
c h a p t e r

Electric Fields

P U Z Z L E R

Soft contact lenses are comfortable to
wear because they attract the proteins in
the wearer’s tears, incorporating the
complex molecules right into the lenses.
They become, in a sense, part of the
wearer. Some types of makeup exploit
this same attractive force to adhere to
the skin. What is the nature of this force?
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he electromagnetic force between charged particles is one of the fundamen-
tal forces of nature. We begin this chapter by describing some of the basic
properties of electric forces. We then discuss Coulomb’s law, which is the fun-

damental law governing the force between any two charged particles. Next, we in-
troduce the concept of an electric field associated with a charge distribution and
describe its effect on other charged particles. We then show how to use
Coulomb’s law to calculate the electric field for a given charge distribution. We
conclude the chapter with a discussion of the motion of a charged particle in a
uniform electric field.

PROPERTIES OF ELECTRIC CHARGES
A number of simple experiments demonstrate the existence of electric forces and
charges. For example, after running a comb through your hair on a dry day, you
will find that the comb attracts bits of paper. The attractive force is often strong
enough to suspend the paper. The same effect occurs when materials such as glass
or rubber are rubbed with silk or fur.

Another simple experiment is to rub an inflated balloon with wool. The bal-
loon then adheres to a wall, often for hours. When materials behave in this way,
they are said to be electrified, or to have become electrically charged. You can eas-
ily electrify your body by vigorously rubbing your shoes on a wool rug. The electric
charge on your body can be felt and removed by lightly touching (and startling) a
friend. Under the right conditions, you will see a spark when you touch, and both
of you will feel a slight tingle. (Experiments such as these work best on a dry day
because an excessive amount of moisture in the air can cause any charge you build
up to “leak” from your body to the Earth.)

In a series of simple experiments, it is found that there are two kinds of elec-
tric charges, which were given the names positive and negative by Benjamin
Franklin (1706–1790). To verify that this is true, consider a hard rubber rod that
has been rubbed with fur and then suspended by a nonmetallic thread, as shown
in Figure 23.1. When a glass rod that has been rubbed with silk is brought near the
rubber rod, the two attract each other (Fig. 23.1a). On the other hand, if two
charged rubber rods (or two charged glass rods) are brought near each other, as
shown in Figure 23.1b, the two repel each other. This observation shows that the
rubber and glass are in two different states of electrification. On the basis of these
observations, we conclude that like charges repel one another and unlike
charges attract one another.

Using the convention suggested by Franklin, the electric charge on the glass
rod is called positive and that on the rubber rod is called negative. Therefore, any
charged object attracted to a charged rubber rod (or repelled by a charged glass
rod) must have a positive charge, and any charged object repelled by a charged
rubber rod (or attracted to a charged glass rod) must have a negative charge.

Attractive electric forces are responsible for the behavior of a wide variety of
commercial products. For example, the plastic in many contact lenses, etafilcon, is
made up of molecules that electrically attract the protein molecules in human
tears. These protein molecules are absorbed and held by the plastic so that the
lens ends up being primarily composed of the wearer’s tears. Because of this, the
wearer’s eye does not treat the lens as a foreign object, and it can be worn com-
fortably. Many cosmetics also take advantage of electric forces by incorporating
materials that are electrically attracted to skin or hair, causing the pigments or
other chemicals to stay put once they are applied.

23.1
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QuickLab
Rub an inflated balloon against your
hair and then hold the balloon near a
thin stream of water running from a
faucet. What happens? (A rubbed
plastic pen or comb will also work.)
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Another important aspect of Franklin’s model of electricity is the implication
that electric charge is always conserved. That is, when one object is rubbed
against another, charge is not created in the process. The electrified state is due to
a transfer of charge from one object to the other. One object gains some amount of
negative charge while the other gains an equal amount of positive charge. For ex-
ample, when a glass rod is rubbed with silk, the silk obtains a negative charge that
is equal in magnitude to the positive charge on the glass rod. We now know from
our understanding of atomic structure that negatively charged electrons are trans-
ferred from the glass to the silk in the rubbing process. Similarly, when rubber is
rubbed with fur, electrons are transferred from the fur to the rubber, giving the
rubber a net negative charge and the fur a net positive charge. This process is con-
sistent with the fact that neutral, uncharged matter contains as many positive
charges (protons within atomic nuclei) as negative charges (electrons).

If you rub an inflated balloon against your hair, the two materials attract each other, as
shown in Figure 23.2. Is the amount of charge present in the balloon and your hair after
rubbing (a) less than, (b) the same as, or (c) more than the amount of charge present be-
fore rubbing?

In 1909, Robert Millikan (1868–1953) discovered that electric charge always
occurs as some integral multiple of a fundamental amount of charge e. In modern
terms, the electric charge q is said to be quantized, where q is the standard symbol
used for charge. That is, electric charge exists as discrete “packets,” and we can
write where N is some integer. Other experiments in the same period
showed that the electron has a charge !e and the proton has a charge of equal
magnitude but opposite sign "e. Some particles, such as the neutron, have no
charge. A neutral atom must contain as many protons as electrons.

Because charge is a conserved quantity, the net charge in a closed region re-
mains the same. If charged particles are created in some process, they are always
created in pairs whose members have equal-magnitude charges of opposite sign.

q # Ne,

Quick Quiz 23.1
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Figure 23.1 (a) A negatively charged rubber rod suspended by a thread is attracted to a posi-
tively charged glass rod. (b) A negatively charged rubber rod is repelled by another negatively
charged rubber rod.

Figure 23.2 Rubbing a balloon
against your hair on a dry day
causes the balloon and your hair 
to become charged.

Charge is conserved

Charge is quantized



23.2 Insulators and Conductors 711

From our discussion thus far, we conclude that electric charge has the follow-
ing important properties:

• Two kinds of charges occur in nature, with the property that unlike charges
attract one another and like charges repel one another.

• Charge is conserved.
• Charge is quantized.

Properties of electric charge

INSULATORS AND CONDUCTORS
It is convenient to classify substances in terms of their ability to conduct electric
charge:

23.2

Electrical conductors are materials in which electric charges move freely,
whereas electrical insulators are materials in which electric charges cannot
move freely.

Materials such as glass, rubber, and wood fall into the category of electrical insula-
tors. When such materials are charged by rubbing, only the area rubbed becomes
charged, and the charge is unable to move to other regions of the material.

In contrast, materials such as copper, aluminum, and silver are good electrical
conductors. When such materials are charged in some small region, the charge
readily distributes itself over the entire surface of the material. If you hold a cop-
per rod in your hand and rub it with wool or fur, it will not attract a small piece of
paper. This might suggest that a metal cannot be charged. However, if you attach a
wooden handle to the rod and then hold it by that handle as you rub the rod, the
rod will remain charged and attract the piece of paper. The explanation for this is
as follows: Without the insulating wood, the electric charges produced by rubbing
readily move from the copper through your body and into the Earth. The insulat-
ing wooden handle prevents the flow of charge into your hand.

Semiconductors are a third class of materials, and their electrical properties
are somewhere between those of insulators and those of conductors. Silicon and
germanium are well-known examples of semiconductors commonly used in the
fabrication of a variety of electronic devices, such as transistors and light-emitting
diodes. The electrical properties of semiconductors can be changed over many or-
ders of magnitude by the addition of controlled amounts of certain atoms to the
materials.

When a conductor is connected to the Earth by means of a conducting wire or
pipe, it is said to be grounded. The Earth can then be considered an infinite
“sink” to which electric charges can easily migrate. With this in mind, we can un-
derstand how to charge a conductor by a process known as induction.

To understand induction, consider a neutral (uncharged) conducting sphere
insulated from ground, as shown in Figure 23.3a. When a negatively charged rub-
ber rod is brought near the sphere, the region of the sphere nearest the rod ob-
tains an excess of positive charge while the region farthest from the rod obtains an
equal excess of negative charge, as shown in Figure 23.3b. (That is, electrons in
the region nearest the rod migrate to the opposite side of the sphere. This occurs
even if the rod never actually touches the sphere.) If the same experiment is per-
formed with a conducting wire connected from the sphere to ground (Fig. 23.3c),
some of the electrons in the conductor are so strongly repelled by the presence of

11.3

Metals are good conductors

Charging by induction
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Figure 23.3 Charging a metallic object by induction (that is, the two objects never touch each
other). (a) A neutral metallic sphere, with equal numbers of positive and negative charges. 
(b) The charge on the neutral sphere is redistributed when a charged rubber rod is placed near
the sphere. (c) When the sphere is grounded, some of its electrons leave through the ground
wire. (d) When the ground connection is removed, the sphere has excess positive charge that is
nonuniformly distributed. (e) When the rod is removed, the excess positive charge becomes uni-
formly distributed over the surface of the sphere.



23.3 Coulomb’s Law 713

the negative charge in the rod that they move out of the sphere through the
ground wire and into the Earth. If the wire to ground is then removed (Fig.
23.3d), the conducting sphere contains an excess of induced positive charge. When
the rubber rod is removed from the vicinity of the sphere (Fig. 23.3e), this in-
duced positive charge remains on the ungrounded sphere. Note that the charge
remaining on the sphere is uniformly distributed over its surface because of the re-
pulsive forces among the like charges. Also note that the rubber rod loses none of
its negative charge during this process.

Charging an object by induction requires no contact with the body inducing
the charge. This is in contrast to charging an object by rubbing (that is, by conduc-
tion), which does require contact between the two objects.

A process similar to induction in conductors takes place in insulators. In most
neutral molecules, the center of positive charge coincides with the center of nega-
tive charge. However, in the presence of a charged object, these centers inside
each molecule in an insulator may shift slightly, resulting in more positive charge
on one side of the molecule than on the other. This realignment of charge within
individual molecules produces an induced charge on the surface of the insulator,
as shown in Figure 23.4. Knowing about induction in insulators, you should be
able to explain why a comb that has been rubbed through hair attracts bits of elec-
trically neutral paper and why a balloon that has been rubbed against your cloth-
ing is able to stick to an electrically neutral wall.

Object A is attracted to object B. If object B is known to be positively charged, what can we
say about object A? (a) It is positively charged. (b) It is negatively charged. (c) It is electri-
cally neutral. (d) Not enough information to answer.

COULOMB’S LAW
Charles Coulomb (1736–1806) measured the magnitudes of the electric forces be-
tween charged objects using the torsion balance, which he invented (Fig. 23.5).

23.3

Quick Quiz 23.2

QuickLab
Tear some paper into very small
pieces. Comb your hair and then
bring the comb close to the paper
pieces. Notice that they are acceler-
ated toward the comb. How does the
magnitude of the electric force com-
pare with the magnitude of the gravi-
tational force exerted on the paper?
Keep watching and you might see a
few pieces jump away from the comb.
They don’t just fall away; they are re-
pelled. What causes this?
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Induced
charges

Charged
object

(a)

Figure 23.4 (a) The charged object on the left induces charges on the surface of an insulator.
(b) A charged comb attracts bits of paper because charges are displaced in the paper.

(b)

11.4

Charles Coulomb (1736 – 1806)
Coulomb's major contribution to sci-
ence was in the field of electrostatics
and magnetism. During his lifetime, he
also investigated the strengths of ma-
terials and determined the forces that
affect objects on beams, thereby con-
tributing to the field of structural me-
chanics. In the field of ergonomics,
his research provided a fundamental
understanding of the ways in which
people and animals can best do work.
(Photo courtesy of AIP Niels Bohr
Library/E. Scott Barr Collection)
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Coulomb confirmed that the electric force between two small charged spheres is
proportional to the inverse square of their separation distance r—that is,

The operating principle of the torsion balance is the same as that of the
apparatus used by Cavendish to measure the gravitational constant (see Section
14.2), with the electrically neutral spheres replaced by charged ones. The electric
force between charged spheres A and B in Figure 23.5 causes the spheres to either
attract or repel each other, and the resulting motion causes the suspended fiber to
twist. Because the restoring torque of the twisted fiber is proportional to the angle
through which the fiber rotates, a measurement of this angle provides a quantita-
tive measure of the electric force of attraction or repulsion. Once the spheres are
charged by rubbing, the electric force between them is very large compared with
the gravitational attraction, and so the gravitational force can be neglected.

Coulomb’s experiments showed that the electric force between two stationary
charged particles

• is inversely proportional to the square of the separation r between the particles
and directed along the line joining them;

• is proportional to the product of the charges q1 and q2 on the two particles;
• is attractive if the charges are of opposite sign and repulsive if the charges have

the same sign.

From these observations, we can express Coulomb’s law as an equation giving
the magnitude of the electric force (sometimes called the Coulomb force) between
two point charges:

(23.1)

where ke is a constant called the Coulomb constant. In his experiments, Coulomb
was able to show that the value of the exponent of r was 2 to within an uncertainty
of a few percent. Modern experiments have shown that the exponent is 2 to within
an uncertainty of a few parts in 1016.

The value of the Coulomb constant depends on the choice of units. The SI
unit of charge is the coulomb (C). The Coulomb constant ke in SI units has the
value

This constant is also written in the form

where the constant $0 (lowercase Greek epsilon) is known as the permittivity of free
space and has the value 

The smallest unit of charge known in nature is the charge on an electron or
proton,1 which has an absolute value of

Therefore, 1 C of charge is approximately equal to the charge of 6.24 % 1018 elec-
trons or protons. This number is very small when compared with the number of

! e ! # 1.602 19 % 10!19 C

8.854 2 % 10!12 C2/N&m2.

ke #
1

4'$0

ke # 8.987 5 % 109 N&m2/C2

Fe # ke 
! q1 !! q2 !

r 2

Fe ( 1/r 2.

Coulomb constant

Charge on an electron or proton

1 No unit of charge smaller than e has been detected as a free charge; however, recent theories propose
the existence of particles called quarks having charges e/3 and 2e/3. Although there is considerable ex-
perimental evidence for such particles inside nuclear matter, free quarks have never been detected. We
discuss other properties of quarks in Chapter 46 of the extended version of this text.

Suspension
head

Fiber

B

A

Figure 23.5 Coulomb’s torsion
balance, used to establish the in-
verse-square law for the electric
force between two charges.
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free electrons2 in 1 cm3 of copper, which is of the order of 1023. Still, 1 C is a sub-
stantial amount of charge. In typical experiments in which a rubber or glass rod is
charged by friction, a net charge of the order of 10!6 C is obtained. In other
words, only a very small fraction of the total available charge is transferred be-
tween the rod and the rubbing material.

The charges and masses of the electron, proton, and neutron are given in
Table 23.1.

The Hydrogen AtomEXAMPLE 23.1

The ratio Thus, the gravitational force be-
tween charged atomic particles is negligible when compared
with the electric force. Note the similarity of form of New-
ton’s law of gravitation and Coulomb’s law of electric forces.
Other than magnitude, what is a fundamental difference be-
tween the two forces?

Fe /Fg " 2 % 1039.

3.6 % 10!47 N #

 # %
(9.11 % 10!31 kg)(1.67 % 10!27 kg)

(5.3 % 10!11 m)2

 # #6.7 % 10!11 
N&m2

kg2 $ 

Fg # G 
memp

r 2  The electron and proton of a hydrogen atom are separated
(on the average) by a distance of approximately 5.3 %
10!11 m. Find the magnitudes of the electric force and the
gravitational force between the two particles.

Solution From Coulomb’s law, we find that the attractive
electric force has the magnitude

Using Newton’s law of gravitation and Table 23.1 for the
particle masses, we find that the gravitational force has the
magnitude

8.2 % 10!8 N#

Fe # ke 
! e !2

r 2 # #8.99 % 109 
N&m2

C2 $ 
(1.60 % 10!19 C)2

(5.3 % 10!11 m)2

When dealing with Coulomb’s law, you must remember that force is a vector
quantity and must be treated accordingly. Thus, the law expressed in vector form
for the electric force exerted by a charge q1 on a second charge q2 , written F12 , is

(23.2)

where is a unit vector directed from q1 to q2 , as shown in Figure 23.6a. Because
the electric force obeys Newton’s third law, the electric force exerted by q2 on q1 is

r̂

F12 # ke 
q 1q 2

r 2  r̂

2 A metal atom, such as copper, contains one or more outer electrons, which are weakly bound to the
nucleus. When many atoms combine to form a metal, the so-called free electrons are these outer elec-
trons, which are not bound to any one atom. These electrons move about the metal in a manner simi-
lar to that of gas molecules moving in a container.

TABLE 23.1 Charge and Mass of the Electron, Proton, and
Neutron

Particle Charge (C) Mass (kg)

Electron (e) ! 1.602 191 7 % 10!19 9.109 5 % 10!31

Proton (p) " 1.602 191 7 % 10!19 1.672 61 % 10!27

Neutron (n) 0 1.674 92 % 10!27
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equal in magnitude to the force exerted by q1 on q2 and in the opposite direction;
that is, Finally, from Equation 23.2, we see that if q1 and q2 have the
same sign, as in Figure 23.6a, the product q1q2 is positive and the force is repulsive.
If q1 and q2 are of opposite sign, as shown in Figure 23.6b, the product q1q2 is neg-
ative and the force is attractive. Noting the sign of the product q1q2 is an easy way
of determining the direction of forces acting on the charges.

Object A has a charge of " 2 )C, and object B has a charge of " 6 )C. Which statement is
true?

(a) . (b) . (c) .

When more than two charges are present, the force between any pair of them
is given by Equation 23.2. Therefore, the resultant force on any one of them
equals the vector sum of the forces exerted by the various individual charges. For
example, if four charges are present, then the resultant force exerted by particles
2, 3, and 4 on particle 1 is

F1 # F21 " F31 " F41

3FAB # !FBAFAB # !FBAFAB # !3FBA

Quick Quiz 23.3

F21 # ! F12 .

–

+
r

(a)F21

F12

q1

q2

(b)

F21

F12

q1

q2

r̂

+

+

Figure 23.6 Two point charges separated by a distance r ex-
ert a force on each other that is given by Coulomb’s law. The
force F21 exerted by q2 on q1 is equal in magnitude and oppo-
site in direction to the force F12 exerted by q1 on q2 . (a) When
the charges are of the same sign, the force is repulsive. 
(b) When the charges are of opposite signs, the force is
attractive.

Find the Resultant ForceEXAMPLE 23.2
The magnitude of F23 is

Note that because q3 and q2 have opposite signs, F23 is to the
left, as shown in Figure 23.7.

 # 9.0 N 

 # #8.99 % 109 
N&m2

C2 $ 
(2.0 % 10!6 C)(5.0 % 10!6 C)

(0.10 m)2

F23 # ke 
! q2 !! q3 !

a2  

Consider three point charges located at the corners of a right
triangle as shown in Figure 23.7, where 

and Find the resultant force ex-
erted on q3 .

Solution First, note the direction of the individual forces
exerted by q1 and q2 on q3 . The force F23 exerted by q2 on q3
is attractive because q2 and q3 have opposite signs. The force
F13 exerted by q1 on q3 is repulsive because both charges are
positive.

a # 0.10 m. q2 # !2.0 )C,
q1 # q3 # 5.0 )C,
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F13

q3

q1

q2

a

a

y

x

–

+

+
F23

2a√

The magnitude of the force exerted by q1 on q3 is

F13 # ke 
! q1 !! q3 !
(!2a)2  

The force F13 is repulsive and makes an angle of 45° with the
x axis. Therefore, the x and y components of F13 are equal,
with magnitude given by F13 cos 45° # 7.9 N.

The force F23 is in the negative x direction. Hence, the x
and y components of the resultant force acting on q3 are

We can also express the resultant force acting on q3 in unit -
vector form as

Exercise Find the magnitude and direction of the resultant
force F3 .

Answer 8.0 N at an angle of 98° with the x axis.

(!1.1i " 7.9j) NF3 #

F3y # F13y # 7.9 N 

F3x # F13x " F23 # 7.9 N ! 9.0 N # !1.1 N

 # 11 N 

 # #8.99 % 109 
N&m2

C2 $ 
(5.0 % 10!6 C)(5.0 % 10!6 C)

2(0.10 m)2

Figure 23.7 The force exerted by q1 on q3 is F13 . The force ex-
erted by q2 on q3 is F23 . The resultant force F3 exerted on q3 is the
vector sum F13 " F23 .

Where Is the Resultant Force Zero?EXAMPLE 23.3

Solving this quadratic equation for x, we find that 

Why is the negative root not acceptable?x # 0.775 m.

(4.00 ! 4.00x " x2)(6.00 % 10!6 C) # x2(15.0 % 10!6 C)

 (2.00 ! x)2! q2 ! # x2! q1 ! Three point charges lie along the x axis as shown in Figure
23.8. The positive charge q1 # 15.0 )C is at x # 2.00 m, the
positive charge q2 # 6.00 )C is at the origin, and the resul-
tant force acting on q3 is zero. What is the x coordinate of q3?

Solution Because q3 is negative and q1 and q2 are positive,
the forces F13 and F23 are both attractive, as indicated in Fig-
ure 23.8. From Coulomb’s law, F13 and F23 have magnitudes

For the resultant force on q3 to be zero, F23 must be equal in
magnitude and opposite in direction to F13 , or

Noting that ke and q3 are common to both sides and so can be
dropped, we solve for x and find that

ke 
! q2 !! q3 !

x2 # ke 
! q1 !! q3 !

(2.00 ! x)2

F13 # ke 
! q1 !! q3 !

(2.00 ! x)2   F23 # ke 
! q2 !! q3 !

x2

2.00 m

x

q1

x
q3

–
q2 F13F23

2.00 – x

+ +

Figure 23.8 Three point charges are placed along the x axis. If
the net force acting on q3 is zero, then the force F13 exerted by q1 on
q3 must be equal in magnitude and opposite in direction to the force
F23 exerted by q2 on q3 .

Find the Charge on the SpheresEXAMPLE 23.4
we see that sin * # a/L . Therefore,

The separation of the spheres is 
The forces acting on the left sphere are shown in Figure

23.9b. Because the sphere is in equilibrium, the forces in the

2a # 0.026 m.

a # L sin * # (0.15 m)sin 5.0+ # 0.013 m

Two identical small charged spheres, each having a mass of
3.0 % 10!2 kg, hang in equilibrium as shown in Figure 23.9a.
The length of each string is 0.15 m, and the angle * is 5.0°.
Find the magnitude of the charge on each sphere.

Solution From the right triangle shown in Figure 23.9a,
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QuickLab
For this experiment you need two 20-cm strips of transparent tape (mass of each " 65 mg). Fold about
1 cm of tape over at one end of each strip to create a handle. Press both pieces of tape side by side onto
a table top, rubbing your finger back and forth across the strips. Quickly pull the strips off the surface
so that they become charged. Hold the tape handles together and the strips will repel each other, form-
ing an inverted “V” shape. Measure the angle between the pieces, and estimate the excess charge on
each strip. Assume that the charges act as if they were located at the center of mass of each strip.

Figure 23.9 (a) Two identical spheres, each carrying the same
charge q , suspended in equilibrium. (b) The free-body diagram for
the sphere on the left.

(a) (b)

mg

LL

θ θ

L = 0.15 m
θ = 5.0°

q a q

θT
T cos θ

T sin θ

θ

Fe

θ

θ

θ

THE ELECTRIC FIELD
Two field forces have been introduced into our discussions so far—the gravita-
tional force and the electric force. As pointed out earlier, field forces can act
through space, producing an effect even when no physical contact between the ob-
jects occurs. The gravitational field g at a point in space was defined in Section
14.6 to be equal to the gravitational force Fg acting on a test particle of mass m di-
vided by that mass: A similar approach to electric forces was developed
by Michael Faraday and is of such practical value that we shall devote much atten-
tion to it in the next several chapters. In this approach, an electric field is said to
exist in the region of space around a charged object. When another charged ob-
ject enters this electric field, an electric force acts on it. As an example, consider
Figure 23.10, which shows a small positive test charge q0 placed near a second ob-
ject carrying a much greater positive charge Q. We define the strength (in other
words, the magnitude) of the electric field at the location of the test charge to be
the electric force per unit charge, or to be more specific

g % Fg/m .

23.4

horizontal and vertical directions must separately add up to
zero:

(1)

(2)

From Equation (2), we see that *; thus, T can beT # mg /cos

,Fy # T cos * ! mg # 0

,Fx # T sin * ! Fe # 0

eliminated from Equation (1) if we make this substitution.
This gives a value for the magnitude of the electric force Fe :

(3)

From Coulomb’s law (Eq. 23.1), the magnitude of the elec-
tric force is

where r # 2a # 0.026 m and is the magnitude of the
charge on each sphere. (Note that the term arises here
because the charge is the same on both spheres.) This equa-
tion can be solved for to give

Exercise If the charge on the spheres were negative, how
many electrons would have to be added to them to yield a net
charge of ! 4.4 % 10!8 C?

Answer 2.7 % 1011 electrons.

4.4 % 10!8 C ! q ! #

! q !2 #
Fe r 2

ke
#

(2.6 % 10!2 N)(0.026 m)2

8.99 % 109 N&m2/C2

! q !2

! q !2
! q !

Fe # ke 
! q !2

r 2

 # 2.6 % 10!2 N 

 # (3.0 % 10!2 kg)(9.80 m/s2)tan 5.0+

Fe # mg tan * 

+

+ +
+ +
+ +
+ +

+ +
+

++

+

Q

q0

E

Figure 23.10 A small positive
test charge q0 placed near an object
carrying a much larger positive
charge Q experiences an electric
field E directed as shown. 

11.5
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This dramatic photograph captures a lightning bolt striking a tree near some rural homes.

the electric field E at a point in space is defined as the electric force Fe acting
on a positive test charge q0 placed at that point divided by the magnitude of the
test charge:

(23.3)E %
Fe

q0

Note that E is the field produced by some charge external to the test charge—it is
not the field produced by the test charge itself. Also, note that the existence of an
electric field is a property of its source. For example, every electron comes with its
own electric field. 

The vector E has the SI units of newtons per coulomb (N/C), and, as Figure
23.10 shows, its direction is the direction of the force a positive test charge experi-
ences when placed in the field. We say that an electric field exists at a point if a
test charge at rest at that point experiences an electric force. Once the mag-
nitude and direction of the electric field are known at some point, the electric
force exerted on any charged particle placed at that point can be calculated from

Definition of electric field
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Equation 23.3. Furthermore, the electric field is said to exist at some point (even
empty space) regardless of whether a test charge is located at that point.
(This is analogous to the gravitational field set up by any object, which is said to
exist at a given point regardless of whether some other object is present at that
point to “feel” the field.) The electric field magnitudes for various field sources
are given in Table 23.2.

When using Equation 23.3, we must assume that the test charge q0 is small
enough that it does not disturb the charge distribution responsible for the electric
field. If a vanishingly small test charge q0 is placed near a uniformly charged metal-
lic sphere, as shown in Figure 23.11a, the charge on the metallic sphere, which
produces the electric field, remains uniformly distributed. If the test charge is
great enough , as shown in Figure 23.11b, the charge on the metallic
sphere is redistributed and the ratio of the force to the test charge is different:

. That is, because of this redistribution of charge on the metallic
sphere, the electric field it sets up is different from the field it sets up in the pres-
ence of the much smaller q0.

