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C H A P T E R 2

Second-Order Linear ODEs

Many important applications in mechanical and electrical engineering, as shown in Secs.
2.4, 2.8, and 2.9, are modeled by linear ordinary differential equations (linear ODEs) of the
second order. Their theory is representative of all linear ODEs as is seen when compared
to linear ODEs of third and higher order, respectively. However, the solution formulas for
second-order linear ODEs are simpler than those of higher order, so it is a natural progression
to study ODEs of second order first in this chapter and then of higher order in Chap. 3.

Although ordinary differential equations (ODEs) can be grouped into linear and nonlinear
ODEs, nonlinear ODEs are difficult to solve in contrast to linear ODEs for which many
beautiful standard methods exist.

Chapter 2 includes the derivation of general and particular solutions, the latter in
connection with initial value problems.

For those interested in solution methods for Legendre’s, Bessel’s, and the hypergeometric
equations consult Chap. 5 and for Sturm–Liouville problems Chap. 11.

COMMENT. Numerics for second-order ODEs can be studied immediately after this
chapter. See Sec. 21.3, which is independent of other sections in Chaps. 19–21.

Prerequisite: Chap. 1, in particular, Sec. 1.5.
Sections that may be omitted in a shorter course: 2.3, 2.9, 2.10.
References and Answers to Problems: App. 1 Part A, and App. 2.

2.1 Homogeneous Linear ODEs of Second Order
We have already considered first-order linear ODEs (Sec. 1.5) and shall now define and
discuss linear ODEs of second order. These equations have important engineering
applications, especially in connection with mechanical and electrical vibrations (Secs. 2.4,
2.8, 2.9) as well as in wave motion, heat conduction, and other parts of physics, as we
shall see in Chap. 12.

A second-order ODE is called linear if it can be written

(1)

and nonlinear if it cannot be written in this form.
The distinctive feature of this equation is that it is linear in y and its derivatives, whereas

the functions p, q, and r on the right may be any given functions of x. If the equation
begins with, say, then divide by to have the standard form (1) with as the
first term.

ysf (x)f (x)ys,

ys ! p(x)yr ! q(x)y " r(x)
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The definitions of homogeneous and nonhomogenous second-order linear ODEs are
very similar to those of first-order ODEs discussed in Sec. 1.5. Indeed, if (that
is, for all x considered; read “ is identically zero”), then (1) reduces to

(2)

and is called homogeneous. If then (1) is called nonhomogeneous. This is
similar to Sec. 1.5.

An example of a nonhomogeneous linear ODE is

and a homogeneous linear ODE is

written in standard form .

Finally, an example of a nonlinear ODE is

.

The functions p and q in (1) and (2) are called the coefficients of the ODEs.
Solutions are defined similarly as for first-order ODEs in Chap. 1. A function

is called a solution of a (linear or nonlinear) second-order ODE on some open interval I
if h is defined and twice differentiable throughout that interval and is such that the ODE
becomes an identity if we replace the unknown y by h, the derivative by , and the
second derivative by . Examples are given below.

Homogeneous Linear ODEs: Superposition Principle
Sections 2.1–2.6 will be devoted to homogeneous linear ODEs (2) and the remaining
sections of the chapter to nonhomogeneous linear ODEs.

Linear ODEs have a rich solution structure. For the homogeneous equation the backbone
of this structure is the superposition principle or linearity principle, which says that we
can obtain further solutions from given ones by adding them or by multiplying them with
any constants. Of course, this is a great advantage of homogeneous linear ODEs. Let us
first discuss an example.

E X A M P L E  1 Homogeneous Linear ODEs: Superposition of Solutions

The functions and are solutions of the homogeneous linear ODE

for all x. We verify this by differentiation and substitution. We obtain ; hence

ys ! y " (cos x)s ! cos x " #cos x ! cos x " 0.

(cos x)s " #cos x

ys ! y " 0

y " sin xy " cos x

hsys
hryr

y " h(x)

ysy ! yr2 " 0

ys !
1
x  yr ! y " 0xys ! yr ! xy " 0,

ys ! 25y " e!x cos x,

r(x) [ 0,

ys ! p(x)yr ! q(x)y " 0

r(x)r(x) " 0
r(x) ! 0
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Similarly for (verify!). We can go an important step further. We multiply by any constant, for
instance, 4.7, and by, say, , and take the sum of the results, claiming that it is a solution. Indeed,
differentiation and substitution gives

In this example we have obtained from and a function of the form

(3) ( arbitrary constants).

This is called a linear combination of and . In terms of this concept we can now
formulate the result suggested by our example, often called the superposition principle
or linearity principle.

T H E O R E M  1 Fundamental Theorem for the Homogeneous Linear ODE (2)

For a homogeneous linear ODE (2), any linear combination of two solutions on an
open interval I is again a solution of (2) on I. In particular, for such an equation,
sums and constant multiples of solutions are again solutions.

P R O O F Let and be solutions of (2) on I. Then by substituting and
its derivatives into (2), and using the familiar rule , etc.,
we get

since in the last line, because and are solutions, by assumption. This shows
that y is a solution of (2) on I.

CAUTION! Don’t forget that this highly important theorem holds for homogeneous
linear ODEs only but does not hold for nonhomogeneous linear or nonlinear ODEs, as
the following two examples illustrate.

E X A M P L E  2 A Nonhomogeneous Linear ODE

Verify by substitution that the functions and are solutions of the nonhomogeneous
linear ODE

but their sum is not a solution. Neither is, for instance, or .

E X A M P L E  3 A Nonlinear ODE

Verify by substitution that the functions and are solutions of the nonlinear ODE

but their sum is not a solution. Neither is , so you cannot even multiply by ! !#1#x2

ysy # xyr " 0,

y " 1y " x2

!5(1 ! sin x)2(1 ! cos x)

ys ! y " 1,

y " 1 ! sin xy " 1 ! cos x

!
y2y1(Á) " 0

 " c1( ys1 ! pyr1 ! qy1) ! c2(ys2 ! pyr2 ! qy2) " 0,

 " c1ys1 ! c2ys2 ! p(c1yr1 ! c2yr2) ! q(c1y1 ! c2y2)

 ys ! pyr ! qy " (c1y1 ! c2y2)s ! p(c1y1 ! c2y2)r ! q(c1y1 ! c2y2)

(c1y1 ! c2y2)r " c1yr1 ! c2yr2
y " c1y1 ! c2y2y2y1

y2y1

c1, c2y " c1y1 ! c2y2

y2 (" sin x)y1 (" cos x)

!(4.7 cos x # 2 sin x)s ! (4.7 cos x # 2 sin x) " #4.7 cos x ! 2 sin x ! 4.7 cos x # 2 sin x " 0.

#2sin x
cos xy " sin x
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Initial Value Problem. Basis. General Solution
Recall from Chap. 1 that for a first-order ODE, an initial value problem consists of the
ODE and one initial condition . The initial condition is used to determine the
arbitrary constant c in the general solution of the ODE. This results in a unique solution,
as we need it in most applications. That solution is called a particular solution of the
ODE. These ideas extend to second-order ODEs as follows.

For a second-order homogeneous linear ODE (2) an initial value problem consists of
(2) and two initial conditions

(4)

These conditions prescribe given values and of the solution and its first derivative
(the slope of its curve) at the same given in the open interval considered.

The conditions (4) are used to determine the two arbitrary constants and in a
general solution

(5)

of the ODE; here, and are suitable solutions of the ODE, with “suitable” to be
explained after the next example. This results in a unique solution, passing through the
point with as the tangent direction (the slope) at that point. That solution is
called a particular solution of the ODE (2).

E X A M P L E  4 Initial Value Problem

Solve the initial value problem

Solution. Step 1. General solution. The functions and are solutions of the ODE (by Example 1),
and we take

This will turn out to be a general solution as defined below.

Step 2. Particular solution. We need the derivative . From this and the
initial values we obtain, since and ,

This gives as the solution of our initial value problem the particular solution

Figure 29 shows that at it has the value 3.0 and the slope , so that its tangent intersects
the x-axis at . (The scales on the axes differ!)

Observation. Our choice of and was general enough to satisfy both initial
conditions. Now let us take instead two proportional solutions and 
so that . Then we can write in the form

.y " c1 cos x ! c2(k cos x) " C cos x  where  C " c1 ! c2k

y " c1y1 ! c2y2y1/y2 " 1/k " const
y2 " k cos x,y1 " cos x

y2y1

!x " 3.0>0.5 " 6.0
#0.5x " 0

y " 3.0 cos x # 0.5 sin x.

y(0) " c1 " 3.0  and  yr(0) " c2 " #0.5.

sin 0 " 0cos 0 " 1
yr " #c1 sin x ! c2 cos x

y " c1 cos x ! c2 sin x.

sin xcos x

ys ! y " 0,  y(0) " 3.0,  yr(0) " #0.5.

K1(x0, K0)

y2y1

y " c1y1 ! c2y2

c2c1

x " x0

K1K0

y(x0) " K0,  yr(x0) " K1.

y(x0) " y0
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Hence we are no longer able to satisfy two initial conditions with only one arbitrary
constant C. Consequently, in defining the concept of a general solution, we must exclude
proportionality. And we see at the same time why the concept of a general solution is of
importance in connection with initial value problems.

D E F I N I T I O N General Solution, Basis, Particular Solution

A general solution of an ODE (2) on an open interval I is a solution (5) in which
and are solutions of (2) on I that are not proportional, and and are arbitrary

constants. These , are called a basis (or a fundamental system) of solutions
of (2) on I.

A particular solution of (2) on I is obtained if we assign specific values to 
and in (5).

For the definition of an interval see Sec. 1.1. Furthermore, as usual, and are called
proportional on I if for all x on I,

(6) (a) or (b)

where k and l are numbers, zero or not. (Note that (a) implies (b) if and only if ).
Actually, we can reformulate our definition of a basis by using a concept of general

importance. Namely, two functions and are called linearly independent on an
interval I where they are defined if

(7) everywhere on I implies .

And and are called linearly dependent on I if (7) also holds for some constants ,
not both zero. Then, if , we can divide and see that and are

proportional,

or

In contrast, in the case of linear independence these functions are not proportional because
then we cannot divide in (7). This gives the following

D E F I N I T I O N Basis (Reformulated)

A basis of solutions of (2) on an open interval I is a pair of linearly independent
solutions of (2) on I.

If the coefficients p and q of (2) are continuous on some open interval I, then (2) has a
general solution. It yields the unique solution of any initial value problem (2), (4). It
includes all solutions of (2) on I; hence (2) has no singular solutions (solutions not
obtainable from of a general solution; see also Problem Set 1.1). All this will be shown
in Sec. 2.6.

y2 " #
k1

k2
 y1.y1 " #

k2

k1
 y2

y2y1k1 $ 0 or k2 $ 0k2

k1y2y1

k1 " 0 and k2 " 0k1y1(x) !  k2y2(x) " 0

y2y1

k $ 0

y2 " ly1y1 " ky2

y2y1

c2

c1

y2y1

c2c1y2y1
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E X A M P L E  5 Basis, General Solution, Particular Solution

and in Example 4 form a basis of solutions of the ODE for all x because their
quotient is (or ). Hence is a general solution. The solution

of the initial value problem is a particular solution.

E X A M P L E  6 Basis, General Solution, Particular Solution

Verify by substitution that and are solutions of the ODE . Then solve the initial
value problem

.

Solution. and show that and are solutions. They are not
proportional, . Hence , form a basis for all x. We now write down the corresponding
general solution and its derivative and equate their values at 0 to the given initial conditions,

.

By addition and subtraction, , so that the answer is . This is the particular solution
satisfying the two initial conditions.

Find a Basis if One Solution Is Known.
Reduction of Order
It happens quite often that one solution can be found by inspection or in some other way.
Then a second linearly independent solution can be obtained by solving a first-order ODE.
This is called the method of reduction of order.1 We first show how this method works
in an example and then in general.

E X A M P L E  7 Reduction of Order if a Solution Is Known. Basis

Find a basis of solutions of the ODE

.

Solution. Inspection shows that is a solution because and , so that the first term
vanishes identically and the second and third terms cancel. The idea of the method is to substitute

into the ODE. This gives

ux and –xu cancel and we are left with the following ODE, which we divide by x, order, and simplify,

,

This ODE is of first order in , namely, . Separation of variables and integration
gives

, .ln ƒ v ƒ " ln ƒ x # 1 ƒ # 2 ln ƒ x ƒ " ln 
ƒ x # 1 ƒ

x2
dv
v

" #
x # 2
x2 # x

 dx " a 1
x # 1

#
2
x
b dx

(x2 # x)vr ! (x # 2)v " 0v " ur

(x2 # x)us ! (x # 2)ur " 0.(x2 # x)(usx ! 2ur) # x2ur " 0

(x2 # x)(usx ! 2ur) # x(urx ! u) ! ux " 0.

y " uy1 " ux,  yr " urx ! u,  ys " usx ! 2ur

ys1 " 0yr1 " 1y1 " x

(x2 # x)ys # xyr ! y " 0

!
y " 2ex ! 4e!xc1 " 2, c2 " 4

y "  c1ex ! c2e!x,  yr " c1ex #  c2e!x,  y(0) " c1 ! c2 " 6,  yr(0) " c1 # c2 " #2

e!xexex/e!x "  e2x $ const
e!xex(e!x)s #  e!x " 0(ex)s #  ex " 0

ys # y " 0,  y(0) " 6,  yr(0) " #2

ys # y " 0y2 " e!xy1 " ex

!y " 3.0 cos x # 0.5 sin x
y " c1 cos x ! c2 sin xtan x $ constcot x $ const

ys ! y " 0sin xcos x

SEC. 2.1 Homogeneous Linear ODEs of Second Order 51

1Credited to the great mathematician JOSEPH LOUIS LAGRANGE (1736–1813), who was born in Turin,
of French extraction, got his first professorship when he was 19 (at the Military Academy of Turin), became
director of the mathematical section of the Berlin Academy in 1766, and moved to Paris in 1787. His important
major work was in the calculus of variations, celestial mechanics, general mechanics (Mécanique analytique,
Paris, 1788), differential equations, approximation theory, algebra, and number theory.
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We need no constant of integration because we want to obtain a particular solution; similarly in the next
integration. Taking exponents and integrating again, we obtain

, , hence .

Since are linearly independent (their quotient is not constant), we have obtained
a basis of solutions, valid for all positive x.

In this example we applied reduction of order to a homogeneous linear ODE [see (2)]

.

Note that we now take the ODE in standard form, with not —this is essential
in applying our subsequent formulas. We assume a solution of (2), on an open interval
I, to be known and want to find a basis. For this we need a second linearly independent
solution of (2) on I. To get , we substitute

, ,

into (2). This gives

(8)

Collecting terms in and u, we have

.

Now comes the main point. Since is a solution of (2), the expression in the last
parentheses is zero. Hence u is gone, and we are left with an ODE in and . We divide
this remaining ODE by and set 

, thus .

This is the desired first-order ODE, the reduced ODE. Separation of variables and
integration gives

and .

By taking exponents we finally obtain

(9) .

Here so that . Hence the desired second solution is

.

The quotient cannot be constant , so that and form
a basis of solutions.

y2y1(since U % 0)y2 /y1 " u " "U dx

y2 " y1u " y1#U dx

u " "U dxU " ur,

U "
1

y2
1

 e!"p dx

ln ƒ U ƒ " #2 ln ƒ y1 ƒ # #p dx
dU
U

" #a2yr1
y1

! pb dx

Ur ! a2y r1
y1

! pb U " 0us ! ur 2yr1 ! py1

y1
" 0

ur " U, us " Ur,y1

usur
y1

usy1 ! ur(2yr1 ! py1) ! u(y1s ! py r1 ! qy1) " 0

us, ur,

usy1 ! 2ury1r ! uys1 ! p(ury1 ! uyr1) ! quy1 " 0.

ys " y2s " usy1 ! 2uryr1 ! uys1yr " y2r " ury1 ! uyr1y " y2 " uy1

y2y2

y1

f (x)ysys,

ys ! p(x)yr ! q(x)y " 0

!
y1 " x and y2 " x ln ƒ x ƒ ! 1

y2 " ux " x  ln ƒ x ƒ ! 1u " #v dx " ln ƒ x ƒ !
1
x

v "
x # 1

x2 "
1
x

#
1
x2
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SEC. 2.2 Homogeneous Linear ODEs with Constant Coefficients 53

REDUCTION OF ORDER is important because it
gives a simpler ODE. A general second-order ODE

, linear or not, can be reduced to first
order if y does not occur explicitly (Prob. 1) or if x does not
occur explicitly (Prob. 2) or if the ODE is homogeneous
linear and we know a solution (see the text).

1. Reduction. Show that can be
reduced to first order in (from which y follows
by integration). Give two examples of your own.

2. Reduction. Show that can be
reduced to a first-order ODE with y as the independent
variable and , where derive this
by the chain rule. Give two examples.

3–10 REDUCTION OF ORDER
Reduce to first order and solve, showing each step in detail.
3.
4.
5.
6. ,
7.
8.
9.

10.

11–14 APPLICATIONS OF REDUCIBLE ODEs
11. Curve. Find the curve through the origin in the 

xy-plane which satisfies and whose tangent
at the origin has slope 1.

12. Hanging cable. It can be shown that the curve 
of an inextensible flexible homogeneous cable hanging
between two fixed points is obtained by solving

y(x)

ys ! 2yr

ys " (1 " 1/y)yr2 ! 0
x2ys # 5xyr " 9y ! 0, y1 ! x3

ys ! 1 " yr2
ys " yr3 sin y ! 0

y1 ! (cos x)/xxys " 2yr " xy ! 0
yys ! 3yr2
2xys ! 3yr
ys " yr ! 0

z ! yr;ys ! (dz/dy)z

F (y, yr, ys) ! 0

z ! yr
F (x, yr, ys) ! 0

F (x, y, yr, ys) ! 0

, where the constant k depends on the
weight. This curve is called catenary (from Latin
catena = the chain). Find and graph , assuming that

and those fixed points are and in
a vertical xy-plane.

