2 of Sec. 13.4.)

(C) The derivative of is , that is,

(2)

This follows from (4) in Sec. 13.4,

REMARK. This definition provides for a relatively simple discussion. We could define 
by the familiar series with x replaced by z, but we would
then have to discuss complex series at this very early stage. (We will show the connection
in Sec. 15.4.)

Further Properties. A function that is analytic for all z is called an entire function.
Thus, ez is entire. Just as in calculus the functional relation

(3) ez1#z2 ! ez1ez2

f (z)

1 # x # x2>2! # x3>3! # Á
ez

(ez)r ! (ex cos y)x # i(ex sin y)x ! ex cos y # iex sin y ! ez.

(ez)r ! ez.

ezez

ez

y ! 0.sin y ! 0cos y ! 1z ! xez ! ex

exez

ez ! ex(cos y # i sin y).

sin yex, cos yez

ez,

z ! x
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27. Harmonic conjugate. Show that if u is harmonic and
v is a harmonic conjugate of u, then u is a harmonic
conjugate of v.

28. Illustrate Prob. 27 by an example.
29. Two further formulas for the derivative. Formulas (4),

(5), and (11) (below) are needed from time to time. Derive

(11) f r(z) ! ux " iuy,   f r(z) ! vy # ivx.

"

30. TEAM PROJECT. Conditions for . Let
be analytic. Prove that each of the following

conditions is sufficient for .
(a)
(b)
(c)
(d) (see Example 3)ƒ f (z) ƒ ! const

f r(z) ! 0
Im f (z) ! const
Re f (z) ! const

f (z) ! const
f (z)

f (z) ! const
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holds for any and . Indeed, by (1),

Since for these real functions, by an application of the addition formulas
for the cosine and sine functions (similar to that in Sec. 13.2) we see that

as asserted. An interesting special case of (3) is ; then

(4)

Furthermore, for we have from (1) the so-called Euler formula

(5)

Hence the polar form of a complex number, , may now be written

(6)

From (5) we obtain

(7)

as well as the important formulas (verify!)

(8)

Another consequence of (5) is

(9)

That is, for pure imaginary exponents, the exponential function has absolute value 1, a
result you should remember. From (9) and (1),

(10) Hence ,

since shows that (1) is actually in polar form.
From in (10) we see that

(11) for all z.

So here we have an entire function that never vanishes, in contrast to (nonconstant)
polynomials, which are also entire (Example 5 in Sec. 13.3) but always have a zero, as
is proved in algebra.

ex $ 0

ƒ ez ƒ ! ex $ 0
ezƒ ez ƒ ! ex

(n ! 0, 1, 2, Á )arg ez ! y % 2npƒ ez ƒ ! ex.

ƒ eiy ƒ ! ƒ cos y # i sin y ƒ ! 2cos2 y # sin2 y ! 1.

epi>2 ! i,   epi ! "1,   e"pi>2 ! "i,   e"pi ! "1.

e2pi ! 1

z ! reiu.

z ! r (cos u # i sin u)

eiy ! cos y # i sin y.

z ! iy

ez ! exeiy.

z1 ! x, z2 ! iy

ez1ez2 ! ex1#x2[cos ( y1 # y2) # i sin ( y1 # y2)] ! ez1#z2

ex1ex2 !  ex1#x2

ez1ez2 ! ex1(cos y1 # i sin y1) ex2(cos y2 # i sin y2).

z2 ! x2 # iy2z1 ! x1 # iy1

SEC. 13.5 Exponential Function 631
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Periodicity of ex with period 2%i,

(12) for all z

is a basic property that follows from (1) and the periodicity of cos y and sin y. Hence all
the values that can assume are already assumed in the horizontal strip of width 

(13) (Fig. 336).

This infinite strip is called a fundamental region of 

E X A M P L E  1 Function Values. Solution of Equations

Computation of values from (1) provides no problem. For instance, 

To illustrate (3), take the product of

and

and verify that it equals .
To solve the equation , note first that is the real part of all

solutions. Now, since ,

Ans. These are infinitely many solutions (due to the periodicity
of ). They lie on the vertical line at a distance from their neighbors.

To summarize: many properties of parallel those of ; an exception is the
periodicity of with , which suggested the concept of a fundamental region. Keep
in mind that is an entire function. (Do you still remember what that means?)ez

2piez
exez ! exp z

!2px ! 1.609ez
z ! 1.609 # 0.927i % 2npi (n ! 0, 1, 2, Á ).

ex cos y ! 3,  ex sin y ! 4,  cos y ! 0.6,  sin y ! 0.8,  y ! 0.927.

ex ! 5
ƒ ez ƒ ! ex ! 5, x ! ln 5 ! 1.609ez ! 3 # 4i

e2e4(cos2 1 # sin2 1) ! e6 ! e(2#i)#(4"i)

e4"i ! e4(cos 1 " i sin 1)e2#i ! e2(cos 1 # i sin 1)

ƒ e1.4"1.6i ƒ ! e1.4 ! 4.055,  Arg e1.4–0.6i ! "0.6.

e1.4"0.6i ! e1.4(cos 0.6 " i sin 0.6) ! 4.055(0.8253 " 0.5646i) ! 3.347 " 2.289i

ez.

"p & y ' p

2pw ! ez

ez#2pi ! ez
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y

x

π

–π

Fig. 336. Fundamental region of the 
exponential function ez in the z-plane

1. ez is entire. Prove this.

2–7 Function Values. Find in the form 
and if z equals

2. 3.
4. 5.
6. 7. 22 # 1

2pi11pi>2 2 # 3pi0.6 " 1.8i
2pi(1 # i)3 # 4i

ƒ ez ƒ
u # ivez

8–13 Polar Form. Write in exponential form (6):

8. 9.

10. 11.
12. 13.

14–17 Real and Imaginary Parts. Find Re and Im of

14. 15. exp (z2)e"pz

1 # i1>(1 " z)
"6.31i, 1"i

4 # 3i1n  z

P R O B L E M  S E T  1 3 . 5
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16. 17.
18. TEAM PROJECT. Further Properties of the Ex-

ponential Function. (a) Analyticity. Show that is
entire. What about ? ? ? (Use
the Cauchy–Riemann equations.)
(b) Special values. Find all z such that (i) is real,
(ii) (iii) .
(c) Harmonic function. Show that 

is harmonic and find a conjugate.(x2>2 " y2>2)
u ! exy cos

ez ! ezƒ e"z ƒ & 1,
ez

ex(cos ky # i sin ky)eze1>z ez

exp (z3)e1>z
SEC. 13.6 Trigonometric and Hyperbolic Functions. Euler’s Formula 633

(d) Uniqueness. It is interesting that is
uniquely determined by the two properties 

and , where f is assumed to be entire.
Prove this using the Cauchy–Riemann equations.

19–22 Equations. Find all solutions and graph some
of them in the complex plane.

19. 20.
21. 22. ez ! "2ez ! 0

ez ! 4 # 3iez ! 1

f r(z) ! f (z)ex
f (x # i0) !
f (z) ! ez

13.6 Trigonometric and Hyperbolic Functions.
Euler’s Formula

Just as we extended the real to the complex in Sec. 13.5, we now want to extend
the familiar real trigonometric functions to complex trigonometric functions. We can do
this by the use of the Euler formulas (Sec. 13.5)

By addition and subtraction we obtain for the real cosine and sine

This suggests the following definitions for complex values 

(1)

It is quite remarkable that here in complex, functions come together that are unrelated in
real. This is not an isolated incident but is typical of the general situation and shows the
advantage of working in complex.

Furthermore, as in calculus we define

(2)

and

(3)

Since is entire, cos z and sin z are entire functions. tan z and sec z are not entire; they
are analytic except at the points where cos z is zero; and cot z and csc z are analytic except

ez

sec z !
1

cos z  ,   csc z !
1

sin z  .

tan z !
sin z
cos z  ,   cot z !

cos z
sin z

cos z ! 1
2 (e

iz # e"iz),   sin z !
1
2i

 (eiz " e"iz).

z ! x # iy:

cos x ! 1
2 

(eix # e"ix),  sin x !
1
2i

 (eix " e"ix).

eix ! cos x # i sin x,   e"ix ! cos x " i sin x.

ezex
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where sin z is zero. Formulas for the derivatives follow readily from and (1)–(3);
as in calculus,

(4)

etc. Equation (1) also shows that Euler’s formula is valid in complex:

(5)

The real and imaginary parts of cos z and sin z are needed in computing values, and they
also help in displaying properties of our functions. We illustrate this with a typical example.

E X A M P L E  1 Real and Imaginary Parts. Absolute Value. Periodicity

Show that

(6)
(a)

(b)

and

(7)
(a)

(b)

and give some applications of these formulas.

Solution. From (1),

This yields (6a) since, as is known from calculus,

(8)

(6b) is obtained similarly. From (6a) and we obtain

Since this gives (7a), and (7b) is obtained similarly.
For instance, 
From (6) we see that and are periodic with period just as in real. Periodicity of and 

with period now follows.
Formula (7) points to an essential difference between the real and the complex cosine and sine; whereas

and the complex cosine and sine functions are no longer bounded but approach infinity 
in absolute value as since then in (7).

E X A M P L E  2 Solutions of Equations. Zeros of cos z and sin z

Solve (a) (which has no real solution!), (b) (c) 

Solution. (a) from (1) by multiplication by This is a quadratic equation in 
with solutions (rounded off to 3 decimals)

Thus Ans.
Can you obtain this from (6a)?

z ! %2np % 2.292i (n ! 0, 1, 2, Á ).e"y ! 9.899 or 0.101, eix ! 1, y ! %2.292, x ! 2np.

eiz ! e"y#ix ! 5 % 125 " 1 ! 9.899 and 0.101.

eiz,eiz.e2iz " 10eiz # 1 ! 0

sin z ! 0.cos z ! 0,cos z ! 5

!sinh y : +y : +,
ƒ sin x ƒ ' 1,ƒ cos x ƒ ' 1

p
cot ztan z2%,cos zsin z

cos (2 # 3i) ! cos 2 cosh 3 " i sin 2 sinh 3 ! "4.190 " 9.109i.
sin2 x # cos2 x ! 1,

ƒ cos z ƒ 2 ! (cos2 x) (1 # sinh2 y) # sin2 x sinh2 y.

cosh2 y ! 1 # sinh2 y

cosh y ! 1
2(ey # e"y),  sinh y ! 1

2(ey " e"y);

 ! 1
2(ey # e"y) cos x " 1

2i(ey " e"y) sin x.

 ! 1
2e"y(cos x # i sin x) # 1

2ey(cos x " i sin x)

 cos z ! 1
2(ei(x#iy) # e"i(x#iy))

ƒ sin z ƒ 2 ! sin2  x # sinh2 y

ƒ cos z ƒ 2 ! cos2  x # sinh2 y

sin z ! sin x cosh y # i cos x sinh y

cos z ! cos x cosh y " i sin x sinh y

for all z.eiz ! cos z # i sin z

(cos z)r ! "sin z,   (sin z)r ! cos z,   (tan z)r ! sec2 z,

(ez)r ! ez

634 CHAP. 13 Complex Numbers and Functions. Complex Differentiation
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(b) 
(c) 

Hence the only zeros of and are those of the real cosine and sine functions.

General formulas for the real trigonometric functions continue to hold for complex
values. This follows immediately from the definitions. We mention in particular the
addition rules

(9)

and the formula

(10)

Some further useful formulas are included in the problem set.

Hyperbolic Functions
The complex hyperbolic cosine and sine are defined by the formulas

(11)

This is suggested by the familiar definitions for a real variable [see (8)]. These functions
are entire, with derivatives

(12)

as in calculus. The other hyperbolic functions are defined by

(13)

Complex Trigonometric and Hyperbolic Functions Are Related. If in (11), we replace z
by iz and then use (1), we obtain

(14)

Similarly, if in (1) we replace z by iz and then use (11), we obtain conversely

(15)

Here we have another case of unrelated real functions that have related complex analogs,
pointing again to the advantage of working in complex in order to get both a more unified
formalism and a deeper understanding of special functions. This is one of the main reasons
for the importance of complex analysis to the engineer and physicist.

cos iz ! cosh z,   sin iz ! i sinh z.

cosh iz ! cos z,  sinh iz ! i sin z.

sech z !
1

cosh z
 ,  csch z !