To determine the direction of an electric field, consider a point charge q lo-
cated a distance r from a test charge q0 located at a point P, as shown in Figure
23.12. According to Coulomb’s law, the force exerted by q on the test charge is

where is a unit vector directed from q toward q0. Because the electric field at P,
the position of the test charge, is defined by we find that at P, the elec-
tric field created by q is

(23.4)

If q is positive, as it is in Figure 23.12a, the electric field is directed radially outward
from it. If q is negative, as it is in Figure 23.12b, the field is directed toward it.

To calculate the electric field at a point P due to a group of point charges, we
first calculate the electric field vectors at P individually using Equation 23.4 and
then add them vectorially. In other words,

E # ke 
q
r 2  r̂

E # Fe/q0 ,
r̂

Fe # ke 
qq0

r 2  r̂

(F -e /q -0 . Fe /q0)

(q -0 W q0)

at any point P, the total electric field due to a group of charges equals the vec-
tor sum of the electric fields of the individual charges.

TABLE 23.2 Typical Electric Field Values

Source E (N/C)

Fluorescent lighting tube 10
Atmosphere (fair weather) 100
Balloon rubbed on hair 1 000
Atmosphere (under thundercloud) 10 000
Photocopier 100 000
Spark in air / 3 000 000
Near electron in hydrogen atom 5 % 1011

(a) (b)

q0+ q′0>>q0+

–
– –

–

–

––
–

–

–

–
–

– – –
–

–
––

–
–

–
–

–

Figure 23.11 (a) For a small
enough test charge q0 , the charge
distribution on the sphere is undis-
turbed. (b) When the test charge

is greater, the charge distribu-
tion on the sphere is disturbed as
the result of the proximity of q -0 .

q -0

Figure 23.12 A test charge q0 at
point P is a distance r from a point
charge q . (a) If q is positive, then
the electric field at P points radially
outward from q . (b) If q is nega-
tive, then the electric field at P
points radially inward toward q.

(a)

E

q

q0

r
P

r

–
(b)

Eq

q0

P

r̂

ˆ

+

This superposition principle applied to fields follows directly from the superposi-
tion property of electric forces. Thus, the electric field of a group of charges can



23.4 The Electric Field 721

be expressed as

(23.5)

where ri is the distance from the ith charge qi to the point P (the location of the
test charge) and is a unit vector directed from qi toward P.

A charge of " 3 )C is at a point P where the electric field is directed to the right and has a
magnitude of 4 % 106 N/C. If the charge is replaced with a ! 3-)C charge, what happens to
the electric field at P ?

Quick Quiz 23.4

r̂i

E # ke &
i

 
qi

ri 

2  r̂i

This metallic sphere is charged by a
generator so that it carries a net elec-
tric charge. The high concentration of
charge on the sphere creates a strong
electric field around the sphere. The
charges then leak through the gas sur-
rounding the sphere, producing a
pink glow.

Electric Field Due to Two ChargesEXAMPLE 23.5
A charge q1 # 7.0 )C is located at the origin, and a second
charge q2 # ! 5.0 )C is located on the x axis, 0.30 m from
the origin (Fig. 23.13). Find the electric field at the point P,
which has coordinates (0, 0.40) m.

Solution First, let us find the magnitude of the electric
field at P due to each charge. The fields E1 due to the 7.0-)C
charge and E2 due to the ! 5.0-)C charge are shown in Fig-
ure 23.13. Their magnitudes are

The vector E1 has only a y component. The vector E2 has an
x component given by and a negative y compo-
nent given by Hence, we can express the
vectors as

!E2 sin * # !4
5E2 .

E2 cos * # 3
5E2

 # 1.8 % 105 N/C

E2 # ke 
! q2 !
r2 

2 # #8.99 % 109 
N&m2

C2 $ 
(5.0 % 10!6 C)

(0.50 m)2

 # 3.9 % 105 N/C

E1 # ke 
! q1 !
r1 

2 # #8.99 % 109 
N&m2

C2 $ 
(7.0 % 10!6 C)

(0.40 m)2
0.40 m

P
θ

E

E2

0.50 m

E1

y

θ
x

q2q1
0.30 m

–

φ

+

Figure 23.13 The total electric field E at P equals the vector sum
where E1 is the field due to the positive charge q 1 and E2 is

the field due to the negative charge q 2 .
E1 " E2 ,
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Electric Field of a DipoleEXAMPLE 23.6
variation in E for the dipole also is obtained for a distant
point along the x axis (see Problem 21) and for any general
distant point.

The electric dipole is a good model of many molecules,
such as hydrochloric acid (HCl). As we shall see in later
chapters, neutral atoms and molecules behave as dipoles
when placed in an external electric field. Furthermore, many
molecules, such as HCl, are permanent dipoles. The effect of
such dipoles on the behavior of materials subjected to elec-
tric fields is discussed in Chapter 26.

An electric dipole is defined as a positive charge q and a
negative charge ! q separated by some distance. For the di-
pole shown in Figure 23.14, find the electric field E at P due
to the charges, where P is a distance from the origin.

Solution At P, the fields E1 and E2 due to the two charges
are equal in magnitude because P is equidistant from the
charges. The total field is where

The y components of E1 and E2 cancel each other, and the 
x components add because they are both in the positive 
x direction. Therefore, E is parallel to the x axis and has a
magnitude equal to 2E1 cos *. From Figure 23.14 we see that 
cos Therefore,

Because we can neglect a2 and write

Thus, we see that, at distances far from a dipole but along the
perpendicular bisector of the line joining the two charges,
the magnitude of the electric field created by the dipole
varies as 1/r 3, whereas the more slowly varying field of a
point charge varies as 1/r 2 (see Eq. 23.4). This is because at
distant points, the fields of the two charges of equal magni-
tude and opposite sign almost cancel each other. The 1/r 3

E " ke 
2qa
y3

y W a,

 # ke 
2qa

(y2 " a2)3/2  

E # 2E1 cos * # 2ke 
q

(y2 " a2)
 

a
(y2 " a2)1/2

* # a/r # a/(y2 " a2)1/2.

E1 # E2 # ke 
q
r 2 # ke 

q
y2 " a2

E # E1 " E2 ,

y W a

The resultant field E at P is the superposition of E1 and E2 :

(1.1 % 105 i " 2.5 % 105 j) N/CE # E1 " E2 #

E2 # (1.1 % 105 i ! 1.4 % 105 j) N/C

E1 # 3.9 % 105 j N/C From this result, we find that E has a magnitude of 2.7 %
105 N/C and makes an angle 0 of 66° with the positive x axis.

Exercise Find the electric force exerted on a charge of 
2.0 % 10!8 C located at P.

Answer 5.4 % 10!3 N in the same direction as E.

P E
θ

θ

y

E1

E2
y

r

θ

a
q

θ

a
–q
– x+

Figure 23.14 The total electric field E at P due to two charges of
equal magnitude and opposite sign (an electric dipole) equals the
vector sum The field E1 is due to the positive charge q ,
and E2 is the field due to the negative charge !q .

E1 " E2 .

ELECTRIC FIELD OF A CONTINUOUS
CHARGE DISTRIBUTION

Very often the distances between charges in a group of charges are much smaller
than the distance from the group to some point of interest (for example, a point
where the electric field is to be calculated). In such situations, the system of

23.5
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charges is smeared out, or continuous. That is, the system of closely spaced charges
is equivalent to a total charge that is continuously distributed along some line,
over some surface, or throughout some volume.

To evaluate the electric field created by a continuous charge distribution, we
use the following procedure: First, we divide the charge distribution into small ele-
ments, each of which contains a small charge 1q, as shown in Figure 23.15. Next,
we use Equation 23.4 to calculate the electric field due to one of these elements at
a point P. Finally, we evaluate the total field at P due to the charge distribution by
summing the contributions of all the charge elements (that is, by applying the su-
perposition principle).

The electric field at P due to one element carrying charge 1q is

where r is the distance from the element to point P and is a unit vector directed
from the charge element toward P. The total electric field at P due to all elements
in the charge distribution is approximately

where the index i refers to the ith element in the distribution. Because the charge
distribution is approximately continuous, the total field at P in the limit is

(23.6)

where the integration is over the entire charge distribution. This is a vector opera-
tion and must be treated appropriately.

We illustrate this type of calculation with several examples, in which we assume
the charge is uniformly distributed on a line, on a surface, or throughout a vol-
ume. When performing such calculations, it is convenient to use the concept of a
charge density along with the following notations:

• If a charge Q is uniformly distributed throughout a volume V, the volume
charge density 2 is defined by

where 2 has units of coulombs per cubic meter (C/m3).

• If a charge Q is uniformly distributed on a surface of area A, the surface charge
density 3 (lowercase Greek sigma) is defined by

where 3 has units of coulombs per square meter (C/m2).

• If a charge Q is uniformly distributed along a line of length , the linear charge
density 4 is defined by

where 4 has units of coulombs per meter (C/m).

4 %
Q
!

!

3 %
Q
A

2 %
Q
V

E # ke lim
1q

i
:0

 &
i

 
1qi

ri 

2  r̂i # ke ' 
dq
r 2  r̂

1qi : 0

E " ke &
i

 
1qi

ri 

2  r̂i

r̂

1E # ke 
1q
r 2  r̂

A continuous charge distribution

Electric field of a continuous
charge distribution

Volume charge density

Surface charge density

r

∆q
r̂

P

∆E

Figure 23.15 The electric field
at P due to a continuous charge dis-
tribution is the vector sum of the
fields 1E due to all the elements
1q of the charge distribution.

Linear charge density
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• If the charge is nonuniformly distributed over a volume, surface, or line, we
have to express the charge densities as

where dQ is the amount of charge in a small volume, surface, or length element.

2 #
dQ
dV

  3 #
dQ
dA

  4 #
dQ
d!

The Electric Field Due to a Charged RodEXAMPLE 23.7

where we have used the fact that the total charge Q # 4 .
If P is far from the rod then the in the denomi-

nator can be neglected, and This is just the form
you would expect for a point charge. Therefore, at large val-
ues of a/ , the charge distribution appears to be a point
charge of magnitude Q . The use of the limiting technique

often is a good method for checking a theoretical
formula.
(a/! : 5)

!

E " keQ /a2.
!(a W !),

!

keQ
a(! " a)

 # ke 4 # 1
a

!
1

! " a $ #

E # ke 4 '!"a

a
 
dx
x2 # ke 4(!

1
x )

!"a

a
 

A rod of length " has a uniform positive charge per unit
length 4 and a total charge Q . Calculate the electric field at a
point P that is located along the long axis of the rod and a
distance a from one end (Fig. 23.16).

Solution Let us assume that the rod is lying along the x
axis, that dx is the length of one small segment, and that dq is
the charge on that segment. Because the rod has a charge
per unit length 4, the charge dq on the small segment is

The field d E due to this segment at P is in the negative x
direction (because the source of the field carries a positive
charge Q ), and its magnitude is

Because every other element also produces a field in the neg-
ative x direction, the problem of summing their contribu-
tions is particularly simple in this case. The total field at P
due to all segments of the rod, which are at different dis-
tances from P, is given by Equation 23.6, which in this case
becomes3

where the limits on the integral extend from one end of the
rod to the other The constants ke and 4
can be removed from the integral to yield

(x # ! " a).(x # a)

E # '!"a

a
k e 4 

dx
x2

dE # ke 
dq
x2 # ke 4 

 dx
x2

dq # 4 dx.

The Electric Field of a Uniform Ring of ChargeEXAMPLE 23.8

This field has an x component cos * along the axis
and a component dE! perpendicular to the axis. As we see in
Figure 23.17b, however, the resultant field at P must lie along
the x axis because the perpendicular components of all the

dEx # dE

dE # ke 
dq
r 2

A ring of radius a carries a uniformly distributed positive total
charge Q . Calculate the electric field due to the ring at a
point P lying a distance x from its center along the central
axis perpendicular to the plane of the ring (Fig. 23.17a).

Solution The magnitude of the electric field at P due to
the segment of charge dq is

3 It is important that you understand how to carry out integrations such as this. First, express the
charge element dq in terms of the other variables in the integral (in this example, there is one variable,
x, and so we made the change The integral must be over scalar quantities; therefore, you
must express the electric field in terms of components, if necessary. (In this example the field has only
an x component, so we do not bother with this detail.) Then, reduce your expression to an integral
over a single variable (or to multiple integrals, each over a single variable). In examples that have
spherical or cylindrical symmetry, the single variable will be a radial coordinate.

dq # 4 dx).

x

y

!
a

P
x

dx
dq = λdx

dE

λ

Figure 23.16 The electric field at P due to a uniformly charged
rod lying along the x axis. The magnitude of the field at P due to the
segment of charge dq is kedq/x2. The total field at P is the vector sum
over all segments of the rod.
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The Electric Field of a Uniformly Charged DiskEXAMPLE 23.9
butions of all rings making up the disk. By symmetry, the field
at an axial point must be along the central axis.

The ring of radius r and width dr shown in Figure 23.18
has a surface area equal to 2'r dr. The charge dq on this ring
is equal to the area of the ring multiplied by the surface
charge density: Using this result in the equa-
tion given for Ex in Example 23.8 (with a replaced by r), we
have for the field due to the ring

To obtain the total field at P, we integrate this expression
over the limits r # 0 to r # R, noting that x is a constant. This
gives

 # 2'ke 3 # x
! x !

!
x

(x2 " R2)1/2 $
 # kex'3 ( (x2 " r 2)!1/2

!1/2 )R

0
 

 # kex'3 'R

0
 (x2 " r 2)!3/2 d(r 2)

E # kex'3 'R

0
 

2r dr
(x2 " r 2)3/2  

dE #
kex

(x2 " r 2)3/2  (2'3r dr)

dq # 2'3r dr.

A disk of radius R has a uniform surface charge density 3.
Calculate the electric field at a point P that lies along the cen-
tral perpendicular axis of the disk and a distance x from the
center of the disk (Fig. 23.18).

Solution If we consider the disk as a set of concentric
rings, we can use our result from Example 23.8—which gives
the field created by a ring of radius a—and sum the contri-

various charge segments sum to zero. That is, the perpen-
dicular component of the field created by any charge ele-
ment is canceled by the perpendicular component created by
an element on the opposite side of the ring. Because

and cos * # x/r, we find that

All segments of the ring make the same contribution to the
field at P because they are all equidistant from this point.
Thus, we can integrate to obtain the total field at P :

dEx # dE cos * # #ke 
dq
r 2 $ x

r
#

kex
(x2 " a2)3/2  dq

r # (x2 " a2)1/2

This result shows that the field is zero at x # 0. Does this find-
ing surprise you?

Exercise Show that at great distances from the ring 
the electric field along the axis shown in Figure 23.17 ap-
proaches that of a point charge of magnitude Q .

(x W a)

kex
(x2 " a2)3/2  Q#

Ex # ' 
kex

(x2 " a2)3/2  dq #
kex

(x2 " a2)3/2  ' dq

(a)

+ +

+

+

+
+

+

+
+ +
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θ P dEx

dEdE⊥

x

r

dq

a

(b)

+ +

+

+
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+

+

+
+

+
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θ

dE2

1

dE1

2

Figure 23.17 A uniformly charged ring of radius a. (a) The field at P on the x axis due to an ele-
ment of charge dq. (b) The total electric field at P is along the x axis. The perpendicular component of
the field at P due to segment 1 is canceled by the perpendicular component due to segment 2.

Figure 23.18 A uniformly charged disk of radius R . The electric
field at an axial point P is directed along the central axis, perpendic-
ular to the plane of the disk.

P
x

r

R

dq

dr
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ELECTRIC FIELD LINES
A convenient way of visualizing electric field patterns is to draw lines that follow
the same direction as the electric field vector at any point. These lines, called elec-
tric field lines, are related to the electric field in any region of space in the fol-
lowing manner:

• The electric field vector E is tangent to the electric field line at each point.
• The number of lines per unit area through a surface perpendicular to the lines

is proportional to the magnitude of the electric field in that region. Thus, E is
great when the field lines are close together and small when they are far apart.

These properties are illustrated in Figure 23.19. The density of lines through
surface A is greater than the density of lines through surface B. Therefore, the
electric field is more intense on surface A than on surface B. Furthermore, the fact
that the lines at different locations point in different directions indicates that the
field is nonuniform.

Representative electric field lines for the field due to a single positive point
charge are shown in Figure 23.20a. Note that in this two-dimensional drawing we
show only the field lines that lie in the plane containing the point charge. The
lines are actually directed radially outward from the charge in all directions; thus,
instead of the flat “wheel” of lines shown, you should picture an entire sphere of
lines. Because a positive test charge placed in this field would be repelled by the
positive point charge, the lines are directed radially away from the positive point

23.6

11.5

This result is valid for all values of x. We can calculate the
field close to the disk along the axis by assuming that ;
thus, the expression in parentheses reduces to unity:

3

2$ 0
E " 2'ke 3 #

R W x
where is the permittivity of free space. As we
shall find in the next chapter, we obtain the same result for
the field created by a uniformly charged infinite sheet.

$ 0 # 1/(4'ke)

B
A

Figure 23.19 Electric field lines
penetrating two surfaces. The mag-
nitude of the field is greater on sur-
face A than on surface B.

Figure 23.20 The electric field lines for a point charge. (a) For a positive point charge, the
lines are directed radially outward. (b) For a negative point charge, the lines are directed radially
inward. Note that the figures show only those field lines that lie in the plane containing the
charge. (c) The dark areas are small pieces of thread suspended in oil, which align with the elec-
tric field produced by a small charged conductor at the center.

(a)

+
q

(b)

–
–q

(c)
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Is this visualization of the electric field in terms of field lines consistent with
Equation 23.4, the expression we obtained for E using Coulomb’s law? To answer
this question, consider an imaginary spherical surface of radius r concentric with a
point charge. From symmetry, we see that the magnitude of the electric field is the
same everywhere on the surface of the sphere. The number of lines N that emerge
from the charge is equal to the number that penetrate the spherical surface.
Hence, the number of lines per unit area on the sphere is N/4'r 2 (where the sur-
face area of the sphere is 4'r 2). Because E is proportional to the number of lines
per unit area, we see that E varies as 1/r 2; this finding is consistent with Equation
23.4.

As we have seen, we use electric field lines to qualitatively describe the electric
field. One problem with this model is that we always draw a finite number of lines
from (or to) each charge. Thus, it appears as if the field acts only in certain direc-
tions; this is not true. Instead, the field is continuous—that is, it exists at every
point. Another problem associated with this model is the danger of gaining the
wrong impression from a two-dimensional drawing of field lines being used to de-
scribe a three-dimensional situation. Be aware of these shortcomings every time
you either draw or look at a diagram showing electric field lines.

We choose the number of field lines starting from any positively charged ob-
ject to be C-q and the number of lines ending on any negatively charged object to
be where C- is an arbitrary proportionality constant. Once C- is chosen, the
number of lines is fixed. For example, if object 1 has charge Q 1 and object 2 has
charge Q 2 , then the ratio of number of lines is 

The electric field lines for two point charges of equal magnitude but opposite
signs (an electric dipole) are shown in Figure 23.21. Because the charges are of
equal magnitude, the number of lines that begin at the positive charge must equal
the number that terminate at the negative charge. At points very near the charges,
the lines are nearly radial. The high density of lines between the charges indicates
a region of strong electric field.

Figure 23.22 shows the electric field lines in the vicinity of two equal positive
point charges. Again, the lines are nearly radial at points close to either charge,
and the same number of lines emerge from each charge because the charges are
equal in magnitude. At great distances from the charges, the field is approximately
equal to that of a single point charge of magnitude 2q.

Finally, in Figure 23.23 we sketch the electric field lines associated with a posi-
tive charge " 2q and a negative charge !q. In this case, the number of lines leav-
ing " 2q is twice the number terminating at !q. Hence, only half of the lines that
leave the positive charge reach the negative charge. The remaining half terminate

N2/N1 # Q 2/Q 1 .

C-! q !,

• The lines must begin on a positive charge and terminate on a negative
charge.

• The number of lines drawn leaving a positive charge or approaching a nega-
tive charge is proportional to the magnitude of the charge.

• No two field lines can cross.

charge. The electric field lines representing the field due to a single negative point
charge are directed toward the charge (Fig. 23.20b). In either case, the lines are
along the radial direction and extend all the way to infinity. Note that the lines be-
come closer together as they approach the charge; this indicates that the strength
of the field increases as we move toward the source charge.

The rules for drawing electric field lines are as follows:

Rules for drawing electric field
lines

(a)

–+

Figure 23.21 (a) The electric
field lines for two point charges of
equal magnitude and opposite sign
(an electric dipole). The number
of lines leaving the positive charge
equals the number terminating at
the negative charge. (b) The dark
lines are small pieces of thread sus-
pended in oil, which align with the
electric field of a dipole.

(b)
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on a negative charge we assume to be at infinity. At distances that are much
greater than the charge separation, the electric field lines are equivalent to those
of a single charge "q.

Rank the magnitude of the electric field at points A, B, and C shown in Figure 23.22a
(greatest magnitude first).

MOTION OF CHARGED PARTICLES IN A
UNIFORM ELECTRIC FIELD

When a particle of charge q and mass m is placed in an electric field E, the electric
force exerted on the charge is qE. If this is the only force exerted on the particle,
it must be the net force and so must cause the particle to accelerate. In this case,
Newton’s second law applied to the particle gives

The acceleration of the particle is therefore

(23.7)

If E is uniform (that is, constant in magnitude and direction), then the accelera-
tion is constant. If the particle has a positive charge, then its acceleration is in the
direction of the electric field. If the particle has a negative charge, then its acceler-
ation is in the direction opposite the electric field.

a #
qE
m

Fe # qE # ma

23.7

Quick Quiz 23.5

(a)

+ +
C

A

B

Figure 23.22 (a) The electric field lines for two positive point charges. (The locations A, B,
and C are discussed in Quick Quiz 23.5.) (b) Pieces of thread suspended in oil, which align with
the electric field created by two equal-magnitude positive charges.

Figure 23.23 The electric field
lines for a point charge " 2q and a
second point charge !q . Note that
two lines leave " 2q for every one
that terminates on !q .

+2q + – –q

(b)

An Accelerating Positive ChargeEXAMPLE 23.10
Solution The acceleration is constant and is given by
qE/m. The motion is simple linear motion along the x axis.
Therefore, we can apply the equations of kinematics in one

A positive point charge q of mass m is released from rest in a
uniform electric field E directed along the x axis, as shown in
Figure 23.24. Describe its motion.
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The electric field in the region between two oppositely charged flat metallic
plates is approximately uniform (Fig. 23.25). Suppose an electron of charge !e is
projected horizontally into this field with an initial velocity vi i. Because the electric
field E in Figure 23.25 is in the positive y direction, the acceleration of the elec-
tron is in the negative y direction. That is,

(23.8)

Because the acceleration is constant, we can apply the equations of kinematics in
two dimensions (see Chapter 4) with and After the electron has
been in the electric field for a time t, the components of its velocity are

(23.9)
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Figure 23.24 A positive point charge q in a uniform electric field
E undergoes constant acceleration in the direction of the field.
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Figure 23.25 An electron is pro-
jected horizontally into a uniform
electric field produced by two
charged plates. The electron under-
goes a downward acceleration (op-
posite E), and its motion is para-
bolic while it is between the plates.

theorem because the work done by the electric force is
and W # 1K .Fex # qEx

dimension (see Chapter 2):

Taking and , we have

The kinetic energy of the charge after it has moved a distance
is

We can also obtain this result from the work–kinetic energy
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Its coordinates after a time t in the field are

(23.11)

(23.12)

Substituting the value from Equation 23.11 into Equation 23.12, we see
that y is proportional to x2. Hence, the trajectory is a parabola. After the electron
leaves the field, it continues to move in a straight line in the direction of v in Fig-
ure 23.25, obeying Newton’s first law, with a speed 

Note that we have neglected the gravitational force acting on the electron.
This is a good approximation when we are dealing with atomic particles. For an
electric field of 104 N/C, the ratio of the magnitude of the electric force eE to the
magnitude of the gravitational force mg is of the order of 1014 for an electron and
of the order of 1011 for a proton.

v / vi .

t # x/vi

 y # 1
2ayt2 # !1

2 
eE
m

 t2

x # vit

An Accelerated ElectronEXAMPLE 23.11

(c) What is the vertical displacement y of the electron
while it is in the field?

Solution Using Equation 23.12 and the results from parts
(a) and (b), we find that

If the separation between the plates is less than this, the elec-
tron will strike the positive plate.

Exercise Find the speed of the electron as it emerges from
the field.

Answer 3.22 % 106 m/s.

!1.95 cm# !0.019 5 m #

y # 1
2ay t2 # 1

2(!3.51 % 1013 m/s2)(3.33 % 10!8 s)2

3.33 % 10!8 st #
!

vi
#

0.100 m
3.00 % 106 m/s

#
An electron enters the region of a uniform electric field as
shown in Figure 23.25, with and

N/C. The horizontal length of the plates is #
0.100 m. (a) Find the acceleration of the electron while it is
in the electric field.

Solution The charge on the electron has an absolute
value of 1.60 % 10!19 C, and There-
fore, Equation 23.8 gives

(b) Find the time it takes the electron to travel through
the field.

Solution The horizontal distance across the field is #
0.100 m. Using Equation 23.11 with x # , we find that the
time spent in the electric field is

!
!

!3.51 % 1013 j m/s2#

a # !
eE
m

 j # !
(1.60 % 10!19 C)(200 N/C)

9.11 % 10!31 kg
 j

m # 9.11 % 10!31 kg.

!E # 200
vi # 3.00 % 106 m/s

The Cathode Ray Tube

The example we just worked describes a portion of a cathode ray tube (CRT). This
tube, illustrated in Figure 23.26, is commonly used to obtain a visual display of
electronic information in oscilloscopes, radar systems, television receivers, and
computer monitors. The CRT is a vacuum tube in which a beam of electrons is ac-
celerated and deflected under the influence of electric or magnetic fields. The
electron beam is produced by an assembly called an electron gun located in the
neck of the tube. These electrons, if left undisturbed, travel in a straight-line path
until they strike the front of the CRT, the “screen,” which is coated with a material
that emits visible light when bombarded with electrons.

In an oscilloscope, the electrons are deflected in various directions by two sets
of plates placed at right angles to each other in the neck of the tube. (A television
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CRT steers the beam with a magnetic field, as discussed in Chapter 29.) An exter-
nal electric circuit is used to control the amount of charge present on the plates.
The placing of positive charge on one horizontal plate and negative charge on the
other creates an electric field between the plates and allows the beam to be
steered from side to side. The vertical deflection plates act in the same way, except
that changing the charge on them deflects the beam vertically.