13. Motion. If, in the motion of a small body on a
straight line, the sum of velocity and acceleration equals
a positive constant, how will the distance depend
on the initial velocity and position?

14. Motion. In a straight-line motion, let the velocity be
the reciprocal of the acceleration. Find the distance 
for arbitrary initial position and velocity.

15–19 GENERAL SOLUTION. INITIAL VALUE
PROBLEM (IVP)

(More in the next set.) (a) Verify that the given functions
are linearly independent and form a basis of solutions of
the given ODE. (b) Solve the IVP. Graph or sketch the
solution.
15.

16.

17.

18.

19.

20. CAS PROJECT. Linear Independence. Write a
program for testing linear independence and depen-
dence. Try it out on some of the problems in this and
the next problem set and on examples of your own.

e!x sin xe!x cos x, 
ys " 2yr " 2y ! 0, y(0) ! 0, yr(0) ! 15,
x, x ln x
x2ys # xyr " y ! 0, y(1) ! 4.3, yr(1) ! 0.5,
x3>2, x!1>24x2ys # 3y ! 0, y(1) ! #3, yr(1) ! 0,
e!0.3x, xe!0.3x

yr(0) ! 0.14,ys " 0.6yr " 0.09y ! 0, y(0) ! 2.2,
cos 2.5x, sin 2.5x
4ys " 25y ! 0, y(0) ! 3.0, yr(0) ! #2.5,

y(t)

y(t)

(1, 0)(#1, 0)k ! 1
y(x)

ys ! k21 " yr2

P R O B L E M  S E T  2 . 1

2.2 Homogeneous Linear ODEs 
with Constant Coefficients

We shall now consider second-order homogeneous linear ODEs whose coefficients a and
b are constant,

(1) .

These equations have important applications in mechanical and electrical vibrations, as
we shall see in Secs. 2.4, 2.8, and 2.9.

To solve (1), we recall from Sec. 1.5 that the solution of the first-order linear ODE with
a constant coefficient k

yr " ky ! 0

ys " ayr " by ! 0
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is an exponential function . This gives us the idea to try as a solution of (1) the
function

(2) .

Substituting (2) and its derivatives

and

into our equation (1), we obtain

.

Hence if is a solution of the important characteristic equation (or auxiliary equation)

(3)

then the exponential function (2) is a solution of the ODE (1). Now from algebra we recall
that the roots of this quadratic equation (3) are

(4) ,

(3) and (4) will be basic because our derivation shows that the functions

(5) and

are solutions of (1). Verify this by substituting (5) into (1).
From algebra we further know that the quadratic equation (3) may have three kinds of

roots, depending on the sign of the discriminant , namely,a2 # 4b

y2 " el2xy1 " el1x

l2 " 1
2 
A#a # 2a2 # 4b B .l1 " 1

2 
A#a ! 2a2 # 4b B

l2 ! al ! b " 0

l

(l2 ! al ! b)elx " 0

ys " l2elxyr " lelx

y " elx

y " ce!kx

54 CHAP. 2 Second-Order Linear ODEs

(Case I) Two real roots if ,

(Case II) A real double root if ,

(Case III) Complex conjugate roots if .a2 # 4b & 0

a2 # 4b " 0

a2 # 4b % 0

Case I. Two Distinct Real-Roots and 
In this case, a basis of solutions of (1) on any interval is

and

because and are defined (and real) for all x and their quotient is not constant. The
corresponding general solution is

(6) .y " c1el1x ! c2el2x

y2y1

y2 " el2xy1 " el1x

l2l1
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E X A M P L E  1 General Solution in the Case of Distinct Real Roots

We can now solve in Example 6 of Sec. 2.1 systematically. The characteristic equation is
Its roots are and . Hence a basis of solutions is and and gives the same

general solution as before,

.

E X A M P L E  2 Initial Value Problem in the Case of Distinct Real Roots

Solve the initial value problem

, , .

Solution. Step 1. General solution. The characteristic equation is

.

Its roots are

and

so that we obtain the general solution

.

Step 2. Particular solution. Since , we obtain from the general solution and the initial
conditions

Hence and . This gives the answer . Figure 30 shows that the curve begins at
with a negative slope but note that the axes have different scales!), in agreement with the initial

conditions. !
(#5,y " 4

y " ex ! 3e!2xc2 " 3c1 " 1

 yr(0) " c1 # 2c2 " #5.

 y(0) " c1 ! c2 " 4,

yr(x) " c1ex # 2c2e!2x

y " c1ex ! c2e!2x

l2 " 1
2 (#1 # 19) " #2l1 " 1

2 (#1 ! 19) " 1

l2 ! l # 2 " 0

yr(0) " #5y(0) " 4ys ! yr # 2y " 0

!y " c1ex ! c2e!x

e!xexl2 " #1l1 " 1l2 # 1 " 0.
ys # y " 0
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Case II. Real Double Root 
If the discriminant is zero, we see directly from (4) that we get only one root,

, hence only one solution,

.

To obtain a second independent solution (needed for a basis), we use the method of
reduction of order discussed in the last section, setting . Substituting this and its
derivatives and into (1), we first have

.(usy1 ! 2uryr1 ! uys1) ! a(ury1 ! uyr1) ! buy1 " 0

ys2yr2 " ury1 ! uyr1
y2 " uy1

y2

y1 " e!(a/2)x

l " l1 " l2 " #a/2
a2 # 4b

l " #a/2

Fig. 30. Solution in Example 2
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Collecting terms in and u, as in the last section, we obtain

.

The expression in the last parentheses is zero, since is a solution of (1). The expression
in the first parentheses is zero, too, since

.

We are thus left with . Hence . By two integrations, . To
get a second independent solution , we can simply choose and
take . Then . Since these solutions are not proportional, they form a basis.
Hence in the case of a double root of (3) a basis of solutions of (1) on any interval is

.

The corresponding general solution is

(7)

WARNING! If is a simple root of (4), then with is not a solution
of (1).

E X A M P L E  3 General Solution in the Case of a Double Root

The characteristic equation of the ODE is . It has the double 
root . Hence a basis is and . The corresponding general solution is .

E X A M P L E  4 Initial Value Problem in the Case of a Double Root

Solve the initial value problem

, , .

Solution. The characteristic equation is . It has the double root 
This gives the general solution

.

We need its derivative

.

From this and the initial conditions we obtain

, ; hence .

The particular solution of the initial value problem is . See Fig. 31. !y " (3 # 2x)e!0.5x

c2 " #2yr(0) " c2 # 0.5c1 " 3.5y(0) " c1 " 3.0

yr " c2e!0.5x # 0.5(c1 ! c2x)e!0.5x

y " (c1 ! c2x)e!0.5x

l " #0.5.l2 ! l ! 0.25 " (l ! 0.5) 2 " 0

yr(0) " #3.5y(0) " 3.0ys ! yr ! 0.25y " 0

!y " (c1 ! c2x)e!3xxe!3xe!3xl " #3
l2 ! 6l ! 9 " (l ! 3)2 " 0ys ! 6yr ! 9y " 0

c2 $ 0(c1 ! c2x)elxl

y " (c1 ! c2x)e!ax/2.

e!ax/2,  xe!ax/2

y2 " xy1u " x
c1 " 1, c2 " 0y2 " uy1

u " c1x ! c2us " 0usy1 " 0

2yr1 " #ae!ax/2 " #ay1

y1

usy1 ! ur(2yr1 ! ay1) ! u(ys1 ! ayr1 ! by1) " 0

us, ur,
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1412108642 x
–1

0

1

2

3
y

Fig. 31. Solution in Example 4
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Case III. Complex Roots 
This case occurs if the discriminant of the characteristic equation (3) is negative.
In this case, the roots of (3) are the complex that give the complex solutions
of the ODE (1). However, we will show that we can obtain a basis of real solutions

(8)

where . It can be verified by substitution that these are solutions in the
present case. We shall derive them systematically after the two examples by using the
complex exponential function. They form a basis on any interval since their quotient

is not constant. Hence a real general solution in Case III is

(9) (A, B arbitrary).

E X A M P L E  5 Complex Roots. Initial Value Problem

Solve the initial value problem

.

Solution. Step 1. General solution. The characteristic equation is . It has the roots
Hence , and a general solution (9) is

.

Step 2. Particular solution. The first initial condition gives . The remaining expression is
. We need the derivative (chain rule!)

.

From this and the second initial condition we obtain . Hence . Our solution is

.

Figure 32 shows y and the curves of and (dashed), between which the curve of y oscillates.
Such “damped vibrations” (with being time) have important mechanical and electrical applications, as we
shall soon see (in Sec. 2.4). !

x " t
#e!0.2xe!0.2x

y " e!0.2x sin 3x

B " 1yr(0) " 3B " 3

yr " B(#0.2e!0.2x sin 3x ! 3e!0.2x cos 3x)

y " Be!0.2x sin 3x
y(0) " A " 0

y " e!0.2x (A cos 3x ! B sin 3x)

v " 3#0.2 ' 3i.
l2 ! 0.4l ! 9.04 " 0

ys ! 0.4yr ! 9.04y " 0,  y(0) " 0,  yr(0) " 3

y " e!ax/2 (A cos vx ! B sin vx)

cot vx

v2 " b # 1
4 

a2

(v % 0)y1 " e!ax/2 cos vx,  y2 " e!ax/2 sin vx

l " # 
1
2 

a ' iv
a2 # 4b

#1
2 

a ! iv and #1
2 a # iv
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Fig. 32. Solution in Example 5

y

x0 10 15 20 25 305

0.5

1.0

–0.5

–1.0

E X A M P L E  6 Complex Roots

A general solution of the ODE

( constant, not zero) 

is

With this confirms Example 4 in Sec. 2.1. !v " 1

y " A cos vx ! B sin vx.

vys ! v2y " 0
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Summary of Cases I–III

58 CHAP. 2 Second-Order Linear ODEs

Case Roots of (2) Basis of (1) General Solution of (1)

I Distinct real 

II Real double root 

Complex conjugate
III ,

e!ax>2 sin vxl2 " #1
2 

a # iv
y " e!ax>2(A cos vx ! B sin vx)e!ax>2 cos vxl1 " #1

2 
a ! iv

y " (c1 ! c2x)e!ax>2e!ax>2, xe!ax>2
l " #1

2 
a

y " c1el1x ! c2el2xel1x, el2x

l1, l2

It is very interesting that in applications to mechanical systems or electrical circuits,
these three cases correspond to three different forms of motion or flows of current,
respectively. We shall discuss this basic relation between theory and practice in detail in
Sec. 2.4 (and again in Sec. 2.8).

Derivation in Case III. Complex Exponential Function
If verification of the solutions in (8) satisfies you, skip the systematic derivation of these
real solutions from the complex solutions by means of the complex exponential function

of a complex variable . We write , not because x and y occur
in the ODE. The definition of in terms of the real functions , , and is

(10) .

This is motivated as follows. For real , hence , , , we get
the real exponential function . It can be shown that , just as in real. (Proof
in Sec. 13.5.) Finally, if we use the Maclaurin series of with as well as

, etc., and reorder the terms as shown (this is permissible, as
can be proved), we obtain the series

(Look up these real series in your calculus book if necessary.) We see that we have obtained
the formula

(11)

called the Euler formula. Multiplication by gives (10).er

eit " cos t ! i sin t,

 " cos t ! i sin t.

 " 1 #
t 2

2!
!

t 4

4!
# ! Á ! i at #

t 3

3!
!

t 5

5!
# ! Áb

  eit " 1 ! it !
(it)2

2!
!

(it)3

3!
!

(it)4

4!
!

(it) 5

5!
 ! Á

i2 " #1, i3 " #i, i4 " 1
z " itez

ez1!z2 " ez1ez2er
sin 0 " 0cos 0 " 1t " 0z " r

ez " er!it " ereit " er(cos t ! i sin t)

sin tcos terez
x ! iyr ! itz " r ! itez
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For later use we note that so that by
addition and subtraction of this and (11),

(12) .

After these comments on the definition (10), let us now turn to Case III.
In Case III the radicand in (4) is negative. Hence is positive and,

using , we obtain in (4)

with defined as in (8). Hence in (4),

and, similarly, .

Using (10) with and , we thus obtain

We now add these two lines and multiply the result by . This gives as in (8). Then
we subtract the second line from the first and multiply the result by . This gives 
as in (8). These results obtained by addition and multiplication by constants are again
solutions, as follows from the superposition principle in Sec. 2.1. This concludes the
derivation of these real solutions in Case III.

y21/(2i)
y1

1
2

 el2x " e!(a/2)x#ivx " e!(a/2)x(cos vx # i sin vx).

 el1x " e!(a/2)x!ivx " e!(a/2)x(cos vx ! i sin vx)

t " vxr " #1
2 

ax

l2 " 1
2 

a # ivl1 " 1
2 

a ! iv

v

1
22a2 # 4b " 1

22#(4b # a2) " 2#(b # 1
4 

a2) " i2b # 1
4 

a2 " iv

1#1 " i
4b # a2a2 # 4b

cos t " 1
2 (eit !  e!it),  sin t "

1
2i

 (eit # e!it)

e!it " cos (#t) ! i sin (#t) " cos t # i sin t,
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1–15 GENERAL SOLUTION
Find a general solution. Check your answer by substitution.
ODEs of this kind have important applications to be
discussed in Secs. 2.4, 2.7, and 2.9.
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13. 9ys # 30yr ! 25y " 0

ys ! 9yr ! 20y " 0
4ys # 4yr # 3y " 0
100ys ! 240yr ! (196p2 ! 144)y " 0
ys ! 1.8yr # 2.08y " 0
ys ! yr ! 3.25y " 0
ys ! 4.5yr " 0
10ys # 32yr ! 25.6y " 0
ys ! 2pyr ! p2y " 0
ys ! 4yr ! (p2 ! 4)y " 0
ys ! 6yr ! 8.96y " 0
ys ! 36y " 0
4ys # 25y " 0

P R O B L E M  S E T  2 . 2

14.
15.

16–20 FIND AN ODE
for the given basis.

16. ,  17. , 
18. ,  19. , 
20. , 

21–30 INITIAL VALUES PROBLEMS
Solve the IVP. Check that your answer satisfies the ODE as
well as the initial conditions. Show the details of your work.
21. ,
22. The ODE in Prob. ,
23. ,
24. ,
25. ,
26. , yr(0) " 1ys # k2y " 0 (k $ 0), y(0) " 1

 yr(0) " #2ys # y " 0, y(0) " 2
 yr(#2) " #e>24ys# 4yr # 3y " 0, y(#2) " e

 yr(0) " 0ys ! yr # 6y " 0, y(0) " 10
 yr(1

2) " #24, y(1
2) " 1

 yr(0) " #1.2ys ! 25y " 0, y(0) " 4.6

e!3.1x sin 2.1xe!3.1x cos 2.1x
e(!2!i)xe(!2!i)xsin 2pxcos 2px

xe!25xe!25xe!4.3xe2.6x

ys ! ayr ! by " 0

ys ! 0.54yr ! (0.0729 ! p)y " 0
ys ! 2k2yr ! k4y " 0
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27. The ODE in Prob. 5,
,

28. ,
29. The ODE in Prob. ,
30. ,

31–36 LINEAR INDEPENDENCE is of basic impor-
tance, in this chapter, in connection with general solutions,
as explained in the text. Are the following functions linearly
independent on the given interval? Show the details of your
work.

31. any interval
32.
33.
34.
35.
36. , 0,
37. Instability. Solve for the initial conditions

, . Then change the initial conditions
to , and explain why this
small change of 0.001 at causes a large change later,t " 0

yr(0) " #0.999y(0) " 1.001
yr(0) " #1y(0) " 1

ys # y " 0
 #1 ( x ( 1e!x cos 12 

x
sin 2x, cos x sin x, x & 0 
ln x, ln (x3), x % 1 
x2, x2 ln x, x % 1
eax, e!ax, x % 0
ekx, xekx, 

 yr(0) " 10.09ys # 30yr ! 25y " 0, y(0) " 3.3
 yr(0) " 115, y(0) " 0
 yr(0) " #0.3258ys # 2yr # y " 0, y(0) " #0.2

#4.5p # 1 " 13.137 yr(0) "y(0) " 4.5
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e.g., 22 at . This is instability: a small initial
difference in setting a quantity (a current, for in-
stance) becomes larger and larger with time t. This is
undesirable.

38. TEAM PROJECT. General Properties of Solutions
(a) Coefficient formulas. Show how a and b in (1)
can be expressed in terms of and . Explain how
these formulas can be used in constructing equations
for given bases.
(b) Root zero. Solve (i) by the present
method, and (ii) by reduction to first order. Can you
explain why the result must be the same in both
cases? Can you do the same for a general ODE

(c) Double root. Verify directly that with 
is a solution of (1) in the case of a double root.

Verify and explain why is a solution of
but is not.

(d) Limits. Double roots should be limiting cases of
distinct roots , as, say, . Experiment with
this idea. (Remember l’Hôpital’s rule from calculus.)
Can you arrive at ? Give it a try.xel1x

l2 : l1l2l1

xe#2xys # yr # 6y " 0
y " e!2x

#a>2 l "xelx
ys ! ayr " 0?

ys ! 4yr " 0

l2l1

t " 10

2.3 Differential Operators. Optional
This short section can be omitted without interrupting the flow of ideas. It will not be
used subsequently, except for the notations , etc. to stand for , etc.

Operational calculus means the technique and application of operators. Here, an
operator is a transformation that transforms a function into another function. Hence
differential calculus involves an operator, the differential operator D, which
transforms a (differentiable) function into its derivative. In operator notation we write

and

(1) .

Similarly, for the higher derivatives we write , and so on. For example,
etc.