1
sinh z

 .

tanh z !
sinh z
cosh z

 ,  coth z !
cosh z
sinh z

 ,

(cosh z)r ! sinh z,   (sinh z)r ! cosh z,

cosh z ! 1
2(ez # e"z),   sinh z ! 1

2(ez " e"z).

cos2 z # sin2 z ! 1.

 sin (z1 % z2) ! sin z1 cos z2 % sin z2 cos z1

 cos (z1 % z2) ! cos z1 cos z2 , sin z1 sin z2

!sin zcos z
sin x ! 0, sinh y ! 0 by (7b), Ans. z ! %np (n ! 0, 1, 2, Á ).
cos x ! 0, sinh y ! 0 by (7a), y ! 0. Ans. z ! %1

2(2n # 1)p (n ! 0, 1, 2, Á ).
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1–4 FORMULAS FOR HYPERBOLIC FUNCTIONS
Show that

1.

2.

3.
4. Entire Functions. Prove that , and

are entire.
5. Harmonic Functions. Verify by differentiation that

and are harmonic.

6–12 Function Values. Find, in the form 

6. 7.
8.
9.

10. sinh (3 # 4i), cosh (3 # 4i)
cosh ("1 # 2i), cos ("2 " i)
cos pi, cosh pi

cos i, sin isin 2pi

u # iv,

Re sin  zIm cos  z

sinh  z
cos  z, sin  z, cosh z

cosh2 z " sinh2 z ! 1, cosh2 z # sinh2 z ! cosh  2z

sinh (z1 # z2) ! sinh z1 cosh z2 # cosh z1 sinh z2.

cosh (z1 # z2) ! cosh z1 cosh z2 # sinh z1 sinh z2

sinh z ! sinh x cos y # i cosh x sin y.

cosh z ! cosh x cos y # i sinh x sin y

11.
12.

13–15 Equations and Inequalities. Using the defini-
tions, prove:

13. is even, and is odd,
.

14.
Conclude that the complex cosine and sine are not
bounded in the whole complex plane.

15.

16–19 Equations. Find all solutions.

16. 17.
18. 19.
20. . Show that

Im tan z !
sinh y cosh y

cos2 x # sinh2 y
 .

Re tan z !
sin x cos x

cos2 x # sinh2 y
 ,

Re tan z and Im tan z
sinh z ! 0cosh z ! "1
cosh z ! 0sin z ! 100

sin z1 cos z2 ! 1
2[sin (z1 # z2) # sin (z1 " z2)]

ƒ sinh y ƒ ' ƒ cos z ƒ ' cosh y, ƒ sinh y ƒ ' ƒ sin z ƒ ' cosh y.
sin ("z) ! "sin z

sin zcos ("z) ! cos z,cos z

cos 12p i, cos [1
2p(1 # i)]

sin pi, cos (1
2p " pi)

P R O B L E M  S E T  1 3 . 6

13.7 Logarithm. General Power. Principal Value
We finally introduce the complex logarithm, which is more complicated than the real
logarithm (which it includes as a special case) and historically puzzled mathematicians
for some time (so if you first get puzzled—which need not happen!—be patient and work
through this section with extra care).

The natural logarithm of is denoted by (sometimes also by log z) and
is defined as the inverse of the exponential function; that is, is defined for 
by the relation

(Note that is impossible, since for all w; see Sec. 13.5.) If we set 
and , this becomes

Now, from Sec. 13.5, we know that has the absolute value and the argument v.
These must be equal to the absolute value and argument on the right:

eu ! r,  v ! u.

eueu#iv

ew ! eu#iv ! reiu.

z ! reiu
w ! u # ivew $ 0z ! 0

ew ! z.

z $ 0w ! ln z
ln zz ! x # iy
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gives , where is the familiar real natural logarithm of the positive
number . Hence is given by

(1)

Now comes an important point (without analog in real calculus). Since the argument of
z is determined only up to integer multiples of the complex natural logarithm

is infinitely many-valued.
The value of ln z corresponding to the principal value Arg z (see Sec. 13.2) is denoted

by Ln z (Ln with capital L) and is called the principal value of ln z. Thus

(2)

The uniqueness of Arg z for given z ( ) implies that Ln z is single-valued, that is, a
function in the usual sense. Since the other values of arg z differ by integer multiples of 
the other values of ln z are given by

(3)

They all have the same real part, and their imaginary parts differ by integer multiples 
of 

If z is positive real, then , and Ln z becomes identical with the real natural
logarithm known from calculus. If z is negative real (so that the natural logarithm of
calculus is not defined!), then Arg and

(z negative real).

From (1) and for positive real r we obtain

(4a)

as expected, but since arg is multivalued, so is

(4b)

E X A M P L E  1 Natural Logarithm. Principal Value

! (Fig. 337) ! 1.609438 " 0.927295i % 2npi  

 Ln (3 " 4i) ! 1.609438 " 0.927295i ln (3 " 4i) ! ln 5 # i arg (3 " 4i)

 Ln ("4i) ! 1.386294 " pi>2 ln ("4i) ! 1.386294 " pi>2 % 2npi

 Ln 4i ! 1.386294 # pi>2 ln 4i ! 1.386294 # pi>2 % 2npi

 Ln i ! pi>2 ln i ! pi>2, "3p>2, 5pi>2, Á
 Ln ("4) ! 1.386294 # pi ln ("4) ! 1.386294 % (2n # 1)pi

 Ln ("1) ! pi ln ("1) ! %pi, %3pi, %5pi, Á
 Ln 4 ! 1.386294 ln 4 ! 1.386294 % 2npi

 Ln 1 ! 0 ln 1 ! 0, %2pi, %4pi, Á

n ! 0, 1, Á .ln (ez) ! z % 2npi,

(ez) ! y % 2np

eln z ! z

eln r ! r

Ln z ! ln ƒ z ƒ # pi

z ! p

Arg z ! 0
2p.

(n ! 1, 2, Á ).In z ! Ln z % 2npi

2p,
$ 0

(z $ 0).Ln z ! ln ƒ z ƒ # i Arg z

ln z (z & 0)
2p,

(r ! ƒ z ƒ ) 0, u ! arg z).ln z ! ln r # iu

w ! u # iv ! ln zr ! ƒ z ƒ
ln ru ! ln reu ! r

c13.qxd  10/30/10  2:14 PM  Page 637



638 CHAP. 13 Complex Numbers and Functions. Complex Differentiation

Fig. 337. Some values of ln (3 " 4i ) in Example 1

The familiar relations for the natural logarithm continue to hold for complex values, that is,

(5)

but these relations are to be understood in the sense that each value of one side is also
contained among the values of the other side; see the next example.

E X A M P L E  2 Illustration of the Functional Relation (5) in Complex

Let

If we take the principal values

then (5a) holds provided we write ; however, it is not true for the principal value, 

T H E O R E M  1 Analyticity of the Logarithm

For every formula (3) defines a function, which is analytic,
except at 0 and on the negative real axis, and has the derivative

(6) (z not 0 or negative real).

P R O O F We show that the Cauchy–Riemann equations are satisfied. From (1)–(3) we have

where the constant c is a multiple of . By differentiation,

uy !
y

x2 # y2
! "vx ! " 

1

1 # (y>x)2
 a" 

y

x2
b .

ux !
x

x2 # y2 ! vy !
1

1 # (y>x)2
# 1

x

2p

ln z ! ln r # i(u # c) !
1
2

 ln (x2 # y2) # i aarctan 
y
x

# cb

(ln z)r !
1
z

n ! 0, %1, %2, Á

!Ln (z1z2) ! Ln 1 ! 0.
ln (z1z2) ! ln 1 ! 2pi

Ln z1 ! Ln z2 ! pi,

z1 ! z2 ! epi ! "1.

(a) ln (z1z2) ! ln z1 # ln z2,  (b) ln (z1>z2) ! ln z1 " ln z2

v

u–0.9
0

–0.9 – 2

–0.9 + 2

–0.9 + 4

–0.9 + 6π

π

π

π

21
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Hence the Cauchy–Riemann equations hold. [Confirm this by using these equations in polar
form, which we did not use since we proved them only in the problems (to Sec. 13.4).]
Formula (4) in Sec. 13.4 now gives (6),

Each of the infinitely many functions in (3) is called a branch of the logarithm. The
negative real axis is known as a branch cut and is usually graphed as shown in Fig. 338.
The branch for is called the principal branch of ln z.

Fig. 338. Branch cut for ln z

General Powers
General powers of a complex number are defined by the formula

(7) (c complex, ).

Since ln z is infinitely many-valued, will, in general, be multivalued. The particular value

is called the principal value of 
If then is single-valued and identical with the usual nth power of z.

If , the situation is similar.
If , where , then

the exponent is determined up to multiples of and we obtain the n distinct values
of the nth root, in agreement with the result in Sec. 13.2. If , the quotient of two
positive integers, the situation is similar, and has only finitely many distinct values.
However, if c is real irrational or genuinely complex, then is infinitely many-valued.

E X A M P L E  3 General Power

All these values are real, and the principal value ( ) is 
Similarly, by direct calculation and multiplying out in the exponent,

! ! 2ep>4%2np 3sin (1
2 ln 2) # i cos (1

2 ln 2)4. (1 # i)2"i ! exp 3(2 " i) ln (1 # i)4 ! exp 3(2 " i) {ln 12 # 1
4pi % 2npi}4

e"p>2.n ! 0

i i ! ei ln i ! exp (i ln i) ! exp c i ap
2

 i % 2npib d ! e"(p>2),2np.

zc
zc

c ! p>q2pi>n (z $ 0),zc !  n1z ! e(1>n) ln z

n ! 2, 3, Ác ! 1>nc ! "1, "2, Á
znc ! n ! 1, 2, Á ,

zc.

zc ! ec Ln z

zc

z $ 0zc ! ec ln z

z ! x # iy

x

y

n ! 0

!(ln z)r ! ux # ivx !
x

x2 # y2 # i 
1

1 # (y>x)2  a" 

y

x2b !
x " iy

x2 # y2 !
1
z

 .

SEC. 13.7 Logarithm. General Power. Principal Value 639
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It is a convention that for real positive the expression means where ln x
is the elementary real natural logarithm (that is, the principal value Ln z ( ) in
the sense of our definition). Also, if , the base of the natural logarithm, is
conventionally regarded as the unique value obtained from (1) in Sec. 13.5.

From (7) we see that for any complex number a,

(8)

We have now introduced the complex functions needed in practical work, some of them
( ) entire (Sec. 13.5), some of them (
analytic except at certain points, and one of them (ln z) splitting up into infinitely many
functions, each analytic except at 0 and on the negative real axis.

For the inverse trigonometric and hyperbolic functions see the problem set.

tan z, cot z, tanh z, coth z)ez, cos z, sin z, cosh z, sinh z

az ! ez ln a.

zc ! ecz ! e
z ! x ) 0

ec ln xzcz ! x

640 CHAP. 13 Complex Numbers and Functions. Complex Differentiation

1–4 VERIFICATIONS IN THE TEXT
1. Verify the computations in Example 1.
2. Verify (5) for 
3. Prove analyticity of Ln z by means of the Cauchy–

Riemann equations in polar form (Sec. 13.4).
4. Prove (4a) and (4b).

COMPLEX NATURAL LOGARITHM ln z
5–11 Principal Value Ln z. Find Ln z when z equals
5. 6.
7. 8.
9. 10.

11.

12–16 All Values of ln z. Find all values and graph
some of them in the complex plane.

12. ln e 13. ln 1
14. 15.
16.
17. Show that the set of values of differs from the

set of values of 2 ln i.

18–21 Equations. Solve for z.

18. 19.
20. 21.

22–28 General Powers. Find the principal value.
Show details.