SUMMARY

Electric charges have the following important properties:

• Unlike charges attract one another, and like charges repel one another.
• Charge is conserved.
• Charge is quantized—that is, it exists in discrete packets that are some integral

multiple of the electronic charge.
Conductors are materials in which charges move freely. Insulators are mate-

rials in which charges do not move freely.
Coulomb’s law states that the electric force exerted by a charge q1 on a sec-

ond charge q2 is

(23.2)

where r is the distance between the two charges and is a unit vector directed
from q1 to q2 . The constant ke , called the Coulomb constant, has the value

The smallest unit of charge known to exist in nature is the charge on an elec-
tron or proton, 

The electric field E at some point in space is defined as the electric force Fe
that acts on a small positive test charge placed at that point divided by the magni-
tude of the test charge q0 :

(23.3)

At a distance r from a point charge q, the electric field due to the charge is given
by

(23.4)

where is a unit vector directed from the charge to the point in question. Ther̂

E # ke 
q
r 2  r̂

E %
Fe

q0

! e ! # 1.602 19 % 10!19 C.

ke # 8.99 % 109 N&m2/C2.

r̂

F12 # ke 
q1q2

r 2  r̂
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Figure 23.26 Schematic diagram of a
cathode ray tube. Electrons leaving the
hot cathode C are accelerated to the an-
ode A. In addition to accelerating elec-
trons, the electron gun is also used to fo-
cus the beam of electrons, and the plates
deflect the beam.
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electric field is directed radially outward from a positive charge and radially in-
ward toward a negative charge.

The electric field due to a group of point charges can be obtained by using
the superposition principle. That is, the total electric field at some point equals
the vector sum of the electric fields of all the charges:

(23.5)

The electric field at some point of a continuous charge distribution is

(23.6)

where dq is the charge on one element of the charge distribution and r is the dis-
tance from the element to the point in question.

Electric field lines describe an electric field in any region of space. The num-
ber of lines per unit area through a surface perpendicular to the lines is propor-
tional to the magnitude of E in that region.

A charged particle of mass m and charge q moving in an electric field E has an
acceleration

(23.7)a #
qE
m

E # ke ' 
dq
r 2  r̂

E # ke &
i

 
qi

r i 

2 
 r̂i

Problem-Solving Hints
Finding the Electric Field

• Units: In calculations using the Coulomb constant charges
must be expressed in coulombs and distances in meters.

• Calculating the electric field of point charges: To find the total electric
field at a given point, first calculate the electric field at the point due to
each individual charge. The resultant field at the point is the vector sum of
the fields due to the individual charges.

• Continuous charge distributions: When you are confronted with prob-
lems that involve a continuous distribution of charge, the vector sums for
evaluating the total electric field at some point must be replaced by vector
integrals. Divide the charge distribution into infinitesimal pieces, and calcu-
late the vector sum by integrating over the entire charge distribution. You
should review Examples 23.7 through 23.9.

• Symmetry: With both distributions of point charges and continuous
charge distributions, take advantage of any symmetry in the system to sim-
plify your calculations.

ke (#1/4'$0),

QUESTIONS

clings to a wall. Does this mean that the wall is positively
charged? Why does the balloon eventually fall?

4. A light, uncharged metallic sphere suspended from a
thread is attracted to a charged rubber rod. After touch-
ing the rod, the sphere is repelled by the rod. Explain.

1. Sparks are often observed (or heard) on a dry day when
clothes are removed in the dark. Explain.

2. Explain from an atomic viewpoint why charge is usually
transferred by electrons.

3. A balloon is negatively charged by rubbing and then



Problems 733

5. Explain what is meant by the term “a neutral atom.”
6. Why do some clothes cling together and to your body af-

ter they are removed from a dryer?
7. A large metallic sphere insulated from ground is charged

with an electrostatic generator while a person standing on
an insulating stool holds the sphere. Why is it safe to do
this? Why wouldn’t it be safe for another person to touch
the sphere after it has been charged?

8. What are the similarities and differences between New-
ton’s law of gravitation, and Coulomb’s
law, 

9. Assume that someone proposes a theory that states 
that people are bound to the Earth by electric forces
rather than by gravity. How could you prove this theory
wrong?

10. How would you experimentally distinguish an electric
field from a gravitational field?

11. Would life be different if the electron were positively
charged and the proton were negatively charged? Does
the choice of signs have any bearing on physical and
chemical interactions? Explain.

12. When defining the electric field, why is it necessary to
specify that the magnitude of the test charge be very
small (that is, why is it necessary to take the limit of Fe /q
as 

13. Two charged conducting spheres, each of radius a, are
separated by a distance r / 2a. Is the force on either
sphere given by Coulomb’s law? Explain. (Hint: Refer to
Chapter 14 on gravitation.)

14. When is it valid to approximate a charge distribution by a
point charge?

15. Is it possible for an electric field to exist in empty space?
Explain.

16. Explain why electric field lines never cross. (Hint: E must
have a unique direction at all points.)

17. A free electron and free proton are placed in an identical

q : 0)?

Fe # keq1q2/r 2?
Fg # Gm1m2/r 2,

electric field. Compare the electric forces on each parti-
cle. Compare their accelerations.

18. Explain what happens to the magnitude of the electric
field of a point charge as r approaches zero.

19. A negative charge is placed in a region of space where the
electric field is directed vertically upward. What is the di-
rection of the electric force experienced by this charge?

20. A charge 4q is a distance r from a charge !q. Compare
the number of electric field lines leaving the charge 4q
with the number entering the charge !q.

21. In Figure 23.23, where do the extra lines leaving the
charge "2q end?

22. Consider two equal point charges separated by some dis-
tance d. At what point (other than 5) would a third test
charge experience no net force?

23. A negative point charge !q is placed at the point P near
the positively charged ring shown in Figure 23.17. If

describe the motion of the point charge if it is re-
leased from rest.

24. Explain the differences between linear, surface, and vol-
ume charge densities, and give examples of when each
would be used.

25. If the electron in Figure 23.25 is projected into the elec-
tric field with an arbitrary velocity vi (at an angle to E),
will its trajectory still be parabolic? Explain.

26. It has been reported that in some instances people near
where a lightning bolt strikes the Earth have had their
clothes thrown off. Explain why this might happen.

27. Why should a ground wire be connected to the metallic
support rod for a television antenna?

28. A light strip of aluminum foil is draped over a wooden
rod. When a rod carrying a positive charge is brought
close to the foil, the two parts of the foil stand apart.
Why? What kind of charge is on the foil?

29. Why is it more difficult to charge an object by rubbing on
a humid day than on a dry day?

x V a,

PROBLEMS

force compare with the magnitude of the gravitational
force between the two protons? (c) What must be the
charge-to-mass ratio of a particle if the magnitude of the
gravitational force between two of these particles equals
the magnitude of the electric force between them?

3. Richard Feynman once said that if two persons stood at
arm’s length from each other and each person had 1%
more electrons than protons, the force of repulsion be-
tween them would be enough to lift a “weight” equal 
to that of the entire Earth. Carry out an order-of-
magnitude calculation to substantiate this assertion.

4. Two small silver spheres, each with a mass of 10.0 g, are
separated by 1.00 m. Calculate the fraction of the elec-

Section 23.1 Properties of Electric Charges
Section 23.2 Insulators and Conductors
Section 23.3 Coulomb’s Law

1. (a) Calculate the number of electrons in a small, electri-
cally neutral silver pin that has a mass of 10.0 g. Silver
has 47 electrons per atom, and its molar mass is 
107.87 g/mol. (b) Electrons are added to the pin until
the net negative charge is 1.00 mC. How many electrons
are added for every 109 electrons already present?

2. (a) Two protons in a molecule are separated by a distance
of 3.80 % 10!10 m. Find the electric force exerted by one
proton on the other. (b) How does the magnitude of this

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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trons in one sphere that must be transferred to the
other to produce an attractive force of 1.00 % 104 N
(about 1 ton) between the spheres. (The number of
electrons per atom of silver is 47, and the number of
atoms per gram is Avogadro’s number divided by the
molar mass of silver, 107.87 g/mol.)

5. Suppose that 1.00 g of hydrogen is separated into elec-
trons and protons. Suppose also that the protons are
placed at the Earth’s north pole and the electrons are
placed at the south pole. What is the resulting compres-
sional force on the Earth?

6. Two identical conducting small spheres are placed
with their centers 0.300 m apart. One is given a 
charge of 12.0 nC, and the other is given a charge of
! 18.0 nC. (a) Find the electric force exerted on one
sphere by the other. (b) The spheres are connected by
a conducting wire. Find the electric force between the
two after equilibrium has occurred.

7. Three point charges are located at the corners of an
equilateral triangle, as shown in Figure P23.7. Calculate
the net electric force on the 7.00-)C charge.

14. An airplane is flying through a thundercloud at a
height of 2 000 m. (This is a very dangerous thing to do
because of updrafts, turbulence, and the possibility of
electric discharge.) If there are charge concentrations
of " 40.0 C at a height of 3 000 m within the cloud and
of ! 40.0 C at a height of 1 000 m, what is the electric
field E at the aircraft?

Section 23.4 The Electric Field
11. What are the magnitude and direction of the electric

field that will balance the weight of (a) an electron and
(b) a proton? (Use the data in Table 23.1.)

12. An object having a net charge of 24.0 )C is placed in a
uniform electric field of 610 N/C that is directed verti-
cally. What is the mass of this object if it “floats” in the
field?

13. In Figure P23.13, determine the point (other than in-
finity) at which the electric field is zero.

10. Review Problem. Two identical point charges each
having charge "q are fixed in space and separated by a
distance d. A third point charge !Q of mass m is free to
move and lies initially at rest on a perpendicular bisec-
tor of the two fixed charges a distance x from the mid-
point of the two fixed charges (Fig. P23.10). (a) Show
that if x is small compared with d, the motion of !Q is
simple harmonic along the perpendicular bisector. De-
termine the period of that motion. (b) How fast will the
charge !Q be moving when it is at the midpoint be-
tween the two fixed charges, if initially it is released at a
distance from the midpoint?x # a V d

9. Review Problem. In the Bohr theory of the hydrogen
atom, an electron moves in a circular orbit about a pro-
ton, where the radius of the orbit is 0.529 % 10!10 m.
(a) Find the electric force between the two. (b) If this
force causes the centripetal acceleration of the electron,
what is the speed of the electron?

8. Two small beads having positive charges 3q and q are
fixed at the opposite ends of a horizontal insulating rod
extending from the origin to the point x # d. As shown
in Figure P23.8, a third small charged bead is free to
slide on the rod. At what position is the third bead in
equilibrium? Can it be in stable equilibrium?

0.500 m

7.00 µC

2.00 µC –4.00 µC

60.0°
x

y µ

µµ

–+

+

Figure P23.7 Problems 7 and 15.

Figure P23.8

Figure P23.10

d

+3q +q

+q

+q

–Q
x

y

d/2

d/2
x

1.00 m

–2.50 µC 6.00 µCµ µ

Figure P23.13
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15. Three charges are at the corners of an equilateral trian-
gle, as shown in Figure P23.7. (a) Calculate the electric
field at the position of the 2.00-)C charge due to the
7.00-)C and ! 4.00-)C charges. (b) Use your answer to
part (a) to determine the force on the 2.00-)C charge.

16. Three point charges are arranged as shown in Figure
P23.16. (a) Find the vector electric field that the 
6.00-nC and ! 3.00-nC charges together create at the
origin. (b) Find the vector force on the 5.00-nC charge.

22. Consider n equal positive point charges each of magni-
tude Q /n placed symmetrically around a circle of ra-
dius R . (a) Calculate the magnitude of the electric field
E at a point a distance x on the line passing through the
center of the circle and perpendicular to the plane of
the circle. (b) Explain why this result is identical to the
one obtained in Example 23.8.

23. Consider an infinite number of identical charges (each
of charge q) placed along the x axis at distances a, 2a,
3a, 4a, . . . from the origin. What is the electric field
at the origin due to this distribution? Hint: Use the fact
that

Section 23.5 Electric Field of a Continuous 
Charge Distribution

24. A rod 14.0 cm long is uniformly charged and has a total
charge of ! 22.0 )C. Determine the magnitude and di-
rection of the electric field along the axis of the rod at a
point 36.0 cm from its center.

1 "
1
22 "

1
32 "

1
42 " &&& #

'2

6

nents of the electric field at point (x, y) due to this
charge q are

21. Consider the electric dipole shown in Figure P23.21.
Show that the electric field at a distant point along the 
x axis is Ex * 4keqa/x3.

Ey #
keq(y ! y0)

[(x ! x0)2 " (y ! y0)2]3/2

Ex #
keq(x ! x0)

[(x ! x0)2 " (y ! y0)2]3/2

18. Two 2.00-)C point charges are located on the x axis.
One is at x # 1.00 m, and the other is at x # ! 1.00 m.
(a) Determine the electric field on the y axis at y #
0.500 m. (b) Calculate the electric force on a ! 3.00-)C
charge placed on the y axis at y # 0.500 m.

19. Four point charges are at the corners of a square of side
a, as shown in Figure P23.19. (a) Determine the magni-
tude and direction of the electric field at the location of
charge q. (b) What is the resultant force on q?

20. A point particle having charge q is located at point 
(x0 , y0) in the xy plane. Show that the x and y compo-

17. Three equal positive charges q are at the corners of an
equilateral triangle of side a, as shown in Figure P23.17.
(a) Assume that the three charges together create an
electric field. Find the location of a point (other than
5) where the electric field is zero. (Hint: Sketch the
field lines in the plane of the charges.) (b) What are
the magnitude and direction of the electric field at P
due to the two charges at the base?

Figure P23.17

Figure P23.19

Figure P23.21

Figure P23.16
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25. A continuous line of charge lies along the x axis, extend-
ing from x # "x0 to positive infinity. The line carries a
uniform linear charge density 40 . What are the magni-
tude and direction of the electric field at the origin?

26. A line of charge starts at x # "x0 and extends to posi-
tive infinity. If the linear charge density is 4 # 40x0 /x,
determine the electric field at the origin.

27. A uniformly charged ring of radius 10.0 cm has a total
charge of 75.0 )C. Find the electric field on the axis of
the ring at (a) 1.00 cm, (b) 5.00 cm, (c) 30.0 cm, and
(d) 100 cm from the center of the ring.

28. Show that the maximum field strength Emax along the
axis of a uniformly charged ring occurs at 
(see Fig. 23.17) and has the value 

29. A uniformly charged disk of radius 35.0 cm carries a
charge density of 7.90 % 10!3 C/m2. Calculate the
electric field on the axis of the disk at (a) 5.00 cm, 
(b) 10.0 cm, (c) 50.0 cm, and (d) 200 cm from the cen-
ter of the disk.

30. Example 23.9 derives the exact expression for the elec-
tric field at a point on the axis of a uniformly charged
disk. Consider a disk of radius cm having a
uniformly distributed charge of " 5.20 )C. (a) Using
the result of Example 23.9, compute the electric field at
a point on the axis and 3.00 mm from the center. Com-
pare this answer with the field computed from the near-
field approximation (b) Using the result of
Example 23.9, compute the electric field at a point on
the axis and 30.0 cm from the center of the disk. Com-
pare this result with the electric field obtained by treat-
ing the disk as a " 5.20-)C point charge at a distance of
30.0 cm.

31. The electric field along the axis of a uniformly charged
disk of radius R and total charge Q was calculated in Ex-
ample 23.9. Show that the electric field at distances x
that are great compared with R approaches that of a
point charge (Hint: First show that

and use the bino-
mial expansion when 

32. A piece of Styrofoam having a mass m carries a net
charge of !q and floats above the center of a very large
horizontal sheet of plastic that has a uniform charge
density on its surface. What is the charge per unit area
on the plastic sheet?

33. A uniformly charged insulating rod of length 14.0 cm is
bent into the shape of a semicircle, as shown in Figure
P23.33. The rod has a total charge of ! 7.50 )C. Find
the magnitude and direction of the electric field at O,
the center of the semicircle.

34. (a) Consider a uniformly charged right circular cylin-
drical shell having total charge Q , radius R, and height
h. Determine the electric field at a point a distance d
from the right side of the cylinder, as shown in Figure
P23.34. (Hint: Use the result of Example 23.8 and treat
the cylinder as a collection of ring charges.) (b) Con-
sider now a solid cylinder with the same dimensions and

6 V 1.)(1 " 6)n " 1 " n6
x/(x2 " R 2)1/2 # (1 " R 2/x2)!1/2,

Q # 3'R 2.

E # 3/2$0 .

R # 3.00

Q /(6!3'$0a2).
x # a/!2

WEB

36. Three solid plastic cylinders all have a radius of 2.50 cm
and a length of 6.00 cm. One (a) carries charge with

carrying the same charge, which is uniformly distrib-
uted through its volume. Use the result of Example 23.9
to find the field it creates at the same point.

35. A thin rod of length and uniform charge per unit
length 4 lies along the x axis, as shown in Figure P23.35.
(a) Show that the electric field at P, a distance y from
the rod, along the perpendicular bisector has no x com-
ponent and is given by (b) Using
your result to part (a), show that the field of a rod of in-
finite length is (Hint: First calculate the
field at P due to an element of length dx, which has a
charge 4 dx. Then change variables from x to *, using
the facts that x # y tan * and sec2 * d*, and inte-
grate over *.)

dx # y

E # 2ke 4/y.

E # 2ke 4 sin *0/y.

!

O

Figure P23.33

Figure P23.34

Figure P23.35
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uniform density 15.0 nC/m2 everywhere on its surface.
Another (b) carries charge with the same uniform den-
sity on its curved lateral surface only. The third (c) car-
ries charge with uniform density 500 nC/m3 through-
out the plastic. Find the charge of each cylinder.

37. Eight solid plastic cubes, each 3.00 cm on each edge,
are glued together to form each one of the objects (i, ii,
iii, and iv) shown in Figure P23.37. (a) If each object
carries charge with a uniform density of 400 nC/m3

throughout its volume, what is the charge of each ob-
ject? (b) If each object is given charge with a uniform
density of 15.0 nC/m2 everywhere on its exposed sur-
face, what is the charge on each object? (c) If charge is
placed only on the edges where perpendicular surfaces
meet, with a uniform density of 80.0 pC/m, what is the
charge of each object?

Section 23.7 Motion of Charged Particles 
in a Uniform Electric Field

41. An electron and a proton are each placed at rest in an
electric field of 520 N/C. Calculate the speed of each
particle 48.0 ns after being released.

42. A proton is projected in the positive x direction into a 
region of uniform electric field N/C.
The proton travels 7.00 cm before coming to rest. Deter-
mine (a) the acceleration of the proton, (b) its initial
speed, and (c) the time it takes the proton to come to
rest.

43. A proton accelerates from rest in a uniform electric
field of 640 N/C. At some later time, its speed has
reached 1.20 % 106 m/s (nonrelativistic, since v is
much less than the speed of light). (a) Find the acceler-
ation of the proton. (b) How long does it take the pro-
ton to reach this speed? (c) How far has it moved in this
time? (d) What is its kinetic energy at this time?

44. The electrons in a particle beam each have a kinetic en-
ergy of 1.60 % 10!17 J. What are the magnitude and di-
rection of the electric field that stops these electrons in
a distance of 10.0 cm?

45. The electrons in a particle beam each have a kinetic en-
ergy K . What are the magnitude and direction of the
electric field that stops these electrons in a distance d ?

46. A positively charged bead having a mass of 1.00 g falls
from rest in a vacuum from a height of 5.00 m in a
uniform vertical electric field with a magnitude of 
1.00 % 104 N/C. The bead hits the ground at a 
speed of 21.0 m/s. Determine (a) the direction of the
electric field (up or down) and (b) the charge on the
bead.

47. A proton moves at 4.50 % 105 m/s in the horizontal
direction. It enters a uniform vertical electric field with
a magnitude of 9.60 % 103 N/C. Ignoring any gravita-
tional effects, find (a) the time it takes the proton to
travel 5.00 cm horizontally, (b) its vertical displacement
after it has traveled 5.00 cm horizontally, and (c) the
horizontal and vertical components of its velocity after
it has traveled 5.00 cm horizontally.

48. An electron is projected at an angle of 30.0° above the
horizontal at a speed of 8.20 % 105 m/s in a region
where the electric field is N/C. Neglecting
the effects of gravity, find (a) the time it takes the elec-
tron to return to its initial height, (b) the maximum
height it reaches, and (c) its horizontal displacement
when it reaches its maximum height.

49. Protons are projected with an initial speed
m/s into a region where a uniform

electric field N/C is present, as shown in
Figure P23.49. The protons are to hit a target that lies at
a horizontal distance of 1.27 mm from the point where
the protons are launched. Find (a) the two projection
angles * that result in a hit and (b) the total time of
flight for each trajectory.

E # (!720 j)
vi # 9.55 % 103

E # 390 j

E # !6.00 % 105 i

WEB

Section 23.6 Electric Field Lines
38. A positively charged disk has a uniform charge per unit

area as described in Example 23.9. Sketch the electric
field lines in a plane perpendicular to the plane of the
disk passing through its center.

39. A negatively charged rod of finite length has a uniform
charge per unit length. Sketch the electric field lines in
a plane containing the rod.

40. Figure P23.40 shows the electric field lines for two point
charges separated by a small distance. (a) Determine
the ratio q1/q2 . (b) What are the signs of q1 and q2 ?

Figure P23.37

Figure P23.40

(i) (ii) (iii) (iv)

q2

q1
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ADDITIONAL PROBLEMS
50. Three point charges are aligned along the x axis as

shown in Figure P23.50. Find the electric field at (a) the
position (2.00, 0) and (b) the position (0, 2.00).

makes a 15.0° angle with the vertical, what is the net
charge on the ball?

53. A charged cork ball of mass 1.00 g is suspended 
on a light string in the presence of a uniform electric
field, as shown in Figure P23.53. When 

N/C, the ball is in equilibrium at 
* # 37.0°. Find (a) the charge on the ball and 
(b) the tension in the string.

54. A charged cork ball of mass m is suspended on a light
string in the presence of a uniform electric field, as
shown in Figure P23.53. When N/C,
where A and B are positive numbers, the ball is in equi-
librium at the angle * . Find (a) the charge on the ball
and (b) the tension in the string.

B j)E # (A i "

5.00 j) % 105
E # (3.00 i "

WEB

56. Three identical small Styrofoam balls are
suspended from a fixed point by three nonconducting
threads, each with a length of 50.0 cm and with negligi-

(m # 2.00 g)

55. Four identical point charges are
located on the corners of a rectangle, as shown in
Figure P23.55. The dimensions of the rectangle are

cm and cm. Calculate the magni-
tude and direction of the net electric force exerted on
the charge at the lower left corner by the other three
charges.

W # 15.0L # 60.0

(q # "10.0 )C)

51. A uniform electric field of magnitude 640 N/C exists
between two parallel plates that are 4.00 cm apart. A
proton is released from the positive plate at the same in-
stant that an electron is released from the negative
plate. (a) Determine the distance from the positive
plate at which the two pass each other. (Ignore the elec-
trical attraction between the proton and electron.) 
(b) Repeat part (a) for a sodium ion (Na") and a chlo-
rine ion (Cl!).

52. A small, 2.00-g plastic ball is suspended by a 20.0-cm-
long string in a uniform electric field, as shown in Fig-
ure P23.52. If the ball is in equilibrium when the string

θvi

1.27 mm

Target

E = (–720 j) N/C

×

Proton
beam

Figure P23.49

Figure P23.50

Figure P23.52

Figure P23.53 Problems 53 and 54.

Figure P23.55

0.800 m

y

3.00 nC5.00 nC

0.500 m

– 4.00 nC
x

y

x

15.0°

20.0 cm

m = 2.00 g

E = 1.00 × 103i N/C

x

y

E

q

θ
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q
q
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x
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ble mass. At equilibrium the three balls form an equilat-
eral triangle with sides of 30.0 cm. What is the common
charge q carried by each ball?

57. Two identical metallic blocks resting on a frictionless
horizontal surface are connected by a light metallic
spring having the spring constant N/m and an
unstretched length of 0.300 m, as shown in Figure
P23.57a. A total charge of Q is slowly placed on the sys-
tem, causing the spring to stretch to an equilibrium
length of 0.400 m, as shown in Figure P23.57b. Deter-
mine the value of Q , assuming that all the charge re-
sides on the blocks and that the blocks are like point
charges.

58. Two identical metallic blocks resting on a frictionless
horizontal surface are connected by a light metallic
spring having a spring constant k and an unstretched
length Li , as shown in Figure P23.57a. A total charge of
Q is slowly placed on the system, causing the spring to
stretch to an equilibrium length L , as shown in Figure
P23.57b. Determine the value of Q , assuming that all
the charge resides on the blocks and that the blocks are
like point charges.

k # 100

1 N/C. Will the charged particle remain nonrelativistic
for a shorter or a longer time in a much larger electric
field?

61. A line of positive charge is formed into a semicircle of
radius cm, as shown in Figure P23.61. The
charge per unit length along the semicircle is described
by the expression The total charge on the
semicircle is 12.0 )C. Calculate the total force on a
charge of 3.00 )C placed at the center of curvature.

4 # 40 cos *.

R # 60.0

62. Two small spheres, each of mass 2.00 g, are suspended
by light strings 10.0 cm in length (Fig. P23.62). A uni-
form electric field is applied in the x direction. The
spheres have charges equal to ! 5.00 % 10!8 C and
" 5.00 % 10!8 C. Determine the electric field that en-
ables the spheres to be in equilibrium at an angle of
* # 10.0+.

59. Identical thin rods of length 2a carry equal charges,
"Q , uniformly distributed along their lengths. The
rods lie along the x axis with their centers separated by
a distance of (Fig. P23.59). Show that the magni-
tude of the force exerted by the left rod on the right
one is given by

60. A particle is said to be nonrelativistic as long as its speed
is less than one-tenth the speed of light, or less than
3.00 % 107 m/s. (a) How long will an electron remain
nonrelativistic if it starts from rest in a region of an
electric field of 1.00 N/C? (b) How long will a proton
remain nonrelativistic in the same electric field? 
(c) Electric fields are commonly much larger than 

F # # keQ2

4a2 $ ln# b2

b2 ! 4a2 $

b / 2a

Figure P23.57 Problems 57 and 58.

(a)

(b)

m mk

m mk

b

y

a–a b – a b + a
x

Figure P23.59

Figure P23.61

Figure P23.62

y

R

x

θ

θ

E

θ

– +
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63. Two small spheres of mass m are suspended from strings
of length that are connected at a common point. One
sphere has charge Q ; the other has charge 2Q . Assume
that the angles *1 and *2 that the strings make with the
vertical are small. (a) How are *1 and *2 related? 
(b) Show that the distance r between the spheres is

64. Three charges of equal magnitude q are fixed in posi-
tion at the vertices of an equilateral triangle (Fig.
P23.64). A fourth charge Q is free to move along the
positive x axis under the influence of the forces exerted
by the three fixed charges. Find a value for s for which
Q is in equilibrium. You will need to solve a transcen-
dental equation.

r * # 4keQ 2!

mg $1/3

!

66. Review Problem. A 1.00-g cork ball with a charge of
2.00 )C is suspended vertically on a 0.500-m-long light
string in the presence of a uniform, downward-directed
electric field of magnitude N/C. If the
ball is displaced slightly from the vertical, it oscillates
like a simple pendulum. (a) Determine the period of
this oscillation. (b) Should gravity be included in the
calculation for part (a)? Explain.

67. Three charges of equal magnitude q reside at the cor-
ners of an equilateral triangle of side length a (Fig.
P23.67). (a) Find the magnitude and direction of the
electric field at point P, midway between the negative
charges, in terms of ke , q, and a. (b) Where must a ! 4q
charge be placed so that any charge located at P experi-
ences no net electric force? In part (b), let P be the ori-
gin and let the distance between the "q charge and P
be 1.00 m.