For a homogeneous linear ODE with constant coefficients we can
now introduce the second-order differential operator

,

where I is the identity operator defined by . Then we can write that ODE as

(2) .Ly " P(D)y " (D2 ! aD ! bI )y " 0

Iy " y

L " P(D) " D2 ! aD ! bI

ys ! ayr ! by " 0
D sin " cos, D2 sin " #sin,

D2y " D(Dy) " ys

Dy " yr "
dy
dx

D " d
dx

yr, ysDy, D 
2 y
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P suggests “polynomial.” L is a linear operator. By definition this means that if Ly and
exist (this is the case if y and w are twice differentiable), then exists for

any constants c and k, and

.

Let us show that from (2) we reach agreement with the results in Sec. 2.2. Since
and , we obtain

(3) 

This confirms our result of Sec. 2.2 that is a solution of the ODE (2) if and only if
is a solution of the characteristic equation .

is a polynomial in the usual sense of algebra. If we replace by the operator D,
we obtain the “operator polynomial” . The point of this operational calculus is that

can be treated just like an algebraic quantity. In particular, we can factor it.

E X A M P L E  1 Factorization, Solution of an ODE

Factor and solve .

Solution. because . Now has the
solution . Similarly, the solution of is . This is a basis of on any
interval. From the factorization we obtain the ODE, as expected,

.

Verify that this agrees with the result of our method in Sec. 2.2. This is not unexpected because we factored
in the same way as the characteristic polynomial .

It was essential that L in (2) had constant coefficients. Extension of operator methods to
variable-coefficient ODEs is more difficult and will not be considered here.

If operational methods were limited to the simple situations illustrated in this section,
it would perhaps not be worth mentioning. Actually, the power of the operator approach
appears in more complicated engineering problems, as we shall see in Chap. 6.

!P(l) " l2 # 3l # 40P(D)

 " ys ! 5yr # 8yr # 40y " ys # 3r # 40y " 0

 (D # 8I )(D ! 5I )y " (D # 8I )(yr ! 5y) " D(yr ! 5y) # 8(yr ! 5y)

P(D)y " 0y2 " e!5x(D ! 5I )y " 0y1 " e8x
(D # 8I)y " yr # 8y " 0I 2 " ID2 # 3D # 40I " (D # 8I )(D ! 5I )

P(D)y " 0P(D) " D2 # 3D # 40I

P(D)
P(D)

lP(l)
P(l) " 0

lelx

 " (l2 ! al ! b)elx " P(l)elx " 0.

 Lel(x) " P(D)el(x) " (D2 ! aD ! bI)el(x)

(D2el)(x) " l2elx(Del)(x) " lelx

L(cy ! kw) " cLy ! kLw

L(cy ! kw)Lw
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1–5 APPLICATION OF DIFFERENTIAL
OPERATORS

Apply the given operator to the given functions. Show all
steps in detail.

1.
2.
3.
4.
5. (D # 2I )(D ! 3I ); e2x, xe2x, e!3x

(D ! 6I )2; 6x ! sin 6x, xe!6x

(D # 2I )2; e2x, xe2x, e!2x

D # 3I; 3x2 ! 3x, 3e3x, cos 4x # sin 4x

D2 ! 2D; cosh 2x, e!x ! e2x, cos x

P R O B L E M  S E T  2 . 3

6–12 GENERAL SOLUTION
Factor as in the text and solve.
6.
7.
8.
9.

10.
11.
12. (D2 ! 3.0D ! 2.5I )y " 0

(D2 # 4.00D ! 3.84I )y " 0
(D2 ! 4.80D ! 5.76I )y " 0
(D2 # 4.20D ! 4.41I )y " 0
(D2 ! 3I )y " 0
(4D2 # I )y " 0
(D2 ! 4.00D ! 3.36I )y " 0

c02.qxd  10/27/10  6:06 PM  Page 61



13. Linear operator. Illustrate the linearity of L in (2) by
taking , and .
Prove that L is linear.

14. Double root. If has distinct roots 
and , show that a particular solution is

. Obtain from this a solution
by letting and applying l’Hôpital’s rule.! : lxelx

y " (e!x # elx)>(! # l)
l!

D2 ! aD ! bI

w " cos 2xc " 4, k " #6, y " e2x
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15. Definition of linearity. Show that the definition of
linearity in the text is equivalent to the following. If

and exist, then exists and 
and exist for all constants c and k, and

as well as 
and .L[kw] " kL[w]

L[cy] " cL[ y]L[ y ! w] " L[ y] ! L[w]
L[kw]

L[cy]L[ y ! w]L[w]L[ y]

2.4 Modeling of Free Oscillations 
of a Mass–Spring System

Linear ODEs with constant coefficients have important applications in mechanics, as we
show in this section as well as in Sec. 2.8, and in electrical circuits as we show in Sec. 2.9.
In this section we model and solve a basic mechanical system consisting of a mass on an
elastic spring (a so-called “mass–spring system,” Fig. 33), which moves up and down.

Setting Up the Model
We take an ordinary coil spring that resists extension as well as compression. We suspend
it vertically from a fixed support and attach a body at its lower end, for instance, an iron
ball, as shown in Fig. 33. We let denote the position of the ball when the system
is at rest (Fig. 33b). Furthermore, we choose the downward direction as positive, thus
regarding downward forces as positive and upward forces as negative.

y " 0

2ROBERT HOOKE (1635–1703), English physicist, a forerunner of Newton with respect to the law of
gravitation.

Unstretched
spring

System at
rest

System in
motion

(a) (b) (c)

s0

y
(y = 0)

Fig. 33. Mechanical mass–spring system

We now let the ball move, as follows. We pull it down by an amount (Fig. 33c).
This causes a spring force

(1) (Hooke’s law2)

proportional to the stretch y, with called the spring constant. The minus sign
indicates that points upward, against the displacement. It is a restoring force: It wants
to restore the system, that is, to pull it back to . Stiff springs have large k.y " 0

F1

k ( %  0)

F1 " #ky

y % 0
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Note that an additional force is present in the spring, caused by stretching it in
fastening the ball, but has no effect on the motion because it is in equilibrium with
the weight W of the ball, , where 

is the constant of gravity at the Earth’s surface (not to be confused with
the universal gravitational constant , which we
shall not need; here and are the Earth’s radius and
mass, respectively).

The motion of our mass–spring system is determined by Newton’s second law

(2)

where and “Force” is the resultant of all the forces acting on the ball. (For
systems of units, see the inside of the front cover.)

ODE of the Undamped System
Every system has damping. Otherwise it would keep moving forever. But if the damping
is small and the motion of the system is considered over a relatively short time, we
may disregard damping. Then Newton’s law with gives the model

thus

(3) .

This is a homogeneous linear ODE with constant coefficients. A general solution is
obtained as in Sec. 2.2, namely (see Example 6 in Sec. 2.2)

(4)

This motion is called a harmonic oscillation (Fig. 34). Its frequency is Hertz3

because and in (4) have the period . The frequency f is called
the natural frequency of the system. (We write to reserve for Sec. 2.8.)vv0

2p>v0sincos(" cycles>sec)
f " v0>2p

v0 " B k
m.y(t) " A cos v0t ! B sin v0t

mys ! ky " 0

mys " #F1 " #ky;
F " #F1

ys " d2y>dt 2

Mass ) Acceleration " mys " Force

M " 5.98 # 1024 kgR " 6.37 # 106 m
G " gR2>M " 6.67 # 10!11 nt m2>kg2

32.17 ft>sec2
g " 980 cm>sec2 " 9.8 m>sec2 "#F0 " W " mg

F0

#F0
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y

t

1
2

3

1
2
3

Positive
Zero
Negative

Initial velocity

Fig. 34. Typical harmonic oscillations (4) and with the same and 
different initial velocities , positive  1 , zero  2 , negative  3yr(0) " v0B

y(0) " A(4*)

3HEINRICH HERTZ (1857–1894), German physicist, who discovered electromagnetic waves, as the basis
of wireless communication developed by GUGLIELMO MARCONI (1874–1937), Italian physicist (Nobel prize
in 1909).
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An alternative representation of (4), which shows the physical characteristics of amplitude
and phase shift of (4), is

(4*)

with and phase angle , where . This follows from the
addition formula (6) in App. 3.1.

E X A M P L E  1 Harmonic Oscillation of an Undamped Mass–Spring System

If a mass–spring system with an iron ball of weight nt (about 22 lb) can be regarded as undamped, and
the spring is such that the ball stretches it 1.09 m (about 43 in.), how many cycles per minute will the system
execute? What will its motion be if we pull the ball down from rest by 16 cm (about 6 in.) and let it start with
zero initial velocity?

Solution. Hooke’s law (1) with W as the force and 1.09 meter as the stretch gives ; thus
. The mass is . This

gives the frequency .
From (4) and the initial conditions, . Hence the motion is

(Fig. 35).

If you have a chance of experimenting with a mass–spring system, don’t miss it. You will be surprised about
the good agreement between theory and experiment, usually within a fraction of one percent if you measure
carefully. !

y(t) " 0.16 cos 3t [meter]  or  0.52 cos 3t [ft]

y(0) " A " 0.16 [meter] and yr(0) " v0B " 0
v0>(2p) " 2k>m>(2p) " 3>(2p) " 0.48 [Hz] " 29 [cycles>min]

m " W>g " 98>9.8 " 10 [kg]98>1.09 " 90 [kg>sec2] " 90 [nt>meter]k " W>1.09 "
W " 1.09k

W " 98

tan d " B>AdC " 2A2 ! B2

y(t) " C cos (v0t # d)
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102 4 6 8 t
–0.1
–0.2

0
0.1

0.2
y

Fig. 35. Harmonic oscillation in Example 1

ODE of the Damped System
To our model we now add a damping force

obtaining ; thus the ODE of the damped mass–spring system is

(5) (Fig. 36)

Physically this can be done by connecting the ball to a dashpot; see Fig. 36. We assume
this damping force to be proportional to the velocity . This is generally a good
approximation for small velocities.

yr " dy>dt

mys ! cyr ! ky " 0.

mys " #ky # cyr

F2 " #cyr,

mys " #ky

Fig. 36.
Damped system

Dashpot

Ball

Springk

m

c
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Case I. . Distinct real roots . (Overdamping)

Case II. . A real double root. (Critical damping)

Case III. . Complex conjugate roots. (Underdamping)c2 & 4mk

c2 " 4mk

l1, l2c2 % 4mk

They correspond to the three Cases I, II, III in Sec. 2.2.

Discussion of the Three Cases
Case I. Overdamping
If the damping constant c is so large that , then are distinct real roots.
In this case the corresponding general solution of (5) is

(7) .

We see that in this case, damping takes out energy so quickly that the body does not
oscillate. For both exponents in (7) are negative because , and

. Hence both terms in (7) approach zero as . Practically
speaking, after a sufficiently long time the mass will be at rest at the static equilibrium
position . Figure 37 shows (7) for some typical initial conditions.(y " 0)

t : *b2 " a2 # k>m & a2
a % 0, b % 0t % 0

y(t) " c1e!(a!b)t ! c2e!(a"b)t

l1 and l2c2 % 4mk

The constant c is called the damping constant. Let us show that c is positive. Indeed,
the damping force acts against the motion; hence for a downward motion we
have which for positive c makes F negative (an upward force), as it should be.
Similarly, for an upward motion we have which, for makes positive (a
downward force).

The ODE (5) is homogeneous linear and has constant coefficients. Hence we can solve
it by the method in Sec. 2.2. The characteristic equation is (divide (5) by m)

.

By the usual formula for the roots of a quadratic equation we obtain, as in Sec. 2.2,

(6) , where and .

It is now interesting that depending on the amount of damping present—whether a lot of
damping, a medium amount of damping or little damping—three types of motions occur,
respectively:

b "
1

2m
2c2 # 4mka "

c
2m

l1 " #a ! b, l2 " #a # b

l2 !
c
m l !

k
m " 0

F2c % 0yr & 0
yr % 0

F2 " #cyr
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t

y

1

2

3

(a)

y

t
1

1
2
3

2

Positive
Zero
Negative

Initial velocity

3

(b)

Fig. 37. Typical motions (7) in the overdamped case
(a) Positive initial displacement
(b) Negative initial displacement

Case II. Critical Damping
Critical damping is the border case between nonoscillatory motions (Case I) and oscillations
(Case III). It occurs if the characteristic equation has a double root, that is, if ,
so that . Then the corresponding general solution of (5) is

(8) .

This solution can pass through the equilibrium position at most once because 
is never zero and can have at most one positive zero. If both are positive
(or both negative), it has no positive zero, so that y does not pass through 0 at all. Figure 38
shows typical forms of (8). Note that they look almost like those in the previous figure.

c1 and c2c1 ! c2t
e!aty " 0

y(t) " (c1 ! c2t)e!at

b " 0, l1 " l2 " #a
c2 " 4mk

y

t

1

2

3

1
2
3

Positive
Zero
Negative

Initial velocity

Fig. 38. Critical damping [see (8)]
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Case III. Underdamping
This is the most interesting case. It occurs if the damping constant c is so small that

. Then in (6) is no longer real but pure imaginary, say,

(9) where .

(We now write to reserve for driving and electromotive forces in Secs. 2.8 and 2.9.)
The roots of the characteristic equation are now complex conjugates,

with , as given in (6). Hence the corresponding general solution is

(10)

where , as in .
This represents damped oscillations. Their curve lies between the dashed curves

in Fig. 39, touching them when is an integer multiple
of because these are the points at which equals 1 or .

The frequency is Hz (hertz, cycles/sec). From (9) we see that the smaller
is, the larger is and the more rapid the oscillations become. If c approaches 0,

then approaches , giving the harmonic oscillation (4), whose frequency
is the natural frequency of the system.v0>(2p)

v0 " 2k>mv*
v*c ( %  0)
v*>(2p)

#1cos (v*t # d)p
v*t # dy " Ce!at and y " #Ce!at

(4*)C 2 " A2 ! B2 and tan d " B>A
y(t) " e!at(A cos v*t ! B sin v*t) " Ce!at cos (v*t # d)

a " c>(2m)

l1 " #a ! iv*,  l2 " #a # iv*

vv*

( %  0)v* "
1

2m
 24mk # c2 " B k

m
#

c2

4m2b " iv*

bc2 & 4mk
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Fig. 39. Damped oscillation in Case III [see (10)]

t

y

Ce– tα

–Ce– tα

E X A M P L E  2 The Three Cases of Damped Motion

How does the motion in Example 1 change if we change the damping constant c from one to another of the
following three values, with as before?

(I) , (II) , (III) .

Solution. It is interesting to see how the behavior of the system changes due to the effect of the damping,
which takes energy from the system, so that the oscillations decrease in amplitude (Case III) or even disappear
(Cases II and I).

(I) With , as in Example 1, the model is the initial value problem

.10ys ! 100yr ! 90y " 0,  y(0) " 0.16 [meter],  yr(0) " 0

m " 10 and k " 90

c " 10 kg>secc " 60 kg>secc " 100 kg>sec

y(0) " 0.16 and yr(0) " 0
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The characteristic equation is . It has the roots and . This
gives the general solution

. We also need .

The initial conditions give . The solution is . Hence in
the overdamped case the solution is

.

It approaches 0 as . The approach is rapid; after a few seconds the solution is practically 0, that is, the
iron ball is at rest.

(II) The model is as before, with instead of 100. The characteristic equation now has the form
. It has the double root . Hence the corresponding general solution is

. We also need .

The initial conditions give . Hence in the critical case the
solution is

.

It is always positive and decreases to 0 in a monotone fashion.
(III) The model now is . Since is smaller than the critical c, we shall get

oscillations. The characteristic equation is . It has the complex
roots [see (4) in Sec. 2.2 with and ]

.

This gives the general solution

.

Thus . We also need the derivative

.

Hence . This gives the solution

.

We see that these damped oscillations have a smaller frequency than the harmonic oscillations in Example 1 by 
about (since 2.96 is smaller than 3.00 by about ). Their amplitude goes to zero. See Fig. 40. !1%1%

y " e!0.5t(0.16 cos 2.96t ! 0.027 sin 2.96t) " 0.162e!0.5t cos (2.96t # 0.17)

yr(0) " #0.5A ! 2.96B " 0, B " 0.5A>2.96 " 0.027

yr " e!0.5t(#0.5A cos 2.96t # 0.5B sin 2.96t # 2.96A sin 2.96t ! 2.96B cos 2.96t)

y(0) " A " 0.16

y " e!0.5t(A cos 2.96t ! B sin 2.96t)

l " #0.5 ' 20.52 # 9 " #0.5 ' 2.96i

b " 9a " 1
10l2 ! 10l ! 90 " 10[(l ! 1

2) 2 ! 9 # 1
4] " 0

c " 1010ys ! 10yr ! 90y " 0

y " (0.16 ! 0.48t)e!3t

y(0) " c1 " 0.16, yr(0) " c2 # 3c1 " 0, c2 " 0.48

yr " (c2 # 3c1 # 3c2t)e!3ty " (c1 ! c2t)e!3t

#310l2 ! 60l ! 90 " 10(l ! 3) 2 " 0
c " 60

t : *

y " #0.02e!9t ! 0.18e!t

c1 " #0.02, c2 " 0.18c1 ! c2 " 0.16, #9c1 # c2 " 0

yr " #9c1e!9t # c2e!ty " c1e!9t ! c2e!t

#1#910l2 ! 100l ! 90 " 10(l ! 9)(l ! 1) " 0
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102 4 6 8 t
–0.05

–0.1

0

0.05

0.1

0.15
y

Fig. 40. The three solutions in Example 2

This section concerned free motions of mass–spring systems. Their models are homo-
geneous linear ODEs. Nonhomogeneous linear ODEs will arise as models of forced
motions, that is, motions under the influence of a “driving force.” We shall study them
in Sec. 2.8, after we have learned how to solve those ODEs.
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1–10 HARMONIC OSCILLATIONS 
(UNDAMPED MOTION)

1. Initial value problem. Find the harmonic motion (4)
that starts from with initial velocity . Graph or
sketch the solutions for , and various

of your choice on common axes. At what t-values
do all these curves intersect? Why?