22. 23.
24. 25. ("3)3"i(1 " i)1#i

(1 # i)1"i(2i)2i

ln z ! 0.6 # 0.4iln z ! e " pi
ln z ! 4 " 3iln z ! "pi>2

ln (i2)
ln (4 # 3i)

ln (ei)ln ("7)

ei
"15 % 0.1i0.6 # 0.8i
1 % i4 " 4i
4 # 4i"11

z1 ! "i and z2 ! "1.

26. 27.

28.

29. How can you find the answer to Prob. 24 from the
answer to Prob. 23?

30. TEAM PROJECT. Inverse Trigonometric and
Hyperbolic Functions. By definition, the inverse sine

is the relation such that The
inverse is the relation such that

. The inverse tangent, inverse cotangent,
inverse hyperbolic sine, etc., are defined and denoted
in a similar fashion. (Note that all these relations are
multivalued.) Using and
similar representations of cos w, etc., show that

(a)

(b)

(c)

(d)

(e)

(f)

(g) Show that is infinitely many-valued,
and if is one of these values, the others are of the 
form and 
(The principal value of is defined
to be the value for which if 
and )"p>2 & u & p>2 if v & 0.

v ( 0"p>2 ' u ' p>2w ! u # iv ! arcsin z
p " w1 % 2np, n ! 0, 1, Á .w1 % 2np

w1

w ! arcsin z

arctanh z !
1
2

 ln 
1 # z

1 " z

arctan z !
i
2

 ln 
i # z

i " z

arcsinh z ! ln (z # 2z2 # 1)

arccosh z ! ln (z # 2z2 " 1)

arcsin z ! "i ln (iz # 21 " z2)

arccos z ! "i ln (z # 2z2 " 1)

sin w ! (eiw " e"iw)>(2i)

cos w ! z
cosine w ! arccos z

sin w ! z.w ! arcsin z

(3 # 4i)1>3 ("1)2"i(i)i>2
P R O B L E M  S E T  1 3 . 7
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Summary of Chapter 13 641

1. Divide by Check the result by
multiplication.

2. What happens to a quotient if you take the complex
conjugates of the two numbers? If you take the absolute
values of the numbers?

3. Write the two numbers in Prob. 1 in polar form. Find
the principal values of their arguments.

4. State the definition of the derivative from memory.
Explain the big difference from that in calculus.

5. What is an analytic function of a complex variable?
6. Can a function be differentiable at a point without being

analytic there? If yes, give an example.
7. State the Cauchy–Riemann equations. Why are they of

basic importance?
8. Discuss how are related.
9. ln z is more complicated than ln x. Explain. Give

examples.
10. How are general powers defined? Give an example.

Convert it to the form 

11–16 Complex Numbers. Find, in the form ,
showing details,

11. 12.
13. 14. 2i1>(4 # 3i)

(1 " i)10(2 # 3i)2

x # iy

x # iy.

ez, cos z, sin z, cosh z, sinh z

"3 # 7i.15 # 23i 15. 16.

17–20 Polar Form. Represent in polar form, with the
principal argument.

17. 18.
19. 20.
21–24 Roots. Find and graph all values of:

21. 22.
23. 24.

25–30 Analytic Functions. Find 
with u or v as given. Check by the Cauchy–Riemann equations
for analyticity.

25 26.
27. 28.
29.
30.

31–35 Special Function Values. Find the value of:

31. 32.
33.
34.
35. cosh (p # pi)

sinh (1 # pi), sin (1 # pi)
tan i

Ln (0.6 # 0.8i)cos (3 " i)

v ! cos 2x sinh 2y
u ! exp("(x2 " y2)>2) cos xy

u ! cos 3x cosh 3yv ! "e"2x sin 2y
v ! y>(x2 # y2)u ! xy

f (z) ! u(x, y) # iv(x, y)

23 124 "1
2"32i181

0.6 # 0.8i"15i
12 # i, 12 " i"4 " 4i

epi>2, e"pi>2(1 # i)>(1 " i)

C H A P T E R  1 3  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S

For arithmetic operations with complex numbers

(1) ,

, and for their representation in the complex
plane, see Secs. 13.1 and 13.2.

A complex function is analytic in a domain D if it has
a derivative (Sec. 13.3)

(2)

everywhere in D. Also, f(z) is analytic at a point if it has a derivative in a
neighborhood of (not merely at itself).z0z0

z ! z0

f r(z) ! lim
¢z:0

 
f (z # ¢z) " f (z)

¢z

f (z) ! u(x, y) # iv(x, y)

r ! ƒ z ƒ ! 2x2 # y2, u ! arctan (y>x)

z ! x # iy ! reiu ! r (cos u # i sin u)

SUMMARY OF CHAPTER 13
Complex Numbers and Functions. Complex Differentiation
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642 CHAP. 13 Complex Numbers and Functions. Complex Differentiation

If is analytic in D, then and v(x, y) satisfy the (very important!)
Cauchy–Riemann equations (Sec. 13.4)

(3)

everywhere in D. Then u and v also satisfy Laplace’s equation

(4)

everywhere in D. If u(x, y) and v(x, y) are continuous and have continuous partial
derivatives in D that satisfy (3) in D, then is analytic in
D. See Sec. 13.4. (More on Laplace’s equation and complex analysis follows in
Chap. 18.)

The complex exponential function (Sec. 13.5)

(5)

reduces to if . It is periodic with and has the derivative .
The trigonometric functions are (Sec. 13.6)

(6)

and, furthermore,

etc.

The hyperbolic functions are (Sec. 13.6)

(7)

etc. The functions (5)–(7) are entire, that is, analytic everywhere in the complex
plane.

The natural logarithm is (Sec. 13.7)

(8)

where and . Arg z is the principal value of arg z, that is,
. We see that ln z is infinitely many-valued. Taking gives

the principal value Ln z of ln z; thus 
General powers are defined by (Sec. 13.7)

(9) (c complex, ). z $ 0zc ! ec ln z

Ln z ! ln ƒ z ƒ # i Arg z.
n ! 0"p & Arg z ' p

n ! 0, 1, Áz $ 0

ln z ! ln ƒ z ƒ # i arg z ! ln ƒ z ƒ # i Arg z % 2npi

cosh z ! 1
2(ez # e"z) ! cos iz,  sinh z ! 1

2(ez " e"z) ! "i sin iz

tan z ! (sin z)>cos z,  cot z ! 1>tan z,

sin z !
1
2i

 (eiz " e"iz) ! sin x cosh y # i cos x sinh y

cos z ! 1
2 

(eiz # e"iz) ! cos x cosh y " i sin x sinh y

ez2piz ! x (y ! 0)ex

ez ! exp z ! ex (cos y # i sin y)

f (z) ! u(x, y) # iv(x, y)

uxx # uyy ! 0,  vxx # vyy ! 0

0u
0x

!
0v
0y

 ,  0u
0y

! " 
0v
0x

u(x, y)f (z)
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643

C H A P T E R 1 4

Complex Integration

Chapter 13 laid the groundwork for the study of complex analysis, covered complex num-
bers in the complex plane, limits, and differentiation, and introduced the most important
concept of analyticity. A complex function is analytic in some domain if it is differentiable
in that domain. Complex analysis deals with such functions and their applications. The
Cauchy–Riemann equations, in Sec. 13.4, were the heart of Chapter 13 and allowed a means
of checking whether a function is indeed analytic. In that section, we also saw that analytic
functions satisfy Laplace’s equation, the most important PDE in physics.

We now consider the next part of complex calculus, that is, we shall discuss the first
approach to complex integration. It centers around the very important Cauchy integral
theorem (also called the Cauchy–Goursat theorem) in Sec. 14.2. This theorem is important
because it allows, through its implied Cauchy integral formula of Sec. 14.3, the evaluation
of integrals having an analytic integrand. Furthermore, the Cauchy integral formula shows
the surprising result that analytic functions have derivatives of all orders. Hence, in this
respect, complex analytic functions behave much more simply than real-valued functions
of real variables, which may have derivatives only up to a certain order.

Complex integration is attractive for several reasons. Some basic properties of analytic
functions are difficult to prove by other methods. This includes the existence of derivatives
of all orders just discussed. A main practical reason for the importance of integration in
the complex plane is that such integration can evaluate certain real integrals that appear
in applications and that are not accessible by real integral calculus.

Finally, complex integration is used in connection with special functions, such as
gamma functions (consult [GenRef1]), the error function, and various polynomials (see
[GenRef10]). These functions are applied to problems in physics.

The second approach to complex integration is integration by residues, which we shall
cover in Chapter 16.

Prerequisite: Chap. 13. 
Section that may be omitted in a shorter course: 14.1, 14.5.
References and Answers to Problems: App. 1 Part D, App. 2.

14.1 Line Integral in the Complex Plane
As in calculus, in complex analysis we distinguish between definite integrals and indefinite
integrals or antiderivatives. Here an indefinite integral is a function whose derivative
equals a given analytic function in a region. By inverting known differentiation formulas
we may find many types of indefinite integrals.

Complex definite integrals are called (complex) line integrals. They are written

!
C

 f (z) dz.
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Here the integrand is integrated over a given curve C or a portion of it (an arc, but
we shall say “curve” in either case, for simplicity). This curve C in the complex plane is
called the path of integration. We may represent C by a parametric representation

(1)

The sense of increasing t is called the positive sense on C, and we say that C is oriented
by (1).

For instance, gives a portion (a segment) of the line 
The function represents the circle , and so
on. More examples follow below.

We assume C to be a smooth curve, that is, C has a continuous and nonzero derivative

at each point. Geometrically this means that C has everywhere a continuously turning
tangent, as follows directly from the definition

(Fig. 339).

Here we use a dot since a prime denotes the derivative with respect to z.

Definition of the Complex Line Integral
This is similar to the method in calculus. Let C be a smooth curve in the complex plane
given by (1), and let be a continuous function given (at least) at each point of C. We
now subdivide (we “partition”) the interval in (1) by points

where . To this subdivision there corresponds a subdivision of C by
points

(Fig. 340),z0, z1, Á , zn!1, zn (! Z )

t0 " t1 " Á " tn

t0 (! a), t1, Á , tn!1, tn (! b)

a # t # b
f (z)

r

z
#
(t) ! lim

¢t:0
 
z(t $ ¢t) % z(t)

¢t

z
#
(t) !

dz
dt

! x
#
(t) $ iy

#
(t)

ƒ z ƒ ! 4z(t) ! 4 cos t $ 4i sin t (%p # t # p)
y ! 3x.z(t) ! t $ 3it (0 # t # 2)

(a # t # b).z(t) ! x(t) ! iy(t)

f (z)

644 CHAP. 14 Complex Integration

z(t + ∆t) – z(t)  

z(t + ∆t)
z(t)

z(t)

0

Z

. . .

z0

z1

z2

zm – 1
m zm

ζ
. ..|∆zm|

Fig. 339. Tangent vector z.(t) of a curve C in the
complex plane given by z(t). The arrowhead on the 

curve indicates the positive sense (sense of increasing t)

Fig. 340. Complex line integral
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where . On each portion of subdivision of C we choose an arbitrary point, say,
a point between and (that is, where t satisfies ), a point 
between and etc. Then we form the sum

(2) where

We do this for each in a completely independent manner, but so that the
greatest approaches zero as This implies that the greatest

also approaches zero. Indeed, it cannot exceed the length of the arc of C from
to and the latter goes to zero since the arc length of the smooth curve C is a

continuous function of t. The limit of the sequence of complex numbers thus
obtained is called the line integral (or simply the integral) of over the path of
integration C with the orientation given by (1). This line integral is denoted by

(3) or by

if C is a closed path (one whose terminal point Z coincides with its initial point , as
for a circle or for a curve shaped like an 8).

General Assumption. All paths of integration for complex line integrals are assumed to
be piecewise smooth, that is, they consist of finitely many smooth curves joined end to end.

Basic Properties Directly Implied by the Definition
1. Linearity. Integration is a linear operation, that is, we can integrate sums term by

term and can take out constant factors from under the integral sign. This means that
if the integrals of and over a path C exist, so does the integral of 
over the same path and

(4)

2. Sense reversal in integrating over the same path, from to Z (left) and from Z to
(right), introduces a minus sign as shown,

(5)

3. Partitioning of path (see Fig. 341)

(6) !
C

 
f (z) dz ! !