E # 1.00 % 105

68. Two identical beads each have a mass m and charge q.
When placed in a hemispherical bowl of radius R with
frictionless, nonconducting walls, the beads move, and
at equilibrium they are a distance R apart (Fig. P23.68).
Determine the charge on each bead.

65. Review Problem. Four identical point charges, each
having charge "q, are fixed at the corners of a square
of side L. A fifth point charge !Q lies a distance z along
the line perpendicular to the plane of the square and
passing through the center of the square (Fig. P23.65).
(a) Show that the force exerted on !Q by the other
four charges is

Note that this force is directed toward the center of the
square whether z is positive (! Q above the square) or
negative (!Q below the square). (b) If z is small com-
pared with L, the above expression reduces to

Why does this imply that the mo-
tion of !Q is simple harmonic, and what would be the
period of this motion if the mass of !Q were m?

F " !(constant) zk.

F # !
4keqQ z

#z2 "
L2

2 $3/2
 k

Figure P23.64

Figure P23.65

Figure P23.67

x
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a
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θ
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This charge distribution, which is essentially that of two
electric dipoles, is called an electric quadrupole. Note that
E varies as r!4 for the quadrupole, compared with varia-
tions of r!3 for the dipole and r!2 for the monopole (a
single charge).

73. Review Problem. A negatively charged particle !q
is placed at the center of a uniformly charged ring,
where the ring has a total positive charge Q , as shown
in Example 23.8. The particle, confined to move along
the x axis, is displaced a small distance x along the axis
(where and released. Show that the particle os-
cillates with simple harmonic motion with a frequency

74. Review Problem. An electric dipole in a uniform elec-
tric field is displaced slightly from its equilibrium posi-
tion, as shown in Figure P23.74, where * is small and
the charges are separated by a distance 2a. The moment
of inertia of the dipole is I. If the dipole is released from
this position, show that its angular orientation exhibits
simple harmonic motion with a frequency

f #
1

2'
 ! 2qaE

I

f #
1

2'
 # keqQ

ma3 $1/2

x V a)

70. Consider the charge distribution shown in Figure
P23.69. (a) Show that the magnitude of the electric
field at the center of any face of the cube has a value of
2.18ke q /s2. (b) What is the direction of the electric
field at the center of the top face of the cube?

71. A line of charge with a uniform density of 35.0 nC/m
lies along the line y # ! 15.0 cm, between the points
with coordinates x # 0 and x # 40.0 cm. Find the elec-
tric field it creates at the origin.

72. Three point charges q, ! 2q, and q are located along the
x axis, as shown in Figure P23.72. Show that the electric
field at P along the y axis is

E # !ke 
3qa2

y4  j

(y W a)

69. Eight point charges, each of magnitude q, are located
on the corners of a cube of side s, as shown in Figure
P23.69. (a) Determine the x, y, and z components of the
resultant force exerted on the charge located at point A
by the other charges. (b) What are the magnitude and
direction of this resultant force?

Figure P23.68

Figure P23.69 Problems 69 and 70.

Figure P23.72

Figure P23.74
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ANSWERS TO QUICK QUIZZES

23.3 (b). From Newton’s third law, the electric force exerted
by object B on object A is equal in magnitude to the
force exerted by object A on object B and in the oppo-
site direction—that is, 

23.4 Nothing, if we assume that the source charge producing
the field is not disturbed by our actions. Remember that
the electric field is created not by the " 3-)C charge or
by the ! 3-)C charge but by the source charge (unseen
in this case).

23.5 A, B, and C . The field is greatest at point A because this
is where the field lines are closest together. The absence
of lines at point C indicates that the electric field there is
zero.

FAB # ! FBA .

23.1 (b). The amount of charge present after rubbing is the
same as that before; it is just distributed differently.

23.2 (d). Object A might be negatively charged, but it also
might be electrically neutral with an induced charge
separation, as shown in the following figure:

+

+

+
+

+
+

+
+

+
+

B

A
+
+
+

–
–
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c h a p t e r

Gauss’s Law

P U Z Z L E R

Some railway companies are planning to
coat the windows of their commuter
trains with a very thin layer of metal.
(The coating is so thin you can see
through it.) They are doing this in re-
sponse to rider complaints about other
passengers’ talking loudly on cellular
telephones. How can a metallic coating
that is only a few hundred nanometers
thick overcome this problem? (Arthur
Tilley/FPG International)

C h a p t e r  O u t l i n e

24.1 Electric Flux
24.2 Gauss’s Law
24.3 Application of Gauss’s Law to

Charged Insulators
24.4 Conductors in Electrostatic

Equilibrium

24.5 (Optional) Experimental
Verification of Gauss’s Law and
Coulomb’s Law

24.6 (Optional) Formal Derivation of
Gauss’s Law

P U Z Z L E R
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n the preceding chapter we showed how to use Coulomb’s law to calculate the
electric field generated by a given charge distribution. In this chapter, we de-
scribe Gauss’s law and an alternative procedure for calculating electric fields.

The law is based on the fact that the fundamental electrostatic force between point
charges exhibits an inverse-square behavior. Although a consequence of
Coulomb’s law, Gauss’s law is more convenient for calculating the electric fields of
highly symmetric charge distributions and makes possible useful qualitative rea-
soning when we are dealing with complicated problems.

ELECTRIC FLUX
The concept of electric field lines is described qualitatively in Chapter 23. We now
use the concept of electric flux to treat electric field lines in a more quantitative
way.

Consider an electric field that is uniform in both magnitude and direction, as
shown in Figure 24.1. The field lines penetrate a rectangular surface of area A,
which is perpendicular to the field. Recall from Section 23.6 that the number of
lines per unit area (in other words, the line density) is proportional to the magni-
tude of the electric field. Therefore, the total number of lines penetrating the sur-
face is proportional to the product EA. This product of the magnitude of the elec-
tric field E and surface area A perpendicular to the field is called the electric flux
!E (uppercase Greek phi):

(24.1)

From the SI units of E and A, we see that !E has units of newton–meters squared
per coulomb Electric flux is proportional to the number of elec-
tric field lines penetrating some surface.

(N"m2/C).

!E # EA

24.1

Flux Through a SphereEXAMPLE 24.1
perpendicular to the surface of the sphere. The flux through
the sphere (whose surface area is thus

Exercise What would be the (a) electric field and (b) flux
through the sphere if it had a radius of 0.500 m?

Answer (a) N/C; (b) 1.13 $ 105 N"m2/C.3.60 $ 104

1.13 $ 105 N"m2/C#

!E # EA # (8.99 $ 103 N/C)(12.6 m2)

A # 4%r 2 # 12.6 m2)
What is the electric flux through a sphere that has a radius of
1.00 m and carries a charge of & 1.00 'C at its center?

Solution The magnitude of the electric field 1.00 m from
this charge is given by Equation 23.4,

The field points radially outward and is therefore everywhere

 # 8.99 $ 103 N/C

E # ke 
q
r 2 # (8.99 $ 109 N"m2/C2) 

1.00 $ 10(6 C
(1.00 m)2

I

11.6

Area = A

E

Figure 24.1 Field lines repre-
senting a uniform electric field
penetrating a plane of area A per-
pendicular to the field. The electric
flux !E through this area is equal
to EA.

If the surface under consideration is not perpendicular to the field, the flux
through it must be less than that given by Equation 24.1. We can understand this
by considering Figure 24.2, in which the normal to the surface of area A is at an
angle ) to the uniform electric field. Note that the number of lines that cross this
area A is equal to the number that cross the area A*, which is a projection of area A
aligned perpendicular to the field. From Figure 24.2 we see that the two areas are
related by cos ). Because the flux through A equals the flux through A*, weA* # A
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conclude that the flux through A is

(24.2)

From this result, we see that the flux through a surface of fixed area A has a maxi-
mum value EA when the surface is perpendicular to the field (in other words,
when the normal to the surface is parallel to the field, that is, in Figure
24.2); the flux is zero when the surface is parallel to the field (in other words,
when the normal to the surface is perpendicular to the field, that is, 

We assumed a uniform electric field in the preceding discussion. In more gen-
eral situations, the electric field may vary over a surface. Therefore, our definition
of flux given by Equation 24.2 has meaning only over a small element of area.
Consider a general surface divided up into a large number of small elements, each
of area +A. The variation in the electric field over one element can be neglected if
the element is sufficiently small. It is convenient to define a vector +A i whose mag-
nitude represents the area of the ith element of the surface and whose direction is
defined to be perpendicular to the surface element, as shown in Figure 24.3. The elec-
tric flux +!E through this element is

where we have used the definition of the scalar product of two vectors
By summing the contributions of all elements, we obtain the

total flux through the surface.1 If we let the area of each element approach zero,
then the number of elements approaches infinity and the sum is replaced by an in-
tegral. Therefore, the general definition of electric flux is

(24.3)

Equation 24.3 is a surface integral, which means it must be evaluated over the sur-
face in question. In general, the value of !E depends both on the field pattern and
on the surface.

We are often interested in evaluating the flux through a closed surface, which is
defined as one that divides space into an inside and an outside region, so that one
cannot move from one region to the other without crossing the surface. The sur-
face of a sphere, for example, is a closed surface.

Consider the closed surface in Figure 24.4. The vectors +Ai point in different
directions for the various surface elements, but at each point they are normal to

dA!E # lim
+Ai :0

 , Ei ! +Ai # !
surface

E !

(A ! B # AB cos )).

+!E # Ei +Ai cos ) # Ei " + Ai

) # 90-).

) # 0-

!E # EA* # EA cos )

QuickLab
Shine a desk lamp onto a playing
card and notice how the size of the
shadow on your desk depends on the
orientation of the card with respect
to the beam of light. Could a formula
like Equation 24.2 be used to de-
scribe how much light was being
blocked by the card?

Definition of electric flux

1 It is important to note that drawings with field lines have their inaccuracies because a small area ele-
ment (depending on its location) may happen to have too many or too few field lines penetrating it.
We stress that the basic definition of electric flux is The use of lines is only an aid for visualiz-
ing the concept.

! E ! dA.

A

θ

θ

A′ = A cos θ
E

Normal

θ

Figure 24.2 Field lines representing a
uniform electric field penetrating an
area A that is at an angle ) to the field.
Because the number of lines that go
through the area A* is the same as the
number that go through A, the flux
through A* is equal to the flux through
A and is given by !E # EA cos ).

∆A i

E i
θ

Figure 24.3 A small element of
surface area +Ai . The electric field
makes an angle ) with the vector
+Ai , defined as being normal to
the surface element, and the flux
through the element is equal to
E i +Ai cos ).
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the surface and, by convention, always point outward. At the element labeled !,
the field lines are crossing the surface from the inside to the outside and 
hence, the flux i through this element is positive. For element ",
the field lines graze the surface (perpendicular to the vector +Ai); thus, 
and the flux is zero. For elements such as #, where the field lines are crossing the
surface from outside to inside, and the flux is negative because 
cos ) is negative. The net flux through the surface is proportional to the net num-
ber of lines leaving the surface, where the net number means the number leaving the
surface minus the number entering the surface. If more lines are leaving than entering,
the net flux is positive. If more lines are entering than leaving, the net flux is nega-
tive. Using the symbol to represent an integral over a closed surface, we can write
the net flux !E through a closed surface as

(24.4)

where En represents the component of the electric field normal to the surface.
Evaluating the net flux through a closed surface can be very cumbersome. How-
ever, if the field is normal to the surface at each point and constant in magnitude,
the calculation is straightforward, as it was in Example 24.1. The next example also
illustrates this point.

!E # " E ! dA # " En dA

"

180- . ) . 90-

) # 90-
+!E # E ! +A

) / 90-;

∆A i

∆A i !
"

#

E

#
!

"

∆A i

E
θ

Eθ

Figure 24.4 A closed surface
in an electric field. The area vec-
tors +Ai are, by convention, nor-
mal to the surface and point out-
ward. The flux through an area
element can be positive (ele-
ment !), zero (element "), or
negative (element #).

Flux Through a CubeEXAMPLE 24.2
faces (#, $, and the unnumbered ones) is zero because E is
perpendicular to dA on these faces.

The net flux through faces ! and " is

!E # !
1
 E ! dA & !

2
 E ! dA

Consider a uniform electric field E oriented in the x direc-
tion. Find the net electric flux through the surface of a cube
of edges !, oriented as shown in Figure 24.5.

Solution The net flux is the sum of the fluxes through all
faces of the cube. First, note that the flux through four of the

Karl Friedrich Gauss German
mathematician and astronomer
(1777 – 1855)
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GAUSS’S LAW
In this section we describe a general relationship between the net electric flux
through a closed surface (often called a gaussian surface) and the charge enclosed
by the surface. This relationship, known as Gauss’s law, is of fundamental impor-
tance in the study of electric fields.

Let us again consider a positive point charge q located at the center of a
sphere of radius r, as shown in Figure 24.6. From Equation 23.4 we know that the
magnitude of the electric field everywhere on the surface of the sphere is

As noted in Example 24.1, the field lines are directed radially outward
and hence perpendicular to the surface at every point on the surface. That is, at
each surface point, E is parallel to the vector +A i representing a local element of
area +Ai surrounding the surface point. Therefore,

and from Equation 24.4 we find that the net flux through the gaussian surface is

where we have moved E outside of the integral because, by symmetry, E is constant
over the surface and given by Furthermore, because the surface is
spherical, Hence, the net flux through the gaussian surface is

Recalling from Section 23.3 that we can write this equation in the
form

(24.5)

We can verify that this expression for the net flux gives the same result as Example
24.1: / C2/N"m2) # 1.13 $ 105 N"m2/C.(8.85 $ 10(12!E # (1.00 $ 10(6 C)

!E #
q
00

ke # 1/(4%00),

!E #
keq
r 2  (4%r 2) # 4%keq

" dA # A # 4%r 2.
E # keq /r 2.

!E # " E ! dA # " E dA # E " dA

E ! +Ai # E +Ai

E # keq /r 2.

24.2

y

z !

!

!
x

E

dA2

dA1

dA3

!

"

#

$ dA4

For !, E is constant and directed inward but dA1 is directed
outward thus, the flux through this face is

because the area of each face is 
For ", E is constant and outward and in the same direc-

tion as dA2() # 0°); hence, the flux through this face is

Therefore, the net flux over all six faces is

0!E # (E!2 & E!2 & 0 & 0 & 0 & 0 #

!
2
 E ! dA # !

2
 E(cos 0-)dA # E !

2
 dA # &EA # E !2

A # !2.

!
1

E ! dA # !
1
 E(cos 180-)dA # (E !

1
 dA # (EA # (E!2

() # 180-);

Figure 24.5 A closed surface in the shape of a cube in a uniform
electric field oriented parallel to the x axis. The net flux through the
closed surface is zero. Side $ is the bottom of the cube, and side !
is opposite side ".

11.6

Gaussian
surface

r

q

dA

E
+ i

Figure 24.6 A spherical gaussian
surface of radius r surrounding a
point charge q. When the charge is
at the center of the sphere, the
electric field is everywhere normal
to the surface and constant in mag-
nitude.



748 C H A P T E R  2 4 Gauss’s Law

Note from Equation 24.5 that the net flux through the spherical surface is
proportional to the charge inside. The flux is independent of the radius r because
the area of the spherical surface is proportional to r 2, whereas the electric field is
proportional to 1/r 2. Thus, in the product of area and electric field, the depen-
dence on r cancels.

Now consider several closed surfaces surrounding a charge q, as shown in Fig-
ure 24.7. Surface S1 is spherical, but surfaces S2 and S3 are not. From Equation
24.5, the flux that passes through S1 has the value q/00 . As we discussed in the pre-
vious section, flux is proportional to the number of electric field lines passing
through a surface. The construction shown in Figure 24.7 shows that the number
of lines through S1 is equal to the number of lines through the nonspherical sur-
faces S2 and S3 . Therefore, we conclude that the net flux through any closed sur-
face is independent of the shape of that surface. The net flux through any
closed surface surrounding a point charge q is given by q/"0 .

Now consider a point charge located outside a closed surface of arbitrary
shape, as shown in Figure 24.8. As you can see from this construction, any electric
field line that enters the surface leaves the surface at another point. The number
of electric field lines entering the surface equals the number leaving the surface.
Therefore, we conclude that the net electric flux through a closed surface that
surrounds no charge is zero. If we apply this result to Example 24.2, we can eas-
ily see that the net flux through the cube is zero because there is no charge inside
the cube.

Suppose that the charge in Example 24.1 is just outside the sphere, 1.01 m from its center.
What is the total flux through the sphere?

Let us extend these arguments to two generalized cases: (1) that of many
point charges and (2) that of a continuous distribution of charge. We once again
use the superposition principle, which states that the electric field due to many
charges is the vector sum of the electric fields produced by the individual
charges. Therefore, we can express the flux through any closed surface as

where E is the total electric field at any point on the surface produced by the vec-
tor addition of the electric fields at that point due to the individual charges.

" E ! dA # " (E1 & E2 & """) ! dA

Quick Quiz 24.1

The net electric flux through a
closed surface is zero if there is no
charge inside

S3

S2

S1

q

q

Figure 24.7 Closed surfaces of various shapes surround-
ing a charge q. The net electric flux is the same through all
surfaces.

Figure 24.8 A point charge lo-
cated outside a closed surface. The
number of lines entering the sur-
face equals the number leaving the
surface.
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Consider the system of charges shown in Figure 24.9. The surface S surrounds
only one charge, q1 ; hence, the net flux through S is q1/00 . The flux through S
due to charges q2 and q3 outside it is zero because each electric field line that en-
ters S at one point leaves it at another. The surface S* surrounds charges q2 and q3 ;
hence, the net flux through it is Finally, the net flux through surface
S 1 is zero because there is no charge inside this surface. That is, all the electric
field lines that enter S 1 at one point leave at another.

Gauss’s law, which is a generalization of what we have just described, states
that the net flux through any closed surface is

(24.6)

where q in represents the net charge inside the surface and E represents the elec-
tric field at any point on the surface.

A formal proof of Gauss’s law is presented in Section 24.6. When using Equa-
tion 24.6, you should note that although the charge q in is the net charge inside the
gaussian surface, E represents the total electric field, which includes contributions
from charges both inside and outside the surface.

In principle, Gauss’s law can be solved for E to determine the electric field
due to a system of charges or a continuous distribution of charge. In practice, how-
ever, this type of solution is applicable only in a limited number of highly symmet-
ric situations. As we shall see in the next section, Gauss’s law can be used to evalu-
ate the electric field for charge distributions that have spherical, cylindrical, or
planar symmetry. If one chooses the gaussian surface surrounding the charge dis-
tribution carefully, the integral in Equation 24.6 can be simplified. You should also
note that a gaussian surface is a mathematical construction and need not coincide
with any real physical surface.

For a gaussian surface through which the net flux is zero, the following four statements
could be true. Which of the statements must be true? (a) There are no charges inside the sur-
face. (b) The net charge inside the surface is zero. (c) The electric field is zero everywhere
on the surface. (d) The number of electric field lines entering the surface equals the num-
ber leaving the surface.

Quick Quiz 24.2

!E # " E ! dA #
q in

00

(q2 & q3)/00.

S

q1

q2

q3 S ′

S ′′

Figure 24.9 The net electric flux
through any closed surface de-
pends only on the charge inside
that surface. The net flux through
surface S is q1/00 , the net flux
through surface S * is 
and the net flux through surface
S 1 is zero.

(q2 & q3 )/00 ,

Gauss’s law

Gauss’s law is useful for evaluating
E when the charge distribution has
high symmetry

CONCEPTUAL EXAMPLE 24.3
lines from the charge pass through the sphere, regardless of
its radius.

(c) The flux does not change when the shape of the gauss-
ian surface changes because all electric field lines from the
charge pass through the surface, regardless of its shape.

(d) The flux does not change when the charge is moved
to another location inside that surface because Gauss’s law
refers to the total charge enclosed, regardless of where the
charge is located inside the surface.

A spherical gaussian surface surrounds a point charge q. De-
scribe what happens to the total flux through the surface if
(a) the charge is tripled, (b) the radius of the sphere is dou-
bled, (c) the surface is changed to a cube, and (d) the charge
is moved to another location inside the surface.

Solution (a) The flux through the surface is tripled 
because flux is proportional to the amount of charge inside
the surface.

(b) The flux does not change because all electric field
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APPLICATION OF GAUSS’S LAW TO
CHARGED INSULATORS

As mentioned earlier, Gauss’s law is useful in determining electric fields when the
charge distribution is characterized by a high degree of symmetry. The following
examples demonstrate ways of choosing the gaussian surface over which the sur-
face integral given by Equation 24.6 can be simplified and the electric field deter-
mined. In choosing the surface, we should always take advantage of the symmetry
of the charge distribution so that we can remove E from the integral and solve for
it. The goal in this type of calculation is to determine a surface that satisfies one or
more of the following conditions:

1. The value of the electric field can be argued by symmetry to be constant over
the surface.

2. The dot product in Equation 24.6 can be expressed as a simple algebraic prod-
uct E dA because E and dA are parallel.

3. The dot product in Equation 24.6 is zero because E and dA are perpendicular.
4. The field can be argued to be zero over the surface.

All four of these conditions are used in examples throughout the remainder of
this chapter.

24.3

The Electric Field Due to a Point ChargeEXAMPLE 24.4
Starting with Gauss’s law, calculate the electric field due to an
isolated point charge q.

Solution A single charge represents the simplest possible
charge distribution, and we use this familiar case to show how
to solve for the electric field with Gauss’s law. We choose a
spherical gaussian surface of radius r centered on the point
charge, as shown in Figure 24.10. The electric field due to a
positive point charge is directed radially outward by symmetry
and is therefore normal to the surface at every point. Thus, as
in condition (2), E is parallel to dA at each point. Therefore,

and Gauss’s law gives

By symmetry, E is constant everywhere on the surface, which
satisfies condition (1), so it can be removed from the inte-
gral. Therefore,

" E dA # E " dA # E(4%r 2) #
q
00

!E # " E ! dA # " E dA #
q
00

E ! dA # E dA

Gaussian
surface

r

q

dA

E
+

Figure 24.10 The point charge q is at the center of the spherical
gaussian surface, and E is parallel to d A at every point on the
surface.

where we have used the fact that the surface area of a sphere
is 4%r 2. Now, we solve for the electric field:

This is the familiar electric field due to a point charge that we
developed from Coulomb’s law in Chapter 23.

ke 
q
r 2E #

q
4%00r 2 #

A Spherically Symmetric Charge DistributionEXAMPLE 24.5
Solution Because the charge distribution is spherically
symmetric, we again select a spherical gaussian surface of ra-
dius r, concentric with the sphere, as shown in Figure 24.11a.
For this choice, conditions (1) and (2) are satisfied, as they

An insulating solid sphere of radius a has a uniform volume
charge density 2 and carries a total positive charge Q (Fig.
24.11). (a) Calculate the magnitude of the electric field at a
point outside the sphere.

11.6
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(a)

Gaussian
sphere

(b)

Gaussian
spherer

a

r

a

Figure 24.11 A uniformly charged insulating sphere of radius a
and total charge Q. (a) The magnitude of the electric field at a point
exterior to the sphere is (b) The magnitude of the electric
field inside the insulating sphere is due only to the charge within the
gaussian sphere defined by the dashed circle and is ke Qr /a3.

ke Q /r 2.

E

a

E =
keQ
r2

r

a

Figure 24.12 A plot of E versus r for a uniformly charged insulat-
ing sphere. The electric field inside the sphere varies linearly
with r. The field outside the sphere is the same as that of a
point charge Q located at r # 0.

(r . a)
(r / a)

were for the point charge in Example 24.4. Following the line
of reasoning given in Example 24.4, we find that

(for 

Note that this result is identical to the one we obtained for a
point charge. Therefore, we conclude that, for a uniformly
charged sphere, the field in the region external to the sphere
is equivalent to that of a point charge located at the center of
the sphere.

(b) Find the magnitude of the electric field at a point in-
side the sphere.

Solution In this case we select a spherical gaussian surface
having radius r / a, concentric with the insulated sphere
(Fig. 24.11b). Let us denote the volume of this smaller
sphere by V *. To apply Gauss’s law in this situation, it is im-
portant to recognize that the charge q in within the gaussian
surface of volume V * is less than Q . To calculate q in , we use
the fact that 

By symmetry, the magnitude of the electric field is constant
everywhere on the spherical gaussian surface and is normal

q in # 2V * # 2(4
3%r 3)

q in # 2V *:

r . a)ke 
Q
r 2E #

to the surface at each point—both conditions (1) and (2)
are satisfied. Therefore, Gauss’s law in the region gives

Solving for E gives

Because by definition and since 
this expression for E can be written as

(for r / a)

Note that this result for E differs from the one we ob-
tained in part (a). It shows that E : 0 as r : 0. Therefore,
the result eliminates the problem that would exist at r # 0 if
E varied as 1/r 2 inside the sphere as it does outside the
sphere. That is, if for r / a, the field would be infi-
nite at r # 0, which is physically impossible. Note also that
the expressions for parts (a) and (b) match when r # a.

A plot of E versus r is shown in Figure 24.12. 

E 3 1/r 2

keQ
a3  rE #

Qr
4%00a3 #

ke # 1/(4%00),2 # Q /4
3%a3

E #
q in

4%00r 2 #
2 4

3%r 3

4%00r 2 #
2

300
 r

" E dA # E " dA # E(4%r 2) #
q in

00

r / a

The Electric Field Due to a Thin Spherical ShellEXAMPLE 24.6
the shell is equivalent to that due to a point charge Q located
at the center:

(for r . a)

(b) The electric field inside the spherical shell is zero.
This follows from Gauss’s law applied to a spherical surface of
radius r / a concentric with the shell (Fig. 24.13c). Because

ke 
Q
r 2E #

A thin spherical shell of radius a has a total charge Q distrib-
uted uniformly over its surface (Fig. 24.13a). Find the electric
field at points (a) outside and (b) inside the shell.

Solution (a) The calculation for the field outside the shell
is identical to that for the solid sphere shown in Example
24.5a. If we construct a spherical gaussian surface of radius 
r . a concentric with the shell (Fig. 24.13b), the charge in-
side this surface is Q . Therefore, the field at a point outside
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A Cylindrically Symmetric Charge DistributionEXAMPLE 24.7
Find the electric field a distance r from a line of positive
charge of infinite length and constant charge per unit length
4 (Fig. 24.14a).

Solution The symmetry of the charge distribution re-
quires that E be perpendicular to the line charge and di-
rected outward, as shown in Figure 24.14a and b. To reflect
the symmetry of the charge distribution, we select a cylindri-
cal gaussian surface of radius r and length ! that is coaxial
with the line charge. For the curved part of this surface, E is
constant in magnitude and perpendicular to the surface at
each point—satisfaction of conditions (1) and (2). Further-
more, the flux through the ends of the gaussian cylinder is
zero because E is parallel to these surfaces—the first applica-
tion we have seen of condition (3).

We take the surface integral in Gauss’s law over the entire
gaussian surface. Because of the zero value of for the
ends of the cylinder, however, we can restrict our attention to
only the curved surface of the cylinder.

The total charge inside our gaussian surface is 4!. Apply-
ing Gauss’s law and conditions (1) and (2), we find that for
the curved surface

!E # " E ! dA # E " dA # EA #
q in

00
#

4!