2. Frequency. If a weight of 20 nt (about 4.5 lb) stretches
a certain spring by 2 cm, what will the frequency of the
corresponding harmonic oscillation be? The period?

3. Frequency. How does the frequency of the harmonic
oscillation change if we (i) double the mass, (ii) take
a spring of twice the modulus? First find qualitative
answers by physics, then look at formulas.

4. Initial velocity. Could you make a harmonic oscillation
move faster by giving the body a greater initial push?

5. Springs in parallel. What are the frequencies of
vibration of a body of mass kg (i) on a spring
of modulus , (ii) on a spring of modulus

, (iii) on the two springs in parallel? See
Fig. 41.
k2 " 45 nt>mk1 " 20 nt>m m " 5

v0

v0 " p, y0 " 1
v0y0

P R O B L E M  S E T  2 . 4
The cylindrical buoy of diameter 60 cm in Fig. 43 is
floating in water with its axis vertical. When depressed
downward in the water and released, it vibrates with
period 2 sec. What is its weight?

Fig. 41. Parallel springs (Problem 5)

Fig. 42. Pendulum (Problem 7)

6. Spring in series. If a body hangs on a spring of
modulus , which in turn hangs on a spring 
of modulus , what is the modulus k of this
combination of springs?

7. Pendulum. Find the frequency of oscillation of a
pendulum of length L (Fig. 42), neglecting air
resistance and the weight of the rod, and assuming 
to be so small that practically equals .usin u

u

k2 " 12
s2k1 " 8

s1

10. TEAM PROJECT. Harmonic Motions of Similar
Models. The unifying power of mathematical meth-
ods results to a large extent from the fact that different
physical (or other) systems may have the same or very
similar models. Illustrate this for the following three
systems
(a) Pendulum clock. A clock has a 1-meter pendulum.
The clock ticks once for each time the pendulum
completes a full swing, returning to its original position.
How many times a minute does the clock tick?
(b) Flat spring (Fig. 45). The harmonic oscillations
of a flat spring with a body attached at one end and
horizontally clamped at the other are also governed by
(3). Find its motions, assuming that the body weighs
8 nt (about 1.8 lb), the system has its static equilibrium
1 cm below the horizontal line, and we let it start from
this position with initial velocity 10 cm/sec.

8. Archimedian principle. This principle states that the
buoyancy force equals the weight of the water
displaced by the body (partly or totally submerged).

Fig. 44. Tube (Problem 9)

9. Vibration of water in a tube. If 1 liter of water (about
1.06 US quart) is vibrating up and down under the
influence of gravitation in a U-shaped tube of diameter
2 cm (Fig. 44), what is the frequency? Neglect friction.
First guess.

Fig. 43. Buoy (Problem 8)

L

θ
Body of
mass m

Water 
level

( y = 0)
y

y

Fig. 45. Flat spring
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(c) Torsional vibrations (Fig. 46). Undamped
torsional vibrations (rotations back and forth) of a
wheel attached to an elastic thin rod or wire are
governed by the equation , where 
is the angle measured from the state of equilibrium.
Solve this equation for , initial
angle and initial angular velocity

.20° sec!1 (" 0.349 rad # sec!1)
30°(" 0.5235 rad)

K>I0 "  13.69 sec!2

uI0us ! Ku "  0

70 CHAP. 2 Second-Order Linear ODEs

11–20 DAMPED MOTION
11. Overdamping. Show that for (7) to satisfy initial condi-

tions and we must have 
and 

.

12. Overdamping. Show that in the overdamped case, the
body can pass through at most once (Fig. 37).

13. Initial value problem. Find the critical motion (8)
that starts from with initial velocity . Graph
solution curves for and several such
that (i) the curve does not intersect the t-axis, (ii) it
intersects it at respectively.

14. Shock absorber. What is the smallest value of the
damping constant of a shock absorber in the suspen-
sion of a wheel of a car (consisting of a spring and an
absorber) that will provide (theoretically) an oscillation-
free ride if the mass of the car is 2000 kg and the spring
constant equals ?

15. Frequency. Find an approximation formula for in
terms of by applying the binomial theorem in (9)
and retaining only the first two terms. How good is the
approximation in Example 2, III?

16. Maxima. Show that the maxima of an underdamped
motion occur at equidistant t-values and find the
distance.

17. Underdamping. Determine the values of t corre-
sponding to the maxima and minima of the oscillation

. Check your result by graphing .

18. Logarithmic decrement. Show that the ratio of 
two consecutive maximum amplitudes of a damped
oscillation (10) is constant, and the natural logarithm
of this ratio called the logarithmic decrement,

y(t)y(t) " e!t sin t

v0

v*

4500 kg>sec2

t " 1, 2, . . . , 5,

v0a " 1, y0 " 1
v0y0

y " 0

v0>b]>2 c2 " [(1 # a>b)y0 #[(1 ! a>b)y0 ! v0>b]>2 c1 "v(0) " v0y(0) " y0

equals . Find for the solutions of
.

19. Damping constant. Consider an underdamped motion
of a body of mass . If the time between two
consecutive maxima is 3 sec and the maximum
amplitude decreases to its initial value after 10 cycles,
what is the damping constant of the system?

20. CAS PROJECT. Transition Between Cases I, II,
III. Study this transition in terms of graphs of typical
solutions. (Cf. Fig. 47.)
(a) Avoiding unnecessary generality is part of good
modeling. Show that the initial value problems (A)
and (B),

(A)

(B) the same with different c and (instead
of 0), will give practically as much information as a
problem with other m, k, .
(b) Consider (A). Choose suitable values of c,
perhaps better ones than in Fig. 47, for the transition
from Case III to II and I. Guess c for the curves in the
figure.
(c) Time to go to rest. Theoretically, this time is
infinite (why?). Practically, the system is at rest when
its motion has become very small, say, less than 0.1%
of the initial displacement (this choice being up to us),
that is in our case,

(11) for all t greater than some .

In engineering constructions, damping can often be
varied without too much trouble. Experimenting with
your graphs, find empirically a relation between 
and c.
(d) Solve (A) analytically. Give a reason why the
solution c of , with the solution of

, will give you the best possible c satisfying
(11).
(e) Consider (B) empirically as in (a) and (b). What
is the main difference between (B) and (A)?

yr(t) " 0
t2y(t2) " #0.001

t1

t1ƒ y(t) ƒ & 0.001

y(0), yr(0)

yr(0) " #2

ys ! cyr ! y " 0,  y(0) " 1,  yr(0) " 0

1
2

m " 0.5 kg

ys ! 2yr ! 5y " 0
¢¢ " 2pa>v*

Fig. 47. CAS Project 20

Fig. 46. Torsional vibrations

θ

1

0.5

–0.5

–1

6 1084

y

t2
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2.5 Euler–Cauchy Equations
Euler–Cauchy equations4 are ODEs of the form

(1)

with given constants a and b and unknown function . We substitute

into (1). This gives

and we now see that was a rather natural choice because we have obtained a com-
mon factor . Dropping it, we have the auxiliary equation or

(2) . (Note: , not a.)

Hence is a solution of (1) if and only if m is a root of (2). The roots of (2) are

(3) .

Case I. Real different roots give two real solutions

and .

These are linearly independent since their quotient is not constant. Hence they constitute
a basis of solutions of (1) for all x for which they are real. The corresponding general
solution for all these x is

(4) (c1, c2 arbitrary).

E X A M P L E  1 General Solution in the Case of Different Real Roots

The Euler–Cauchy equation has the auxiliary equation . The
roots are 0.5 and . Hence a basis of solutions for all positive x is and and gives the general
solution

. !(x % 0)y " c11x !
c2

x

y2 " 1>xy1 " x0.5#1
m2 ! 0.5m # 0.5 " 0x2ys ! 1.5xyr # 0.5y " 0

y " c1xm1 !  c2xm2

y2(x) " xm2y1(x) " xm1

m1 and m2

m1 " 1
2 

(1 # a) ! 21
4 

(1 # a)2 # b,  m2 " 1
2 

(1 # a) # 21
4 

(1 # a)2 # b

y " xm

a # 1m2 ! (a # 1)m ! b " 0

m(m # 1) ! am ! b " 0xm
y " xm

x2m(m # 1)xm#2 ! axmxm#1 ! bxm " 0

y " xm,  yr " mxm!1,  ys " m(m # 1)xm!2

y(x)

x2ys ! axyr ! by " 0

SEC. 2.5 Euler–Cauchy Equations 71

4LEONHARD EULER (1707–1783) was an enormously creative Swiss mathematician. He made
fundamental contributions to almost all branches of mathematics and its application to physics. His important
books on algebra and calculus contain numerous basic results of his own research. The great French
mathematician AUGUSTIN LOUIS CAUCHY (1789–1857) is the father of modern analysis. He is the creator
of complex analysis and had great influence on ODEs, PDEs, infinite series, elasticity theory, and optics.
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Case II. A real double root occurs if and only if because 
then (2) becomes as can be readily verified. Then a solution is

, and (1) is of the form

(5) or .

A second linearly independent solution can be obtained by the method of reduction of
order from Sec. 2.1, as follows. Starting from , we obtain for u the expression
(9) Sec. 2.1, namely,

where

From (5) in standard form (second ODE) we see that (not ax; this is essential!).
Hence . Division by 
gives , so that by integration. Thus, , and and 
are linearly independent since their quotient is not constant. The general solution
corresponding to this basis is

(6) , .

E X A M P L E  2 General Solution in the Case of a Double Root

The Euler–Cauchy equation has the auxiliary equation . It has the
double root , so that a general solution for all positive x is

Case III. Complex conjugate roots are of minor practical importance, and we discuss
the derivation of real solutions from complex ones just in terms of a typical example.

E X A M P L E  3 Real General Solution in the Case of Complex Roots

The Euler–Cauchy equation has the auxiliary equation .
The roots are complex conjugate, and , where . We now use the trick
of writing and obtain

Next we apply Euler’s formula (11) in Sec. 2.2 with t " 4 ln x to these two formulas. This gives

We now add these two formulas, so that the sine drops out, and divide the result by 2. Then we subtract the
second formula from the first, so that the cosine drops out, and divide the result by 2i. This yields

and

respectively. By the superposition principle in Sec. 2.2 these are solutions of the Euler–Cauchy equation (1).
Since their quotient is not constant, they are linearly independent. Hence they form a basis of solutions,
and the corresponding real general solution for all positive x is

(8) .y " x0.2[A cos (4 ln x) ! B sin (4 ln x)]

cot (4 ln x)

x0.2 sin (4 ln x)x0.2 cos (4 ln x)

 xm2 " x0.2[cos (4 ln x) # i sin (4 ln x)].

 xm1 " x0.2[cos (4 ln x) ! i sin (4 ln x)],

 xm2 " x0.2!4i " x0.2(eln x)!4i " x0.2e!(4 ln x)i.

 xm1 " x0.2!4i " x0.2(eln x)4i " x0.2e(4 ln x)i,

x " eln x
i " 1#1m2 " 0.2 # 4im1 " 0.2 ! 4i

m2 # 0.4m ! 16.04 " 0x2ys ! 0.6xyr ! 16.04y " 0

!y " (c1 ! c2 ln x) x3.

m " 3
m2 # 6m ! 9 " 0x2ys # 5xyr ! 9y " 0

m " 1
2 

(1 # a)y " (c1 ! c2 ln x) xm

y2y1 y2 " uy1 " y1 ln xu " ln xU " 1>x y 1
2 " x1#   aexp"(#p dx) " exp (#a ln x) " exp (ln x!a) " 1>xa

p " a>x
U "

1

y1
2 exp a##p dxb .u " #U dx

y2 " uy1

ys !
a
x

 yr !
(1 # a)2

4x2  y " 0x2ys ! axyr ! 1
4 

(1 # a)2y " 0

y1 " x (1!a)>2 [m ! 1
2 

(a # 1)]2,
b " 1

4 
(a # 1)2m1 " 1

2 
(1 # a)
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Figure 48 shows typical solution curves in the three cases discussed, in particular the real basis functions in
Examples 1 and 3. !

SEC. 2.5 Euler–Cauchy Equations 73

y

x0

Case I: Real roots

x1.5
x ln x

x–1.5

x–1.5 ln xx0.5

x0.5 ln x x0.2 sin (4 ln x) 

x0.2 cos (4 ln x) 

x–0.5

x–0.5 ln x
x1

x–1

Case II: Double root Case III: Complex roots

1.0

2.0

3.0
y

x0 20.4 1.41

1.0

–1.0
–1.5

0.5

–0.5

1.5

y

x0

1.0

–1.0
–1.5

0.5

–0.5

1.5

21

0.4 1.41 2

Fig. 48. Euler–Cauchy equations

E X A M P L E  4 Boundary Value Problem. Electric Potential Field Between Two Concentric Spheres

Find the electrostatic potential between two concentric spheres of radii cm and cm
kept at potentials and , respectively.

Physical Information. v(r) is a solution of the Euler–Cauchy equation , where .

Solution. The auxiliary equation is . It has the roots 0 and . This gives the general solution
. From the “boundary conditions” (the potentials on the spheres) we obtain

.

By subtraction, . From the second equation, . Answer:
V. Figure 49 shows that the potential is not a straight line, as it would be for a potential

between two parallel plates. For example, on the sphere of radius 7.5 cm it is not V, but considerably
less. (What is it?) !

110>2 " 55
v(r) " #110 ! 1100>r c1 " #c2>10 " #110c2>10 " 110, c2 " 1100

v(10) " c1 !
c2

10
" 0v(5) " c1 !

c2

5
" 110.

v(r) " c1 ! c2>r #1m2 ! m " 0

vr " dv>drrvs ! 2vr " 0
v2 " 0v1 " 110 V

r2 " 10r1 " 5v " v(r)

5 6 7 8 9 10 r

100
80

60
40

20
0

v

Fig. 49. Potential in Example 4v(r)

1. Double root. Verify directly by substitution that
is a solution of (1) if (2) has a double root,

but and are not solutions of (1) if the
roots m1 and m2 of (2) are different.

2–11 GENERAL SOLUTION 
Find a real general solution. Show the details of your work.
2.
3. 5x2ys ! 23xyr ! 16.2y " 0

x2ys # 20y " 0

xm2 ln xxm1 ln x
x (1!a)>2 ln x

4.
5.
6.
7.
8.
9.

10.
11. (x2D2 # 3xD ! 10I)y " 0

(x2D2 # xD ! 5I)y " 0
(x2D2 # 0.2xD ! 0.36I)y " 0 
(x2D2 # 3xD ! 4I)y " 0
(x2D2 # 4xD ! 6I)y " C
x2ys ! 0.7xyr # 0.1y " 0
4x2ys ! 5y " 0
xys ! 2yr " 0

P R O B L E M  S E T  2 . 5
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12–19 INITIAL VALUE PROBLEM 
Solve and graph the solution. Show the details of your work.

12.

13.

14.

15.

16.

17.

18.

19.
yr(1) " #4.5
(x2D2 # xD # 15I  )y " 0, y(1) " 0.1,

(9x2D2 ! 3xD ! I )y " 0, y(1) " 1, yr(1) " 0

(x2D2 ! xD ! I )y " 0, y(1) " 1, yr(1) " 1

(x2D2 # 3xD ! 4I )y " 0, y(1) " #p, yr(1) " 2p

x2ys ! 3xyr ! y " 0, y(1) " 3.6, yr(1) " 0.4

x2ys ! xyr ! 9y " 0, y(1) " 0, yr(1) " 2.5

yr(1) " #1.5
x2ys ! 3xyr ! 0.75y " 0, y(1) " 1,

x2ys # 4xyr ! 6y " 0, y(1) " 0.4, yr(1) " 0

74 CHAP. 2 Second-Order Linear ODEs

20. TEAM PROJECT. Double Root
(a) Derive a second linearly independent solution of
(1) by reduction of order; but instead of using (9), Sec.
2.1, perform all steps directly for the present ODE (1).
(b) Obtain by considering the solutions 
and of a suitable Euler–Cauchy equation and
letting .
(c) Verify by substitution that 
is a solution in the critical case.
(d) Transform the Euler–Cauchy equation (1) into
an ODE with constant coefficients by setting

.
(e) Obtain a second linearly independent solution of
the Euler–Cauchy equation in the “critical case” from
that of a constant-coefficient ODE.

x " et (x % 0)

m " (1 # a)>2,xm ln x,
s : 0

xm!s
xmxm ln x

2.6 Existence and Uniqueness 
of Solutions. Wronskian

In this section we shall discuss the general theory of homogeneous linear ODEs

(1)

with continuous, but otherwise arbitrary, variable coefficients p and q. This will concern
the existence and form of a general solution of (1) as well as the uniqueness of the solution
of initial value problems consisting of such an ODE and two initial conditions

(2)

with given .
The two main results will be Theorem 1, stating that such an initial value problem

always has a solution which is unique, and Theorem 4, stating that a general solution

(3)

includes all solutions. Hence linear ODEs with continuous coefficients have no “singular
solutions” (solutions not obtainable from a general solution).

Clearly, no such theory was needed for constant-coefficient or Euler–Cauchy equations
because everything resulted explicitly from our calculations.

Central to our present discussion is the following theorem.

T H E O R E M  1 Existence and Uniqueness Theorem for Initial Value Problems

If and are continuous functions on some open interval I (see Sec. 1.1) and
x0 is in I, then the initial value problem consisting of (1) and (2) has a unique
solution on the interval I.y(x)

q(x)p(x)

(c1, c2 arbitrary)y " c1y1 ! c2y2

x0, K0, and K1

y(x0) " K0,  yr(x0) " K1

ys ! p(x)yr ! q(x)y " 0
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The proof of existence uses the same prerequisites as the existence proof in Sec. 1.7
and will not be presented here; it can be found in Ref. [A11] listed in App. 1. Uniqueness
proofs are usually simpler than existence proofs. But for Theorem 1, even the uniqueness
proof is long, and we give it as an additional proof in App. 4.