C1

f (z) dz $ !
C2

f (z) dz.

!
Z

z0

f (z) dz ! %!
z0

Z

f (z) dz.

z0

z0

!
C

[k1 f1(z) $ k2 f2(z)] dz ! k1!
C

 f1(z) dz $ k2!
C

 f2(z) dz.

k1 f1 $ k2 f2f2f1

z0

"
C

 f (z) dz!
C

 f (z) dz,

f (z)
S2, S3, Á

zmzm!1

ƒ ¢zm ƒ
n : &.ƒ ¢tm ƒ ! ƒ tm % tm!1 ƒ

n ! 2, 3, Á

¢zm ! zm % zm!1.Sn ! a
n

m!1

 f (zm) ¢zm

z2,z1

z2t0 # t # t1z1 ! z(t)z1z0z1

z j ! z(tj)

SEC. 14.1 Line Integral in the Complex Plane 645

C1

z0

C2 Z

Fig. 341. Partitioning of path [formula (6)]
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Existence of the Complex Line Integral
Our assumptions that is continuous and C is piecewise smooth imply the existence
of the line integral (3). This can be seen as follows.

As in the preceding chapter let us write We also set

and

Then (2) may be written

(7)

where and we sum over m from 1 to n. Performing the
multiplication, we may now split up into four sums:

[ ] .

These sums are real. Since f is continuous, u and v are continuous. Hence, if we let n
approach infinity in the aforementioned way, then the greatest and will approach
zero and each sum on the right becomes a real line integral:

(8)

This shows that under our assumptions on f and C the line integral (3) exists and its value
is independent of the choice of subdivisions and intermediate points 

First Evaluation Method: 
Indefinite Integration and Substitution of Limits
This method is the analog of the evaluation of definite integrals in calculus by the well-
known formula

where 
It is simpler than the next method, but it is suitable for analytic functions only. To

formulate it, we need the following concept of general interest.
A domain D is called simply connected if every simple closed curve (closed curve

without self-intersections) encloses only points of D.
For instance, a circular disk is simply connected, whereas an annulus (Sec. 13.3) is not

simply connected. (Explain!)

[Fr(x) ! f (x)].

!
b

a

f (x) dx ! F(b) % F(a)

!zm.

 ! !
C

u dx % !
C

v dy $ i c !
C

u dy $ !
C

v dx d  .
 lim
n:&  

Sn ! !
C

 f (z) dz

¢ym¢xm

au ¢ym $ a  v ¢xmSn ! a  u ¢xm % a  v ¢ym $ i

Sn

u ! u(zm, hm), v ! v(zm, hm)

Sn ! a (u $ iv)(¢xm $ i¢ym)

¢zm ! ¢xm $ i¢ym.zm ! !m $ ihm

f (z) ! u(x, y) $ iv(x, y).

f (z)

646 CHAP. 14 Complex Integration
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T H E O R E M  1 Indefinite Integration of Analytic Functions

Let be analytic in a simply connected domain D. Then there exists an indefinite
integral of in the domain D, that is, an analytic function such that

in D, and for all paths in D joining two points and in D we have

(9)

(Note that we can write and instead of C, since we get the same value for all
those C from to .)

This theorem will be proved in the next section.
Simple connectedness is quite essential in Theorem 1, as we shall see in Example 5.
Since analytic functions are our main concern, and since differentiation formulas will often

help in finding for a given the present method is of great practical interest.
If is entire (Sec. 13.5), we can take for D the complex plane (which is certainly

simply connected).

E X A M P L E  1

E X A M P L E  2

E X A M P L E  3

since is periodic with period 

E X A M P L E  4 . Here D is the complex plane without 0 and the negative real

axis (where Ln z is not analytic). Obviously, D is a simply connected domain.

Second Evaluation Method: 
Use of a Representation of a Path
This method is not restricted to analytic functions but applies to any continuous complex
function.

T H E O R E M  2 Integration by the Use of the Path

Let C be a piecewise smooth path, represented by , where . Let
be a continuous function on C. Then

(10) az# !
dz
dt
b .!

C

 f (z) dz ! !
b

a

f [z(t)]z
#
(t) dt

f (z)
a # t # bz ! z(t)

!

!
i

!i

 
dz
z ! Ln i % Ln (%i) !

ip

2
% a% 

ip

2
b ! ip

!2pi.ez

!
8!3pi

8$pi
 e

z>2 dz ! 2ez>2 ` 8!3pi

8$pi
! 2(e4–3pi>2 % e4$pi>2) ! 0

!!
pi

!pi

 cos z dz ! sin z ` pi

!pi
! 2 sin pi ! 2i sinh p ! 23.097i

!!
1$i

0

z2 dz !
1

3
 z3 ` 1$i

0
!

1

3
 (1 $ i)3 ! % 

2

3
$

2

3
 i

f (z)
f (z) ! Fr(z),F(z)

z1z0

z1z0

[Fr(z) ! f (z)].!
z1

z0

 f (z) dz ! F(z1) % F(z0)

z1z0Fr(z) ! f (z)
F(z)f (z)

f (z)

SEC. 14.1 Line Integral in the Complex Plane 647
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P R O O F The left side of (10) is given by (8) in terms of real line integrals, and we show that
the right side of (10) also equals (8). We have , hence . We simply
write u for and v for . We also have and .
Consequently, in (10)

COMMENT. In (7) and (8) of the existence proof of the complex line integral we referred
to real line integrals. If one wants to avoid this, one can take (10) as a definition of the
complex line integral.

Steps in Applying Theorem 2
(A) Represent the path C in the form 

(B) Calculate the derivative 

(C) Substitute for every z in (hence for x and for y).

(D) Integrate over t from a to b.

E X A M P L E  5 A Basic Result: Integral of 1/z Around the Unit Circle

We show that by integrating counterclockwise around the unit circle (the circle of radius 1 and center 0;
see Sec. 13.3) we obtain

(11) (C the unit circle, counterclockwise).

This is a very important result that we shall need quite often.

Solution. (A) We may represent the unit circle C in Fig. 330 of Sec. 13.3 by

so that counterclockwise integration corresponds to an increase of t from 0 to 

(B) Differentiation gives (chain rule!).

(C) By substitution, 

(D) From (10) we thus obtain the result

Check this result by using 
Simple connectedness is essential in Theorem 1. Equation (9) in Theorem 1 gives 0 for any closed path

because then so that . Now is not analytic at . But any simply connected
domain containing the unit circle must contain so that Theorem 1 does not apply—it is not enough that

is analytic in an annulus, say, , because an annulus is not simply connected! !1
2 " ƒ z ƒ " 3

21>z z ! 0,
z ! 01>zF(z1) % F(z0) ! 0z1 ! z0,

z(t) ! cos t $ i sin t.

"
C

 
dz
z ! !

2p

0

 e!itieit dt ! i!
2p

0

 dt ! 2pi.

f (z(t)) ! 1>z(t) ! e!it.

z
#
(t) ! ieit

2p.

(0 # t # 2p),z(t) ! cos t $ i sin t ! eit

"
C
 
dz
z ! 2pi

1>z
f [z(t)]z

#
(t)

y(t)x(t)f (z)z(t)

z
#
(t) ! dz>dt.

z(t) (a # t # b).

! ! !
C

(u dx % v dy) $ i!
C

(u dy $ v dx).

 ! !
C

[u dx % v dy $ i (u dy $ v dx)]

 !
b

a

 f [z(t)]z
#
 (t) dt ! !

b

a

(u $ iv)(x
#
$ iy

#
) dt

dy ! y
#
 dtdx ! x

#
 dtv[x(t), y(t)]u[x(t), y(t)]

z
#

! x
#
$ iy

#
z ! x $ iy
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E X A M P L E  6 Integral of 1/z m with Integer Power m

Let where m is the integer and a constant. Integrate counterclockwise around the circle C
of radius with center at (Fig. 342).z0r

z0f (z) ! (z % z0)m

SEC. 14.1 Line Integral in the Complex Plane 649

y

x

ρ

z0

C

Fig. 342. Path in Example 6

Solution. We may represent C in the form

Then we have

and obtain

By the Euler formula (5) in Sec. 13.6 the right side equals

If , we have . We thus obtain . For integer each of the two
integrals is zero because we integrate over an interval of length , equal to a period of sine and cosine. Hence
the result is

(12)

Dependence on path. Now comes a very important fact. If we integrate a given function
from a point to a point along different paths, the integrals will in general have

different values. In other words, a complex line integral depends not only on the endpoints
of the path but in general also on the path itself. The next example gives a first impression
of this, and a systematic discussion follows in the next section.

E X A M P L E  7 Integral of a Nonanalytic Function. Dependence on Path

Integrate from 0 to (a) along in Fig. 343, (b) along C consisting of and 

Solution. (a) can be represented by . Hence and 
on . We now calculate

!
C*

Re z dz ! !
1

0

t(1 $ 2i) dt !
1

2
 (1 $ 2i) !

1

2
$ i.

C*x(t) ! t
f [z(t)] !z

#
(t) ! 1 $ 2iz(t) ! t $ 2it (0 # t # 1)C*

C2.C1C*1 $ 2if (z) ! Re z ! x

z1z0f (z)

!"
C

 (z % z0)m dz ! b 

2pi  (m ! %1),

 0  (m ' %1 and integer).

2p
m ' %12pirm$1 ! 1, cos 0 ! 1, sin 0 ! 0m ! %1

irm$1 c !2p

0

cos (m $ 1)t dt $ i!
2p

0

 sin (m $ 1)t dt d  .

"
C

 (z % z0)m dz ! !
2p

0

 rmeimt ireit dt ! irm$1!
2p

0

 ei(m$1)t dt.

(z % z0)m ! rmeimt,  dz ! ireit dt

(0 # t # 2p).z(t) ! z0 $ r(cos t $ i sin t) ! z0 $ reit
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(b) We now have

Using (6) we calculate

Note that this result differs from the result in (a).

Bounds for Integrals. ML-Inequality
There will be a frequent need for estimating the absolute value of complex line integrals.
The basic formula is

(13) (ML-inequality);

L is the length of C and M a constant such that everywhere on C.

P R O O F Taking the absolute value in (2) and applying the generalized inequality in Sec. 13.2,
we obtain

Now is the length of the chord whose endpoints are and (see Fig. 340).
Hence the sum on the right represents the length of the broken line of chords whose
endpoints are . If n approaches infinity in such a way that the greatest

and thus approach zero, then approaches the length L of the curve C, by
the definition of the length of a curve. From this the inequality (13) follows.

We cannot see from (13) how close to the bound ML the actual absolute value of the
integral is, but this will be no handicap in applying (13). For the time being we explain
the practical use of (13) by a simple example.

!
L*ƒ ¢zm ƒƒ ¢tm ƒ

z0, z1, Á , zn (! Z )
L*

zmzm!1ƒ ¢zm ƒ

ƒ Sn ƒ ! 2 an
m!1

 f (zm) ¢zm 2 # a
n

m!1

ƒ  f (zm) ƒ ƒ ¢zm ƒ # Ma
n

m!1

ƒ ¢zm ƒ .

(6*)

ƒ  f (z) ƒ # M

2 !
C

 
f (z) dz 2 # ML

!

!
C

Re z dz ! !
C1

Re z dz $ !
C2

Re z dz ! !
1

0

t dt $ !
2

0

1 # i dt !
1

2
$ 2i.

C1: z(t) ! t,  z
#
(t) ! 1, f (z(t)) ! x(t) ! t (0 # t # 1)

C2: z(t) ! 1 $ it,  z
#
(t) ! i, f (z(t)) ! x(t) ! 1 (0 # t # 2).
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C*
C2

C1

1

z = 1 + 2i2

x

y

Fig. 343. Paths in Example 7
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1–10 FIND THE PATH and sketch it.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

11–20 FIND A PARAMETRIC REPRESENTATION
and sketch the path.
11. Segment from to 
12. From to along the axes
13. Upper half of from to 
14. Unit circle, clockwise
15. , the branch through 
16. Ellipse counterclockwise
17. clockwise
18. from to 
19. Parabola 
20.