00

E ! dA
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Gaussian
surface

a a

r

a

Gaussian
surface

(a) (c)(b)

Ein = 0

r

Figure 24.13 (a) The electric field inside a uniformly charged spherical shell is zero. The field
outside is the same as that due to a point charge Q located at the center of the shell. (b) Gaussian
surface for r . a. (c) Gaussian surface for r / a.

Gaussian
surface

+
+
+

+
+
+

E

dA!

r

(a)

E

(b)

Figure 24.14 (a) An infinite line of charge surrounded by a cylin-
drical gaussian surface concentric with the line. (b) An end view
shows that the electric field at the cylindrical surface is constant in
magnitude and perpendicular to the surface.

of the spherical symmetry of the charge distribution and be-
cause the net charge inside the surface is zero—satisfaction
of conditions (1) and (2) again—application of Gauss’s law
shows that E # 0 in the region r / a.

We obtain the same results using Equation 23.6 and inte-
grating over the charge distribution. This calculation is
rather complicated. Gauss’s law allows us to determine these
results in a much simpler way.
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The area of the curved surface is therefore,

(24.7)

Thus, we see that the electric field due to a cylindrically sym-
metric charge distribution varies as 1/r, whereas the field ex-
ternal to a spherically symmetric charge distribution varies as
1/r2. Equation 24.7 was also derived in Chapter 23 (see Prob-
lem 35[b]), by integration of the field of a point charge.

If the line charge in this example were of finite length,
the result for E would not be that given by Equation 24.7. A
finite line charge does not possess sufficient symmetry for us
to make use of Gauss’s law. This is because the magnitude of

2ke 
4

r
E #

4

2%00r
#

E(2%r!) #
4!

00

A # 2%r!;

A Nonconducting Plane of ChargeEXAMPLE 24.8
Because the distance from each flat end of the cylinder to

the plane does not appear in Equation 24.8, we conclude that
E # 5/200 at any distance from the plane. That is, the field is
uniform everywhere.

An important charge configuration related to this exam-
ple consists of two parallel planes, one positively charged and
the other negatively charged, and each with a surface charge
density 5 (see Problem 58). In this situation, the electric
fields due to the two planes add in the region between the
planes, resulting in a field of magnitude 5/00 , and cancel
elsewhere to give a field of zero.

Find the electric field due to a nonconducting, infinite plane
of positive charge with uniform surface charge density 5.

Solution By symmetry, E must be perpendicular to the
plane and must have the same magnitude at all points
equidistant from the plane. The fact that the direction of E is
away from positive charges indicates that the direction of E
on one side of the plane must be opposite its direction on the
other side, as shown in Figure 24.15. A gaussian surface that
reflects the symmetry is a small cylinder whose axis is perpen-
dicular to the plane and whose ends each have an area A and
are equidistant from the plane. Because E is parallel to the
curved surface—and, therefore, perpendicular to dA every-
where on the surface—condition (3) is satisfied and there is
no contribution to the surface integral from this surface. For
the flat ends of the cylinder, conditions (1) and (2) are satis-
fied. The flux through each end of the cylinder is EA; 
hence, the total flux through the entire gaussian surface is
just that through the ends, 

Noting that the total charge inside the surface is q in # 5A,
we use Gauss’s law and find that

(24.8)
5

200
E #

!E # 2EA #
q in

00
#

5A
00

!E # 2EA.

E

+ + + + + + +

+ + + + + +

+ + +

+ +

+ +

+

+ + +

+ + + + +

+ + + + + + +

A

Gaussian
cylinder

E

Figure 24.15 A cylindrical gaussian surface penetrating an infi-
nite plane of charge. The flux is EA through each end of the gauss-
ian surface and zero through its curved surface.

the electric field is no longer constant over the surface of
the gaussian cylinder—the field near the ends of the line
would be different from that far from the ends. Thus, condi-
tion (1) would not be satisfied in this situation. Further-
more, E is not perpendicular to the cylindrical surface at all
points—the field vectors near the ends would have a compo-
nent parallel to the line. Thus, condition (2) would not be
satisfied. When there is insufficient symmetry in the charge
distribution, as in this situation, it is necessary to use Equa-
tion 23.6 to calculate E.

For points close to a finite line charge and far from the
ends, Equation 24.7 gives a good approximation of the value
of the field.

It is left for you to show (see Problem 29) that the electric
field inside a uniformly charged rod of finite radius and infi-
nite length is proportional to r.

CONCEPTUAL EXAMPLE 24.9
Explain why Gauss’s law cannot be used to calculate the electric field near an electric di-
pole, a charged disk, or a triangle with a point charge at each corner.
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CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM
As we learned in Section 23.2, a good electrical conductor contains charges (elec-
trons) that are not bound to any atom and therefore are free to move about within
the material. When there is no net motion of charge within a conductor, the con-
ductor is in electrostatic equilibrium. As we shall see, a conductor in electrosta-
tic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor.
2. If an isolated conductor carries a charge, the charge resides on its surface.
3. The electric field just outside a charged conductor is perpendicular to the sur-

face of the conductor and has a magnitude 5/00 , where 5 is the surface charge
density at that point.

4. On an irregularly shaped conductor, the surface charge density is greatest at lo-
cations where the radius of curvature of the surface is smallest.

We verify the first three properties in the discussion that follows. The fourth
property is presented here without further discussion so that we have a complete
list of properties for conductors in electrostatic equilibrium.

We can understand the first property by considering a conducting slab placed
in an external field E (Fig. 24.16). We can argue that the electric field inside the
conductor must be zero under the assumption that we have electrostatic equilib-
rium. If the field were not zero, free charges in the conductor would accelerate
under the action of the field. This motion of electrons, however, would mean that
the conductor is not in electrostatic equilibrium. Thus, the existence of electro-
static equilibrium is consistent only with a zero field in the conductor.

Let us investigate how this zero field is accomplished. Before the external field
is applied, free electrons are uniformly distributed throughout the conductor.
When the external field is applied, the free electrons accelerate to the left in Fig-
ure 24.16, causing a plane of negative charge to be present on the left surface. The
movement of electrons to the left results in a plane of positive charge on the right
surface. These planes of charge create an additional electric field inside the con-
ductor that opposes the external field. As the electrons move, the surface charge
density increases until the magnitude of the internal field equals that of the exter-
nal field, and the net result is a net field of zero inside the conductor. The time it
takes a good conductor to reach equilibrium is of the order of 10(16 s, which for
most purposes can be considered instantaneous.

We can use Gauss’s law to verify the second property of a conductor in electro-
static equilibrium. Figure 24.17 shows an arbitrarily shaped conductor. A gaussian
surface is drawn inside the conductor and can be as close to the conductor’s sur-
face as we wish. As we have just shown, the electric field everywhere inside the con-
ductor is zero when it is in electrostatic equilibrium. Therefore, the electric field
must be zero at every point on the gaussian surface, in accordance with condition
(4) in Section 24.3. Thus, the net flux through this gaussian surface is zero. From
this result and Gauss’s law, we conclude that the net charge inside the gaussian sur-

24.4

Properties of a conductor in
electrostatic equilibrium

Solution The charge distributions of all these configurations do not have sufficient
symmetry to make the use of Gauss’s law practical. We cannot find a closed surface sur-
rounding any of these distributions that satisfies one or more of conditions (1) through
(4) listed at the beginning of this section.

+
+
+
+
+
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+
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–
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–
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E E

Figure 24.17 A conductor of ar-
bitrary shape. The broken line rep-
resents a gaussian surface just in-
side the conductor.

Figure 24.16 A conducting slab
in an external electric field E. The
charges induced on the two sur-
faces of the slab produce an elec-
tric field that opposes the external
field, giving a resultant field of zero
inside the slab.

Gaussian
surface
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face is zero. Because there can be no net charge inside the gaussian surface (which
is arbitrarily close to the conductor’s surface), any net charge on the conductor
must reside on its surface. Gauss’s law does not indicate how this excess charge
is distributed on the conductor’s surface.

We can also use Gauss’s law to verify the third property. We draw a gaussian
surface in the shape of a small cylinder whose end faces are parallel to the surface
of the conductor (Fig. 24.18). Part of the cylinder is just outside the conductor,
and part is inside. The field is normal to the conductor’s surface from the condi-
tion of electrostatic equilibrium. (If E had a component parallel to the conduc-
tor’s surface, the free charges would move along the surface; in such a case, the
conductor would not be in equilibrium.) Thus, we satisfy condition (3) in Section
24.3 for the curved part of the cylindrical gaussian surface—there is no flux
through this part of the gaussian surface because E is parallel to the surface.
There is no flux through the flat face of the cylinder inside the conductor because
here E # 0—satisfaction of condition (4). Hence, the net flux through the gauss-
ian surface is that through only the flat face outside the conductor, where the field
is perpendicular to the gaussian surface. Using conditions (1) and (2) for this
face, the flux is EA, where E is the electric field just outside the conductor and A is
the area of the cylinder’s face. Applying Gauss’s law to this surface, we obtain

where we have used the fact that q in # 5A. Solving for E gives

(24.9)E #
5

00

!E # " E dA # EA #
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Electric field just outside a
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Figure 24.18 A gaussian surface
in the shape of a small cylinder is
used to calculate the electric field
just outside a charged conductor.
The flux through the gaussian sur-
face is EnA . Remember that E is
zero inside the conductor.

Electric field pattern surrounding a charged conducting
plate placed near an oppositely charged conducting cylin-
der. Small pieces of thread suspended in oil align with the
electric field lines. Note that (1) the field lines are perpen-
dicular to both conductors and (2) there are no lines inside
the cylinder (E # 0).

A Sphere Inside a Spherical ShellEXAMPLE 24.10
Solution First note that the charge distributions on both
the sphere and the shell are characterized by spherical sym-
metry around their common center. To determine the elec-
tric field at various distances r from this center, we construct a
spherical gaussian surface for each of the four regions of in-
terest. Such a surface for region " is shown in Figure 24.19.

To find E inside the solid sphere (region !), consider a

A solid conducting sphere of radius a carries a net positive
charge 2Q . A conducting spherical shell of inner radius b
and outer radius c is concentric with the solid sphere and car-
ries a net charge (Q . Using Gauss’s law, find the electric
field in the regions labeled !, ", #, and $ in Figure 24.19
and the charge distribution on the shell when the entire sys-
tem is in electrostatic equilibrium.
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How would the electric flux through a gaussian surface surrounding the shell in Example
24.10 change if the solid sphere were off-center but still inside the shell?

Optional Section

EXPERIMENTAL VERIFICATION OF
GAUSS’S LAW AND COULOMB’S LAW

When a net charge is placed on a conductor, the charge distributes itself on the
surface in such a way that the electric field inside the conductor is zero. Gauss’s
law shows that there can be no net charge inside the conductor in this situation. In
this section, we investigate an experimental verification of the absence of this
charge.

We have seen that Gauss’s law is equivalent to Equation 23.6, the expression
for the electric field of a distribution of charge. Because this equation arises
from Coulomb’s law, we can claim theoretically that Gauss’s law and Coulomb’s
law are equivalent. Hence, it is possible to test the validity of both laws by at-
tempting to detect a net charge inside a conductor or, equivalently, a nonzero
electric field inside the conductor. If a nonzero field is detected within the con-
ductor, Gauss’s law and Coulomb’s law are invalid. Many experiments, including

24.5

Quick Quiz 24.3

–Q

r
a

b

c

2Q

!

#"

$

Figure 24.19 A solid conducting sphere of radius a and carrying a
charge 2Q surrounded by a conducting spherical shell carrying a
charge (Q.

gaussian surface of radius r / a. Because there can be no
charge inside a conductor in electrostatic equilibrium, we see
that q in # 0; thus, on the basis of Gauss’s law and symmetry,

for r / a.
In region "—between the surface of the solid sphere and

the inner surface of the shell—we construct a spherical
gaussian surface of radius r where a / r / b and note that the
charge inside this surface is & 2Q (the charge on the solid
sphere). Because of the spherical symmetry, the electric field

E1 # 0

lines must be directed radially outward and be constant in
magnitude on the gaussian surface. Following Example 24.4
and using Gauss’s law, we find that

(for a / r / b)

In region $, where r . c, the spherical gaussian surface
we construct surrounds a total charge of 

Therefore, application of Gauss’s law to
this surface gives

(for r . c)

In region #, the electric field must be zero because the
spherical shell is also a conductor in equilibrium. If we con-
struct a gaussian surface of radius r where b / r / c, we see
that q in must be zero because From this argument, we
conclude that the charge on the inner surface of the spheri-
cal shell must be ( 2Q to cancel the charge & 2Q on the solid
sphere. Because the net charge on the shell is ( Q , we con-
clude that its outer surface must carry a charge & Q .

E3 # 0.

keQ
r 2E4 #

2Q & ((Q ) # Q.
q in #

2keQ
r 2 E2 #

2Q
4%00r 2 #

E2A # E2(4%r 2) #
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00
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early work by Faraday, Cavendish, and Maxwell, have been performed to detect
the field inside a conductor. In all reported cases, no electric field could be de-
tected inside a conductor.

Here is one of the experiments that can be performed.2 A positively charged
metal ball at the end of a silk thread is lowered through a small opening into an
uncharged hollow conductor that is insulated from ground (Fig. 24.20a). The pos-
itively charged ball induces a negative charge on the inner wall of the hollow con-
ductor, leaving an equal positive charge on the outer wall (Fig. 24.20b). The pres-
ence of positive charge on the outer wall is indicated by the deflection of the
needle of an electrometer (a device used to measure charge and that measures
charge only on the outer surface of the conductor). The ball is then lowered and
allowed to touch the inner surface of the hollow conductor (Fig. 24.20c). Charge
is transferred between the ball and the inner surface so that neither is charged af-
ter contact is made. The needle deflection remains unchanged while this happens,
indicating that the charge on the outer surface is unaffected. When the ball is re-
moved, the electrometer reading remains the same (Fig. 24.20d). Furthermore,
the ball is found to be uncharged; this verifies that charge was transferred between
the ball and the inner surface of the hollow conductor. The overall effect is 
that the charge that was originally on the ball now appears on the hollow conduc-
tor. The fact that the deflection of the needle on the electrometer measuring the
charge on the outer surface remained unchanged regardless of what was happen-
ing inside the hollow conductor indicates that the net charge on the system always
resided on the outer surface of the conductor.

If we now apply another positive charge to the metal ball and place it near the
outside of the conductor, it is repelled by the conductor. This demonstrates that

outside the conductor, a finding consistent with the fact that the conductor
carries a net charge. If the charged metal ball is now lowered into the interior of
the charged hollow conductor, it exhibits no evidence of an electric force. This
shows that E # 0 inside the hollow conductor.

This experiment verifies the predictions of Gauss’s law and therefore verifies
Coulomb’s law. The equivalence of Gauss’s law and Coulomb’s law is due to the
inverse-square behavior of the electric force. Thus, we can interpret this experi-
ment as verifying the exponent of 2 in the 1/r 2 behavior of the electric force. Ex-
periments by Williams, Faller, and Hill in 1971 showed that the exponent of r in
Coulomb’s law is (2 & 6), where 

In the experiment we have described, the charged ball hanging in the hollow
conductor would show no deflection even in the case in which an external electric
field is applied to the entire system. The field inside the conductor is still zero.
This ability of conductors to “block” external electric fields is utilized in many
places, from electromagnetic shielding for computer components to thin metal
coatings on the glass in airport control towers to keep radar originating outside
the tower from disrupting the electronics inside. Cellular telephone users riding
trains like the one pictured at the beginning of the chapter have to speak loudly to
be heard above the noise of the train. In response to complaints from other pas-
sengers, the train companies are considering coating the windows with a thin
metallic conductor. This coating, combined with the metal frame of the train car,
blocks cellular telephone transmissions into and out of the train.

6 # (2.7 7 3.1) $ 10(16!

E 8 0

2 The experiment is often referred to as Faraday’s ice-pail experiment because Faraday, the first to perform
it, used an ice pail for the hollow conductor.
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Figure 24.20 An experiment
showing that any charge trans-
ferred to a conductor resides on its
surface in electrostatic equilibrium.
The hollow conductor is insulated
from ground, and the small metal
ball is supported by an insulating
thread.

QuickLab
Wrap a radio or cordless telephone in
aluminum foil and see if it still works.
Does it matter if the foil touches the
antenna?
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Optional Section

FORMAL DERIVATION OF GAUSS’S LAW
One way of deriving Gauss’s law involves solid angles. Consider a spherical surface
of radius r containing an area element +A. The solid angle +9 (uppercase Greek
omega) subtended at the center of the sphere by this element is defined to be

From this equation, we see that has no dimensions because +A and r2 both have
dimensions L2. The dimensionless unit of a solid angle is the steradian. (You may
want to compare this equation to Equation 10.1b, the definition of the radian.) Be-
cause the surface area of a sphere is 4%r2, the total solid angle subtended by the
sphere is

Now consider a point charge q surrounded by a closed surface of arbitrary
shape (Fig. 24.21). The total electric flux through this surface can be obtained by
evaluating for each small area element +A and summing over all elements.
The flux through each element is

where r is the distance from the charge to the area element, ) is the angle between
the electric field E and +A for the element, and for a point charge. In
Figure 24.22, we see that the projection of the area element perpendicular to the
radius vector is +A cos ). Thus, the quantity +A cos )/r2 is equal to the solid angle
+9 that the surface element +A subtends at the charge q. We also see that +9 is
equal to the solid angle subtended by the area element of a spherical surface of ra-
dius r. Because the total solid angle at a point is 4% steradians, the total flux

E # keq /r 2

+!E # E ! +A # E +A cos ) # keq 
+A cos )

r 2

E ! +A

9 #
4%r 2

r 2 # 4% steradians

+9

+9 #
+A
r 2

24.6

θ

∆A

∆Ω
q

E

∆Ω
q

r

∆A

∆A

θ
E

∆A cos θ

θ

Figure 24.21 A closed surface of
arbitrary shape surrounds a point
charge q. The net electric flux
through the surface is independent
of the shape of the surface.

Figure 24.22 The area element +A subtends a solid angle at the 
charge q.

+9 # (+A cos ))/r 2
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through the closed surface is

Thus we have derived Gauss’s law, Equation 24.6. Note that this result is indepen-
dent of the shape of the closed surface and independent of the position of the
charge within the surface.

SUMMARY

Electric flux is proportional to the number of electric field lines that penetrate a
surface. If the electric field is uniform and makes an angle ) with the normal to a
surface of area A, the electric flux through the surface is

(24.2)

In general, the electric flux through a surface is

(24.3)

You need to be able to apply Equations 24.2 and 24.3 in a variety of situations, par-
ticularly those in which symmetry simplifies the calculation.

Gauss’s law says that the net electric flux !E through any closed gaussian sur-
face is equal to the net charge inside the surface divided by 00 :

(24.6)

Using Gauss’s law, you can calculate the electric field due to various symmetric
charge distributions. Table 24.1 lists some typical results.

!E # " E ! dA #
q in

00

!E # !
surface

E ! dA

!E # EA cos )

!E # keq " 
dA cos )

r 2 # keq "d9 # 4%keq #
q
00

TABLE 24.1 Typical Electric Field Calculations Using Gauss’s Law

Charge Distribution Electric Field Location

Insulating sphere of radius
R, uniform charge density,
and total charge Q

Thin spherical shell of radius
R and total charge Q

Line charge of infinite length Outside the
and charge per unit length 4 line

Nonconducting, infinite Everywhere
charged plane having outside
surface charge density 5 the plane

Conductor having surface Just outside
charge density 5 the conductor

Inside the
conductor

ke 
Q
R3  r

ke 
Q
r 2

r / R

r . R

0

ke 
Q
r 2

r / R

r . R$

0

5

00

5

200

2ke 
4

r

$

$
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A conductor in electrostatic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor.
2. Any net charge on the conductor resides entirely on its surface.
3. The electric field just outside the conductor is perpendicular to its surface and

has a magnitude 5/00 , where 5 is the surface charge density at that point.
4. On an irregularly shaped conductor, the surface charge density is greatest

where the radius of curvature of the surface is the smallest.

Problem-Solving Hints
Gauss’s law, as we have seen, is very powerful in solving problems involving
highly symmetric charge distributions. In this chapter, you encountered three
kinds of symmetry: planar, cylindrical, and spherical. It is important to review
Examples 24.4 through 24.10 and to adhere to the following procedure when
using Gauss’s law:
• Select a gaussian surface that has a symmetry to match that of the charge

distribution and satisfies one or more of the conditions listed in Section
24.3. For point charges or spherically symmetric charge distributions, the
gaussian surface should be a sphere centered on the charge as in Examples
24.4, 24.5, 24.6, and 24.10. For uniform line charges or uniformly charged
cylinders, your gaussian surface should be a cylindrical surface that is coax-
ial with the line charge or cylinder as in Example 24.7. For planes of charge,
a useful choice is a cylindrical gaussian surface that straddles the plane, as
shown in Example 24.8. These choices enable you to simplify the surface in-
tegral that appears in Gauss’s law and represents the total electric flux
through that surface.

• Evaluate the q in/00 term in Gauss’s law, which amounts to calculating the to-
tal electric charge q in inside the gaussian surface. If the charge density is
uniform (that is, if 4, 5, or 2 is constant), simply multiply that charge density
by the length, area, or volume enclosed by the gaussian surface. If the
charge distribution is nonuniform, integrate the charge density over the re-
gion enclosed by the gaussian surface. For example, if the charge is distrib-
uted along a line, integrate the expression where dq is the charge
on an infinitesimal length element dx. For a plane of charge, integrate

where dA is an infinitesimal element of area. For a volume of
charge, integrate where dV is an infinitesimal element of volume.

• Once the terms in Gauss’s law have been evaluated, solve for the electric
field on the gaussian surface if the charge distribution is given in the prob-
lem. Conversely, if the electric field is known, calculate the charge distribu-
tion that produces the field.

dq # 2 dV,
dq # 5 dA,

dq # 4 dx,

QUESTIONS

3. If more electric field lines are leaving a gaussian surface
than entering, what can you conclude about the net
charge enclosed by that surface?

4. A uniform electric field exists in a region of space in
which there are no charges. What can you conclude
about the net electric flux through a gaussian surface
placed in this region of space?

1. The Sun is lower in the sky during the winter than it is in
the summer. How does this change the flux of sunlight
hitting a given area on the surface of the Earth? How
does this affect the weather?

2. If the electric field in a region of space is zero, can you
conclude no electric charges are in that region? 
Explain.
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5. If the total charge inside a closed surface is known but
the distribution of the charge is unspecified, can you use
Gauss’s law to find the electric field? Explain.

6. Explain why the electric flux through a closed surface
with a given enclosed charge is independent of the size or
shape of the surface.

7. Consider the electric field due to a nonconducting infi-
nite plane having a uniform charge density. Explain why
the electric field does not depend on the distance from
the plane in terms of the spacing of the electric field
lines.

8. Use Gauss’s law to explain why electric field lines must be-
gin or end on electric charges. (Hint: Change the size of
the gaussian surface.)

9. On the basis of the repulsive nature of the force between
like charges and the freedom of motion of charge within
the conductor, explain why excess charge on an isolated
conductor must reside on its surface.

10. A person is placed in a large, hollow metallic sphere that
is insulated from ground. If a large charge is placed on
the sphere, will the person be harmed upon touching the
inside of the sphere? Explain what will happen if the per-

son also has an initial charge whose sign is opposite that
of the charge on the sphere.

11. How would the observations described in Figure 24.20
differ if the hollow conductor were grounded? How
would they differ if the small charged ball were an insula-
tor rather than a conductor?

12. What other experiment might be performed on the ball
in Figure 24.20 to show that its charge was transferred to
the hollow conductor?

13. What would happen to the electrometer reading if the
charged ball in Figure 24.20 touched the inner wall of the
conductor? the outer wall?

14. You may have heard that one of the safer places to be dur-
ing a lightning storm is inside a car. Why would this be
the case?

15. Two solid spheres, both of radius R , carry identical total
charges Q . One sphere is a good conductor, while the
other is an insulator. If the charge on the insulating
sphere is uniformly distributed throughout its interior
volume, how do the electric fields outside these two
spheres compare? Are the fields identical inside the two
spheres?

PROBLEMS

6. A uniform electric field intersects a surface of
area A. What is the flux through this area if the surface
lies (a) in the yz plane? (b) in the xz plane? (c) in the xy
plane?

7. A point charge q is located at the center of a uniform
ring having linear charge density 4 and radius a, as
shown in Figure P24.7. Determine the total electric flux

a i & b j

Section 24.1 Electric Flux
1. An electric field with a magnitude of 3.50 kN/C is ap-

plied along the x axis. Calculate the electric flux
through a rectangular plane 0.350 m wide and 0.700 m
long if (a) the plane is parallel to the yz plane; (b) the
plane is parallel to the xy plane; and (c) the plane con-
tains the y axis, and its normal makes an angle of 40.0°
with the x axis.

2. A vertical electric field of magnitude 2.00 $ 104 N/C
exists above the Earth’s surface on a day when a thun-
derstorm is brewing. A car with a rectangular size of ap-
proximately 6.00 m by 3.00 m is traveling along a road-
way sloping downward at 10.0°. Determine the electric
flux through the bottom of the car.

3. A 40.0-cm-diameter loop is rotated in a uniform electric
field until the position of maximum electric flux is
found. The flux in this position is measured to be 
5.20 $ 105 N" m2/C. What is the magnitude of the elec-
tric field?

4. A spherical shell is placed in a uniform electric field.
Find the total electric flux through the shell.

5. Consider a closed triangular box resting within a hori-
zontal electric field of magnitude N/C,
as shown in Figure P24.5. Calculate the electric flux
through (a) the vertical rectangular surface, (b) the
slanted surface, and (c) the entire surface of the box.

E # 7.80 $ 104

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

30.0 cm

60.0°10.0 cm

E

Figure P24.5

Figure P24.7

R

q a

λ
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WEB

through a sphere centered at the point charge and hav-
ing radius R , where 

8. A pyramid with a 6.00-m-square base and height of 
4.00 m is placed in a vertical electric field of 52.0 N/C.
Calculate the total electric flux through the pyramid’s
four slanted surfaces.

9. A cone with base radius R and height h is located on a
horizontal table. A horizontal uniform field E pene-
trates the cone, as shown in Figure P24.9. Determine
the electric flux that enters the left-hand side of the
cone.

R / a.
located a very small distance from the center of a very
large square on the line perpendicular to the square and
going through its center. Determine the approximate
electric flux through the square due to the point
charge. (c) Explain why the answers to parts (a) and
(b) are identical.

14. Calculate the total electric flux through the parabo-
loidal surface due to a constant electric field of magni-
tude E 0 in the direction shown in Figure P24.14.

16. A point charge of 12.0 'C is placed at the center of a
spherical shell of radius 22.0 cm. What is the total elec-
tric flux through (a) the surface of the shell and 
(b) any hemispherical surface of the shell? (c) Do the
results depend on the radius? Explain.

17. A point charge of 0.046 2 'C is inside a pyramid. Deter-
mine the total electric flux through the surface of the
pyramid.