Linear Independence of Solutions
Remember from Sec. 2.1 that a general solution on an open interval I is made up from a
basis on I, that is, from a pair of linearly independent solutions on I. Here we call

linearly independent on I if the equation

(4) .

We call linearly dependent on I if this equation also holds for constants 
not both 0. In this case, and only in this case, are proportional on I, that is (see
Sec. 2.1),

(5) (a) or (b) for all on I.

For our discussion the following criterion of linear independence and dependence of
solutions will be helpful.

T H E O R E M  2 Linear Dependence and Independence of Solutions

Let the ODE (1) have continuous coefficients and on an open interval I.
Then two solutions of (1) on I are linearly dependent on I if and only if
their “Wronskian”

(6)

is 0 at some in I. Furthermore, if at an in I, then on I;
hence, if there is an in I at which W is not 0, then are linearly independent
on I.

P R O O F (a) Let be linearly dependent on I. Then (5a) or (5b) holds on I. If (5a) holds,
then

Similarly if (5b) holds.
(b) Conversely, we let for some and show that this implies linear

dependence of on I. We consider the linear system of equations in the unknowns

(7)
 k1y1r(x0) ! k2y2r(x0) " 0.

 k1y1(x0) ! k2y2(x0) " 0

k1, k2

y1 and y2

x " x0W(y1, y2) " 0

W(y1, y2) " y1y2r # y2y1r " ky2y2r # y2ky2r " 0.

y1 and y2

y1, y2x1

W " 0x " x0W " 0x0

W(y1, y2) " y1y2r #  y2y1r

y1 and y2

q(x)p(x)

y2 " ly1y1 " ky2

y1 and y2

k1, k2y1, y2

k1y1(x) ! k2y2(x) " 0 on I  implies  k1 " 0, k2 " 0

y1, y2

y1, y2
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To eliminate , multiply the first equation by and the second by and add the
resulting equations. This gives

.

Similarly, to eliminate , multiply the first equation by and the second by and
add the resulting equations. This gives

.

If W were not 0 at , we could divide by W and conclude that . Since W is
0, division is not possible, and the system has a solution for which are not both
0. Using these numbers , we introduce the function

.

Since (1) is homogeneous linear, Fundamental Theorem 1 in Sec. 2.1 (the superposition
principle) implies that this function is a solution of (1) on I. From (7) we see that it satisfies
the initial conditions . Now another solution of (1) satisfying the
same initial conditions is . Since the coefficients p and q of (1) are continuous,
Theorem 1 applies and gives uniqueness, that is, , written out

on I.

Now since and are not both zero, this means linear dependence of , on I.
(c) We prove the last statement of the theorem. If at an in I, we have

linear dependence of on I by part (b), hence by part (a) of this proof. Hence
in the case of linear dependence it cannot happen that at an in I. If it does
happen, it thus implies linear independence as claimed.

For calculations, the following formulas are often simpler than (6).

(6*) or (b)

These formulas follow from the quotient rule of differentiation.

Remark. Determinants. Students familiar with second-order determinants may have
noticed that

.

This determinant is called the Wronski determinant5 or, briefly, the Wronskian, of two
solutions and of (1), as has already been mentioned in (6). Note that its four entries
occupy the same positions as in the linear system (7).

y2y1

W( y1, y2) " ` y1 y2

yr1 yr2
` " y1yr2 # y2yr1

#ay1

y2
bry 

2
2  ( y2 $ 0).W( y1, y2) " (a)  ay2

y1
br y2

1  ( y1 $ 0)

!
x1W(x1) $ 0

W ! 0y1, y2

x0W(x0) " 0
y2y1k2k1

k1y1 ! k2y2 ! 0

y ! y*
y* ! 0

y(x0) " 0, yr(x0) " 0

y(x) " k1y1(x) ! k2y2(x)

k1, k2

k1 and k2

k1 " k2 " 0x0

k2W( y1(x0), y2(x0)) " 0

y1#y1rk1

k1y1(x0)y2r(x0) #  k1y1r(x0)y2(x0) "  k1W( y1(x0), y2(x0)) " 0

#y2yr2k2
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5Introduced by WRONSKI (JOSEF MARIA HÖNE, 1776–1853), Polish mathematician.
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E X A M P L E  1 Illustration of Theorem 2

The functions and are solutions of . Their Wronskian is

.

Theorem 2 shows that these solutions are linearly independent if and only if . Of course, we can see
this directly from the quotient . For we have , which implies linear dependence
(why?).

E X A M P L E  2 Illustration of Theorem 2 for a Double Root

A general solution of on any interval is . (Verify!). The corresponding
Wronskian is not 0, which shows linear independence of and on any interval. Namely,

.

A General Solution of (1) Includes All Solutions
This will be our second main result, as announced at the beginning. Let us start with
existence.

T H E O R E M  3 Existence of a General Solution

If p(x) and q(x) are continuous on an open interval I, then (1) has a general solution
on I.

P R O O F By Theorem 1, the ODE (1) has a solution on I satisfying the initial conditions

and a solution on I satisfying the initial conditions

The Wronskian of these two solutions has at the value

Hence, by Theorem 2, these solutions are linearly independent on I. They form a basis of
solutions of (1) on I, and with arbitrary is a general solution of (1)
on I, whose existence we wanted to prove. !

c1, c2y " c1y1 ! c2˛

y2

W( y1(0), y2(0)) " y1(x0)y2r(x0) # y2(x0)y1r(x0) " 1.

x " x0

y2r(x0) " 1.y2(x0) " 0,

y2(x)

y1r(x0) " 0y1(x0) " 1,

y1(x)

!W(x, xex) " ` ex xex

ex (x ! 1)ex ` " (x ! 1)e2x # xe2x " e2x $ 0

xexex
y " (c1 ! c2x)exys # 2yr ! y " 0

!
y2 " 0v " 0y2>y1 " tan vx

v $ 0

W(cos vx, sin vx) " ` cos vx sin vx

#v sin vx v cos vx
` " y1y2r # y2y1r " v cos2 vx ! v sin2 vx " v

ys ! v2y " 0y2 " sin vxy1 " cos vx
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We finally show that a general solution is as general as it can possibly be.

T H E O R E M  4 A General Solution Includes All Solutions

If the ODE (1) has continuous coefficients p(x) and q(x) on some open interval I,
then every solution of (1) on I is of the form

(8) 

where is any basis of solutions of (1) on I and are suitable constants. 
Hence (1) does not have singular solutions (that is, solutions not obtainable from

a general solution).

P R O O F Let be any solution of (1) on I. Now, by Theorem 3 the ODE (1) has a general
solution

(9)

on I. We have to find suitable values of such that on I. We choose any
in I and show first that we can find values of such that we reach agreement at
that is, and . Written out in terms of (9), this becomes

(10)
(a)

(b)

We determine the unknowns and . To eliminate we multiply (10a) by and
(10b) by and add the resulting equations. This gives an equation for Then we
multiply (10a) by and (10b) by and add the resulting equations. This gives
an equation for These new equations are as follows, where we take the values of

at 

Since is a basis, the Wronskian W in these equations is not 0, and we can solve for
and We call the (unique) solution By substituting it into (9) we

obtain from (9) the particular solution

Now since is a solution of (10), we see from (10) that

From the uniqueness stated in Theorem 1 this implies that y* and Y must be equal
everywhere on I, and the proof is complete. !

y*r(x0) " Yr(x0).y*(x0) " Y(x0),

C1, C2

y*(x) " C1y1(x) ! C2 y2(x).

c1 " C1, c2 " C2.c2.c1

y1, y2

 c2( y1y2r # y2y1r) " c2W( y1, y2) " y1Yr # Yy1r.

 c1( y1y2r # y2y1r) " c1W( y1, y2) " Yy2r # y2Yr

x0.y1, y1r, y2, y2r, Y, Yr
c2.

y1(x0)#y1r(x0)
c1.#y2(x0)

y2r(x0)c2,c2c1

 c1y1r(x0) ! c2y2r(x0) " Yr(x0).

 c1y1(x0) ! c2y2(x0) " Y(x0)

yr(x0) " Yr(x0)y(x0) " Y(x0)x0,
c1, c2x0

y(x) " Y(x)c1, c2

y(x) " c1y1(x) ! c2y2(x)

y " Y(x)

C1, C2y1, y2

Y(x) " C1y1(x) ! C2y2(x)

y " Y(x)
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Reflecting on this section, we note that homogeneous linear ODEs with continuous variable
coefficients have a conceptually and structurally rather transparent existence and uniqueness
theory of solutions. Important in itself, this theory will also provide the foundation for our
study of nonhomogeneous linear ODEs, whose theory and engineering applications form
the content of the remaining four sections of this chapter.

SEC. 2.7 Nonhomogeneous ODEs 79

1. Derive (6*) from (6).

2–8 BASIS OF SOLUTIONS. WRONSKIAN 
Find the Wronskian. Show linear independence by using
quotients and confirm it by Theorem 2.
2.
3.
4.
5.
6.
7.
8.

9–15 ODE FOR GIVEN BASIS. WRONSKIAN. IVP
(a) Find a second-order homogeneous linear ODE for
which the given functions are solutions. (b) Show linear
independence by the Wronskian. (c) Solve the initial value
problem.
9.

10.
11.

12.
13.
14.

15. cosh 1.8x, sinh 1.8x, y(0) " 14.20, yr(0) " 16.38
yr(0) " #k #p
e#kx cos px, e#kx sin px, y(0) " 1,
1, e#2x, y(0) " 1, yr(0) " #1
x2, x2 ln x, y(1) " 4, yr(1) " 6
yr(0) " #7.5
e!2.5x cos 0.3x, e!2.5x sin 0.3x, y(0) " 3,
xm1, xm2, y(1) " #2, yr(1) " 2m1 # 4m2

cos 5x, sin 5x, y(0) " 3, yr(0) " #5

xk cos (ln x), xk sin (ln x)
cosh ax, sinh ax
e!x cos vx, e!x sin vx
x3, x2

x, 1>xe!0.4x, e!2.6x
e4.0x, e!1.5x

16. TEAM PROJECT. Consequences of the Present
Theory. This concerns some noteworthy general
properties of solutions. Assume that the coefficients p
and q of the ODE (1) are continuous on some open
interval I, to which the subsequent statements refer.
(a) Solve (a) by exponential functions, 
(b) by hyperbolic functions. How are the constants in
the corresponding general solutions related?
(b) Prove that the solutions of a basis cannot be 0 at
the same point.
(c) Prove that the solutions of a basis cannot have a
maximum or minimum at the same point.
(d) Why is it likely that formulas of the form (6*)
should exist?
(e) Sketch if and 0 if 

if and if Show linear
independence on What is their
Wronskian? What Euler–Cauchy equation do 
satisfy? Is there a contradiction to Theorem 2?
(f) Prove Abel’s formula6

where Apply it to Prob. 6. Hint:
Write (1) for and for Eliminate q algebraically
from these two ODEs, obtaining a first-order linear
ODE. Solve it.

y2.y1

c " W(y1(x0), y2(x0)).

W( y1(x), y2(x)) " c exp c##
x

x0

p(t) dt d
y1, y2

#1 & x & 1.
x & 0.x3x  +  0y2(x) " 0

x & 0,x  +  0y1(x) " x3

ys # y " 0

P R O B L E M  S E T  2 . 6

6NIELS HENRIK ABEL (1802–1829), Norwegian mathematician.

2.7 Nonhomogeneous ODEs
We now advance from homogeneous to nonhomogeneous linear ODEs. 

Consider the second-order nonhomogeneous linear ODE

(1)

where We shall see that a “general solution” of (1) is the sum of a general
solution of the corresponding homogeneous ODE

r(x) [ 0.

ys ! p(x)yr ! q(x)y " r(x)
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(2)

and a “particular solution” of (1). These two new terms “general solution of (1)” and
“particular solution of (1)” are defined as follows.

D E F I N I T I O N General Solution, Particular Solution

A general solution of the nonhomogeneous ODE (1) on an open interval I is a
solution of the form

(3)

here, is a general solution of the homogeneous ODE (2) on I and
is any solution of (1) on I containing no arbitrary constants.
A particular solution of (1) on I is a solution obtained from (3) by assigning

specific values to the arbitrary constants and in .

Our task is now twofold, first to justify these definitions and then to develop a method
for finding a solution of (1).

Accordingly, we first show that a general solution as just defined satisfies (1) and that
the solutions of (1) and (2) are related in a very simple way.

T H E O R E M  1 Relations of Solutions of (1) to Those of (2)

(a) The sum of a solution y of (1) on some open interval I and a solution of
(2) on I is a solution of (1) on I. In particular, (3) is a solution of (1) on I.

(b) The difference of two solutions of (1) on I is a solution of (2) on I.

P R O O F (a) Let denote the left side of (1). Then for any solutions y of (1) and of (2) on I,

(b) For any solutions y and y* of (1) on I we have 

Now for homogeneous ODEs (2) we know that general solutions include all solutions.
We show that the same is true for nonhomogeneous ODEs (1).

T H E O R E M  2 A General Solution of a Nonhomogeneous ODE Includes All Solutions

If the coefficients p(x), q(x), and the function r(x) in (1) are continuous on some
open interval I, then every solution of (1) on I is obtained by assigning suitable
values to the arbitrary constants and in a general solution (3) of (1) on I.

P R O O F Let be any solution of (1) on I and any x in I. Let (3) be any general solution of
(1) on I. This solution exists. Indeed, exists by Theorem 3 in Sec. 2.6yh " c1y1 ! c2y2

x0y*

c2c1

!r # r " 0.
L[ y # y*] " L[ y] # L[ y*] "

L[ y ! y~] " L[ y] ! L[ y~] " r ! 0 " r.

y~L[y]

y~

yp

yhc2c1

yp

yh " c1y1 ! c2y2

y(x) " yh(x) ! yp1x2;

ys ! p(x)yr ! q(x)y " 0
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because of the continuity assumption, and exists according to a construction to be
shown in Sec. 2.10. Now, by Theorem 1(b) just proved, the difference is a
solution of (2) on I. At we have

Theorem 1 in Sec. 2.6 implies that for these conditions, as for any other initial conditions
in I, there exists a unique particular solution of (2) obtained by assigning suitable values
to in . From this and the statement follows.

Method of Undetermined Coefficients
Our discussion suggests the following. To solve the nonhomogeneous ODE (1) or an initial
value problem for (1), we have to solve the homogeneous ODE (2) and find any solution

of (1), so that we obtain a general solution (3) of (1).
How can we find a solution of (1)? One method is the so-called method of

undetermined coefficients. It is much simpler than another, more general, method (given
in Sec. 2.10). Since it applies to models of vibrational systems and electric circuits to be
shown in the next two sections, it is frequently used in engineering.

More precisely, the method of undetermined coefficients is suitable for linear ODEs
with constant coefficients a and b

(4)

when is an exponential function, a power of x, a cosine or sine, or sums or products
of such functions. These functions have derivatives similar to itself. This gives the
idea. We choose a form for similar to , but with unknown coefficients to be
determined by substituting that and its derivatives into the ODE. Table 2.1 on p. 82
shows the choice of for practically important forms of . Corresponding rules are
as follows.

Choice Rules for the Method of Undetermined Coefficients

(a) Basic Rule. If in (4) is one of the functions in the first column in
Table 2.1, choose in the same line and determine its undetermined
coefficients by substituting and its derivatives into (4).

(b) Modification Rule. If a term in your choice for happens to be a
solution of the homogeneous ODE corresponding to (4), multiply this term
by x (or by if this solution corresponds to a double root of the
characteristic equation of the homogeneous ODE).

(c) Sum Rule. If is a sum of functions in the first column of Table 2.1,
choose for the sum of the functions in the corresponding lines of the
second column.

The Basic Rule applies when is a single term. The Modification Rule helps in the
indicated case, and to recognize such a case, we have to solve the homogeneous ODE
first. The Sum Rule follows by noting that the sum of two solutions of (1) with 
and (and the same left side!) is a solution of (1) with . (Verify!)r " r1 ! r2r " r2

r " r1

r (x)

yp

r (x)

x2

yp

yp

yp

r (x)

r (x)yp

yp

r (x)yp

r (x)
r (x)

ys ! ayr ! by " r(x)

yp

yp

!y* " Y ! ypyhc1, c2

Yr1x02 " y*r1x02 # yrp1x02.Y1x02 " y*1x02 # yp(x0).

x0

Y " y* # yp

yp

SEC. 2.7 Nonhomogeneous ODEs 81

c02.qxd  10/27/10  6:06 PM  Page 81



The method is self-correcting. A false choice for or one with too few terms will lead
to a contradiction. A choice with too many terms will give a correct result, with superfluous
coefficients coming out zero.

Let us illustrate Rules (a)–(c) by the typical Examples 1–3.

yp

82 CHAP. 2 Second-Order Linear ODEs

Term in Choice for 

keax sin vx
keax cos vx
k sin vx
k cos vx

Knxn ! Kn#1xn#1 ! Á ! K1x ! K0kxn (n " 0, 1, Á )
Cegxkegx

yp(x)r (x)

Table 2.1 Method of Undetermined Coefficients

f eax(K cos vx ! M sin vx)

fK cos vx ! M sin vx

E X A M P L E  1 Application of the Basic Rule (a)

Solve the initial value problem

(5)

Solution. Step 1. General solution of the homogeneous ODE. The ODE has the general solution

Step 2. Solution of the nonhomogeneous ODE. We first try Then By substitution,
For this to hold for all x, the coefficient of each power of must be the same

on both sides; thus and a contradiction.
The second line in Table 2.1 suggests the choice

Then

Equating the coefficients of on both sides, we have Hence
This gives and

Step 3. Solution of the initial value problem. Setting and using the first initial condition gives
hence By differentiation and from the second initial condition,

and

This gives the answer (Fig. 50)

Figure 50 shows y as well as the quadratic parabola about which y is oscillating, practically like a sine curve 
since the cosine term is smaller by a factor of about !1>1000.

yp

y " 0.002 cos x ! 1.5 sin x ! 0.001x2 # 0.002.

yr(0) " B " 1.5.yr " yrh ! yrp " #A sin x ! B cos x ! 0.002x

A " 0.002.y(0) " A # 0.002 " 0,
x " 0

y " yh ! yp " A cos x ! B sin x ! 0.001x2 # 0.002.

yp " 0.001x2 # 0.002,K0 " #2K2 " #0.002.
K2 " 0.001, K1 " 0, 2K2 ! K0 " 0.x2, x, x0

ysp ! yp " 2K2 ! K2x2 ! K1x ! K0 " 0.001x2.yp " K2 x
2 ! K1x ! K0.