21–30 INTEGRATION
Integrate by the first method or state why it does not apply
and use the second method. Show the details.

21. , C the shortest path from to 3 $ 3i1 $ i!
C

 Re z dz

4(x % 2)2 $ 5( y $ 1)2 ! 20
y ! 1 % 1

4 
x2 (%2 # x # 2)

(5, 15)(1, 1)y ! 1>xƒ z $ a $ ib ƒ ! r,
4x2 $ 9y2 ! 36,

(2, 0)x2 % 4y2 ! 4

(0, %1)(4, %1)ƒ z % 2 $ i ƒ ! 2
(2, 1)(0, 0)

(1, 3)(%1, 1)

z(t) ! 2 cos t $ i sin t (0 # t # 2p)
z(t) ! t $ it 3 (%2 # t # 2)
z(t) ! 5e!it (0 # t # p>2)
z(t) ! 2 $ 4epit>2 (0 # t # 2)
z(t) ! 1 $ i $ e!pit (0 # t # 2)
z(t) ! 3 % i $ 110e!it (0 # t # 2p)
z(t) ! t $ (1 % t)2i (%1 # t # 1)
z(t) ! t $ 2it 2 (1 # t # 2)
z(t) ! 3 $ i $ (1 % i)t (0 # t # 3)
z(t) ! (1 $ 1

2 
i)t (2 # t # 5)

22. C the parabola from

to 

23. , C the shortest path from to 

24. , C the semicircle from

to 

25. C from 1 along the axes to i

26. , C the unit circle, counterclockwise

27. any path from to 

28. C the circle 

clockwise

29. counterclockwise around the triangle with

vertices 0, 1, i

30. clockwise around the boundary of the square

with vertices 
31. CAS PROJECT. Integration. Write programs for the

two integration methods. Apply them to problems of
your choice. Could you make them into a joint program
that also decides which of the two methods to use in a
given case?

0, i, 1 $ i, 1

!
C

 Re z2 dz

!
C

 Im z2 dz

ƒ z % 2i ƒ ! 4,!
C

 a 5
z % 2i

%
6

(z % 2i)2b dz,

pi>4p>4!
C

 sec2 z dz,

!
C

 (z $ z!1) dz

!
C

 z exp (z2) dz,

pi%pi

ƒ z ƒ ! p, x ( 0!
C

 cos 2z dz

2pipi!
C

 ez dz

3 $ 3i1 $ i

y ! 1 $ 1
2 

(x % 1)2!
C

Re z dz,

P R O B L E M  S E T  1 4 . 1

E X A M P L E  8 Estimation of an Integral

Find an upper bound for the absolute value of the integral

C the straight-line segment from 0 to , Fig. 344.

Solution. and on C gives by (13)

The absolute value of the integral is (see Example 1).

Summary on Integration. Line integrals of can always be evaluated by (10), using
a representation (1) of the path of integration. If is analytic, indefinite integration by
(9) as in calculus will be simpler (proof in the next section).

f (z)
f (z)

!ƒ % 
2
3 $ 2

3  
i ƒ ! 2

3 12 ! 0.9428

2 !
C

z2 dz 2 # 212 ! 2.8284.

ƒ  f (z) ƒ ! ƒ z2 ƒ # 2L ! 12

1 $ i!
C

z2 dz,

1  

1  

C

Fig. 344. Path in
Example 8
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32. Sense reversal. Verify (5) for where C is
the segment from to 

33. Path partitioning. Verify (6) for and 
and the upper and lower halves of the unit circle.

34. TEAM EXPERIMENT. Integration. (a) Comparison.
First write a short report comparing the essential points
of the two integration methods.

(b) Comparison. Evaluate by Theorem 1

and check the result by Theorem 2, where:

(i) and C is the semicircle from
to 2i in the right half-plane,%2i

ƒ z ƒ ! 2f (z) ! z4

!
C

 f (z) dz

C2

C1f (z) ! 1>z1 $ i.%1 % i
f (z) ! z2,

652 CHAP. 14 Complex Integration

(ii) and C is the shortest path from 0 to

(c) Continuous deformation of path. Experiment
with a family of paths with common endpoints, say,

, with real parameter a.
Integrate nonanalytic functions , etc.) and
explore how the result depends on a. Then take analytic
functions of your choice. (Show the details of your
work.) Compare and comment.
(d) Continuous deformation of path. Choose another
family, for example, semi-ellipses 

and experiment as in (c).
35. ML-inequality. Find an upper bound of the absolute

value of the integral in Prob. 21.

i sin t, %p>2 # t # p>2,
z(t) ! a cos t $

(Re z, Re (z2)
z(t) ! t $ ia sin t, 0 # t # p

1 $ 2i.
f (z) ! e2z

14.2 Cauchy’s Integral Theorem
This section is the focal point of the chapter. We have just seen in Sec. 14.1 that a line
integral of a function generally depends not merely on the endpoints of the path, but
also on the choice of the path itself. This dependence often complicates situations. Hence
conditions under which this does not occur are of considerable importance. Namely, if

is analytic in a domain D and D is simply connected (see Sec. 14.1 and also below),
then the integral will not depend on the choice of a path between given points. This result
(Theorem 2) follows from Cauchy’s integral theorem, along with other basic consequences
that make Cauchy’s integral theorem the most important theorem in this chapter and
fundamental throughout complex analysis.

Let us continue our discussion of simple connectedness which we started in Sec. 14.1.

1. A simple closed path is a closed path (defined in Sec. 14.1) that does not intersect
or touch itself as shown in Fig. 345. For example, a circle is simple, but a curve
shaped like an 8 is not simple.

f (z)

f (z)

Simple Simple Not simple Not simple

Fig. 345. Closed paths

2. A simply connected domain D in the complex plane is a domain (Sec. 13.3) such
that every simple closed path in D encloses only points of D. Examples: The interior
of a circle (“open disk”), ellipse, or any simple closed curve. A domain that is not
simply connected is called multiply connected. Examples: An annulus (Sec. 13.3),
a disk without the center, for example, . See also Fig. 346.

More precisely, a bounded domain D (that is, a domain that lies entirely in some
circle about the origin) is called p-fold connected if its boundary consists of p closed

0 " ƒ z ƒ " 1
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connected sets without common points. These sets can be curves, segments, or single
points (such as for , for which ). Thus, D has “holes,”
where “hole” may also mean a segment or even a single point. Hence an annulus
is doubly connected 

T H E O R E M  1 Cauchy’s Integral Theorem

If is analytic in a simply connected domain D, then for every simple closed path
C in D,

(1) See Fig. 347."
C

 f (z) dz ! 0.

f (z)

( p ! 2).

p % 1p ! 20 " ƒ z ƒ " 1z ! 0

SEC. 14.2 Cauchy’s Integral Theorem 653

Simply
connected

Simply
connected

Doubly
connected

Triply
connected

Fig. 346. Simply and multiply connected domains

CD

Fig. 347. Cauchy’s integral theorem

Before we prove the theorem, let us consider some examples in order to really understand
what is going on. A simple closed path is sometimes called a contour and an integral over
such a path a contour integral. Thus, (1) and our examples involve contour integrals.

E X A M P L E  1 Entire Functions

for any closed path, since these functions are entire (analytic for all z).

E X A M P L E  2 Points Outside the Contour Where f (x) is Not Analytic

where C is the unit circle, is not analytic at but all these points lie
outside C; none lies on C or inside C. Similarly for the second integral, whose integrand is not analytic at

outside C. !z ! )2i

z ! )p>2, )3p>2, Á ,sec z ! 1>cos z

"
C
 sec z dz ! 0,  "

C
  

dz

z2 $ 4
! 0

!

"
C
 ez dz ! 0,  "

C
 cos z dz ! 0,  "

C
 zn dz ! 0  (n ! 0, 1, Á )
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E X A M P L E  3 Nonanalytic Function

where C: is the unit circle. This does not contradict Cauchy’s theorem because is not
analytic.

E X A M P L E  4 Analyticity Sufficient, Not Necessary

where C is the unit circle. This result does not follow from Cauchy’s theorem, because is not analytic
at . Hence the condition that f be analytic in D is sufficient rather than necessary for (1) to be true.

E X A M P L E  5 Simple Connectedness Essential

for counterclockwise integration around the unit circle (see Sec. 14.1). C lies in the annulus where
is analytic, but this domain is not simply connected, so that Cauchy’s theorem cannot be applied. Hence the

condition that the domain D be simply connected is essential.
In other words, by Cauchy’s theorem, if is analytic on a simple closed path C and everywhere inside C,

with no exception, not even a single point, then (1) holds. The point that causes trouble here is where 
is not analytic.

P R O O F Cauchy proved his integral theorem under the additional assumption that the derivative
is continuous (which is true, but would need an extra proof). His proof proceeds as

follows. From (8) in Sec. 14.1 we have

Since is analytic in D, its derivative exists in D. Since is assumed to be
continuous, (4) and (5) in Sec. 13.4 imply that u and v have continuous partial derivatives
in D. Hence Green’s theorem (Sec. 10.4) (with u and instead of and ) is applicable
and gives

where R is the region bounded by C. The second Cauchy–Riemann equation (Sec. 13.4)
shows that the integrand on the right is identically zero. Hence the integral on the left is
zero. In the same fashion it follows by the use of the first Cauchy–Riemann equation that
the last integral in the above formula is zero. This completes Cauchy’s proof.

Goursat’s proof without the condition that is continuous1 is much more complicated.
We leave it optional and include it in App. 4.

f r(z)

!

"
C

 (u dx % v dy) ! !
R
!  a% 

0v
0x

%
0u
0y

 b dx dy

F2F1%v

f r(z)f r(z)f (z)

"
C

 f (z) dz ! "
C

 (u dx % v dy) $ i "
C

 (u dy $ v dx).

f r(z)

!
1>zz ! 0

f (z)

1>z 1
2 " ƒ z ƒ " 3

2

"
C
  

dz
z ! 2pi

!z ! 0
f (z) ! 1>z2

"
C
  

dz

z2
! 0

!
f (z) ! zz(t) ! eit

"
C
 z dz ! !

2p

0

 e!itieit dt ! 2pi
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1ÉDOUARD GOURSAT (1858–1936), French mathematician who made important contributions to complex
analysis and PDEs. Cauchy published the theorem in 1825. The removal of that condition by Goursat (see Transactions
Amer. Math Soc., vol. 1, 1900) is quite important because, for instance, derivatives of analytic functions are also
analytic. Because of this, Cauchy’s integral theorem is also called Cauchy–Goursat theorem.
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Independence of Path
We know from the preceding section that the value of a line integral of a given function

from a point to a point will in general depend on the path C over which we
integrate, not merely on and . It is important to characterize situations in which this
difficulty of path dependence does not occur. This task suggests the following concept.
We call an integral of independent of path in a domain D if for every in D
its value depends (besides on , of course) only on the initial point and the terminal
point , but not on the choice of the path C in D [so that every path in D from to 
gives the same value of the integral of 

T H E O R E M  2 Independence of Path

If is analytic in a simply connected domain D, then the integral of is
independent of path in D.

P R O O F Let and be any points in D. Consider two paths and in D from to without
further common points, as in Fig. 348. Denote by the path with the orientation
reversed (Fig. 349). Integrate from over to and over back to . This is a
simple closed path, and Cauchy’s theorem applies under our assumptions of the present
theorem and gives zero:

thus

But the minus sign on the right disappears if we integrate in the reverse direction, from
to , which shows that the integrals of over and are equal,

(2) (Fig. 348).

This proves the theorem for paths that have only the endpoints in common. For paths that
have finitely many further common points, apply the present argument to each “loop”
(portions of and between consecutive common points; four loops in Fig. 350). For
paths with infinitely many common points we would need additional argumentation not
to be presented here.