18. An infinitely long line charge having a uniform charge
per unit length 4 lies a distance d from point O, as
shown in Figure P24.18. Determine the total electric
flux through the surface of a sphere of radius 
R centered at O resulting from this line charge. 
(Hint: Consider both cases: when and when
R . d.)

R / d,

15. A point charge Q is located just above the center of the
flat face of a hemisphere of radius R , as shown in Figure
P24.15. What is the electric flux (a) through the curved
surface and (b) through the flat face?

13. (a) A point charge q is located a distance d from an infi-
nite plane. Determine the electric flux through the
plane due to the point charge. (b) A point charge q is

Section 24.2 Gauss’s Law
10. The electric field everywhere on the surface of a thin

spherical shell of radius 0.750 m is measured to be
equal to 890 N/C and points radially toward the center
of the sphere. (a) What is the net charge within the
sphere’s surface? (b) What can you conclude about the
nature and distribution of the charge inside the spheri-
cal shell?

11. The following charges are located inside a submarine:
and (a) Calcu-

late the net electric flux through the submarine. 
(b) Is the number of electric field lines leaving the sub-
marine greater than, equal to, or less than the number
entering it?

12. Four closed surfaces, S1 through S4 , together with the
charges ( 2Q , Q , and (Q are sketched in Figure
P24.12. Find the electric flux through each surface.

(84.0 'C.27.0 'C,5.00 'C, (9.00 'C,

h

R

E

Figure P24.9

Figure P24.12

Figure P24.14

Figure P24.15
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+Q

–2Q

S2

S3

S1

S4

d

r

E0

Q
0

R

δ



Problems 763

19. A point charge is located at the center of a
cube of side In addition, six other identi-
cal point charges having are positioned
symmetrically around Q , as shown in Figure P24.19. De-
termine the electric flux through one face of the cube.

20. A point charge Q is located at the center of a cube of
side L . In addition, six other identical negative point
charges are positioned symmetrically around Q , as
shown in Figure P24.19. Determine the electric flux
through one face of the cube.

q # (1.00 'C
L # 0.100 m.

Q # 5.00 'C

23. A charge of 170 'C is at the center of a cube of side
80.0 cm. (a) Find the total flux through each face of the
cube. (b) Find the flux through the whole surface of
the cube. (c) Would your answers to parts (a) or 
(b) change if the charge were not at the center? Ex-
plain.

24. The total electric flux through a closed surface in the
shape of a cylinder is (a) What is
the net charge within the cylinder? (b) From the infor-
mation given, what can you say about the charge within
the cylinder? (c) How would your answers to parts 
(a) and (b) change if the net flux were

25. The line ag is a diagonal of a cube (Fig. P24.25). A
point charge q is located on the extension of line ag ,
very close to vertex a of the cube. Determine the elec-
tric flux through each of the sides of the cube that meet
at the point a.

(8.60 $ 104 N"m2/C?

8.60 $ 104 N"m2/C.

WEB

Section 24.3 Application of Gauss’s Law to 
Charged Insulators

26. Determine the magnitude of the electric field at the sur-
face of a lead-208 nucleus, which contains 82 protons
and 126 neutrons. Assume that the lead nucleus has a
volume 208 times that of one proton, and consider a
proton to be a sphere of radius 1.20 $ 10(15 m.

27. A solid sphere of radius 40.0 cm has a total positive
charge of 26.0 'C uniformly distributed throughout its
volume. Calculate the magnitude of the electric field
(a) 0 cm, (b) 10.0 cm, (c) 40.0 cm, and (d) 60.0 cm
from the center of the sphere.

28. A cylindrical shell of radius 7.00 cm and length 240 cm
has its charge uniformly distributed on its curved surface.
The magnitude of the electric field at a point 19.0 cm ra-
dially outward from its axis (measured from the midpoint
of the shell) is 36.0 kN/C. Use approximate relationships
to find (a) the net charge on the shell and (b) the electric
field at a point 4.00 cm from the axis, measured radially
outward from the midpoint of the shell.

29. Consider a long cylindrical charge distribution of radius
R with a uniform charge density 2. Find the electric
field at distance r from the axis where r / R .

21. Consider an infinitely long line charge having uniform
charge per unit length 4. Determine the total electric
flux through a closed right circular cylinder of length L
and radius R that is parallel to the line charge, if the dis-
tance between the axis of the cylinder and the line
charge is d. (Hint: Consider both cases: when 
and when 

22. A 10.0-'C charge located at the origin of a cartesian co-
ordinate system is surrounded by a nonconducting hol-
low sphere of radius 10.0 cm. A drill with a radius of
1.00 mm is aligned along the z axis, and a hole is drilled
in the sphere. Calculate the electric flux through the
hole.

R . d.)
R / d,

Figure P24.18

d

R
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λ

Figure P24.19 Problems 19 and 20.
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30. A nonconducting wall carries a uniform charge density
of 8.60 'C/cm2. What is the electric field 7.00 cm in
front of the wall? Does your result change as the dis-
tance from the wall is varied?

31. Consider a thin spherical shell of radius 14.0 cm with a
total charge of 32.0 'C distributed uniformly on its sur-
face. Find the electric field (a) 10.0 cm and (b) 20.0 cm
from the center of the charge distribution.

32. In nuclear fission, a nucleus of uranium-238, which con-
tains 92 protons, divides into two smaller spheres, each
having 46 protons and a radius of 5.90 $ 10(15 m. What
is the magnitude of the repulsive electric force pushing
the two spheres apart?

33. Fill two rubber balloons with air. Suspend both of them
from the same point on strings of equal length. Rub
each with wool or your hair, so that they hang apart with
a noticeable separation between them. Make order-of-
magnitude estimates of (a) the force on each, (b) the
charge on each, (c) the field each creates at the center
of the other, and (d) the total flux of electric field cre-
ated by each balloon. In your solution, state the quanti-
ties you take as data and the values you measure or esti-
mate for them.

34. An insulating sphere is 8.00 cm in diameter and carries
a 5.70-'C charge uniformly distributed throughout its
interior volume. Calculate the charge enclosed by a
concentric spherical surface with radius (a) r # 2.00 cm
and (b) r # 6.00 cm.

35. A uniformly charged, straight filament 7.00 m in length
has a total positive charge of 2.00 'C. An uncharged
cardboard cylinder 2.00 cm in length and 10.0 cm in ra-
dius surrounds the filament at its center, with the fila-
ment as the axis of the cylinder. Using reasonable ap-
proximations, find (a) the electric field at the surface of
the cylinder and (b) the total electric flux through the
cylinder.

36. The charge per unit length on a long, straight filament
is ( 90.0 'C/m. Find the electric field (a) 10.0 cm, 
(b) 20.0 cm, and (c) 100 cm from the filament, where
distances are measured perpendicular to the length of
the filament.

37. A large flat sheet of charge has a charge per unit area of
9.00 'C/m2. Find the electric field just above the sur-
face of the sheet, measured from its midpoint.

Section 24.4 Conductors in Electrostatic Equilibrium
38. On a clear, sunny day, a vertical electrical field of about

130 N/C points down over flat ground. What is the sur-
face charge density on the ground for these conditions?

39. A long, straight metal rod has a radius of 5.00 cm and a
charge per unit length of 30.0 nC/m. Find the electric
field (a) 3.00 cm, (b) 10.0 cm, and (c) 100 cm from the
axis of the rod, where distances are measured perpen-
dicular to the rod.

40. A very large, thin, flat plate of aluminum of area A has a
total charge Q uniformly distributed over its surfaces. If

the same charge is spread uniformly over the upper
surface of an otherwise identical glass plate, compare
the electric fields just above the center of the upper sur-
face of each plate.

41. A square plate of copper with 50.0-cm sides has no net
charge and is placed in a region of uniform electric
field of 80.0 kN/C directed perpendicularly to the
plate. Find (a) the charge density of each face of the
plate and (b) the total charge on each face.

42. A hollow conducting sphere is surrounded by a larger
concentric, spherical, conducting shell. The inner
sphere has a charge ( Q , and the outer sphere has a
charge 3Q. The charges are in electrostatic equilibrium.
Using Gauss’s law, find the charges and the electric
fields everywhere.

43. Two identical conducting spheres each having a radius
of 0.500 cm are connected by a light 2.00-m-long con-
ducting wire. Determine the tension in the wire if 
60.0 'C is placed on one of the conductors. (Hint: As-
sume that the surface distribution of charge on each
sphere is uniform.)

44. The electric field on the surface of an irregularly
shaped conductor varies from 56.0 kN/C to 28.0 kN/C.
Calculate the local surface charge density at the point
on the surface where the radius of curvature of the sur-
face is (a) greatest and (b) smallest.

45. A long, straight wire is surrounded by a hollow metal
cylinder whose axis coincides with that of the wire. The
wire has a charge per unit length of 4, and the cylinder
has a net charge per unit length of 24. From this infor-
mation, use Gauss’s law to find (a) the charge per unit
length on the inner and outer surfaces of the cylinder
and (b) the electric field outside the cylinder, a distance
r from the axis.

46. A conducting spherical shell of radius 15.0 cm carries a
net charge of ( 6.40 'C uniformly distributed on its
surface. Find the electric field at points (a) just outside
the shell and (b) inside the shell.

47. A thin conducting plate 50.0 cm on a side lies in the xy
plane. If a total charge of 4.00 $ 10(8 C is placed on
the plate, find (a) the charge density on the plate, 
(b) the electric field just above the plate, and (c) the
electric field just below the plate.

48. A conducting spherical shell having an inner radius of 
a and an outer radius of b carries a net charge Q . If a
point charge q is placed at the center of this shell, 
determine the surface charge density on (a) the inner
surface of the shell and (b) the outer surface of the
shell.

49. A solid conducting sphere of radius 2.00 cm has a
charge 8.00 'C. A conducting spherical shell of inner
radius 4.00 cm and outer radius 5.00 cm is concentric
with the solid sphere and has a charge ( 4.00 'C. Find
the electric field at (a) r # 1.00 cm, (b) r # 3.00 cm,
(c) r # 4.50 cm, and (d) r # 7.00 cm from the center of
this charge configuration.

WEB
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50. A positive point charge is at a distance of R/2 from the
center of an uncharged thin conducting spherical shell
of radius R. Sketch the electric field lines set up by this
arrangement both inside and outside the shell.

(Optional)
Section 24.5 Experimental Verification of 
Gauss’s Law and Coulomb’s Law

Section 24.6 Formal Derivation of Gauss’s Law
51. A sphere of radius R surrounds a point charge Q , lo-

cated at its center. (a) Show that the electric flux
through a circular cap of half-angle ) (Fig. P24.51) is

What is the flux for (b) ) # 90° and (c) ) # 180°?

!E #
Q

200
 (1 ( cos ))

net charge enclosed by this surface, as a function of r.
Note that the charge inside this surface is less than 3Q .
(i) Find the electric field in the region r / a. ( j) Deter-
mine the charge on the inner surface of the conducting
shell. (k) Determine the charge on the outer surface of
the conducting shell. (l) Make a plot of the magnitude
of the electric field versus r.

54. Consider two identical conducting spheres whose sur-
faces are separated by a small distance. One sphere is
given a large net positive charge, while the other is
given a small net positive charge. It is found that the
force between them is attractive even though both
spheres have net charges of the same sign. Explain how
this is possible.

55. A solid, insulating sphere of radius a has a uniform
charge density 2 and a total charge Q . Concentric with
this sphere is an uncharged, conducting hollow sphere
whose inner and outer radii are b and c, as shown in Fig-
ure P24.55. (a) Find the magnitude of the electric field
in the regions and r . c. 
(b) Determine the induced charge per unit area on the
inner and outer surfaces of the hollow sphere.

b / r / c,r / a, a / r / b,

WEB

56. For the configuration shown in Figure P24.55, suppose
that a # 5.00 cm, b # 20.0 cm, and c # 25.0 cm.
Furthermore, suppose that the electric field at a point
10.0 cm from the center is 3.60 $ 103 N/C radially in-
ward, while the electric field at a point 50.0 cm from the
center is 2.00 $ 102 N/C radially outward. From this in-
formation, find (a) the charge on the insulating sphere,

ADDITIONAL PROBLEMS
52. A nonuniform electric field is given by the expression

where a, b, and c are constants.
Determine the electric flux through a rectangular sur-
face in the xy plane, extending from x # 0 to x # w and
from y # 0 to y # h.

53. A solid insulating sphere of radius a carries a net positive
charge 3Q , uniformly distributed throughout its vol-
ume. Concentric with this sphere is a conducting spheri-
cal shell with inner radius b and outer radius c, and hav-
ing a net charge (Q , as shown in Figure P24.53. 
(a) Construct a spherical gaussian surface of radius 
r . c and find the net charge enclosed by this surface. 
(b) What is the direction of the electric field at r . c?
(c) Find the electric field at r . c. (d) Find the electric
field in the region with radius r where c . r . b. 
(e) Construct a spherical gaussian surface of radius r ,
where c . r . b, and find the net charge enclosed by
this surface. (f) Construct a spherical gaussian surface
of radius r, where b . r . a, and find the net charge en-
closed by this surface. (g) Find the electric field in the
region b . r . a. (h) Construct a spherical gaussian
surface of radius r / a, and find an expression for the

E # ay i & bz j & cxk,

Figure P24.51

Figure P24.53

Figure P24.55 Problems 55 and 56.
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(b) the net charge on the hollow conducting sphere,
and (c) the total charge on the inner and outer surfaces
of the hollow conducting sphere.

57. An infinitely long cylindrical insulating shell of inner ra-
dius a and outer radius b has a uniform volume charge
density 2 (C/m3). A line of charge density 4 (C/m) is
placed along the axis of the shell. Determine the elec-
tric field intensity everywhere.

58. Two infinite, nonconducting sheets of charge are paral-
lel to each other, as shown in Figure P24.58. The sheet
on the left has a uniform surface charge density 5, and
the one on the right has a uniform charge density ( 5.
Calculate the value of the electric field at points (a) to
the left of, (b) in between, and (c) to the right of the
two sheets. (Hint: See Example 24.8.)

the size of the cavity with a uniform negative charge
density ( 2.)

61. Review Problem. An early (incorrect) model of the
hydrogen atom, suggested by J. J. Thomson, proposed
that a positive cloud of charge &e was uniformly distrib-
uted throughout the volume of a sphere of radius R ,
with the electron an equal-magnitude negative point
charge (e at the center. (a) Using Gauss’s law, show
that the electron would be in equilibrium at the center
and, if displaced from the center a distance 
would experience a restoring force of the form

where K is a constant. (b) Show that
(c) Find an expression for the frequency f

of simple harmonic oscillations that an electron of mass
me would undergo if displaced a short distance (/ R )
from the center and released. (d) Calculate a numerical
value for R that would result in a frequency of electron
vibration of 2.47 $ 1015 Hz, the frequency of the light
in the most intense line in the hydrogen spectrum.

62. A closed surface with dimensions and
is located as shown in Figure P24.62. The

electric field throughout the region is nonuniform and
given by N/C, where x is in meters.
Calculate the net electric flux leaving the closed sur-
face. What net charge is enclosed by the surface?

E # (3.0 & 2.0x2) i

c # 0.600 m
a # b # 0.400 m

K # ke e2/R3.
F # (Kr,

r / R ,

59. Repeat the calculations for Problem 58 when both
sheets have positive uniform surface charge densities of
value 5.

60. A sphere of radius 2a is made of a nonconducting mate-
rial that has a uniform volume charge density 2. (As-
sume that the material does not affect the electric
field.) A spherical cavity of radius a is now removed
from the sphere, as shown in Figure P24.60. Show that
the electric field within the cavity is uniform and is
given by and (Hint: The field
within the cavity is the superposition of the field due to
the original uncut sphere, plus the field due to a sphere

Ey # 2a/300 .Ex # 0

Figure P24.58

Figure P24.60

Figure P24.62

σ
–σ

y

x

2a

a

a
y

c

x

z

b

E

a

63. A solid insulating sphere of radius R has a nonuniform
charge density that varies with r according to the expres-
sion where A is a constant and is meas-
ured from the center of the sphere. (a) Show that the
electric field outside the sphere is

(b) Show that the electric field inside
the sphere is (Hint: Note that the

total charge Q on the sphere is equal to the integral of 
2 dV, where r extends from 0 to R ; also note that the
charge q within a radius r / R is less than Q. To evaluate
the integrals, note that the volume element dV for a
spherical shell of radius r and thickness dr is equal to

64. A point charge Q is located on the axis of a disk of ra-
dius R at a distance b from the plane of the disk (Fig.
P24.64). Show that if one fourth of the electric flux
from the charge passes through the disk, then R # !3b.

4%r 2 dr.)

E # Ar 3/500 .(r / R)
E # AR5/500r 2.

(r . R )

r / R2 # Ar 2,

WEB
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ANSWERS TO QUICK QUIZZES

24.3 Any gaussian surface surrounding the system encloses
the same amount of charge, regardless of how the com-
ponents of the system are moved. Thus, the flux
through the gaussian surface would be the same as it is
when the sphere and shell are concentric.

24.1 Zero, because there is no net charge within the surface.
24.2 (b) and (d). Statement (a) is not necessarily true be-

cause an equal number of positive and negative charges
could be present inside the surface. Statement (c) is not
necessarily true, as can be seen from Figure 24.8: A
nonzero electric field exists everywhere on the surface,
but the charge is not enclosed within the surface; thus,
the net flux is zero.

a frequency described by the expression

f #
1

2%
 ! 2e

me 00

Figure P24.64

Figure P24.67 Problems 67 and 68.

65. A spherically symmetric charge distribution has a
charge density given by where a is constant.
Find the electric field as a function of r. (Hint: Note that
the charge within a sphere of radius R is equal to the in-
tegral of 2 dV, where r extends from 0 to R . To evaluate
the integral, note that the volume element dV for a
spherical shell of radius r and thickness dr is equal to

66. An infinitely long insulating cylinder of radius R has a
volume charge density that varies with the radius as

where 20 , a, and b are positive constants and r is the dis-
tance from the axis of the cylinder. Use Gauss’s law to
determine the magnitude of the electric field at radial
distances (a) r / R and (b) r . R.

67. Review Problem. A slab of insulating material (infi-
nite in two of its three dimensions) has a uniform posi-
tive charge density 2. An edge view of the slab is shown
in Figure P24.67. (a) Show that the magnitude of the
electric field a distance x from its center and inside the
slab is (b) Suppose that an electron of
charge (e and mass me is placed inside the slab. If it is
released from rest at a distance x from the center, show
that the electron exhibits simple harmonic motion with

E # 2x/00 .

2 # 20%a (
r
b &

4%r 2 dr.)

2 # a/r,

R

Q

b

x

y

O

d

68. A slab of insulating material has a nonuniform positive
charge density where x is measured from the
center of the slab, as shown in Figure P24.67, and C is a
constant. The slab is infinite in the y and z directions.
Derive expressions for the electric field in (a) the exte-
rior regions and (b) the interior region of the slab

69. (a) Using the mathematical similarity between
Coulomb’s law and Newton’s law of universal gravita-
tion, show that Gauss’s law for gravitation can be written
as

where m in is the mass inside the gaussian surface and
represents the gravitational field at any point

on the gaussian surface. (b) Determine the gravita-
tional field at a distance r from the center of the Earth
where r / R E , assuming that the Earth’s mass density is
uniform.

g # Fg /m

"g ! dA # (4%Gm in

((d/2 / x / d/2).

2 # Cx2,
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Jennifer is holding on to an electrically
charged sphere that reaches an electric
potential of about 100 000 V. The device
that generates this high electric potential
is called a Van de Graaff generator. What
causes Jennifer’s hair to stand on end
like the needles of a porcupine? Why is
she safe in this situation in view of the
fact that 110 V from a wall outlet can kill
you? (Henry Leap and Jim Lehman)
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25.1 Potential Difference and Electric Potential 769

he concept of potential energy was introduced in Chapter 8 in connection
with such conservative forces as the force of gravity and the elastic force exerted
by a spring. By using the law of conservation of energy, we were able to avoid

working directly with forces when solving various problems in mechanics. In this
chapter we see that the concept of potential energy is also of great value in the
study of electricity. Because the electrostatic force given by Coulomb’s law is con-
servative, electrostatic phenomena can be conveniently described in terms of an
electric potential energy. This idea enables us to define a scalar quantity known as
electric potential. Because the electric potential at any point in an electric field is a
scalar function, we can use it to describe electrostatic phenomena more simply
than if we were to rely only on the concepts of the electric field and electric forces.
In later chapters we shall see that the concept of electric potential is of great prac-
tical value.

POTENTIAL DIFFERENCE AND ELECTRIC POTENTIAL
When a test charge q0 is placed in an electric field E created by some other
charged object, the electric force acting on the test charge is q0E. (If the field is
produced by more than one charged object, this force acting on the test charge is
the vector sum of the individual forces exerted on it by the various other charged
objects.) The force q 0E is conservative because the individual forces described by
Coulomb’s law are conservative. When the test charge is moved in the field by
some external agent, the work done by the field on the charge is equal to the neg-
ative of the work done by the external agent causing the displacement. For an in-
finitesimal displacement ds, the work done by the electric field on the charge is

As this amount of work is done by the field, the potential energy
of the charge–field system is decreased by an amount For a finite
displacement of the charge from a point A to a point B, the change in potential
energy of the system is

(25.1)

The integration is performed along the path that q0 follows as it moves from A to
B, and the integral is called either a path integral or a line integral (the two terms are
synonymous). Because the force q0E is conservative, this line integral does not
depend on the path taken from A to B.

If the path between A and B does not make any difference in Equation 25.1, why don’t we
just use the expression where d is the straight-line distance between A and B?

The potential energy per unit charge U/q0 is independent of the value of q0
and has a unique value at every point in an electric field. This quantity U/q0 is
called the electric potential (or simply the potential) V. Thus, the electric poten-
tial at any point in an electric field is

(25.2)V !
U
q0

"U ! #q0Ed,

Quick Quiz 25.1

"U ! #q0 !B

A
 E ! ds

"U ! UB # UA

dU ! #q0E ! ds.
F ! ds ! q0E ! ds.

25.1

T

Change in potential energy

11.8



The fact that potential energy is a scalar quantity means that electric potential also
is a scalar quantity.

The potential difference between any two points A and B in an
electric field is defined as the change in potential energy of the system divided by
the test charge q0 :

(25.3)

Potential difference should not be confused with difference in potential energy.
The potential difference is proportional to the change in potential energy, and we
see from Equation 25.3 that the two are related by 

Electric potential is a scalar characteristic of an electric field, indepen-
dent of the charges that may be placed in the field. However, when we speak
of potential energy, we are referring to the charge–field system. Because we
are usually interested in knowing the electric potential at the location of a charge
and the potential energy resulting from the interaction of the charge with the
field, we follow the common convention of speaking of the potential energy as if it
belonged to the charge.

Because the change in potential energy of a charge is the negative of the work
done by the electric field on the charge (as noted in Equation 25.1), the potential
difference "V between points A and B equals the work per unit charge that an ex-
ternal agent must perform to move a test charge from A to B without changing the
kinetic energy of the test charge.

Just as with potential energy, only differences in electric potential are meaning-
ful. To avoid having to work with potential differences, however, we often take the
value of the electric potential to be zero at some convenient point in an electric
field. This is what we do here: arbitrarily establish the electric potential to be zero
at a point that is infinitely remote from the charges producing the field. Having
made this choice, we can state that the electric potential at an arbitrary point
in an electric field equals the work required per unit charge to bring a posi-
tive test charge from infinity to that point. Thus, if we take point A in Equation
25.3 to be at infinity, the electric potential at any point P is

(25.4)

In reality, VP represents the potential difference "V between the point P and a
point at infinity. (Eq. 25.4 is a special case of Eq. 25.3.)

Because electric potential is a measure of potential energy per unit charge, the
SI unit of both electric potential and potential difference is joules per coulomb,
which is defined as a volt (V):

That is, 1 J of work must be done to move a 1-C charge through a potential differ-
ence of 1 V.

Equation 25.3 shows that potential difference also has units of electric field
times distance. From this, it follows that the SI unit of electric field (N/C) can also
be expressed in volts per meter:

1 
N
C

! 1 
V
m

1 V " 1 
J
C

VP ! #!P

$
 E ! ds

"U ! q0"V.

"V !
"U
q0

! #!B

A
 E ! ds

"V ! VB # VA
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Potential difference

Definition of volt



25.2 Potential Differences in a Uniform Electric Field 771

A unit of energy commonly used in atomic and nuclear physics is the electron
volt (eV), which is defined as the energy an electron (or proton) gains or loses
by moving through a potential difference of 1 V. Because 1 V ! 1 J/C and be-
cause the fundamental charge is approximately the electron volt is
related to the joule as follows:

(25.5)

For instance, an electron in the beam of a typical television picture tube may have
a speed of 3.5 % 107 m/s. This corresponds to a kinetic energy of 5.6 % 10#16 J,
which is equivalent to 3.5 % 103 eV. Such an electron has to be accelerated from
rest through a potential difference of 3.5 kV to reach this speed.

POTENTIAL DIFFERENCES IN A
UNIFORM ELECTRIC FIELD

Equations 25.1 and 25.3 hold in all electric fields, whether uniform or varying, but
they can be simplified for a uniform field. First, consider a uniform electric field
directed along the negative y axis, as shown in Figure 25.1a. Let us calculate the
potential difference between two points A and B separated by a distance d, where
d is measured parallel to the field lines. Equation 25.3 gives

Because E is constant, we can remove it from the integral sign; this gives

(25.6)

The minus sign indicates that point B is at a lower electric potential than point A;
that is, Electric field lines always point in the direction of decreas-
ing electric potential, as shown in Figure 25.1a.

Now suppose that a test charge q0 moves from A to B. We can calculate the
change in its potential energy from Equations 25.3 and 25.6:

(25.7)"U ! q0 "V ! #q0Ed

VB & VA .

"V ! #E !B

A
 ds ! #Ed

VB # VA ! "V ! #!B

A
 E ! ds ! #!B

A
 E cos 0' ds ! #!B

A
 E ds

25.2

1 eV ! 1.60 % 10#19 C(V ! 1.60 % 10#19 J

1.60 % 10#19 C,

d

B

A

q

E

(a) (b)

g

d

B

A

m
Figure 25.1 (a) When the
electric field E is directed down-
ward, point B is at a lower elec-
tric potential than point A. A
positive test charge that moves
from point A to point B loses
electric potential energy. (b) A
mass m moving downward in the
direction of the gravitational
field g loses gravitational poten-
tial energy.

The electron volt

Potential difference in a uniform
electric field
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From this result, we see that if q0 is positive, then "U is negative. We conclude that
a positive charge loses electric potential energy when it moves in the direc-
tion of the electric field. This means that an electric field does work on a positive
charge when the charge moves in the direction of the electric field. (This is analo-
gous to the work done by the gravitational field on a falling mass, as shown in Fig-
ure 25.1b.) If a positive test charge is released from rest in this electric field, it ex-
periences an electric force q0E in the direction of E (downward in Fig. 25.1a).
Therefore, it accelerates downward, gaining kinetic energy. As the charged parti-
cle gains kinetic energy, it loses an equal amount of potential energy.

If q0 is negative, then "U is positive and the situation is reversed: A negative
charge gains electric potential energy when it moves in the direction of the
electric field. If a negative charge is released from rest in the field E, it acceler-
ates in a direction opposite the direction of the field.