2K " 0,K " 0.001
x (x2 and x0)2K ! Kx2 " 0.001x2.

ysp " 2K.yp " Kx2.yp

yh " A cos x ! B sin x.

ys ! y " 0

yr(0) " 1.5.y(0) " 0,ys ! y " 0.001x2,

1
0

2

–1
20 x

y

30 4010

Fig. 50. Solution in Example 1
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E X A M P L E  2 Application of the Modification Rule (b)

Solve the initial value problem

(6)

Solution. Step 1. General solution of the homogeneous ODE. The characteristic equation of the homogeneous
ODE is Hence the homogeneous ODE has the general solution

Step 2. Solution of the nonhomogeneous ODE. The function on the right would normally require
the choice . But we see from that this function is a solution of the homogeneous ODE, which
corresponds to a double root of the characteristic equation. Hence, according to the Modification Rule we have
to multiply our choice function by . That is, we choose

. Then .

We substitute these expressions into the given ODE and omit the factor . This yields

Comparing the coefficients of gives hence This gives the solution
. Hence the given ODE has the general solution

Step 3. Solution of the initial value problem. Setting in y and using the first initial condition, we obtain
Differentiation of y gives

From this and the second initial condition we have Hence This gives
the answer (Fig. 51)

The curve begins with a horizontal tangent, crosses the x-axis at (where ) and
approaches the axis from below as x increases. !

1 ! 1.5x # 5x2 " 0x " 0.6217

y " (1 ! 1.5x)e!1.5x # 5x2e!1.5x " (1 ! 1.5x # 5x2)e!1.5x.

c2 " 1.5c1 " 1.5.yr(0) " c2 # 1.5c1 " 0.

yr " (c2 # 1.5c1 # 1.5c2x)e!1.5x # 10xe!1.5x ! 7.5x2e!1.5x.

y(0) " c1 " 1.
x " 0

y " yh ! yp " (c1 ! c2x)e!1.5x # 5x2e!1.5x.

yp " #5x2e!1.5x
C " #5.0 " 0, 0 " 0, 2C " #10,x2, x, x0

C(2 # 6x ! 2.25x2) ! 3C(2x # 1.5x2) ! 2.25Cx2 " #10.

e!1.5x

ysp " C(2 # 3x # 3x ! 2.25x2)e!1.5xyrp " C(2x # 1.5x2)e!1.5x,yp " Cx2e!1.5x

x2

yhCe!1.5x
e!1.5xyp

yh " (c1 ! c2˛

x)e!1.5x.

l2 ! 3l ! 2.25 " (l ! 1.5)2 " 0.

yr(0) " 0.y(0) " 1,ys ! 3yr ! 2.25y " #10e!1.5x,
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Fig. 51. Solution in Example 2

54321 x
–0.5

–1.0

0

0.5

1.0
y

E X A M P L E  3 Application of the Sum Rule (c)

Solve the initial value problem

(7)

Solution. Step 1. General solution of the homogeneous ODE. The characteristic equation of the homogeneous
ODE is

which gives the general solution yh " c1e!x>2 ! c2e!3x>2.

l2 ! 2l ! 0.75 " (l ! 1
2) (l ! 3

2) " 0

yr(0) " #0.43.y(0) " 2.78,ys ! 2yr ! 0.75y " 2 cos x # 0.25 sin x ! 0.09x,
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Step 2. Particular solution of the nonhomogeneous ODE. We write and, following Table 2.1,
(C) and (B),

and

Differentiation gives and Substitution
of into the ODE in (7) gives, by comparing the cosine and sine terms,

hence and Substituting into the ODE in (7) and comparing the - and -terms gives

thus

Hence a general solution of the ODE in (7) is

Step 3. Solution of the initial value problem. From and the initial conditions we obtain

.

Hence This gives the solution of the IVP (Fig. 52)

!y " 3.1e!x>2 ! sin x ! 0.12x # 0.32.

c1 " 3.1, c2 " 0.

y(0) " c1 ! c2 # 0.32 " 2.78,  yr(0) " #1
2  

c1 # 3
2 c2 ! 1 ! 0.12 " #0.4

y, yr

y " c1e!x>2 ! c2e!3x>2 ! sin x ! 0.12x # 0.32.

K1 " 0.12, K0 " #0.32.0.75K1 " 0.09, 2K1 ! 0.75K0 " 0,

x0xyp2M " 1.K " 0

#K ! 2M ! 0.75K " 2,  #M # 2K ! 0.75M " #0.25,

yp1

yp2r " 1, yp2s " 0.yp1r " #K sin x ! M cos x, yp1s " #K cos x # M sin x

yp2 " K1x ! K0.yp1 " K cos x ! M sin x

yp " yp1 ! yp2
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Fig. 52. Solution in Example 3

x2 4 6 8 10 12 14 16 18 20

y

0
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1
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3

–0.5

Stability. The following is important. If (and only if) all the roots of the characteristic
equation of the homogeneous ODE in (4) are negative, or have a negative
real part, then a general solution of this ODE goes to 0 as , so that the “transient
solution” of (4) approaches the “steady-state solution” . In this case the
nonhomogeneous ODE and the physical or other system modeled by the ODE are called
stable; otherwise they are called unstable. For instance, the ODE in Example 1 is unstable.

Applications follow in the next two sections.

ypy " yh ! yp

x : *yh

ys ! ayr ! by " 0

1–10 NONHOMOGENEOUS LINEAR ODEs:
GENERAL SOLUTION 

Find a (real) general solution. State which rule you are
using. Show each step of your work.

1. ys ! 5yr ! 4y " 10e!3x

2.
3.
4.
5.
6. ys ! yr ! (p2 ! 1

4)y " e!x>2 sin p x
ys ! 4yr ! 4y " e!x cos x
ys # 9y " 18 cos px
ys ! 3yr ! 2y " 12x2

10ys ! 50yr ! 57.6y " cos x

P R O B L E M  S E T  2 . 7
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7.
8.
9.

10.

11–18 NONHOMOGENEOUS LINEAR 
ODEs: IVPs

Solve the initial value problem. State which rule you are
using. Show each step of your calculation in detail.

11.
12.
13.

14.

15.

16.
17.

yr(0) " 0.35
(D2 ! 0.2D ! 0.26I)y " 1.22e0.5x, y(0) " 3.5,
(D2 # 2D)y " 6e2x # 4e!2x, y(0) " #1, yr(0) " 6

yp " ln xy(1) " 0, yr(1) " 1; 
(x2D2 # 3xD ! 3I )y " 3 ln x # 4,
yr(0) " #1.5
ys ! 4yr ! 4y " e!2x sin 2x, y(0) " 1,
yr(0) " 0.05
8ys # 6yr ! y " 6 cosh x, y(0) " 0.2,
ys ! 4y " #12 sin 2x, y(0) " 1.8, yr(0) " 5.0
ys ! 3y " 18x2, y(0) " #3, yr(0) " 0

(D2 ! 2D ! I )y " 2x sin x
(D2 # 16I )y " 9.6e4x ! 30ex
(3D2 ! 27I )y " 3 cos x ! cos 3x
(D2 ! 2D ! 3

4 I )y " 3ex ! 9
2 x
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18.

19. CAS PROJECT. Structure of Solutions of Initial
Value Problems. Using the present method, find,
graph, and discuss the solutions y of initial value
problems of your own choice. Explore effects on
solutions caused by changes of initial conditions.
Graph separately, to see the separate
effects. Find a problem in which (a) the part of y
resulting from decreases to zero, (b) increases,
(c) is not present in the answer y. Study a problem with

Consider a problem in which
you need the Modification Rule (a) for a simple root,
(b) for a double root. Make sure that your problems
cover all three Cases I, II, III (see Sec. 2.2).

20. TEAM PROJECT. Extensions of the Method of
Undetermined Coefficients. (a) Extend the method
to products of the function in Table 2.1, (b) Extend
the method to Euler–Cauchy equations. Comment on
the practical significance of such extensions.

y(0) " 0, yr(0) " 0.

yh

yp, y, y # yp

yr(0) " #2.2y(0) " 6.6, 
(D2 ! 2D ! 10I)y " 17 sin x # 37 sin 3x,

2.8 Modeling: Forced Oscillations. Resonance
In Sec. 2.4 we considered vertical motions of a mass–spring system (vibration of a mass
m on an elastic spring, as in Figs. 33 and 53) and modeled it by the homogeneous linear
ODE

(1)

Here as a function of time t is the displacement of the body of mass m from rest.
The mass–spring system of Sec. 2.4 exhibited only free motion. This means no external

forces (outside forces) but only internal forces controlled the motion. The internal forces
are forces within the system. They are the force of inertia the damping force 
(if ), and the spring force ky, a restoring force.c % 0

cyrmys,

y(t)

mys ! cyr ! ky " 0.

Dashpot

Mass

Springk

m

c

r(t)

Fig. 53. Mass on a spring
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We now extend our model by including an additional force, that is, the external force
on the right. Then we have

(2*)

Mechanically this means that at each instant t the resultant of the internal forces is in
equilibrium with The resulting motion is called a forced motion with forcing function

which is also known as input or driving force, and the solution to be obtained
is called the output or the response of the system to the driving force.

Of special interest are periodic external forces, and we shall consider a driving force
of the form

Then we have the nonhomogeneous ODE

(2)

Its solution will reveal facts that are fundamental in engineering mathematics and allow
us to model resonance.

Solving the Nonhomogeneous ODE (2)
From Sec. 2.7 we know that a general solution of (2) is the sum of a general solution 
of the homogeneous ODE (1) plus any solution of (2). To find we use the method
of undetermined coefficients (Sec. 2.7), starting from

(3)

By differentiating this function (chain rule!) we obtain

Substituting and into (2) and collecting the cosine and the sine terms, we get

The cosine terms on both sides must be equal, and the coefficient of the sine term 
on the left must be zero since there is no sine term on the right. This gives the two
equations

(4)
(k # mv2)b " 0!#vca

" F0vcb(k # mv2)a !

[(k # mv2)a ! vcb] cos vt ! [#vca ! (k # mv2)b] sin vt " F0 cos vt.

yspyp, yrp,

 ysp " #v2a cos vt # v2b sin vt.

 yrp " #va sin vt ! vb cos vt,

yp(t) " a cos vt ! b sin vt.

yp,yp

yh

mys ! cyr ! ky " F0 cos vt.

(F0 % 0, v % 0).r(t) " F0 cos vt

y(t)r(t),
r(t).

mys ! cyr ! ky " r(t).

r(t),

86 CHAP. 2 Second-Order Linear ODEs
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for determining the unknown coefficients a and b. This is a linear system. We can solve
it by elimination. To eliminate b, multiply the first equation by and the second
by and add the results, obtaining

Similarly, to eliminate a, multiply (the first equation by and the second by 
and add to get

If the factor is not zero, we can divide by this factor and solve for a
and b,

If we set as in Sec. 2.4, then and we obtain

(5)

We thus obtain the general solution of the nonhomogeneous ODE (2) in the form

(6)

Here is a general solution of the homogeneous ODE (1) and is given by (3) with
coefficients (5).

We shall now discuss the behavior of the mechanical system, distinguishing between
the two cases (no damping) and (damping). These cases will correspond to
two basically different types of output.

Case 1. Undamped Forced Oscillations. Resonance
If the damping of the physical system is so small that its effect can be neglected over the
time interval considered, we can set Then (5) reduces to 
and Hence (3) becomes (use )

(7)

Here we must assume that ; physically, the frequency of
the driving force is different from the natural frequency of the system, which is
the frequency of the free undamped motion [see (4) in Sec. 2.4]. From (7) and from (4*)
in Sec. 2.4 we have the general solution of the “undamped system”

(8)

We see that this output is a superposition of two harmonic oscillations of the frequencies
just mentioned.

y(t) " C cos (v0t # d) !
F0

m(v0
2 # v2)

 cos vt.

v0>(2p)
v>(2p) [cycles>sec]v2 $ v0

2

yp(t) "
F0

m(v0
2 # v2)

 cos vt "
F0

k[1 # (v>v0)2]
 cos vt.

v0
2 " k>mb " 0.

a " F0>[m(v0
2 # v2)]c " 0.

c % 0c " 0

ypyh

y(t) " yh(t) ! yp(t).

b " F0 
vc

m2(v0
2 # v2)2 ! v2c2  .a " F0 

m(v0
2 # v2)

m2(v0
2 # v2)2 ! v2c2  ,

k " mv0
22k>m " v0 ( % 0)

b " F0 
vc

(k # mv2)2 ! v2c2  .a " F0 
k # mv2

(k # mv2)2 ! v2c2  ,

(k # mv2)2 ! v2c2

v2c2b ! (k # mv2)2b " F0vc.

k # mv2vc

(k # mv2)2a ! v2c2a " F0(k # mv2).

#vc
k # mv2
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Resonance. We discuss (7). We see that the maximum amplitude of is (put 

(9) where

depends on and If , then and tend to infinity. This excitation of large
oscillations by matching input and natural frequencies is called resonance. is
called the resonance factor (Fig. 54), and from (9) we see that is the ratio
of the amplitudes of the particular solution and of the input We shall see
later in this section that resonance is of basic importance in the study of vibrating systems.

In the case of resonance the nonhomogeneous ODE (2) becomes

(10)

Then (7) is no longer valid, and, from the Modification Rule in Sec. 2.7, we conclude that
a particular solution of (10) is of the form

yp(t) " t(a cos v0t ! b sin v0t).

ys ! v0
2 y "

F0

m  cos v0t.

F0 cos vt.yp

r>k " a0>F0

r(v " v0)
a0rv: v0v0.va0

r "
1

1 # (v>v0)2  .a0 "
F0

k
 r

cos vt " 1)yp

88 CHAP. 2 Second-Order Linear ODEs

ω

ρ

ω0ω
1

Fig. 54. Resonance factor r(v)

By substituting this into (10) we find and . Hence (Fig. 55)

(11) yp(t) "
F0

2mv0
 t sin v0t.

b " F0>(2mv0)a " 0

yp

t

Fig. 55. Particular solution in the case of resonance

We see that, because of the factor t, the amplitude of the vibration becomes larger and
larger. Practically speaking, systems with very little damping may undergo large vibrations

c02.qxd  10/27/10  6:06 PM  Page 88



that can destroy the system. We shall return to this practical aspect of resonance later in
this section.

Beats. Another interesting and highly important type of oscillation is obtained if is
close to . Take, for example, the particular solution [see (8)]

(12)

Using (12) in App. 3.1, we may write this as

Since is close to , the difference is small. Hence the period of the last sine
function is large, and we obtain an oscillation of the type shown in Fig. 56, the dashed
curve resulting from the first sine factor. This is what musicians are listening to when
they tune their instruments.

v0 # vv0v

y(t) "
2F0

m(v0
2 # v2)

 sin av0 ! v

2
 tb sin av0 # v

2
 tb .

(v $ v0).y(t) "
F0

m(v0
2 # v2)

 (cos vt # cos v0t)

v0

v
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y

t

Fig. 56. Forced undamped oscillation when the difference of the input 
and natural frequencies is small (“beats”)

Case 2. Damped Forced Oscillations
If the damping of the mass–spring system is not negligibly small, we have and
a damping term in (1) and (2). Then the general solution of the homogeneous
ODE (1) approaches zero as t goes to infinity, as we know from Sec. 2.4. Practically,
it is zero after a sufficiently long time. Hence the “transient solution” (6) of (2),
given by approaches the “steady-state solution” . This proves the
following.

T H E O R E M  1 Steady-State Solution

After a sufficiently long time the output of a damped vibrating system under a purely
sinusoidal driving force [see (2)] will practically be a harmonic oscillation whose
frequency is that of the input.

ypy " yh ! yp,

yhcyr
c % 0
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Amplitude of the Steady-State Solution. Practical Resonance
Whereas in the undamped case the amplitude of approaches infinity as approaches

, this will not happen in the damped case. In this case the amplitude will always be
finite. But it may have a maximum for some depending on the damping constant c.
This may be called practical resonance. It is of great importance because if is not too
large, then some input may excite oscillations large enough to damage or even destroy
the system. Such cases happened, in particular in earlier times when less was known about
resonance. Machines, cars, ships, airplanes, bridges, and high-rising buildings are vibrating
mechanical systems, and it is sometimes rather difficult to find constructions that are
completely free of undesired resonance effects, caused, for instance, by an engine or by
strong winds.

To study the amplitude of as a function of , we write (3) in the form

(13)

C* is called the amplitude of and the phase angle or phase lag because it measures
the lag of the output behind the input. According to (5), these quantities are

(14)

Let us see whether has a maximum and, if so, find its location and then its size.
We denote the radicand in the second root in C* by R. Equating the derivative of C* to
zero, we obtain

The expression in the brackets [. . .] is zero if

(15)

By reshuffling terms we have

The right side of this equation becomes negative if so that then (15) has no
real solution and C* decreases monotone as increases, as the lowest curve in Fig. 57
shows. If c is smaller, then (15) has a real solution where

(15*)

From (15*) we see that this solution increases as c decreases and approaches as c
approaches zero. See also Fig. 57.

v0

vmax
2 " v0

2 #
c2

2m2  .

v " vmax,c2 & 2mk,
v

c2 % 2mk,

2m2v2 " 2m2v0
2 # c2 " 2mk # c2.