Fig. 348. Formula (2) Fig. 349. Formula (2*) Fig. 350. Paths with more 
common points

C1

C2

z2

z1

C1

C2
*

z2

z1

C1

C2

z2

z1

C2C1

!
C1

 f (z) dz ! !
C2

 f (z) dz

C2C1f (z)z2z1

!
C1

 f dz ! %!
C2*

 f dz.!
C1

 f dz $ !
C2*

 f dz ! 0,(2r)

z1C2*z2C1z1

C2C2*
z2z1C2C1z2z1

f (z)f (z)

f (z)].
z2z1z2

z1f (z)
z1, z2f (z)

z2z1

z2z1f (z)
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Principle of Deformation of Path
This idea is related to path independence. We may imagine that the path in (2) was
obtained from by continuously moving (with ends fixed!) until it coincides with

. Figure 351 shows two of the infinitely many intermediate paths for which the integral
always retains its value (because of Theorem 2). Hence we may impose a continuous
deformation of the path of an integral, keeping the ends fixed. As long as our deforming
path always contains only points at which is analytic, the integral retains the same
value. This is called the principle of deformation of path.

f (z)

C2

C1C1

C2

656 CHAP. 14 Complex Integration

C1

C2

z2

z1

Fig. 351. Continuous deformation of path

E X A M P L E  6 A Basic Result: Integral of Integer Powers

From Example 6 in Sec. 14.1 and the principle of deformation of path it follows that

(3)

for counterclockwise integration around any simple closed path containing in its interior.
Indeed, the circle in Example 6 of Sec. 14.1 can be continuously deformed in two steps into a path

as just indicated, namely, by first deforming, say, one semicircle and then the other one. (Make a sketch).

Existence of Indefinite Integral
We shall now justify our indefinite integration method in the preceding section [formula
(9) in Sec. 14.1]. The proof will need Cauchy’s integral theorem.

T H E O R E M  3 Existence of Indefinite Integral

If is analytic in a simply connected domain D, then there exists an indefinite
integral of in D—thus, —which is analytic in D, and for all
paths in D joining any two points and in D, the integral of from to 
can be evaluated by formula (9) in Sec. 14.1.

P R O O F The conditions of Cauchy’s integral theorem are satisfied. Hence the line integral of 
from any in D to any z in D is independent of path in D. We keep fixed. Then this
integral becomes a function of z, call if 

(4) F(z) ! !
z

z0

 f (z*) dz*

F(z),
z0z0

f (z)

z1z0f (z)z1z0

F r(z) ! f (z)f (z)F (z)
f (z)

!
ƒ z % z0 ƒ ! r

z0

"  (z % z0)m dz ! b 

2pi (m ! %1)

0 (m ' %1 and integer)
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which is uniquely determined. We show that this is analytic in D and .
The idea of doing this is as follows. Using (4) we form the difference quotient

(5) 

We now subtract from (5) and show that the resulting expression approaches zero as
. The details are as follows.

We keep z fixed. Then we choose in D so that the whole segment with endpoints
z and is in D (Fig. 352). This can be done because D is a domain, hence it contains
a neighborhood of z. We use this segment as the path of integration in (5). Now we subtract

. This is a constant because z is kept fixed. Hence we can write

Thus

By this trick and from (5) we get a single integral:

Since is analytic, it is continuous (see Team Project (24d) in Sec. 13.3). An 
being given, we can thus find a such that when .
Hence, letting , we see that the ML-inequality (Sec. 14.1) yields

By the definition of limit and derivative, this proves that

Since z is any point in D, this implies that is analytic in D and is an indefinite integral
or antiderivative of in D, written

F(z) ! !  f (z) dz.

f (z)
F(z)

F r(z) ! lim
¢z:0

 
F(z $ ¢z) % F(z)

¢z
! f (z).

`  F(z $ ¢z) % F(z)

¢z
% f (z) ` !

1

ƒ ¢z ƒ
 ` ! z$¢z

z

 [ f (z*) % f (z)] dz* ` #
1

ƒ ¢z ƒ
 P ƒ ¢z ƒ ! P.

ƒ ¢z ƒ " d
ƒ z* % z ƒ " dƒ  f (z*) % f (z) ƒ " Pd + 0

P + 0f (z)

F(z $ ¢z) % F(z)
¢z

% f (z) !
1

¢z
 !

z$¢z

z

 [ f (z*) % f (z)] dz*.

f (z) !
1

¢z
 !

z$¢z

z

 f (z) dz*.!
z$¢z

z

f (z) dz* ! f (z)!
z$¢z

z

dz* ! f (z) ¢z.

f (z)

z $ ¢z
z $ ¢z

¢z : 0
f (z)

F(z $ ¢z) % F(z)
¢z

!
1

¢z
 c ! z$¢z

z0

 f (z*) dz* % !
z

z0

 f (z*) dz* d !
1

¢z
 !

z$¢z

z

 f (z*) dz*.

Fr(z) ! f (z)F(z)
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z0

z
z + z

D

Fig. 352. Path of integration
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Also, if , then in D; hence is constant in D
(see Team Project 30 in Problem Set 13.4). That is, two indefinite integrals of can
differ only by a constant. The latter drops out in (9) of Sec. 14.1, so that we can use any 
indefinite integral of . This proves Theorem 3.

Cauchy’s Integral Theorem 
for Multiply Connected Domains
Cauchy’s theorem applies to multiply connected domains. We first explain this for a
doubly connected domain D with outer boundary curve and inner (Fig. 353). If
a function is analytic in any domain that contains D and its boundary curves, we
claim that

(6) (Fig. 353)

both integrals being taken counterclockwise (or both clockwise, and regardless of whether
or not the full interior of belongs to ).D*C2

"
C1

 f (z) dz ! "
C2

 f (z) dz

D*f (z)
C2C1

!f (z)

f (z)
F(z) % G(z)Fr(z) % Gr(z) # 0Gr(z) ! f (z)
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C1

C2

Fig. 353. Paths in (5)

P R O O F By two cuts and (Fig. 354) we cut D into two simply connected domains and
in which and on whose boundaries is analytic. By Cauchy’s integral theorem the

integral over the entire boundary of (taken in the sense of the arrows in Fig. 354) is
zero, and so is the integral over the boundary of , and thus their sum. In this sum the
integrals over the cuts and cancel because we integrate over them in both
directions—this is the key—and we are left with the integrals over (counterclockwise)
and (clockwise; see Fig. 354); hence by reversing the integration over (to
counterclockwise) we have

and (6) follows.

For domains of higher connectivity the idea remains the same. Thus, for a triply connected
domain we use three cuts (Fig. 355). Adding integrals as before, the integrals
over the cuts cancel and the sum of the integrals over (counterclockwise) and 
(clockwise) is zero. Hence the integral over equals the sum of the integrals over 
and all three now taken counterclockwise. Similarly for quadruply connected domains,
and so on.

C3,
C2C1

C2, C3C1

C!1, C!2, C!3

!

"
C1

 f dz % "
C2

 f dz ! 0

C2C2

C1

C!2C!1

D2

D1

f (z)D2

D1C!2C!1
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1–8 COMMENTS ON TEXT AND EXAMPLES

1. Cauchy’s Integral Theorem. Verify Theorem 1 for
the integral of over the boundary of the square with
vertices Hint. Use deformation.

2. For what contours C will it follow from Theorem 1 that

(a) (b)

3. Deformation principle. Can we conclude from
Example 4 that the integral is also zero over the contour
in Prob. 1?

4. If the integral of a function over the unit circle equals
2 and over the circle of radius 3 equals 6, can the
function be analytic everywhere in the annulus

5. Connectedness. What is the connectedness of the
domain in which is analytic?

6. Path independence. Verify Theorem 2 for the integral
of from 0 to (a) over the shortest path and
(b) over the x-axis to 1 and then straight up to 

7. Deformation. Can we conclude in Example 2 that
the integral of over (a) and
(b) is zero?

8. TEAM EXPERIMENT. Cauchy’s Integral Theorem.

(a) Main Aspects. Each of the problems in Examples
1–5 explains a basic fact in connection with Cauchy’s
theorem. Find five examples of your own, more
complicated ones if possible, each illustrating one of
those facts.
(b) Partial fractions. Write in terms of partial
fractions and integrate it counterclockwise over the unit
circle, where

(i) (ii)

(c) Deformation of path. Review (c) and (d) of Team
Project 34, Sec. 14.1, in the light of the principle of defor-
mation of path. Then consider another family of paths

f (z) !
z $ 1

z2 $ 2z
 .f (z) !

2z $ 3i

z2 $ 1
4 

f (z)

ƒ z % 2 ƒ ! 3
ƒ z % 2 ƒ ! 21>(z2 $ 4)

1 $ i.
1 $ iez

(cos z2)>(z4 $ 1)

1 " ƒ z ƒ " 3?

!
C

 
exp (1>z2)

z2 $ 16
 dz ! 0 ?!

C

 
dz

z
! 0,

)1 ) i.
z2

with common endpoints, say, 
a a real constant, and experiment with the

integration of analytic and nonanalytic functions of
your choice over these paths (e.g., z, Im z, , Re ,
Im , etc.).

9–19 CAUCHY’S THEOREM APPLICABLE? 
Integrate counterclockwise around the unit circle.
Indicate whether Cauchy’s integral theorem applies. Show
the details.
9. 10.

11. 12.
13. 14.
15. 16.
17. 18.
19.

20–30 FURTHER CONTOUR INTEGRALS 
Evaluate the integral. Does Cauchy’s theorem apply? Show
details.

20. , C the boundary of the parallelogram

with vertices 

21. C the circle counterclockwise.

22.

23.

Use partial fractions.

y

x2

C"
C

  
2z % 1

z2 % z
 dz, C:

y

x

C

–1 1

"
C

  Re z dz, C:

ƒ z ƒ ! p"
C

  
dz

z % 3i
 ,

)i, )(1 $ i).

"
C

 Ln (1 % z) dz

f (z) ! z3 cot z
f (z) ! 1>(4z % 3)f (z) ! 1> ƒ z ƒ 2
f (z) ! 1>(pz % 1)f (z) ! Im z
f (z) ! 1>zf (z) ! 1>(z4 % 1.1)
f (z) ! z 

3f (z) ! 1>(2z % 1)
f (z) ! tan 14 

zf (z) ! exp (%z2)

f (z)

z2
z2z2

0 # t # 1,
(t % t 2),z(t) ! t $ ia

P R O B L E M  S E T 1 4 . 2

C1

C1

D1

D2

C2C2
~ ~

Fig. 354. Doubly connected domain

C1

C1

C3C2

C2
C3

~

~ ~

Fig. 355. Triply connected domain

c14.qxd  11/1/10  6:02 PM  Page 659



24.

Use partial fractions.

25. consists of counterclockwise and

clockwise.

26. , C the circle clockwise.ƒ z % 1
2 
pi ƒ ! 1"

C

  coth 12 
z dz

ƒ z ƒ ! 1

ƒ z ƒ ! 2"
C

  
ez

z  dz, C

y

x–1 1

C"
C

  
dz

z2 % 1
 , C:
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27. C consists of counterclockwise

and clockwise.

28. , C the boundary of the square with

vertices clockwise.

29. clockwise.

30. clockwise. Use

partial fractions.

"
C

  
2z3 $ z2 $ 4

z4 $ 4z2
 dz, C: ƒ z % 2 ƒ ! 4

"
C

  
sin z

z $ 2iz
 dz, C: ƒ z % 4 % 2i ƒ ! 5.5

)1, )i

"
C

  
tan 12 

z

z4 % 16
 dz

ƒ z ƒ ! 3

ƒ z ƒ ! 1"
C

  
cos z

z  dz,

14.3 Cauchy’s Integral Formula
Cauchy’s integral theorem leads to Cauchy’s integral formula. This formula is useful for
evaluating integrals as shown in this section. It has other important roles, such as in proving
the surprising fact that analytic functions have derivatives of all orders, as shown in the
next section, and in showing that all analytic functions have a Taylor series representation
(to be seen in Sec. 15.4).