Now consider the more general case of a charged particle that is free to move
between any two points in a uniform electric field directed along the x axis, as
shown in Figure 25.2. (In this situation, the charge is not being moved by an exter-
nal agent as before.) If s represents the displacement vector between points A and
B, Equation 25.3 gives

(25.8)

where again we are able to remove E from the integral because it is constant. The
change in potential energy of the charge is

(25.9)

Finally, we conclude from Equation 25.8 that all points in a plane perpendicu-
lar to a uniform electric field are at the same electric potential. We can see this in
Figure 25.2, where the potential difference is equal to the potential differ-
ence (Prove this to yourself by working out the dot product for

where the angle ) between E and s is arbitrary as shown in Figure 25.2, and
the dot product for where ) ! 0.) Therefore, The name equipo-
tential surface is given to any surface consisting of a continuous distribu-
tion of points having the same electric potential.

Note that because no work is done in moving a test charge be-
tween any two points on an equipotential surface. The equipotential surfaces of a
uniform electric field consist of a family of planes that are all perpendicular to the
field. Equipotential surfaces for fields with other symmetries are described in later
sections.

The labeled points in Figure 25.3 are on a series of equipotential surfaces associated with an
electric field. Rank (from greatest to least) the work done by the electric field on a posi-
tively charged particle that moves from A to B; from B to C ; from C to D; from D to E.

Quick Quiz 25.2

"U ! q0"V,

VB ! VC . sA:C ,
sA:B ,

E ! sVC # VA .
VB # VA

"U ! q0 "V ! #q0 E ! s

"V ! #  !B

A
 E ! ds ! # E !!B

A
 ds ! # E ! s

An equipotential surface

11.9

QuickLab
It takes an electric field of about 
30 000 V/cm to cause a spark in dry
air. Shuffle across a rug and reach to-
ward a doorknob. By estimating the
length of the spark, determine the
electric potential difference between
your finger and the doorknob after
shuffling your feet but before touch-
ing the knob. (If it is very humid on
the day you attempt this, it may not
work. Why?)

E

B

CA

s

Figure 25.2 A uniform electric
field directed along the positive x
axis. Point B is at a lower electric
potential than point A. Points B
and C are at the same electric po-
tential.

A

B

C

E
D

9 V

8 V

7 V

6 V Figure 25.3 Four equipotential surfaces.
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The Electric Field Between Two Parallel Plates of Opposite ChargeEXAMPLE 25.1
A battery produces a specified potential difference between
conductors attached to the battery terminals. A 12-V battery
is connected between two parallel plates, as shown in Figure
25.4. The separation between the plates is d ! 0.30 cm, and
we assume the electric field between the plates to be uniform.

1 The electric field vanishes within a conductor in electrostatic equilibrium; thus, the path integral
between any two points in the conductor must be zero. A more complete discussion of this

point is given in Section 25.6.
! E ! ds

+ –
12 V

A

B

d

Figure 25.4 A 12-V battery connected to two parallel plates. The
electric field between the plates has a magnitude given by the poten-
tial difference "V divided by the plate separation d.

(This assumption is reasonable if the plate separation is small
relative to the plate dimensions and if we do not consider
points near the plate edges.) Find the magnitude of the elec-
tric field between the plates.

Solution The electric field is directed from the positive
plate (A) to the negative one (B ), and the positive plate is at
a higher electric potential than the negative plate is. The po-
tential difference between the plates must equal the potential
difference between the battery terminals. We can understand
this by noting that all points on a conductor in equilibrium
are at the same electric potential1; no potential difference ex-
ists between a terminal and any portion of the plate to which
it is connected. Therefore, the magnitude of the electric field
between the plates is, from Equation 25.6,

This configuration, which is shown in Figure 25.4 and
called a parallel-plate capacitor, is examined in greater detail in
Chapter 26.

4.0 % 103 V/mE !
# VB # VA #

d
!

12 V
0.30 % 10#2 m

!

Motion of a Proton in a Uniform Electric FieldEXAMPLE 25.2
From Equation 25.6, we have

(b) Find the change in potential energy of the proton for
this displacement.

Solution

The negative sign means the potential energy of the proton
decreases as it moves in the direction of the electric field. As
the proton accelerates in the direction of the field, it gains ki-
netic energy and at the same time loses electric potential en-
ergy (because energy is conserved).

Exercise Use the concept of conservation of energy to find
the speed of the proton at point B.

Answer 2.77 % 106 m/s.

#6.4 % 10#15 J !

 ! (1.6 % 10#19 C)(#4.0 % 104 V)

"U ! q0 "V ! e "V 

#4.0 % 104 V!

"V ! #Ed ! #(8.0 % 104 V/m)(0.50 m)

A proton is released from rest in a uniform electric field that
has a magnitude of 8.0 % 104 V/m and is directed along the
positive x axis (Fig. 25.5). The proton undergoes a displace-
ment of 0.50 m in the direction of E. (a) Find the change in
electric potential between points A and B.

Solution Because the proton (which, as you remember,
carries a positive charge) moves in the direction of the field,
we expect it to move to a position of lower electric potential.

d

B
A

+
+

+

+

+

+

+

+
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–

vBvA = 0

E

Figure 25.5 A proton accelerates from A to B in the direction of
the electric field.
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ELECTRIC POTENTIAL AND POTENTIAL ENERGY
DUE TO POINT CHARGES

Consider an isolated positive point charge q. Recall that such a charge produces an
electric field that is directed radially outward from the charge. To find the electric
potential at a point located a distance r from the charge, we begin with the gen-
eral expression for potential difference:

where A and B are the two arbitrary points shown in Figure 25.6. At any field
point, the electric field due to the point charge is (Eq. 23.4), where 
is a unit vector directed from the charge toward the field point. The quantity 
can be expressed as

Because the magnitude of is 1, the dot product where ) is 
the angle between and ds. Furthermore, ds cos ) is the projection of ds
onto r; thus, ds cos ) ! dr. That is, any displacement ds along the path from
point A to point B produces a change dr in the magnitude of r, the radial 
distance to the charge creating the field. Making these substitutions, we find 
that hence, the expression for the potential difference be-
comes

(25.10)

The integral of is independent of the path between points A and B—as it must
be because the electric field of a point charge is conservative. Furthermore, Equa-
tion 25.10 expresses the important result that the potential difference between any
two points A and B in a field created by a point charge depends only on the radial
coordinates rA and rB . It is customary to choose the reference of electric potential
to be zero at With this reference, the electric potential created by a point
charge at any distance r from the charge is

(25.11)

Electric potential is graphed in Figure 25.7 as a function of r, the radial dis-
tance from a positive charge in the xy plane. Consider the following analogy to
gravitational potential: Imagine trying to roll a marble toward the top of a hill
shaped like Figure 25.7a. The gravitational force experienced by the marble is
analogous to the repulsive force experienced by a positively charged object as it
approaches another positively charged object. Similarly, the electric potential
graph of the region surrounding a negative charge is analogous to a “hole” with
respect to any approaching positively charged objects. A charged object must be
infinitely distant from another charge before the surface is “flat” and has an elec-
tric potential of zero.

V ! ke 
q
r

rA ! $.

E ! ds

VB # VA ! keq $ 1
rB

#
1
rA
% 

VB # VA ! #  ! Er dr ! #keq !rB

rA

 
dr
r 2 !

keq
r %rB

rA

E ! ds ! (keq/r 2)dr ;

r̂
r̂ ! ds ! ds cos ),r̂

E ! ds ! ke 
q
r 2  r̂ ! ds

E ! ds
r̂E ! ke q r̂/r 2

VB # VA ! #!B

A
 E ! ds

25.3

dr ds
θ

r

A

rB

B

q

r
rA

ˆ

Figure 25.6 The potential differ-
ence between points A and B due
to a point charge q depends only on
the initial and final radial coordi-
nates rA and rB . The two dashed cir-
cles represent cross-sections of
spherical equipotential surfaces.

Electric potential created by a
point charge
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Figure 25.7 (a) The electric potential in the plane around a single positive charge is plotted
on the vertical axis. (The electric potential function for a negative charge would look like a hole
instead of a hill.) The red line shows the 1/r nature of the electric potential, as given by Equation
25.11. (b) View looking straight down the vertical axis of the graph in part (a), showing concen-
tric circles where the electric potential is constant. These circles are cross sections of equipoten-
tial spheres having the charge at the center.
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A spherical balloon contains a positively charged object at its center. As the balloon is in-
flated to a greater volume while the charged object remains at the center, does the electric
potential at the surface of the balloon increase, decrease, or remain the same? How about
the magnitude of the electric field? The electric flux?

We obtain the electric potential resulting from two or more point charges by
applying the superposition principle. That is, the total electric potential at some
point P due to several point charges is the sum of the potentials due to the individ-
ual charges. For a group of point charges, we can write the total electric potential
at P in the form

(25.12)

where the potential is again taken to be zero at infinity and ri is the distance from
the point P to the charge qi . Note that the sum in Equation 25.12 is an algebraic
sum of scalars rather than a vector sum (which we use to calculate the electric field
of a group of charges). Thus, it is often much easier to evaluate V than to evaluate
E. The electric potential around a dipole is illustrated in Figure 25.8.

We now consider the potential energy of a system of two charged particles. If
V1 is the electric potential at a point P due to charge q1 ,  then the work an external
agent must do to bring a second charge q2 from infinity to P without acceleration
is q2V1. By definition, this work equals the potential energy U of the two-particle
system when the particles are separated by a distance r 12 (Fig. 25.9). Therefore, we
can express the potential energy as2

(25.13)

Note that if the charges are of the same sign, U is positive. This is consistent with
the fact that positive work must be done by an external agent on the system to
bring the two charges near one another (because like charges repel). If the
charges are of opposite sign, U is negative; this means that negative work must be
done against the attractive force between the unlike charges for them to be
brought near each other.

If more than two charged particles are in the system, we can obtain the total
potential energy by calculating U for every pair of charges and summing the terms
algebraically. As an example, the total potential energy of the system of three
charges shown in Figure 25.10 is

(25.14)

Physically, we can interpret this as follows: Imagine that q1 is fixed at the position
shown in Figure 25.10 but that q2 and q3 are at infinity. The work an external
agent must do to bring q2 from infinity to its position near q1 is which
is the first term in Equation 25.14. The last two terms represent the work required
to bring q3 from infinity to its position near q1 and q2 . (The result is independent
of the order in which the charges are transported.)

keq1q2/r12 ,

U ! ke & q1q2

r12
*

q1q3

r13
*

q2q3

r23
'

U ! ke 
q1q2

r12

V ! ke +
i

q i

r i

Quick Quiz 25.3

2 The expression for the electric potential energy of a system made up of two point charges, Equation
25.13, is of the same form as the equation for the gravitational potential energy of a system made up of
two point masses, Gm1m2/r (see Chapter 14). The similarity is not surprising in view of the fact that
both expressions are derived from an inverse-square force law.

Electric potential due to several
point charges

Electric potential energy due to
two charges
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Figure 25.8 (a) The electric potential in the plane containing a dipole. (b) Top view of the
function graphed in part (a).

q1

q2r12

q2

q1

q3

r13

r12

r23

Figure 25. 9 If two point charges
are separated by a distance r12 , the
potential energy of the pair of
charges is given by keq1q2/r 12 .

Figure 25.10 Three point
charges are fixed at the positions
shown. The potential energy of this
system of charges is given by Equa-
tion 25.14.
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The Electric Potential Due to Two Point ChargesEXAMPLE 25.3
Solution When the charge is at infinity, , and when
the charge is at P, ; therefore,

Therefore, because , positive work would have to
be done by an external agent to remove the charge from
point P back to infinity.

Exercise Find the total potential energy of the system illus-
trated in Figure 25.11b.

Answer # 5.48 % 10#2 J.

W ! #"U

#18.9 % 10#3 J!

"U ! q3VP # 0 ! (3.00 % 10#6 C)(#6.29 % 103 V)

Uf ! q3VP

Ui ! 0A charge q1 ! 2.00 ,C is located at the origin, and a charge
q2 ! # 6.00 ,C is located at (0, 3.00) m, as shown in Figure
25.11a. (a) Find the total electric potential due to these
charges at the point P, whose coordinates are (4.00, 0) m.

Solution For two charges, the sum in Equation 25.12 gives

(b) Find the change in potential energy of a 3.00-,C
charge as it moves from infinity to point P (Fig. 25.11b).

#6.29 % 103 V!

VP ! ke & q1

r1
*

q2

r2
' 

OBTAINING THE VALUE OF THE ELECTRIC FIELD
FROM THE ELECTRIC POTENTIAL

The electric field E and the electric potential V are related as shown in Equation
25.3. We now show how to calculate the value of the electric field if the electric po-
tential is known in a certain region.

From Equation 25.3 we can express the potential difference dV between two
points a distance ds apart as

(25.15)

If the electric field has only one component Ex , then Therefore,
Equation 25.15 becomes or

(25.16)Ex ! #
dV
dx

dV ! #Ex dx,
E ! ds ! Ex dx.

dV ! # E ! ds

25.4

(a)

3.00 m

4.00 m

P
x

–6.00 µC

y

2.00 µC

(b)

3.00 m

4.00 m
x

–6.00 µC

y

2.00 µC 3.00 µC

µ

µ µ µ

µ

Figure 25.11 (a) The electric potential at P due to the two charges is the algebraic sum of the poten-
tials due to the individual charges. (b) What is the potential energy of the three-charge system?

! 8.99 % 109 
N(m2

C2  & 2.00 % 10#6 C
4.00 m

*
#6.00 % 10#6 C

5.00 m '
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That is, the magnitude of the electric field in the direction of some coordinate is
equal to the negative of the derivative of the electric potential with respect to that
coordinate. Recall from the discussion following Equation 25.8 that the electric
potential does not change for any displacement perpendicular to an electric field.
This is consistent with the notion, developed in Section 25.2, that equipotential
surfaces are perpendicular to the field, as shown in Figure 25.12. A small positive
charge placed at rest on an electric field line begins to move along the direction of
E because that is the direction of the force exerted on the charge by the charge
distribution creating the electric field (and hence is the direction of a). Because
the charge starts with zero velocity, it moves in the direction of the change in ve-
locity—that is, in the direction of a. In Figures 25.12a and 25.12b, a charge placed
at rest in the field will move in a straight line because its acceleration vector is al-
ways parallel to its velocity vector. The magnitude of v increases, but its direction
does not change. The situation is different in Figure 25.12c. A positive charge
placed at some point near the dipole first moves in a direction parallel to E at that
point. Because the direction of the electric field is different at different locations,
however, the force acting on the charge changes direction, and a is no longer par-
allel to v. This causes the moving charge to change direction and speed, but it
does not necessarily follow the electric field lines. Recall that it is not the velocity
vector but rather the acceleration vector that is proportional to force.

If the charge distribution creating an electric field has spherical symmetry
such that the volume charge density depends only on the radial distance r, then
the electric field is radial. In this case, and thus we can express dV
in the form dV Therefore,

(25.17)

For example, the electric potential of a point charge is Because V is a
function of r only, the potential function has spherical symmetry. Applying Equa-
tion 25.17, we find that the electric field due to the point charge is a
familiar result. Note that the potential changes only in the radial direction, not in

Er ! keq/r 2,

V ! keq/r.

Er ! #
dV
dr

! #Er dr.
E ! ds ! Er dr,

(a)

E

(b)

q

(c)

+

Figure 25.12 Equipotential surfaces (dashed blue lines) and electric field lines (red lines) for
(a) a uniform electric field produced by an infinite sheet of charge, (b) a point charge, and 
(c) an electric dipole. In all cases, the equipotential surfaces are perpendicular to the electric field
lines at every point. Compare these drawings with Figures 25.2, 25.7b, and 25.8b.
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any direction perpendicular to r. Thus, V (like Er) is a function only of r. Again,
this is consistent with the idea that equipotential surfaces are perpendicular to
field lines. In this case the equipotential surfaces are a family of spheres concen-
tric with the spherically symmetric charge distribution (Fig. 25.12b).

The equipotential surfaces for an electric dipole are sketched in Figure
25.12c. When a test charge undergoes a displacement ds along an equipotential
surface, then because the potential is constant along an equipotential sur-
face. From Equation 25.15, then, ; thus, E must be perpendicu-
lar to the displacement along the equipotential surface. This shows that the
equipotential surfaces must always be perpendicular to the electric field lines.

In general, the electric potential is a function of all three spatial coordinates.
If V(r) is given in terms of the cartesian coordinates, the electric field components
Ex , Ey , and Ez can readily be found from V(x, y, z) as the partial derivatives3

For example, if then

-V
-x

!
-

-x
 (3x2y * y2 * yz) !

-

-x
 (3x2y) ! 3y 

d
dx

 (x2) ! 6xy

V ! 3x2y * y2 * yz,

Ex ! #
-V
-x

  Ey ! #
-V
-y

  Ez ! #
-V
-z

dV ! #E ! ds ! 0
dV ! 0

The Electric Potential Due to a DipoleEXAMPLE 25.4
(How would this result change if point P happened to be lo-
cated to the left of the negative charge?)

(b) Calculate V and Ex at a point far from the dipole.

Solution If point P is far from the dipole, such that 
then a2 can be neglected in the term and V becomes

Using Equation 25.16 and this result, we can calculate the
electric field at a point far from the dipole:

( )

(c) Calculate V and Ex if point P is located anywhere be-
tween the two charges.

Solution

Ex ! #
dV
dx

! #
d
dx

 &#
2keqx

x2 # a2 ' ! 2keq & #x2 # a2

(x2 # a2)2 '

V ! ke +
qi

r i
! ke & q

a # x
#

q
x * a ' ! #

2keqx
x2 # a2

x W a
4keqa

x 3Ex ! #
dV
dx

!

(x W a)
2keqa

x 2V (

x2 # a2,
x W a,

An electric dipole consists of two charges of equal magnitude
and opposite sign separated by a distance 2a, as shown in Fig-
ure 25.13. The dipole is along the x axis and is centered at
the origin. (a) Calculate the electric potential at point P.

Solution For point P in Figure 25.13,

2keqa
x2 # a2!V ! ke +

qi

r i
! ke & q

x # a
#

q
x * a '

3 In vector notation, E is often written 

where . is called the gradient operator.

E ! #.V ! #& i 
-

-x
* j 

-

-y
* k 

-

-z 'V

Equipotential surfaces are
perpendicular to the electric field
lines

aa

q

P

x

x

y

–q

Figure 25.13 An electric dipole located on the x axis.
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ELECTRIC POTENTIAL DUE TO CONTINUOUS CHARGE
DISTRIBUTIONS

We can calculate the electric potential due to a continuous charge distribution in
two ways. If the charge distribution is known, we can start with Equation 25.11 for
the electric potential of a point charge. We then consider the potential due to a
small charge element dq, treating this element as a point charge (Fig. 25.14). The
electric potential dV at some point P due to the charge element dq is

(25.18)

where r is the distance from the charge element to point P. To obtain the total po-
tential at point P, we integrate Equation 25.18 to include contributions from all el-
ements of the charge distribution. Because each element is, in general, a different
distance from point P and because ke is constant, we can express V as

(25.19)

In effect, we have replaced the sum in Equation 25.12 with an integral. Note that
this expression for V uses a particular reference: The electric potential is taken to
be zero when point P is infinitely far from the charge distribution.

If the electric field is already known from other considerations, such as Gauss’s
law, we can calculate the electric potential due to a continuous charge distribution
using Equation 25.3. If the charge distribution is highly symmetric, we first evalu-
ate E at any point using Gauss’s law and then substitute the value obtained into
Equation 25.3 to determine the potential difference "V between any two points.
We then choose the electric potential V to be zero at some convenient point.

We illustrate both methods with several examples.

V ! ke ! 
dq
r

dV ! ke 
dq
r

25.5

Electric Potential Due to a Uniformly Charged RingEXAMPLE 25.5
we can remove from the integral, and V reduces to

(25.20)

The only variable in this expression for V is x. This is not sur-
prising because our calculation is valid only for points along
the x axis, where y and z are both zero.

(b) Find an expression for the magnitude of the electric
field at point P.

Solution From symmetry, we see that along the x axis E
can have only an x component. Therefore, we can use Equa-

keQ

!x2 * a2
V !

ke

!x 2 * a2
 ! dq !

!x2 * a2(a) Find an expression for the electric potential at a point P
located on the perpendicular central axis of a uniformly
charged ring of radius a and total charge Q.

Solution Let us orient the ring so that its plane is perpen-
dicular to an x axis and its center is at the origin. We can then
take point P to be at a distance x from the center of the ring,
as shown in Figure 25.15. The charge element dq is at a dis-
tance from point P. Hence, we can express V as

Because each element dq is at the same distance from point P,

V ! ke ! 
dq
r

! ke ! 
dq

!x2 * a2

!x2 * a2

We can check these results by considering the situation at 
the center of the dipole, where x ! 0, V ! 0, and 
#2keq/a2.

Ex !
Exercise Verify the electric field result in part (c) by calcu-
lating the sum of the individual electric field vectors at the
origin due to the two charges.

r

P

dq

Figure 25.14 The electric poten-
tial at the point P due to a continu-
ous charge distribution can be cal-
culated by dividing the charged
body into segments of charge dq
and summing the electric potential
contributions over all segments.
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P
x

√x2 + a2

dq

a

Figure 25.15 A uniformly charged ring of radius a lies in a plane
perpendicular to the x axis. All segments dq of the ring are the same
distance from any point P lying on the x axis.

tion 25.16:

(25.21)

This result agrees with that obtained by direct integration
(see Example 23.8). Note that at x ! 0 (the center of
the ring). Could you have guessed this from Coulomb’s law?

Exercise What is the electric potential at the center of the
ring? What does the value of the field at the center tell you
about the value of V at the center?

Answer Because at the cen-Ex ! #dV/dx ! 0V ! keQ /a.

Ex ! 0

keQx
(x2 * a2)3/2 !

 ! #keQ(#1
2 )(x2 * a2)#3/2(2x) 

Ex ! #
dV
dx

! #keQ 
d
dx

 (x2 * a2)#1/2

ter, V has either a maximum or minimum value; it is, in fact,
a maximum.

Electric Potential Due to a Uniformly Charged DiskEXAMPLE 25.6
from the definition of surface charge density (see Section
23.5), we know that the charge on the ring is 

Hence, the potential at the point P due to
this ring is

To find the total electric potential at P, we sum over all rings
making up the disk. That is, we integrate dV from r ! 0 to 
r ! a:

This integral is of the form un du and has the value
where and This gives

(25.22)

(b) As in Example 25.5, we can find the electric field at
any axial point from

(25.23)

The calculation of V and E for an arbitrary point off the axis
is more difficult to perform, and we do not treat this situation
in this text.

2/ke 0 &1 #
x

!x2 * a2'Ex ! #
dV
dx

!

2/ke 0[(x2 * a2)1/2 # x]V !

u ! r 2 * x2.n ! #1
2un*1/(n * 1),

V ! /ke 0!a

0
 

2r dr

!r 2 * x2
! /ke 0!a

0
 (r 2 * x2)#1/2 2r dr

dV !
ke dq

!r 2 * x2
!

ke 02/r dr

!r 2 * x2

0 dA ! 02/r dr.
dq !

Find (a) the electric potential and (b) the magnitude of the
electric field along the perpendicular central axis of a uni-
formly charged disk of radius a and surface charge density 0.

Solution (a) Again, we choose the point P to be at a dis-
tance x from the center of the disk and take the plane of the
disk to be perpendicular to the x axis. We can simplify the
problem by dividing the disk into a series of charged rings.
The electric potential of each ring is given by Equation 25.20.
Consider one such ring of radius r and width dr, as indicated
in Figure 25.16. The surface area of the ring is dA ! 2/r dr ;

Figure 25.16 A uniformly charged disk of radius a lies in a plane
perpendicular to the x axis. The calculation of the electric potential
at any point P on the x axis is simplified by dividing the disk into
many rings each of area 2/r dr.

dr

dA = 2πrdr

√ r 2 + x 2

x P

r
a

π
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Electric Potential Due to a Finite Line of ChargeEXAMPLE 25.7
Evaluating V, we find that

(25.24)
keQ

!
 ln& ! * !!2 * a2

a 'V !

A rod of length located along the x axis has a total charge
Q and a uniform linear charge density 1 ! Q / . Find the
electric potential at a point P located on the y axis a distance
a from the origin (Fig. 25.17).

Solution The length element dx has a charge dq ! 1 dx.
Because this element is a distance from point P,
we can express the potential at point P due to this element 
as

To obtain the total potential at P, we integrate this expression
over the limits x ! 0 to x ! . Noting that ke and 1 are con-
stants, we find that

This integral has the following value (see Appendix B):

! 
dx

!x2 * a2
! ln(x * !x2 * a2)

V ! ke 1 !!

0
 

dx

!x2 * a2
! ke 

Q
!

 !!

0
 

dx

!x2 * a2

!

dV ! ke 
dq
r

! ke 
1 dx

!x 2 * a 2

r ! !x2 * a2

!
!

Electric Potential Due to a Uniformly Charged SphereEXAMPLE 25.8
Because the potential must be continuous at r ! R , we

can use this expression to obtain the potential at the surface
of the sphere. That is, the potential at a point such as C
shown in Figure 25.18 is

(for 

(b) Find the potential at a point inside the sphere, that is,
for r & R .

r ! R )VC ! ke 
Q
R

An insulating solid sphere of radius R has a uniform positive
volume charge density and total charge Q. (a) Find the elec-
tric potential at a point outside the sphere, that is, for 
Take the potential to be zero at 

Solution In Example 24.5, we found that the magnitude
of the electric field outside a uniformly charged sphere of ra-
dius R is

(for 

where the field is directed radially outward when Q is posi-
tive. In this case, to obtain the electric potential at an exterior
point, such as B in Figure 25.18, we use Equation 25.4 and
the expression for Er given above:

(for 

Note that the result is identical to the expression for the elec-
tric potential due to a point charge (Eq. 25.11).

r 2 R )VB ! ke 
Q
r

VB ! #!r

$
 Er dr ! #keQ !r

$
 

dr
r 2

r 2 R )Er ! ke 
Q
r 2

r ! $.
r 2 R.

dx

!

x
x

0

dq

ra

P

y

Figure 25.17 A uniform line charge of length located along 
the x axis. To calculate the electric potential at P, the line charge is
divided into segments each of length dx and each carrying a charge
dq ! 1 dx.

!

R

r
Q

D
C

B

Figure 25.18 A uniformly charged insulating sphere of radius R
and total charge Q . The electric potentials at points B and C are
equivalent to those produced by a point charge Q located at the cen-
ter of the sphere, but this is not true for point D.



ELECTRIC POTENTIAL DUE TO A
CHARGED CONDUCTOR

In Section 24.4 we found that when a solid conductor in equilibrium carries a net
charge, the charge resides on the outer surface of the conductor. Furthermore, we
showed that the electric field just outside the conductor is perpendicular to the
surface and that the field inside is zero.