(v0
2 " k>m).c2 " 2m2(v0

2 # v2)

dC*
dv

" F0 a# 
1
2

 R#3>2b [2m2(v0
2 # v2)(#2v) ! 2vc2].

C*(v)

tan h (v) "
b

a
"

vc

m(v0
2 # v2)

 .

C*(v) " 2a2 ! b2 "
F02m2(v0

2 # v2)2 ! v2c2
 ,

hyp

yp(t) " C* cos (vt # h).

vyp

c
v

v0

vyp
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The size of is obtained from (14), with given by (15*). For this
we obtain in the second radicand in (14) from (15*)

and

The sum of the right sides of these two formulas is

Substitution into (14) gives

(16)

We see that is always finite when Furthermore, since the expression

in the denominator of (16) decreases monotone to zero as goes to zero, the maximum
amplitude (16) increases monotone to infinity, in agreement with our result in Case 1. Figure 57
shows the amplification (ratio of the amplitudes of output and input) as a function of

for hence and various values of the damping constant c.
Figure 58 shows the phase angle (the lag of the output behind the input), which is less

than when and greater than for v % v0.p>2v & v0,p>2 v0 " 1,m " 1, k " 1,v
C*>F0

c2 ( &  2mk)

c24m2v0
2 # c4 " c2(4mk # c2)

c % 0.C*(vmax)

C*(vmax) "
2mF0

c24m2v0
2 # c2

 .

(c4 ! 4m2v0
2c2 # 2c4)>(4m2) " c2(4m2v0

2 # c2)>(4m2).

vmax
2 c2 " av0

2 #
c2

2m2b c2.m2(v0
2 # vmax

2 )2 "
c4

4m2

v2
v2 " vmax

2C*(vmax)
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4

3

2

0
0 1 2

c = 1

c = 2

c = 1_
4

c = 1_
2

C*
F0

1

ω

Fig. 57. Amplification as a function of
for and various values of the

damping constant c
m " 1, k " 1,v

C*>F0

η

ω

c = 1/2

__
2

c = 0

c = 1
c = 2

π

π

0
0

1 2

Fig. 58. Phase lag as a function of for
thus and various values

of the damping constant c
v0 " 1,m " 1, k " 1,

vh

1. WRITING REPORT. Free and Forced Vibrations.
Write a condensed report of 2–3 pages on the most
important similarities and differences of free and forced
vibrations, with examples of your own. No proofs.

2. Which of Probs. 1–18 in Sec. 2.7 (with time t)
can be models of mass–spring systems with a harmonic
oscillation as steady-state solution?

x "

3–7 STEADY-STATE SOLUTIONS 
Find the steady-state motion of the mass–spring system
modeled by the ODE. Show the details of your work.

3.

4.

5. (D2 ! D ! 4.25I )y " 22.1 cos 4.5t

ys ! 2.5yr ! 10y " #13.6 sin 4t

ys ! 6yr ! 8y " 42.5 cos 2t

P R O B L E M  S E T  2 . 8
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k = 1m = 1

F = 0

F = 1 – t2/π2
F

1

π t

Fig. 59. Problem 24

Fig. 60. Typical solution curves in CAS Experiment 25

6.

7.

8–15 TRANSIENT SOLUTIONS 
Find the transient motion of the mass–spring system
modeled by the ODE. Show the details of your work.

8.

9.

10.

11.

12.

13.

14.

15.

16–20 INITIAL VALUE PROBLEMS
Find the motion of the mass–spring system modeled by the
ODE and the initial conditions. Sketch or graph the solution
curve. In addition, sketch or graph the curve of to
see when the system practically reaches the steady state.

16.

17.

18.

19.

20.

21. Beats. Derive the formula after (12) from (12). Can
we have beats in a damped system?

22. Beats. Solve 
How does the graph of the solution change

if you change (a) (b) the frequency of the driving
force?

23. TEAM EXPERIMENT. Practical Resonance.
(a) Derive, in detail, the crucial formula (16).
(b) By considering show that in-
creases as decreases.
(c) Illustrate practical resonance with an ODE of your
own in which you vary c, and sketch or graph
corresponding curves as in Fig. 57.
(d) Take your ODE with c fixed and an input of two
terms, one with frequency close to the practical
resonance frequency and the other not. Discuss and
sketch or graph the output.
(e) Give other applications (not in the book) in which
resonance is important.

c (( 12mk)
C*(vmax)dC*>dc

y(0),
(0) " 0.yr

y(0) " 2,ys ! 25y " 99 cos 4.9t, 

 yr(0) " 0(D2 ! 5I )y " cos pt # sin pt, y(0) " 0,

yr(0) " 1
(D2 ! 2D ! 2I )y " e!t>2 sin 12 t, y(0) " 0,

yr(0) " 9.4
(D2 ! 8D ! 17I )y " 474.5 sin 0.5t, y(0) " #5.4,

y(0) " 0, yr(0) " 3
35

(D2 ! 4I)y " sin t ! 1
3 sin 3t ! 1

5 sin 5t,

ys ! 25y " 24 sin t, y(0) " 1, yr(0) " 1

y # yp

(D2 ! 4D ! 8I )y " 2 cos 2t ! sin 2t

(D2 ! I )y " 5e!t cos t

(D2 ! I )y " cos vt, v2 $ 1

(D2 ! 2D ! 5I )y " 4 cos t ! 8 sin t

(D2 ! 2I )y " cos 12t ! sin12t

ys ! 16y " 56 cos 4t

ys ! 3yr ! 3.25y " 3 cos t # 1.5 sin t

2ys ! 4yr ! 6.5y " 4 sin 1.5t

(4D2 ! 12D ! 9I )y " 225 # 75 sin 3t

(D2 ! 4D ! 3I )y " cos t ! 1
3 cos 3t 24. Gun barrel. Solve if 

and 0 if here, This
models an undamped system on which a force F acts
during some interval of time (see Fig. 59), for instance,
the force on a gun barrel when a shell is fired, the barrel
being braked by heavy springs (and then damped by a
dashpot, which we disregard for simplicity). Hint: At 
both y and must be continuous.yr

p

y(0) " 0, yr(0) " 0.t : *;t ( p
0 (ys ! y " 1 # t 2>p2

25. CAS EXPERIMENT. Undamped Vibrations.
(a) Solve the initial value problem 

Show that the solution
can be written

(b) Experiment with the solution by changing to
see the change of the curves from those for small

to beats, to resonance, and to large values of
(see Fig. 60).v
v (%  0)

v

y (t) "
2

1 # v2 sin [1
2 (1 ! v)t] sin [1

2 (1 # v)t].

v2 $ 1, y(0) " 0, yr(0) " 0.
ys ! y " cos vt,

10π 20π

1

–1

ω = 0.2

20π

10

–10

ω = 0.9

0.04

–0.04

0.04

ω = 6

10π
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2.9 Modeling: Electric Circuits
Designing good models is a task the computer cannot do. Hence setting up models has
become an important task in modern applied mathematics. The best way to gain experience
in successful modeling is to carefully examine the modeling process in various fields and
applications. Accordingly, modeling electric circuits will be profitable for all students,
not just for electrical engineers and computer scientists.

Figure 61 shows an RLC-circuit, as it occurs as a basic building block of large electric
networks in computers and elsewhere. An RLC-circuit is obtained from an RL-circuit by
adding a capacitor. Recall Example 2 on the RL-circuit in Sec. 1.5: The model of the
RL-circuit is It was obtained by KVL (Kirchhoff’s Voltage Law)7 by
equating the voltage drops across the resistor and the inductor to the EMF (electromotive
force). Hence we obtain the model of the RLC-circuit simply by adding the voltage drop
Q C across the capacitor. Here, C F (farads) is the capacitance of the capacitor. Q coulombs
is the charge on the capacitor, related to the current by

See also Fig. 62. Assuming a sinusoidal EMF as in Fig. 61, we thus have the model of
the RLC-circuit

I(t) "
dQ
dt

,  equivalently  Q(t) " #I(t) dt.

>
LIr ! RI " E(t).
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7GUSTAV ROBERT KIRCHHOFF (1824–1887), German physicist. Later we shall also need Kirchhoff’s
Current Law (KCL):

At any point of a circuit, the sum of the inflowing currents is equal to the sum of the outflowing currents.

The units of measurement of electrical quantities are named after ANDRÉ MARIE AMPÈRE (1775–1836),
French physicist, CHARLES AUGUSTIN DE COULOMB (1736–1806), French physicist and engineer,
MICHAEL FARADAY (1791–1867), English physicist, JOSEPH HENRY (1797–1878), American physicist,
GEORG SIMON OHM (1789–1854), German physicist, and ALESSANDRO VOLTA (1745–1827), Italian
physicist.

R L

C

E(t) = E0 sin ωtω

Fig. 61. RLC-circuit

Fig. 62. Elements in an RLC-circuit

Name

Ohm’s Resistor

Inductor

Capacitor

Symbol Notation

R    Ohm’s Resistance

L    Inductance

C    Capacitance

Unit

ohms (,)

henrys (H)

farads (F)

Voltage Drop

RI

L

Q/C

dI
dt
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This is an “integro-differential equation.” To get rid of the integral, we differentiate 
with respect to t, obtaining

(1)

This shows that the current in an RLC-circuit is obtained as the solution of this
nonhomogeneous second-order ODE (1) with constant coefficients.

In connection with initial value problems, we shall occasionally use

obtained from and 

Solving the ODE (1) for the Current in an RLC-Circuit
A general solution of (1) is the sum where is a general solution of the
homogeneous ODE corresponding to (1) and is a particular solution of (1). We first
determine by the method of undetermined coefficients, proceeding as in the previous
section. We substitute

(2)

into (1). Then we collect the cosine terms and equate them to on the right,
and we equate the sine terms to zero because there is no sine term on the right,

(Cosine terms)

(Sine terms).

Before solving this system for a and b, we first introduce a combination of L and C, called
the reactance

(3)

Dividing the previous two equations by ordering them, and substituting S gives

 #Ra # Sb " 0.

 #Sa ! Rb " E0

v,

S " vL #
1
vC

 .

Lv2(#b) ! Rv(#a) ! b>C " 0

Lv2(#a) ! Rvb ! a>C " E0v

E0v cos vt

 Ips " v2(#a cos vt # b sin vt)

 Ipr " v(#a sin vt ! b cos vt)

 Ip " a cos vt ! b sin vt

Ip

Ip

IhI " Ih ! Ip,

I " Qr.(1r)

LQs ! RQs !
1
C

Q " E(t),(1s)

LIs ! RIr !
1
C  

 I " Er(t) " E0v cos vt.

(1r)

LIr ! RI !
1
C #I dt " E(t) " E0 sin vt.(1r)

94 CHAP. 2 Second-Order Linear ODEs
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We now eliminate b by multiplying the first equation by S and the second by R, and
adding. Then we eliminate a by multiplying the first equation by R and the second by

and adding. This gives

We can solve for a and b,

(4)

Equation (2) with coefficients a and b given by (4) is the desired particular solution of
the nonhomogeneous ODE (1) governing the current I in an RLC-circuit with sinusoidal
electromotive force.

Using (4), we can write in terms of “physically visible” quantities, namely, amplitude
and phase lag of the current behind the EMF, that is,

(5)

where [see (14) in App. A3.1]

The quantity is called the impedance. Our formula shows that the impedance
equals the ratio This is somewhat analogous to (Ohm’s law) and, because
of this analogy, the impedance is also known as the apparent resistance.

A general solution of the homogeneous equation corresponding to (1) is

where and are the roots of the characteristic equation

We can write these roots in the form and where

Now in an actual circuit, R is never zero (hence ). From this it follows that 
approaches zero, theoretically as but practically after a relatively short time. Hence
the transient current tends to the steady-state current and after some time
the output will practically be a harmonic oscillation, which is given by (5) and whose
frequency is that of the input (of the electromotive force).

Ip,I " Ih ! Ip

t : *,
IhR % 0

b " B R2

4L2 #
1

LC
"

1
2L

 BR2 #
4L
C

 .a "
R
2L

 ,

l2 " #a # b,l1 " #a ! b

l2 !
R
L

 l !
1

LC
" 0.

l2l1

Ih " c1el1t ! c2el2t

E>I " RE0>I0.
2R2 ! S2

tan u " # 
a

b
"

S

R
 .I0 " 2a2 ! b2 "

E02R2 ! S2
 ,

Ip(t) " I0 sin (vt # u)

uI0

Ip

Ip

b "
E0 R

R2 ! S2  .a "
#E0 S

R2 ! S2  ,

(R2 ! S2)b " E0 R.#(S2 ! R2)a " E0 S,

#S,
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E X A M P L E  1 RLC-Circuit

Find the current in an RLC-circuit with (ohms), (henry), (farad), which
is connected to a source of EMF sin 377 t (hence 60 cycles sec, the
usual in the U.S. and Canada; in Europe it would be 220 V and 50 Hz). Assume that current and capacitor
charge are 0 when 

Solution. Step 1. General solution of the homogeneous ODE. Substituting R, L, C and the derivative 
into (1), we obtain

Hence the homogeneous ODE is Its characteristic equation is

The roots are and The corresponding general solution of the homogeneous ODE is

Step 2. Particular solution of (1). We calculate the reactance and the steady-state
current

with coefficients obtained from (4) (and rounded)

Hence in our present case, a general solution of the nonhomogeneous ODE (1) is

(6)

Step 3. Particular solution satisfying the initial conditions. How to use We finally determine 
and from the in initial conditions and From the first condition and (6) we have

(7) hence

We turn to The integral in equals see near the beginning of this section. Hence for
Eq. becomes

so that

Differentiating (6) and setting we thus obtain

The solution of this and (7) is Hence the answer is

You may get slightly different values depending on the rounding. Figure 63 shows as well as which
practically coincide, except for a very short time near because the exponential terms go to zero very rapidly.
Thus after a very short time the current will practically execute harmonic oscillations of the input frequency

cycles sec. Its maximum amplitude and phase lag can be seen from (5), which here takes the form

!Ip(t) " 2.824 sin (377t # 1.29).

>60 Hz " 60

t " 0
Ip(t),I(t)

I(t) " #0.323e!10t ! 3.033e!100t # 2.71 cos 377t ! 0.796 sin 377t .

c1 " #0.323, c2 " 3.033.

Ir(0) " #10c1 # 100c2 ! 0 ! 0.796 # 377 " 0,  hence by (7),  #10c1 " 100(2.71 # c1) # 300.1.

t " 0,

Ir(0) " 0.LIr(0) ! R # 0 " 0,

(1r)t " 0,
"I dt " Q(t);(1r)Q(0) " 0.

c2 " 2.71 # c1.I(0) " c1 ! c2 # 2.71 " 0,

Q(0) " 0.I(0) " 0c2

c1Q(0) " 0?

I(t) " c1e!10t ! c2e!100t # 2.71 cos 377t ! 0.796 sin 377t.

a "
#110 # 37.4

112 ! 37.42
" #2.71,  b "

110 # 11

112 ! 37.42
" 0.796.

Ip(t) " a cos 377t ! b sin 377t

S " 37.7 # 0.3 " 37.4Ip

Ih(t) " c1e!10t ! c2e!100t.

l2 " #100.l1 " #10

0.1l2 ! 11l ! 100 " 0.

0.1Is ! 11Ir ! 100I " 0.

0.1Is ! 11Ir ! 100I " 110 # 377 cos 377t.

Er(t)

t " 0.

>Hz " 60E(t) " 110 sin (60 # 2pt) " 110
C " 10!2 FL " 0.1 HR " 11 ,I(t)
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Analogy of Electrical and Mechanical Quantities
Entirely different physical or other systems may have the same mathematical model.
For instance, we have seen this from the various applications of the ODE in
Chap. 1. Another impressive demonstration of this unifying power of mathematics is
given by the ODE (1) for an electric RLC-circuit and the ODE (2) in the last section for
a mass–spring system. Both equations

and

are of the same form. Table 2.2 shows the analogy between the various quantities involved.
The inductance L corresponds to the mass m and, indeed, an inductor opposes a change
in current, having an “inertia effect” similar to that of a mass. The resistance R corresponds
to the damping constant c, and a resistor causes loss of energy, just as a damping dashpot
does. And so on.

This analogy is strictly quantitative in the sense that to a given mechanical system we
can construct an electric circuit whose current will give the exact values of the displacement
in the mechanical system when suitable scale factors are introduced.

The practical importance of this analogy is almost obvious. The analogy may be used
for constructing an “electrical model” of a given mechanical model, resulting in substantial
savings of time and money because electric circuits are easy to assemble, and electric
quantities can be measured much more quickly and accurately than mechanical ones.

mys ! cyr ! ky " F0 cos vtLIs ! RIr !
1
C

I " E0v cos vt

yr " ky
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y

t0 0.02 0.03 0.04 0.050.01

2

–2

–3

1

–1

3I (t )

Fig. 63. Transient (upper curve) and steady-state currents in Example 1

Table 2.2 Analogy of Electrical and Mechanical Quantities

Electrical System Mechanical System

Inductance L Mass m
Resistance R Damping constant c
Reciprocal 1 C of capacitance Spring modulus k
Derivative of } Driving force electromotive force
Current Displacement y(t)I(t)

F0 cos vt
E0v cos vt
>
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Related to this analogy are transducers, devices that convert changes in a mechanical
quantity (for instance, in a displacement) into changes in an electrical quantity that can
be monitored; see Ref. [GenRef11] in App. 1.
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1–6 RLC-CIRCUITS: SPECIAL CASES
1. RC-Circuit. Model the RC-circuit in Fig. 64. Find the

current due to a constant E.