T H E O R E M  1 Cauchy’s Integral Formula

Let be analytic in a simply connected domain D. Then for any point in D
and any simple closed path C in D that encloses (Fig. 356),

(1) (Cauchy’s integral formula)

the integration being taken counterclockwise. Alternatively (for representing 
by a contour integral, divide (1) by ),

(1*) (Cauchy’s integral formula).

P R O O F By addition and subtraction, Inserting this into (1) on the
left and taking the constant factor out from under the integral sign, we have

(2)

The first term on the right equals which follows from Example 6 in Sec. 14.2
with . If we can show that the second integral on the right is zero, then it would
prove the theorem. Indeed, we can. The integrand of the second integral is analytic, except

m ! %1
f (z0) # 2pi,

"
C

  
f (z)

z % z0
 dz ! f (z0)"

C

  
dz

z % z0
$ "

C

  
f (z) % f (z0)

z % z0
 dz.

f (z0)
f (z) ! f (z0) $ [ f (z) % f (z0)].

 f (z0) !
1

2pi
 "

C

  
f (z)

z % z0
 dz

2pi
f (z0)

"
C

  
f (z)

z % z0
 dz ! 2pif (z0)

z0

z0f (z)
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at . Hence, by (6) in Sec. 14.2, we can replace C by a small circle K of radius and
center (Fig. 357), without altering the value of the integral. Since is analytic, it is
continuous (Team Project 24, Sec. 13.3). Hence, an being given, we can find a

such that for all z in the disk . Choosing the radius
of K smaller than we thus have the inequalityd,r

ƒ z % z0 ƒ " dƒ  f (z) % f (z0) ƒ " Pd + 0
P + 0

f (z)z0

rz0

SEC. 14.3 Cauchy’s Integral Formula 661

Fig. 356. Cauchy’s integral formula Fig. 357. Proof of Cauchy’s integral formula

KC

z0
ρ

C

z0

D

at each point of K. The length of K is . Hence, by the ML-inequality in Sec. 14.1,

Since can be chosen arbitrarily small, it follows that the last integral in (2) must
have the value zero, and the theorem is proved.

E X A M P L E  1 Cauchy’s Integral Formula

for any contour enclosing (since is entire), and zero for any contour for which lies outside
(by Cauchy’s integral theorem).

E X A M P L E  2 Cauchy’s Integral Formula

E X A M P L E  3 Integration Around Different Contours

Integrate

counterclockwise around each of the four circles in Fig. 358.

g(z) !
z2 $ 1

z2 % 1
!

z2 $ 1

(z $ 1)(z % 1)
 

!(z0 ! 1
2  

i inside C ). !
p

8
% 6pi

 ! 2pi 312  
z3 % 34 ƒ z!i>2

 "
C

  
z3 % 6

2z % i
 dz ! "

C

 
1
2  

z3 % 3

z % 1
2  i

 dz

!
z0 ! 2ezz0 ! 2

"
C

  
ez

z % 2
 dz ! 2piez `

z!2
! 2pie2 ! 46.4268i

!
P (+ 0)

2 "
K

 
f (z) % f (z0)

z % z0
 dz 2 " P

r 2pr ! 2pP.

2pr

2  f (z) % f (z0)
z % z0

 2 " P
r 
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Solution. is not analytic at and 1. These are the points we have to watch for. We consider each
circle separately.

(a) The circle encloses the point where is not analytic. Hence in (1) we have to
write

thus

and (1) gives

(b) gives the same as (a) by the principle of deformation of path.

(c) The function is as before, but changes because we must take (instead of 1). This gives
a factor in (1). Hence we must write

thus

Compare this for a minute with the previous expression and then go on:

(d) gives 0. Why? !

"
C

  
z2 $ 1

z2 % 1
 dz ! 2pif (%1) ! 2pi c z2 $ 1

z % 1
d

z!!1

! %2pi.

f (z) !
z2 $ 1

z % 1
 .

g(z) !
z2 $ 1

z % 1
 

1

z $ 1
 ;

z % z0 ! z $ 1
z0 ! %1f (z)g(z)

"
C

  
z2 $ 1

z2 % 1
 dz ! 2pif (1) ! 2pi c z2 $ 1

z $ 1
d

z!1

! 2pi.

f (z) !
z2 $ 1

z $ 1
 

g(z) !
z2 $ 1

z2 % 1
!

z2 $ 1

z $ 1
  

1

z % 1
 ;

g(z)z0 ! 1ƒ z % 1 ƒ ! 1

%1g(z)
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y

x

(a)

(b)

(c)

(d)

1–1

Fig. 358. Example 3

Multiply connected domains can be handled as in Sec. 14.2. For instance, if is
analytic on and and in the ring-shaped domain bounded by and (Fig. 359)
and is any point in that domain, then

(3) f (z0) !
1

2pi
 "

C1

  
f (z)

z % z0
 dz $

1
2pi

 "
C2

  
f (z)

z % z0
 dz,

z0

C2C1C2C1

f (z)
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where the outer integral (over ) is taken counterclockwise and the inner clockwise, as
indicated in Fig. 359.

C1

SEC. 14.3 Cauchy’s Integral Formula 663

z0

C2

C1

Fig. 359. Formula (3)

1–4 CONTOUR INTEGRATION 
Integrate by Cauchy’s formula counterclockwise
around the circle.
1. 2.
3. 4.

5–8 Integrate the given function around the unit circle.

5. 6.
7. 8.
9. CAS EXPERIMENT. Experiment to find out to what

extent your CAS can do contour integration. For this,
use (a) the second method in Sec. 14.1 and (b) Cauchy’s
integral formula.

10. TEAM PROJECT. Cauchy’s Integral Theorem.
Gain additional insight into the proof of Cauchy’s
integral theorem by producing (2) with a contour
enclosing (as in Fig. 356) and taking the limit as in
the text. Choose

(a) (b)

and (c) another example of your choice.

11–19 FURTHER CONTOUR INTEGRALS
Integrate counterclockwise or as indicated. Show the
details.

11.

12. , C the circle with center and

radius 2

13.

14. "
C

  
ez

zez % 2iz
 dz, C: ƒ z ƒ ! 0.6

"
C

  
z $ 2

z % 2
 dz, C: ƒ z % 1 ƒ ! 2

%1"
C

  
z

z2 $ 4z $ 3
 dz

"
C

  
dz

z2 $ 4
 , C: 4x2 $ ( y % 2)2 ! 4

"
C

  
sin z

z % 1
2 
p

 dz,"
C

  
z3 % 6

z % 1
2 

i
 dz,

z0

(z2 sin z)>(4z % 1)z3>(2z % i)
e2z>(pz % i)(cos 3z)>(6z)

ƒ z $ 5 % 5i ƒ ! 7ƒ z $ i ƒ ! 1.4
ƒ z % 1 % i ƒ ! p>2ƒ z $ 1 ƒ ! 1

z2>(z2 % 1)
15. , C the boundary of the square

with vertices 

16. , C the boundary of the triangle with

vertices 0 and 

17. , C: 

18. , C consists of the boundaries of the

squares with vertices counterclockwise and
clockwise (see figure).)1, )i

)3, )3i

"
C

  
sin z

4z2 % 8iz
 dz

ƒ z % i ƒ ! 1.4"
C

 
Ln (z $ 1)

z2 $ 1
 dz

)1 $ 2i.

"
C

  
tan z

z % i
 dz

)2, )2, )4i.

"
C

 
cosh (z2 % pi)

z % pi
 dz

P R O B L E M  S E T  1 4 . 3

y

x3

2i

–3i

3i

–3

Problem 18

19. , C consists of counter-

clockwise and clockwise.

20. Show that for a simple

closed path C enclosing and , which are
arbitrary.

z2z1

"
C

 (z % z1)!1(z % z2)!1 dz ! 0

ƒ z ƒ ! 1

ƒ z ƒ ! 2"
C

  
exp z2

z2(z % 1 % i)
 dz
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14.4 Derivatives of Analytic Functions
As mentioned, a surprising fact is that complex analytic functions have derivatives of all
orders. This differs completely from real calculus. Even if a real function is once
differentiable we cannot conclude that it is twice differentiable nor that any of its higher
derivatives exist. This makes the behavior of complex analytic functions simpler than real
functions in this aspect. To prove the surprising fact we use Cauchy’s integral formula.

T H E O R E M  1 Derivatives of an Analytic Function

If is analytic in a domain D, then it has derivatives of all orders in D, which
are then also analytic functions in D. The values of these derivatives at a point 
in D are given by the formulas

and in general

(1)

here C is any simple closed path in D that encloses and whose full interior belongs
to D; and we integrate counterclockwise around C (Fig. 360).

z0

(n ! 1, 2, Á ); f (n)(z0) !
n!

2pi
 "

C

  
f (z)

(z % z0)n$1 dz

f s(z0) !
2!

2pi
 "

C

  
f (z)

(z % z0)3 dz(1s)

f r(z0) !
1

2pi
 "

C

  
f (z)

(z % z0)2 dz(1r)

z0

f (z)
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D

C

z0

d

Fig. 360. Theorem 1 and its proof

COMMENT. For memorizing (1), it is useful to observe that these formulas are obtained
formally by differentiating the Cauchy formula Sec. 14.3, under the integral sign
with respect to 

P R O O F We prove starting from the definition of the derivative

f r(z0) ! lim
¢z:0

 
f (z0 $ ¢z) % f (z0)

¢z
 .

(1r),

z0.
(1*),
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On the right we represent and by Cauchy’s integral formula:

We now write the two integrals as a single integral. Taking the common denominator
gives the numerator so that a factor drops
out and we get

Clearly, we can now establish by showing that, as the integral on the right
approaches the integral in To do this, we consider the difference between these two
integrals. We can write this difference as a single integral by taking the common
denominator and simplifying the numerator (as just before). This gives

We show by the ML-inequality (Sec. 14.1) that the integral on the right approaches zero
as 

Being analytic, the function is continuous on C, hence bounded in absolute value,
say, Let d be the smallest distance from to the points of C (see Fig. 360).
Then for all z on C,

Furthermore, by the triangle inequality for all z on C we then also have

We now subtract on both sides and let so that Then

Let L be the length of C. If then by the ML-inequality

This approaches zero as Formula is proved.
Note that we used Cauchy’s integral formula Sec. 14.3, but if all we had known

about is the fact that it can be represented by Sec. 14.3, our argument would
have established the existence of the derivative of This is essential to thef (z).f r(z0)

(1*),f (z0)
(1*),

(1r)¢z : 0.

2 "
C

 
f (z) ¢z

(z % z0 % ¢z)(z % z0)2
 dz 2 # KL ƒ ¢z ƒ  2

d
# 1

d2
 .

ƒ ¢z ƒ # d>2,

1
2 

d # d % ƒ ¢z ƒ # ƒ z % z0 % ¢z ƒ .  Hence  1
ƒ z % z0 % ¢z ƒ #

2
d

 .

% ƒ ¢z ƒ ( %d>2.ƒ ¢z ƒ # d>2,ƒ ¢z ƒ

d # ƒ z % z0 ƒ ! ƒ z % z0 % ¢z $ ¢z ƒ # ƒ z % z0 % ¢z ƒ $ ƒ ¢z ƒ .

ƒ z % z0 ƒ 2 ( d2,  hence  1

ƒ z % z0 ƒ 2
 #

1

d2
 .

z0ƒ f (z) ƒ # K.
f (z)

¢z : 0.

"
C

  
f (z)

(z % z0 % ¢z)(z % z0)
 dz % "

C

  
f (z)

(z % z0)2 dz ! "
C

  
f (z) ¢z

(z % z0 % ¢z)(z % z0)2 dz.

(1r).
¢z : 0,(1r)

f (z0 $ ¢z) % f (z0)

¢z
!

1
2pi

 "
C

  
f (z)

(z % z0 % ¢z)(z % z0)
 dz.

¢zf (z){z % z0 % [z % (z0 $ ¢z)]} ! f (z) ¢z,

f (z0 $ ¢z) % f (z0)

¢z
!