P R O B L E M  S E T  2 . 9

Fig. 64. RC-circuit

2. RC-Circuit. Solve Prob. 1 when and 
R, C, , and are arbitrary.

3. RL-Circuit. Model the RL-circuit in Fig. 66. Find a
general solution when R, L, E are any constants. Graph
or sketch solutions when H, , and
E " 48 V.

R " 10 ,L " 0.25

vE0

E " E0 sin vt

4. RL-Circuit. Solve Prob. 3 when and R,
L, and are arbitrary. Sketch a typical solution.E0,

E " E0 sin vt

5. LC-Circuit. This is an RLC-circuit with negligibly
small R (analog of an undamped mass–spring system).
Find the current when , , and

, assuming zero initial current and charge.E " sin t V
C " 0.005 FL " 0.5 H

6. LC-Circuit. Find the current when ,
F, , and initial current and charge

zero.

7–18 GENERAL RLC-CIRCUITS
7. Tuning. In tuning a stereo system to a radio station,

we adjust the tuning control (turn a knob) that changes
C (or perhaps L) in an RLC-circuit so that the amplitude
of the steady-state current (5) becomes maximum. For
what C will this happen?

8–14 Find the steady-state current in the RLC-circuit
in Fig. 61 for the given data. Show the details of your work.

8.
9.

10. R " 2 ,, L " 1 H, C " 1
20 F, E " 157 sin 3t V

R " 4 ,, L " 0.1 H, C " 0.05 F, E " 110 V
R "  4 ,, L " 0.5 H, C " 0.1 F, E " 500 sin 2t V

E " 2t 2 VC " 0.005
L " 0.5 H

E(t)

C

R

Fig. 65. Current 1 in Problem 1

Current I(t)

t

c

Fig. 67. Currents in Problem 3
0.020 0.04 0.06 0.08 0.1

Current I(t)

t

1

2

3

4

5

Fig. 68. Typical current 
in Problem 4

I " e!0.1t ! sin (t # 1
4  
p)

0.5

–0.5

–1

1

1.5

2

Current I(t)

t12π4π 8π

Fig. 66. RL-circuit

E(t)

L

R Fig. 69. LC-circuit

C L

E(t)
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11.

12.

13.

14. Prove the claim in the text that if (hence 
then the transient current approaches as 

15. Cases of damping. What are the conditions for an 
RLC-circuit to be (I) overdamped, (II) critically damped,
(III) underdamped? What is the critical resistance 
(the analog of the critical damping constant )?

16–18 Solve the initial value problem for the RLC-
circuit in Fig. 61 with the given data, assuming zero initial
current and charge. Graph or sketch the solution. Show the
details of your work.

21mk
Rcrit

t : *.Ip

R % 0),R $ 0

E " 12,000 sin 25t V
R " 12, L " 1.2 H, C " 20

3
# 10!3 F,

R " 0.2 ,, L " 0.1 H, C " 2 F, E " 220 sin 314t V

E " 220 sin 10t V
R " 12 ,, L " 0.4 H, C " 1

80 F,
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16.

17.

18.

19. WRITING REPORT. Mechanic-Electric Analogy.
Explain Table 2.2 in a 1–2 page report with examples,
e.g., the analog (with ) of a mass–spring system
of mass 5 kg, damping constant 10 kg sec, spring constant

, and driving force 
20. Complex Solution Method. Solve 

by substituting 
(K unknown) and its derivatives and taking the real
part of the solution . Show agreement with (2), (4).
Hint: Use (11) cf. Sec. 2.2,
and i2 " #1.

eivt " cos vt ! i sin vt;
I
~
pIp

Ip " Keivti " 1#1,I
~>C " E0eivt,

LI
~s ! RI

~r !

220 cos 10t kg>sec.60 kg>sec2
>L " 1 H

E " 820 cos 10t V
R " 18 ,, L " 1 H, C " 12.5 # 10!3 F,
E " 600 (cos t ! 4 sin t) V
R " 6 ,, L " 1 H, C " 0.04 F,
E " 100 sin 10t V
R " 8 ,, L " 0.2 H, C " 12.5 # 10!3 F,

2.10 Solution by Variation of Parameters
We continue our discussion of nonhomogeneous linear ODEs, that is

(1)

In Sec. 2.6 we have seen that a general solution of (1) is the sum of a general solution 
of the corresponding homogeneous ODE and any particular solution of (1). To obtain 
when is not too complicated, we can often use the method of undetermined coefficients,
as we have shown in Sec. 2.7 and applied to basic engineering models in Secs. 2.8 and 2.9.

However, since this method is restricted to functions whose derivatives are of a form
similar to itself (powers, exponential functions, etc.), it is desirable to have a method valid
for more general ODEs (1), which we shall now develop. It is called the method of variation
of parameters and is credited to Lagrange (Sec. 2.1). Here p, q, r in (1) may be variable
(given functions of x), but we assume that they are continuous on some open interval I.

Lagrange’s method gives a particular solution of (1) on I in the form

(2)

where form a basis of solutions of the corresponding homogeneous ODE

(3)

on I, and W is the Wronskian of 

(4) (see Sec. 2.6).

CAUTION! The solution formula (2) is obtained under the assumption that the ODE
is written in standard form, with as the first term as shown in (1). If it starts with

divide first by f (x).f (x)ys,
ys

W " y1y2r # y2y1r

y1, y2,

ys ! p(x)yr ! q(x)y " 0

y1, y2

yp(x) " #y1# y2r
W

 dx ! y2# y1r
W

 dx

yp

r (x)
r (x)

r (x)
ypyp

yh

ys ! p(x)yr ! q(x)y " r (x).

c02.qxd  10/27/10  6:06 PM  Page 99



The integration in (2) may often cause difficulties, and so may the determination of
if (1) has variable coefficients. If you have a choice, use the previous method. It is

simpler. Before deriving (2) let us work an example for which you do need the new
method. (Try otherwise.)

E X A M P L E  1 Method of Variation of Parameters

Solve the nonhomogeneous ODE

Solution. A basis of solutions of the homogeneous ODE on any interval is . This gives
the Wronskian

From (2), choosing zero constants of integration, we get the particular solution of the given ODE

(Fig. 70)

Figure 70 shows and its first term, which is small, so that essentially determines the shape of the curve
of . (Recall from Sec. 2.8 that we have seen in connection with resonance, except for notation.) From

and the general solution of the homogeneous ODE we obtain the answer

Had we included integration constants in (2), then (2) would have given the additional
that is, a general solution of the given ODE directly from (2). This will

always be the case. !
c1 cos x ! c2 sin x " c1y1 ! c2y2,

#c1, c2

y " yh ! yp " (c1 ! ln ƒ cos x ƒ ) cos x ! (c2 ! x) sin x.

yh " c1y1 ! c2y2yp

x sin xyp

x sin xyp

 " cos x ln ƒ cos x ƒ ! x sin x

 yp " #cos x#sin x sec x dx ! sin x#cos x sec x dx

W( y1, y2) " cos x cos x # sin x (#sin x) " 1.

y1 " cos x, y2 " sin x

ys ! y " sec x "
1

cos x  .

y1, y 2
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y

x
0

4 82

5

10

–5

–10

6 10 12

Fig. 70. Particular solution yp and its first term in Example 1

Idea of the Method. Derivation of (2)
What idea did Lagrange have? What gave the method the name? Where do we use the
continuity assumptions?

The idea is to start from a general solution

yh(x) " c1y1(x) ! c2y2(x)
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of the homogeneous ODE (3) on an open interval I and to replace the constants (“the
parameters”) and by functions and this suggests the name of the method.
We shall determine u and v so that the resulting function

(5)

is a particular solution of the nonhomogeneous ODE (1). Note that exists by Theorem
3 in Sec. 2.6 because of the continuity of p and q on I. (The continuity of r will be used
later.)

We determine u and v by substituting (5) and its derivatives into (1). Differentiating (5),
we obtain

Now must satisfy (1). This is one condition for two functions u and v. It seems plausible
that we may impose a second condition. Indeed, our calculation will show that we can
determine u and v such that satisfies (1) and u and v satisfy as a second condition the
equation

(6)

This reduces the first derivative to the simpler form

(7)

Differentiating (7), we obtain

(8)

We now substitute and its derivatives according to (5), (7), (8) into (1). Collecting
terms in u and terms in v, we obtain

Since and are solutions of the homogeneous ODE (3), this reduces to

(9a)

Equation (6) is

(9b)

This is a linear system of two algebraic equations for the unknown functions and 
We can solve it by elimination as follows (or by Cramer’s rule in Sec. 7.6). To eliminate

we multiply (9a) by and (9b) by and add, obtaining

Here, W is the Wronskian (4) of To eliminate we multiply (9a) by and (9b)
by and add, obtaining#y1r

y1,ury1, y2.

ur(y1y2r # y2y1r) " #y2r,  thus  urW " #y2r.

y2r#y2 vr,

vr.ur

ury1 ! vry2 " 0.

ury1r ! vry2r " r.

y2y1

u( y1s ! py1r ! qy1) ! v( y2s ! py2r ! qy2) ! ury1r ! vry2r " r.

yp

yps " ury1r ! uy1s ! vry2r ! vy2s.

ypr " uy1r ! vy2r.

ypr

ury1 ! vry2 " 0.

yp

yp

ypr " ury1 ! uy1r ! vry2 ! vy2r.

yh

yp(x) " u(x)y1(x) ! v(x)y2(x)

v(x);u(x)c2c1
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Since form a basis, we have (by Theorem 2 in Sec. 2.6) and can divide by W,

(10)

By integration,

These integrals exist because is continuous. Inserting them into (5) gives (2) and
completes the derivation. !

r (x)

u " ## y2r
W

 dx,  v " # y1r
W

 dx.

ur " # 

y2r
W

 ,  vr "
y1r
W

 .

W $ 0y1, y 2

vr(y1y 2r # y2yr1) " #y1r,  thus  vrW " y1r.
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1–13 GENERAL SOLUTION 
Solve the given nonhomogeneous linear ODE by variation
of parameters or undetermined coefficients. Show the
details of your work.
1.
2.
3.
4.
5.
6.
7.
8.
9.

10. (D2 ! 2D ! 2I )y " 4e!x sec3
 x

(D2 # 2D ! I )y " 35x3>2ex
(D2 ! 4I )y " cosh 2x

(D2 # 4D ! 4I )y " 6e2x>x4

(D2 ! 6D ! 9I )y " 16e!3x>(x2 ! 1)
ys ! y " cos x # sin x
ys # 4yr ! 5y " e2x csc x
x2ys # 2xyr ! 2y " x3 sin x
ys ! 9y " csc 3x

ys ! 9y " sec 3x

11.
12.
13.
14. TEAM PROJECT. Comparison of Methods. Inven-

tion. The undetermined-coefficient method should be
used whenever possible because it is simpler. Compare
it with the present method as follows.
(a) Solve by both methods,
showing all details, and compare.
(b) Solve 

by applying each method to a suitable function on
the right.
(c) Experiment to invent an undetermined-coefficient
method for nonhomogeneous Euler–Cauchy equations.

x2
r2 "ys # 2yr ! y " r1 ! r2, r1 " 35x3>2ex

ys ! 4yr ! 3y " 65 cos 2x

(x2D2 ! xD # 9I )y " 48x5

(D2 # I )y " 1>cosh x
(x2D2 # 4xD ! 6I )y " 21x!4

P R O B L E M  S E T  2 . 1 0

1. Why are linear ODEs preferable to nonlinear ones in
modeling?

2. What does an initial value problem of a second-order
ODE look like? Why must you have a general solution
to solve it?

3. By what methods can you get a general solution of a
nonhomogeneous ODE from a general solution of a
homogeneous one?

4. Describe applications of ODEs in mechanical systems.
What are the electrical analogs of the latter?

5. What is resonance? How can you remove undesirable
resonance of a construction, such as a bridge, a ship,
or a machine?

6. What do you know about existence and uniqueness of
solutions of linear second-order ODEs?

7–18 GENERAL SOLUTION
Find a general solution. Show the details of your calculation.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18. yys " 2yr2

(4D2 # 12D ! 9I )y " 2e1.5x
(D2 ! 2D ! 2I )y " 3e!x cos 2x
(2D2 # 3D # 2I )y " 13 # 2x2

(x2D2 ! xD # 9I )y " 0
(x2D2 ! 2xD # 12I )y " 0
(D2 ! 4pD ! 4p2I )y " 0
(100D2 # 160D ! 64I )y " 0
ys ! 0.20yr ! 0.17y " 0
ys ! 6yr ! 34y " 0
ys ! yr # 12y " 0
4ys ! 32yr ! 63y " 0

C H A P T E R  2  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S
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19–22 INITIAL VALUE PROBLEMS 
Solve the problem, showing the details of your work.
Sketch or graph the solution.
19.
20.
21.
22.

23–30 APPLICATIONS
23. Find the steady-state current in the RLC-circuit in Fig. 71

when and
(66 cycles sec).

24. Find a general solution of the homogeneous linear
ODE corresponding to the ODE in Prob. 23.

25. Find the steady-state current in the RLC-circuit 
in Fig. 71 when 

.E " 200 sin 4t V
R " 50 ,, L " 30 H, C " 0.025 F,

>E " 110 sin 415t V
R " 2 k, (2000 ,), L " 1 H, C " 4 # 10!3 F,

yr(1) " #11
(x2D2 ! 15xD ! 49I )y " 0, y(1) " 2,
(x2D2 ! xD # I )y " 16x3, y(1) " #1, yr(1) " 1
ys # 3yr ! 2y " 10 sin x, y(0) " 1, yr(0) " #6
ys ! 16y " 17ex, y(0) " 6, yr(0) " #2

Summary of Chapter 2 103

27. Find an electrical analog of the mass–spring system
with mass 4 kg, spring constant 10 damping
constant 20 kg sec, and driving force 

28. Find the motion of the mass–spring system in Fig. 72
with mass 0.125 kg, damping 0, spring constant
1.125 and driving force ass-
uming zero initial displacement and velocity. For what
frequency of the driving force would you get resonance?

cos t # 4 sin t nt,kg>sec2,

100 sin 4t nt.> kg>sec2,

29. Show that the system in Fig. 72 with 
and driving force exhibits beats.

Hint: Choose zero initial conditions.

30. In Fig. 72, let kg, kg sec, 
and nt. Determine w such that you
get the steady-state vibration of maximum possible
amplitude. Determine this amplitude. Then find the
general solution with this and check whether the results
are in agreement.

v

r(t) " 10 cos vt
kg>sec2,k " 24>c " 4m " 1

61 cos 3.1tk " 36,
m " 4, c " 0,

Fig. 71. RLC-circuit
E(t )

C

R L

Fig. 72. Mass–spring system

Dashpot

Mass

Springk

m

c

Second-order linear ODEs are particularly important in applications, for instance,
in mechanics (Secs. 2.4, 2.8) and electrical engineering (Sec. 2.9). A second-order
ODE is called linear if it can be written

(1) (Sec. 2.1).

(If the first term is, say, divide by to get the “standard form” (1) with
as the first term.) Equation (1) is called homogeneous if is zero for all x

considered, usually in some open interval; this is written Then

(2)

Equation (1) is called nonhomogeneous if (meaning is not zero for
some x considered).

r (x)r (x) [ 0

ys ! p(x)yr ! q(x)y " 0.

r (x) ! 0.
r (x)ys

f (x)f (x)ys,

ys ! p(x)yr ! q(x)y " r (x)

SUMMARY OF CHAPTER 2
Second-Order Linear ODEs

26. Find the current in the RLC-circuit in Fig. 71 
when

(50 cycles sec).>220 sin 314t V
E "C " 10!4 F,L " 0.4 H,R " 40 ,,
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For the homogeneous ODE (2) we have the important superposition principle (Sec.
2.1) that a linear combination of two solutions is again a solution.

Two linearly independent solutions of (2) on an open interval I form a basis
(or fundamental system) of solutions on I. and with arbitrary
constants a general solution of (2) on I. From it we obtain a particular
solution if we specify numeric values (numbers) for and usually by prescribing
two initial conditions

(3) given numbers; Sec. 2.1).

(2) and (3) together form an initial value problem. Similarly for (1) and (3). 
For a nonhomogeneous ODE (1) a general solution is of the form

(4) (Sec. 2.7).

Here is a general solution of (2) and is a particular solution of (1). Such a 
can be determined by a general method (variation of parameters, Sec. 2.10) or in
many practical cases by the method of undetermined coefficients. The latter applies
when (1) has constant coefficients p and q, and is a power of x, sine, cosine,
etc. (Sec. 2.7). Then we write (1) as

(5) (Sec. 2.7).

The corresponding homogeneous ODE has solutions 
where is a root of

(6)

Hence there are three cases (Sec. 2.2):

l2 ! al ! b " 0.

l
y " elx,yr ! ayr ! by " 0

ys ! ayr ! by " r (x)

r (x)

ypypyh

y " yh ! yp

(x0, K0, K1yr(x0) " K1y(x0) " K0,

c2,c1

c1, c2

y " c1y1 ! c2y2

y1, y2

y1, y2y " ky1 ! ly2
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Case Type of Roots General Solution

I Distinct real 
II Double 
III Complex y " e!ax>2(A cos v*x ! B sin v*x)#1

2 
a ' iv*

y " (c1 ! c2x)e#ax>2#1
2 

a
y " c1el1x ! c2el2xl1, l2

Here is used since is needed in driving forces.
Important applications of (5) in mechanical and electrical engineering in connection

with vibrations and resonance are discussed in Secs. 2.4, 2.7, and 2.8.
Another large class of ODEs solvable “algebraically” consists of the Euler–Cauchy

equations

(7) (Sec. 2.5).

These have solutions of the form where m is a solution of the auxiliary equation

(8)

Existence and uniqueness of solutions of (1) and (2) is discussed in Secs. 2.6
and 2.7, and reduction of order in Sec. 2.1.

m2 ! (a # 1)m ! b " 0.

y " xm,

x2ys ! axyr ! by " 0

vv*
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