1
2pi¢z

  B"
C

  
f (z)

z % (z0 $ ¢z)
 dz % "

C

  
f (z)

z % z0
 dzR .

f (z0)f (z0 $ ¢z)
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continuation and completion of this proof, because it implies that can be proved by
a similar argument, with f replaced by and that the general formula (1) follows by
induction.

Applications of Theorem 1

E X A M P L E  1 Evaluation of Line Integrals

From for any contour enclosing the point (counterclockwise)

E X A M P L E  2 From for any contour enclosing the point we obtain by counterclockwise integration

E X A M P L E  3 By for any contour for which 1 lies inside and lie outside (counterclockwise),

Cauchy’s Inequality. Liouville’s and Morera’s Theorems
We develop other general results about analytic functions, further showing the versatility
of Cauchy’s integral theorem.

Cauchy’s Inequality. Theorem 1 yields a basic inequality that has many applications.
To get it, all we have to do is to choose for C in (1) a circle of radius r and center and
apply the ML-inequality (Sec. 14.1); with on C we obtain from (1)

This gives Cauchy’s inequality

(2)

To gain a first impression of the importance of this inequality, let us prove a famous
theorem on entire functions (definition in Sec. 13.5). (For Liouville, see Sec. 11.5.)

T H E O R E M  2 Liouville’s Theorem

If an entire function is bounded in absolute value in the whole complex plane, then
this function must be a constant.

ƒ  f (n)(z0) ƒ #
n!M

r n  .

ƒ  f (n)(z0) ƒ !
n!

2p
 2 "

C

 
f (z)

(z % z0)n$1 dz 2 # n!

2p
 M 

1

r n$1
 2pr.

ƒ f (z) ƒ # M
z0

! ! 2pi 
ez(z2 $ 4) % ez2z

(z2 $ 4)2  `
z!1

!
6ep

25
 i $ 2.050i.

 "
C

  
ez

(z % 1)2(z2 $ 4)
 dz ! 2pi a ez

z2 $ 4
br `

z!1

)2i(1r),

!"
C

  
z4 % 3z2 $ 6

(z $ i)3  dz ! pi(z4 % 3z2 $ 6)s `
z!!i

! pi [12z2 % 6]z!!i ! %18pi.

%i(1s),

!"
C

   
cos z

(z % pi)2 dz ! 2pi(cos z)r `
z!pi

! %2pi sin pi ! 2p sinh p.

pi(1r),

!
f r,

(1s)
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P R O O F By assumption, is bounded, say, for all z. Using (2), we see that
Since is entire, this holds for every r, so that we can take r as large

as we please and conclude that Since is arbitrary, for
all z (see (4) in Sec. 13.4), hence and by the Cauchy–Riemann
equations. Thus and for all z. This completes
the proof.

Another very interesting consequence of Theorem 1 is

T H E O R E M  3 Morera’s2 Theorem (Converse of Cauchy’s Integral Theorem)

If is continuous in a simply connected domain D and if

(3)

for every closed path in D, then is analytic in D.

P R O O F In Sec. 14.2 we showed that if is analytic in a simply connected domain D, then

is analytic in D and In the proof we used only the continuity of and the
property that its integral around every closed path in D is zero; from these assumptions
we concluded that is analytic. By Theorem 1, the derivative of is analytic, that
is, is analytic in D, and Morera’s theorem is proved.

This completes Chapter 14.

!f (z)
F(z)F(z)

f (z)F r(z) ! f (z).

F(z) ! !
z

z0

 
f (z*) dz*

f (z)

f (z)

"
C  

f (z) dz ! 0

f (z)

!
f ! u $ iv ! constu ! const, v ! const,

uy ! vy ! 0ux ! vx ! 0,
f r(z) ! ux $ ivx ! 0z0f r(z0) ! 0.

f (z)ƒ  f r(z0) ƒ " K>r.
ƒ  f (z) ƒ " Kƒ f (z) ƒ
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1–7 CONTOUR INTEGRATION. UNIT CIRCLE
Integrate counterclockwise around the unit circle.

1. 2.

3. 4.

5. 6.

7. "
C

   
cos z

z2n$1
 dz, n ! 0, 1, Á

"
C

   
dz

(z % 2i)2(z % i>2)2"
C

   
cosh 2z

(z % 1
2)4

 dz

"
C

  
ez cos z

(z % p>4)3
 dz"

C

   
ez

zn dz, n ! 1, 2, Á

"
C

  
z6

(2z % 1)6
 dz"

C

  
sin z

z4
 dz

8–19 INTEGRATION. DIFFERENT CONTOURS
Integrate. Show the details. Hint. Begin by sketching the
contour. Why?

8. C the boundary of the square with

vertices counterclockwise.

9. C the ellipse clockwise.

10. C consists of counter-

clockwise and clockwise.ƒ z ƒ ! 1

ƒ z ƒ ! 3"
C

   
4z3 % 6

z(z % 1 % i)2
 dz,

16x2 $ y2 ! 1"
C

  
tan pz

z2
 dz,

)2, )2i

"
C

  
z3 $ sin z

(z % i)3
 dz,

P R O B L E M  S E T  1 4 . 4

2GIACINTO MORERA (1856–1909), Italian mathematician who worked in Genoa and Turin.
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11. counterclockwise.

12. clockwise.

13. counterclockwise.

14. C the boundary of the square

with vertices counterclockwise.

15. C consists of counterclock-

wise and clockwise.

16. C consists of counter-

clockwise and clockwise.

17. C consists of counterclock-

wise and clockwise.ƒ z % 3 ƒ ! 3
2 

ƒ z ƒ ! 5"
C

  
e!z sin z

(z % 4)3
 dz,

ƒ z ƒ ! 1

ƒ z % i ƒ ! 3"
C

  
e4z

z(z % 2i)2
 dz,

ƒ z % 3 ƒ ! 2

ƒ z ƒ ! 6"
C

  
cosh 4z

(z % 4)3
 dz,

)1.5, )1.5i,

"
C

  
Ln (z $ 3)

(z % 2)(z $ 1)2
 dz,

"
C

  
Ln z

(z % 2)2
 dz, C: ƒ z % 3 ƒ ! 2

"
C

   
exp (z2)

z(z % 2i)2
 dz, C: z % 3i ƒ ! 2

"
C

  
(1 $ z) sin z

(2z % 1)2
 dz, C: ƒ z % i ƒ ! 2
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18. counterclockwise, n integer.

19. counterclockwise.

20. TEAM PROJECT. Theory on Growth
(a) Growth of entire functions. If is not a

constant and is analytic for all (finite) z, and R and
M are any positive real numbers (no matter how
large), show that there exist values of z for which

and Hint. Use Liouville’s
theorem.

(b) Growth of polynomials. If is a polynomial
of degree and M is an arbitrary positive
real number (no matter how large), show that
there exists a positive real number R such that

for all 
(c) Exponential function. Show that has

the property characterized in (a) but does not have
that characterized in (b).

(d) Fundamental theorem of algebra. If is a
polynomial in z, not a constant, then for
at least one value of z. Prove this. Hint. Use (a).

f (z) ! 0
f (z)

f (z) ! ex
ƒ z ƒ + R.ƒ  f (z) ƒ + M

n + 0
f (z)

ƒ  f (z) ƒ + M.ƒ z ƒ + R

f (z)

"
C

   e3z

(4z % pi)3
 dz, C: ƒ z ƒ ! 1,

"
C

  
sinh z

zn  dz, C: ƒ z ƒ ! 1

1. What is a parametric representation of a curve? What
is its advantage?

2. What did we assume about paths of integration 
What is geometrically?

3. State the definition of a complex line integral from
memory.

4. Can you remember the relationship between complex
and real line integrals discussed in this chapter?

5. How can you evaluate a line integral of an analytic
function? Of an arbitrary continous complex function?

6. What value do you get by counterclockwise integration
of around the unit circle? You should remember
this. It is basic.

7. Which theorem in this chapter do you regard as most
important? State it precisely from memory.

8. What is independence of path? Its importance? State a
basic theorem on independence of path in complex.

9. What is deformation of path? Give a typical example.

10. Don’t confuse Cauchy’s integral theorem (also known
as Cauchy–Goursat theorem) and Cauchy’s integral
formula. State both. How are they related?

11. What is a doubly connected domain? How can you
extend Cauchy’s integral theorem to it?

1>z

z
#

! dz>dt
z ! z(t)?

12. What do you know about derivatives of analytic
functions?

13. How did we use integral formulas for derivatives in
evaluating integrals?

14. How does the situation for analytic functions differ
with respect to derivatives from that in calculus?

15. What is Liouville’s theorem? To what complex func-
tions does it apply?

16. What is Morera’s theorem?
17. If the integrals of a function over each of the two

boundary circles of an annulus D taken in the same
sense have different values, can be analytic every-
where in D? Give reason.

18. Is ? Give reason.

19. Is ?

20. How would you find a bound for the left side in Prob. 19?

21–30 INTEGRATION
Integrate by a suitable method.

21. from 0 to pi>2.!
C

 
z sinh (z2) dz

2 "
C
   f (z) dz 2 ! "

C 
ƒ  f (z) ƒ  dz

Im "
C  

f (z) dz ! "
C  

Im f (z) dz

f (z)

f (z)

C H A P T E R  1 4  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S
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22. clockwise around the unit circle.

23. counterclockwise around 

24. from 0 to along 

25. clockwise around 

26. from horizontally to then

vertically upward to 2 $ 2i.

z ! 2,z ! 0!
C

 
(z2 $ z2) dz

ƒ z % 1 ƒ ! 0.1.!
C

 
tan pz

(z % 1)2
 dz

y ! x3.3 $ 27i!
C

Re z dz

ƒ z ƒ ! p.!
C

 
z!5ez dz

!
C

 
( ƒ z ƒ $ z) dz
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27. from 0 to shortest path.

28. counterclockwise around 

29. clockwise around

30. from 0 to (1 $ i).!
C

 sin  z dz

ƒ z % 1 ƒ ! 2.5.

"
C  
a 2

z $ 2i
$

1
z $ 4i

b dz

ƒ z % 1 ƒ ! 1
2."

C

  
Ln z

(z % 2i)2
 dz

2 $ 2i,!
C

(z2 $ z 2) dz

The complex line integral of a function taken over a path C is denoted by

(1) or, if C is closed, also by (Sec. 14.1).

If is analytic in a simply connected domain D, then we can evaluate (1) as in
calculus by indefinite integration and substitution of limits, that is,

(2)

for every path C in D from a point to a point (see Sec. 14.1). These assumptions
imply independence of path, that is, (2) depends only on and (and on 
of course) but not on the choice of C (Sec. 14.2). The existence of an such that

is proved in Sec. 14.2 by Cauchy’s integral theorem (see below).
A general method of integration, not restricted to analytic functions, uses the

equation of C, where 

(3)

Cauchy’s integral theorem is the most important theorem in this chapter. It states
that if is analytic in a simply connected domain D, then for every closed path
C in D (Sec. 14.2),

(4) "
C  

f (z) dz ! 0.

f (z)

az# !
dz
dt
b .!

C

 f (z) dz ! !
b

a

f (z(t))z
#
(t) dt

a # t # b,z ! z(t)

Fr(z) ! f (z)
F(z)

f (z),z1z0

z1z0

[F r(z) ! f (z)]!
C

 f (z) dz ! F(z1) % F(z0)

f (z)

"
C  

f (z)!
C

 
f (z) dz

f (z)

SUMMARY OF CHAPTER 14
Complex Integration
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Under the same assumptions and for any in D and closed path C in D containing
in its interior we also have Cauchy’s integral formula

(5)

Furthermore, under these assumptions has derivatives of all orders in D that are
themselves analytic functions in D and (Sec. 14.4)

(6)

This implies Morera’s theorem (the converse of Cauchy’s integral theorem) and
Cauchy’s inequality (Sec. 14.4), which in turn implies Liouville’s theorem that an
entire function that is bounded in the whole complex plane must be constant.

(n ! 1, 2, Á ).f (n)(z0) !
n!

2pi
 "

C

  
f (z)

(z % z0)n$1
 dz

f (z)

f (z0) !
1

2pi
 "

C

  
f (z)

z % z0
 dz.

z0

z0
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