We now show that every point on the surface of a charged conductor in
equilibrium is at the same electric potential. Consider two points A and B on
the surface of a charged conductor, as shown in Figure 25.20. Along a surface path
connecting these points, E is always perpendicular to the displacement ds; there-

25.6
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Solution In Example 24.5 we found that the electric field
inside an insulating uniformly charged sphere is

(for 

We can use this result and Equation 25.3 to evaluate the po-
tential difference at some interior point D:

Substituting into this expression and solving for
VD , we obtain

(for (25.25)

At r ! R , this expression gives a result that agrees with that
for the potential at the surface, that is, VC . A plot of V versus
r for this charge distribution is given in Figure 25.19.

Exercise What are the magnitude of the electric field and
the electric potential at the center of the sphere?

r & R )VD !
keQ
2R

 &3 #
r 2

R2 '

VC ! keQ /R

VD # VC ! #!r

R
 Er dr ! #

keQ
R3  !r

R
 r dr !

keQ
2R3  (R2 # r 2)

VD # VC

r & R )Er !
keQ
R3 r

Answer V0 ! 3keQ /2R .E ! 0;

V

V0

V0
2
3

R r

VB =
keQ

r

VD =
keQ
2R (3 –

r 2

R2 )

V0 =
3keQ
2R

Figure 25.19 A plot of electric potential V versus distance r from
the center of a uniformly charged insulating sphere of radius R . The
curve for VD inside the sphere is parabolic and joins smoothly with
the curve for VB outside the sphere, which is a hyperbola. The poten-
tial has a maximum value V0 at the center of the sphere. We could
make this graph three dimensional (similar to Figures 25.7a and
25.8a) by spinning it around the vertical axis.
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+++ + +++

+
+

+
+
+ Figure 25.20 An arbitrarily shaped conductor carrying a posi-

tive charge. When the conductor is in electrostatic equilibrium,
all of the charge resides at the surface, E ! 0 inside the conduc-
tor, and the direction of E just outside the conductor is perpen-
dicular to the surface. The electric potential is constant inside
the conductor and is equal to the potential at the surface. Note
from the spacing of the plus signs that the surface charge density
is nonuniform.
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the surface of any charged conductor in electrostatic equilibrium is an equipo-
tential surface. Furthermore, because the electric field is zero inside the con-
ductor, we conclude from the relationship that the electric poten-
tial is constant everywhere inside the conductor and equal to its value at the
surface.

Er ! #dV/dr

fore Using this result and Equation 25.3, we conclude that the potential
difference between A and B is necessarily zero:

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

VB # VA ! #!B

A
 E ! ds ! 0

E ! ds ! 0.

(a) + +
+ +

+ +
+ ++

+ +
+ +

+ ++

R

V

keQ
R

keQ
r

(b)

r

E
keQ
r 2

r
R

(c)

Figure 25.21 (a) The excess
charge on a conducting sphere of
radius R is uniformly distributed on
its surface. (b) Electric potential
versus distance r from the center of
the charged conducting sphere. 
(c) Electric field magnitude versus
distance r from the center of the
charged conducting sphere.

Electric field pattern of a charged conducting plate
placed near an oppositely charged pointed conductor.
Small pieces of thread suspended in oil align with the
electric field lines. The field surrounding the pointed
conductor is most intense near the pointed end and at
other places where the radius of curvature is small.

Because this is true about the electric potential, no work is required to move a test
charge from the interior of a charged conductor to its surface.

Consider a solid metal conducting sphere of radius R and total positive charge
Q , as shown in Figure 25.21a. The electric field outside the sphere is keQ /r2 and
points radially outward. From Example 25.8, we know that the electric potential at
the interior and surface of the sphere must be keQ /R relative to infinity. The po-
tential outside the sphere is keQ /r. Figure 25.21b is a plot of the electric potential
as a function of r, and Figure 25.21c shows how the electric field varies with r.

When a net charge is placed on a spherical conductor, the surface charge den-
sity is uniform, as indicated in Figure 25.21a. However, if the conductor is non-
spherical, as in Figure 25.20, the surface charge density is high where the radius of
curvature is small and the surface is convex (as noted in Section 24.4), and it is low
where the radius of curvature is small and the surface is concave. Because the elec-
tric field just outside the conductor is proportional to the surface charge density,
we see that the electric field is large near convex points having small radii of
curvature and reaches very high values at sharp points.

Figure 25.22 shows the electric field lines around two spherical conductors:
one carrying a net charge Q , and a larger one carrying zero net charge. In this
case, the surface charge density is not uniform on either conductor. The sphere
having zero net charge has negative charges induced on its side that faces the

The surface of a charged
conductor is an equipotential
surface
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charged sphere and positive charges induced on its side opposite the charged
sphere. The blue curves in the figure represent the cross-sections of the equipo-
tential surfaces for this charge configuration. As usual, the field lines are perpen-
dicular to the conducting surfaces at all points, and the equipotential surfaces are
perpendicular to the field lines everywhere. Trying to move a positive charge in
the region of these conductors would be like moving a marble on a hill that is flat
on top (representing the conductor on the left) and has another flat area partway
down the side of the hill (representing the conductor on the right).

Two Connected Charged SpheresEXAMPLE 25.9
Two spherical conductors of radii r 1 and r 2 are separated by a
distance much greater than the radius of either sphere. The
spheres are connected by a conducting wire, as shown in Fig-
ure 25.23. The charges on the spheres in equilibrium are q1
and q2 , respectively, and they are uniformly charged. Find
the ratio of the magnitudes of the electric fields at the sur-
faces of the spheres.

Solution Because the spheres are connected by a conduct-
ing wire, they must both be at the same electric potential:

Therefore, the ratio of charges is

V ! ke 
q1

r1
! ke 

q2

r2

Q Q = 0––
––

–

––
––

+

+

+

+
+
+
+
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Figure 25.22 The electric field lines (in red) around two spherical conductors. The smaller
sphere has a net charge Q , and the larger one has zero net charge. The blue curves are cross-
sections of equipotential surfaces.

r1

r2

q1

q2

Figure 25.23 Two charged spherical conductors connected by a
conducting wire. The spheres are at the same electric potential V.
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A Cavity Within a Conductor

Now consider a conductor of arbitrary shape containing a cavity as shown in Fig-
ure 25.24. Let us assume that no charges are inside the cavity. In this case, the
electric field inside the cavity must be zero regardless of the charge distribu-
tion on the outside surface of the conductor. Furthermore, the field in the cavity is
zero even if an electric field exists outside the conductor.

To prove this point, we use the fact that every point on the conductor is at the
same electric potential, and therefore any two points A and B on the surface of the
cavity must be at the same potential. Now imagine that a field E exists in the cavity
and evaluate the potential difference defined by Equation 25.3:

If E is nonzero, we can always find a path between A and B for which is a
positive number; thus, the integral must be positive. However, because

the integral of must be zero for all paths between any two
points on the conductor, which implies that E is zero everywhere. This contradic-
tion can be reconciled only if E is zero inside the cavity. Thus, we conclude that a
cavity surrounded by conducting walls is a field-free region as long as no charges
are inside the cavity.

Corona Discharge

A phenomenon known as corona discharge is often observed near a conductor
such as a high-voltage power line. When the electric field in the vicinity of the con-
ductor is sufficiently strong, electrons are stripped from air molecules. This causes
the molecules to be ionized, thereby increasing the air’s ability to conduct. The
observed glow (or corona discharge) results from the recombination of free elec-
trons with the ionized air molecules. If a conductor has an irregular shape, the
electric field can be very high near sharp points or edges of the conductor; conse-
quently, the ionization process and corona discharge are most likely to occur
around such points.

(a) Is it possible for the magnitude of the electric field to be zero at a location where the
electric potential is not zero? (b) Can the electric potential be zero where the electric field
is nonzero?

Quick Quiz 25.4

E ! dsVB # VA ! 0,

E ! ds

VB # VA ! #!B

A
 E ! ds

VB # VA

(1)

Because the spheres are very far apart and their surfaces uni-
formly charged, we can express the magnitude of the electric
fields at their surfaces as

and E2 ! ke 
q2

r2 

2E1 ! ke 
q1

r1 

2

q1

q2
!

r1

r2

Taking the ratio of these two fields and making use of Equa-
tion (1), we find that

Hence, the field is more intense in the vicinity of the smaller
sphere even though the electric potentials of both spheres
are the same.

E1

E2
!

r2

r1

A

B

Figure 25.24 A conductor in
electrostatic equilibrium contain-
ing a cavity. The electric field in the
cavity is zero, regardless of the
charge on the conductor.
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Optional Section

THE MILLIKAN OIL-DROP EXPERIMENT
During the period from 1909 to 1913, Robert Millikan performed a brilliant set of
experiments in which he measured e, the elementary charge on an electron, and
demonstrated the quantized nature of this charge. His apparatus, diagrammed in
Figure 25.25, contains two parallel metallic plates. Charged oil droplets from an at-
omizer are allowed to pass through a small hole in the upper plate. A horizontally
directed light beam (not shown in the diagram) is used to illuminate the oil
droplets, which are viewed through a telescope whose long axis is at right angles to
the light beam. When the droplets are viewed in this manner, they appear as shin-
ing stars against a dark background, and the rate at which individual drops fall can
be determined.4

Let us assume that a single drop having a mass m and carrying a charge q is be-
ing viewed and that its charge is negative. If no electric field is present between the
plates, the two forces acting on the charge are the force of gravity mg acting down-
ward and a viscous drag force FD acting upward as indicated in Figure 25.26a. The
drag force is proportional to the drop’s speed. When the drop reaches its terminal
speed v, the two forces balance each other (mg ! FD).

Now suppose that a battery connected to the plates sets up an electric field be-
tween the plates such that the upper plate is at the higher electric potential. In this
case, a third force qE acts on the charged drop. Because q is negative and E is di-
rected downward, this electric force is directed upward, as shown in Figure 25.26b.
If this force is sufficiently great, the drop moves upward and the drag force acts
downward. When the upward electric force q E balances the sum of the gravita-
tional force and the downward drag force the drop reaches a new terminal
speed v3 in the upward direction.

With the field turned on, a drop moves slowly upward, typically at rates of hun-
dredths of a centimeter per second. The rate of fall in the absence of a field is
comparable. Hence, one can follow a single droplet for hours, alternately rising
and falling, by simply turning the electric field on and off.

F3D ,

F3D

25.7

4 At one time, the oil droplets were termed “Millikan’s Shining Stars.” Perhaps this description has lost
its popularity because of the generations of physics students who have experienced hallucinations, near
blindness, migraine headaches, and so forth, while repeating Millikan’s experiment!

q

v

– +

Battery

Switch

Charged plate

Charged plate

Telescope

Atomizer

Oil droplets

Pin hole

FD

FD

qE

mg

E
v ′

(b) Field on

v

mg

q

(a) Field off

′

Figure 25.25 Schematic drawing of the Millikan oil-drop apparatus.

Figure 25.26 The forces acting
on a negatively charged oil droplet
in the Millikan experiment.
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After recording measurements on thousands of droplets, Millikan and his co-
workers found that all droplets, to within about 1% precision, had a charge equal
to some integer multiple of the elementary charge e :

# 1, # 2, # 3, . . .

where Millikan’s experiment yields conclusive evidence that
charge is quantized. For this work, he was awarded the Nobel Prize in Physics in
1923.

Optional Section

APPLICATIONS OF ELECTROSTATICS
The practical application of electrostatics is represented by such devices as light-
ning rods and electrostatic precipitators and by such processes as xerography and
the painting of automobiles. Scientific devices based on the principles of electro-
statics include electrostatic generators, the field-ion microscope, and ion-drive
rocket engines.

The Van de Graaff Generator

In Section 24.5 we described an experiment that demonstrates a method for trans-
ferring charge to a hollow conductor (the Faraday ice-pail experiment). When a
charged conductor is placed in contact with the inside of a hollow conductor, all
of the charge of the charged conductor is transferred to the hollow conductor. In
principle, the charge on the hollow conductor and its electric potential can be in-
creased without limit by repetition of the process.

In 1929 Robert J. Van de Graaff (1901–1967) used this principle to design and
build an electrostatic generator. This type of generator is used extensively in nu-
clear physics research. A schematic representation of the generator is given in Fig-
ure 25.27. Charge is delivered continuously to a high-potential electrode by means
of a moving belt of insulating material. The high-voltage electrode is a hollow con-
ductor mounted on an insulating column. The belt is charged at point A by means
of a corona discharge between comb-like metallic needles and a grounded grid.
The needles are maintained at a positive electric potential of typically 104 V. The
positive charge on the moving belt is transferred to the hollow conductor by a sec-
ond comb of needles at point B. Because the electric field inside the hollow con-
ductor is negligible, the positive charge on the belt is easily transferred to the con-
ductor regardless of its potential. In practice, it is possible to increase the electric
potential of the hollow conductor until electrical discharge occurs through the air.
Because the “breakdown” electric field in air is about 3 % 106 V/m, a sphere 1 m
in radius can be raised to a maximum potential of 3 % 106 V. The potential can be
increased further by increasing the radius of the hollow conductor and by placing
the entire system in a container filled with high-pressure gas.

Van de Graaff generators can produce potential differences as large as 20 mil-
lion volts. Protons accelerated through such large potential differences receive
enough energy to initiate nuclear reactions between themselves and various target
nuclei. Smaller generators are often seen in science classrooms and museums. If a
person insulated from the ground touches the sphere of a Van de Graaff genera-
tor, his or her body can be brought to a high electric potential. The hair acquires a
net positive charge, and each strand is repelled by all the others. The result is a

25.8

e ! 1.60 % 10#19 C.

q ! ne  n ! 0,

11.10
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Belt

Ground

B

A

+

Insulator

+

+

+
+
+
+
+
+
+
+
+
+
+
+
+

+

+

+

+

+

+

+

+

+

+

–
–
–
–
–
–
–
–
–
–
–
–
–

Grounded
grid

Figure 25.27 Schematic diagram
of a Van de Graaff generator.
Charge is transferred to the hollow
conductor at the top by means of a
moving belt. The charge is de-
posited on the belt at point A and
transferred to the hollow conduc-
tor at point B.
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scene such as that depicted in the photograph at the beginning of this chapter. In
addition to being insulated from ground, the person holding the sphere is safe in
this demonstration because the total charge on the sphere is very small (on the or-
der of 1 ,C). If this amount of charge accidentally passed from the sphere
through the person to ground, the corresponding current would do no harm.

The Electrostatic Precipitator

One important application of electrical discharge in gases is the electrostatic precipi-
tator. This device removes particulate matter from combustion gases, thereby re-
ducing air pollution. Precipitators are especially useful in coal-burning power
plants and in industrial operations that generate large quantities of smoke. Cur-
rent systems are able to eliminate more than 99% of the ash from smoke.

Figure 25.28a shows a schematic diagram of an electrostatic precipitator. A
high potential difference (typically 40 to 100 kV) is maintained between a wire
running down the center of a duct and the walls of the duct, which are grounded.
The wire is maintained at a negative electric potential with respect to the walls, so
the electric field is directed toward the wire. The values of the field near the wire
become high enough to cause a corona discharge around the wire; the discharge
ionizes some air molecules to form positive ions, electrons, and such negative ions
as O2

#. The air to be cleaned enters the duct and moves near the wire. As the elec-
trons and negative ions created by the discharge are accelerated toward the outer
wall by the electric field, the dirt particles in the air become charged by collisions
and ion capture. Because most of the charged dirt particles are negative, they too
are drawn to the duct walls by the electric field. When the duct is periodically
shaken, the particles break loose and are collected at the bottom.

Insulator

Clean air
out

Weight
Dirty
air in

Dirt out

(a) (c)(b)

Figure 25.28 (a) Schematic diagram of an electrostatic precipitator. The high negative electric
potential maintained on the central coiled wire creates an electrical discharge in the vicinity of
the wire. Compare the air pollution when the electrostatic precipitator is (b) operating and 
(c) turned off. 

QuickLab
Sprinkle some salt and pepper on an
open dish and mix the two together.
Now pull a comb through your hair
several times and bring the comb to
within 1 cm of the salt and pepper.
What happens? How is what happens
here related to the operation of an
electrostatic precipitator?
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In addition to reducing the level of particulate matter in the atmosphere
(compare Figs. 25.28b and c), the electrostatic precipitator recovers valuable mate-
rials in the form of metal oxides.

Xerography and Laser Printers

The basic idea of xerography5 was developed by Chester Carlson, who was granted
a patent for the xerographic process in 1940. The one feature of this process that
makes it unique is the use of a photoconductive material to form an image. (A pho-
toconductor is a material that is a poor electrical conductor in the dark but that be-
comes a good electrical conductor when exposed to light.)

The xerographic process is illustrated in Figure 25.29a to d. First, the surface 
of a plate or drum that has been coated with a thin film of photoconductive mater-
ial (usually selenium or some compound of selenium) is given a positive electrosta-
tic charge in the dark. An image of the page to be copied is then focused by a lens
onto the charged surface. The photoconducting surface becomes conducting only
in areas where light strikes it. In these areas, the light produces charge carriers in
the photoconductor that move the positive charge off the drum. However, positive

5 The prefix xero - is from the Greek word meaning “dry.” Note that no liquid ink is used anywhere in 
xerography.

Selenium-coated
drum

(a) Charging the drum (b) Imaging the document

(d) Transferring the
       toner to the paper

Laser
beam

Interlaced pattern
of laser lines

(e) Laser printer drum

Negatively
charged

toner
(c) Applying the toner

Lens

Light causes some areas
of drum to become
electrically conducting,
removing positive charge

Figure 25.29 The xerographic process: (a) The photoconductive surface of the drum is posi-
tively charged. (b) Through the use of a light source and lens, an image is formed on the surface
in the form of positive charges. (c) The surface containing the image is covered with a negatively
charged powder, which adheres only to the image area. (d) A piece of paper is placed over the
surface and given a positive charge. This transfers the image to the paper as the negatively
charged powder particles migrate to the paper. The paper is then heat-treated to “fix” the pow-
der. (e) A laser printer operates similarly except the image is produced by turning a laser beam
on and off as it sweeps across the selenium-coated drum.
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charges remain on those areas of the photoconductor not exposed to light, 
leaving a latent image of the object in the form of a positive surface charge dis-
tribution.

Next, a negatively charged powder called a toner is dusted onto the photocon-
ducting surface. The charged powder adheres only to those areas of the surface
that contain the positively charged image. At this point, the image becomes visible.
The toner (and hence the image) are then transferred to the surface of a sheet of
positively charged paper.

Finally, the toner is “fixed” to the surface of the paper as the toner melts while
passing through high-temperature rollers. This results in a permanent copy of the
original.

A laser printer (Fig. 25.29e) operates by the same principle, with the excep-
tion that a computer-directed laser beam is used to illuminate the photoconductor
instead of a lens.

SUMMARY

When a positive test charge q0 is moved between points A and B in an electric field
E, the change in the potential energy is

(25.1)

The electric potential is a scalar quantity and has units of joules per
coulomb ( J/C), where 

The potential difference "V between points A and B in an electric field E is
defined as

(25.3)

The potential difference between two points A and B in a uniform electric
field E is

(25.6)

where d is the magnitude of the displacement in the direction parallel to E.
An equipotential surface is one on which all points are at the same electric

potential. Equipotential surfaces are perpendicular to electric field lines. 
If we define at the electric potential due to a point charge at

any distance r from the charge is

(25.11)

We can obtain the electric potential associated with a group of point charges by
summing the potentials due to the individual charges.

The potential energy associated with a pair of point charges separated by
a distance r 12 is

(25.13)

This energy represents the work required to bring the charges from an infinite
separation to the separation r12 . We obtain the potential energy of a distribution
of point charges by summing terms like Equation 25.13 over all pairs of particles.

U ! ke 
q1q2

r12

V ! ke 
q
r

rA ! $,V ! 0

"V ! #Ed

"V !
"U
q0

! #!B

A
 E ! ds

1 J/C " 1 V.
V ! U/q0

"U ! #q0 !B

A
 E ! ds
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If we know the electric potential as a function of coordinates x, y, z, we can ob-
tain the components of the electric field by taking the negative derivative of the
electric potential with respect to the coordinates. For example, the x component
of the electric field is

(25.16)

The electric potential due to a continuous charge distribution is

(25.19)

Every point on the surface of a charged conductor in electrostatic equilibrium
is at the same electric potential. The potential is constant everywhere inside the
conductor and equal to its value at the surface.

Table 25.1 lists electric potentials due to several charge distributions.

V ! ke ! 
dq
r

Ex ! #
dV
dx

Problem-Solving Hints
Calculating Electric Potential

• Remember that electric potential is a scalar quantity, so components need
not be considered. Therefore, when using the superposition principle to
evaluate the electric potential at a point due to a system of point charges,
simply take the algebraic sum of the potentials due to the various charges.
However, you must keep track of signs. The potential is positive for positive
charges, and it is negative for negative charges.

• Just as with gravitational potential energy in mechanics, only changes in elec-
tric potential are significant; hence, the point where you choose the poten-

TABLE 25.1 Electric Potential Due to Various Charge Distributions

Charge Distribution Electric Potential Location

Uniformly charged Along perpendicular central
ring of radius a axis of ring, distance x

from ring center

Uniformly charged Along perpendicular central
disk of radius a axis of disk, distance x

from disk center

Uniformly charged,
insulating solid
sphere of radius R
and total charge Q

Isolated conducting
sphere of radius R
and total charge Q

V ! ke 
Q
R

V ! ke 
Q
r

r 4 R

r 2 R

V ! ke 
Q

!x2 * a2

V !
keQ
2R

 &3 #
r 2

R2 '
V ! ke 

Q
r)

)

V ! 2/ke 0[(x2 * a2)1/2 # x]

r & R

r 5 R



794 C H A P T E R  2 5 Electric Potential

tial to be zero is arbitrary. When dealing with point charges or a charge dis-
tribution of finite size, we usually define V ! 0 to be at a point infinitely far
from the charges.

• You can evaluate the electric potential at some point P due to a continuous
distribution of charge by dividing the charge distribution into infinitesimal
elements of charge dq located at a distance r from P. Then, treat one charge
element as a point charge, such that the potential at P due to the element is

Obtain the total potential at P by integrating dV over the en-
tire charge distribution. In performing the integration for most problems,
you must express dq and r in terms of a single variable. To simplify the inte-
gration, consider the geometry involved in the problem carefully. Review Ex-
amples 25.5 through 25.7 for guidance.

• Another method that you can use to obtain the electric potential due to a fi-
nite continuous charge distribution is to start with the definition of poten-
tial difference given by Equation 25.3. If you know or can easily obtain E
(from Gauss’s law), then you can evaluate the line integral of An ex-
ample of this method is given in Example 25.8.

• Once you know the electric potential at a point, you can obtain the electric
field at that point by remembering that the electric field component in 
a specified direction is equal to the negative of the derivative of the electric
potential in that direction. Example 25.4 illustrates this procedure.

E ! ds.

dV ! kedq/r.

QUESTIONS

sphere is zero. Does this imply that the potential is zero
inside the sphere? Explain.

9. The potential of a point charge is defined to be zero at an
infinite distance. Why can we not define the potential of
an infinite line of charge to be zero at 

10. Two charged conducting spheres of different radii are
connected by a conducting wire, as shown in Figure
25.23. Which sphere has the greater charge density?

11. What determines the maximum potential to which the
dome of a Van de Graaff generator can be raised?

12. Explain the origin of the glow sometimes observed
around the cables of a high-voltage power line.

13. Why is it important to avoid sharp edges or points on con-
ductors used in high-voltage equipment?

14. How would you shield an electronic circuit or laboratory
from stray electric fields? Why does this work?

15. Why is it relatively safe to stay in an automobile with a
metal body during a severe thunderstorm?

16. Walking across a carpet and then touching someone can
result in a shock. Explain why this occurs.

r ! $ ?

1. Distinguish between electric potential and electric poten-
tial energy.

2. A negative charge moves in the direction of a uniform
electric field. Does the potential energy of the charge in-
crease or decrease? Does it move to a position of higher
or lower potential?

3. Give a physical explanation of the fact that the poten-
tial energy of a pair of like charges is positive whereas 
the potential energy of a pair of unlike charges is nega-
tive.

4. A uniform electric field is parallel to the x axis. In what
direction can a charge be displaced in this field without
any external work being done on the charge?

5. Explain why equipotential surfaces are always perpendic-
ular to electric field lines.

6. Describe the equipotential surfaces for (a) an infinite line
of charge and (b) a uniformly charged sphere.

7. Explain why, under static conditions, all points in a con-
ductor must be at the same electric potential.

8. The electric field inside a hollow, uniformly charged
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PROBLEMS

11. A 4.00-kg block carrying a charge Q ! 50.0 ,C is con-
nected to a spring for which k ! 100 N/m. The block
lies on a frictionless horizontal track, and the system is
immersed in a uniform electric field of magnitude E !
5.00 % 105 V/m, directed as shown in Figure P25.11. If
the block is released from rest when the spring is un-
stretched (at x ! 0), (a) by what maximum amount
does the spring expand? (b) What is the equilibrium
position of the block? (c) Show that the block’s motion
is simple harmonic, and determine its period. 
(d) Repeat part (a) if the coefficient of kinetic friction
between block and surface is 0.200.

12. A block having mass m and charge Q is connected to a
spring having constant k . The block lies on a frictionless
horizontal track, and the system is immersed in a uni-
form electric field of magnitude E, directed as shown in
Figure P25.11. If the block is released from rest when
the spring is unstretched (at x ! 0), (a) by what maxi-
mum amount does the spring expand? (b) What is the
equilibrium position of the block? (c) Show that the
block’s motion is simple harmonic, and determine its
period.(d) Repeat part (a) if the coefficient of kinetic
friction between block and surface is ,k .

Section 25.1 Potential Difference and Electric Potential
1. How much work is done (by a battery, generator, or

some other source of electrical energy) in moving Avo-
gadro’s number of electrons from an initial point where
the electric potential is 9.00 V to a point where the po-
tential is # 5.00 V ? (The potential in each case is mea-
sured relative to a common reference point.)

2. An ion accelerated through a potential difference of
115 V experiences an increase in kinetic energy of 
7.37 % 10#17 J. Calculate the charge on the ion.

3. (a) Calculate the speed of a proton that is accelerated
from rest through a potential difference of 120 V. 
(b) Calculate the speed of an electron that is acceler-
ated through the same potential difference.

4. Review Problem. Through what potential difference
would an electron need to be accelerated for it to
achieve a speed of 40.0% of the speed of light, starting
from rest? The speed of light is c ! 3.00 % 108 m/s; 
review Section 7.7.

5. What potential difference is needed to stop an electron
having an initial speed of 4.20 % 105 m/s?

Section 25.2 Potential Differences in a 
Uniform Electric Field

6. A uniform electric field of magnitude 250 V/m is 
directed in the positive x direction. A * 12.0-,C 
charge moves from the origin to the point (x, y) !
(20.0 cm, 50.0 cm). (a) What was the change in the 
potential energy of this charge? (b) Through what po-
tential difference did the charge move?

7. The difference in potential between the accelerating
plates of a TV set is about 25 000 V. If the distance be-
tween these plates is 1.50 cm, find the magnitude of the
uniform electric field in this region.

8. Suppose an electron is released from rest in a uniform
electric field whose magnitude is 5.90 % 103 V/m. 
(a) Through what potential difference will it have
passed after moving 1.00 cm? (b) How fast will the elec-
tron be moving after it has traveled 1.00 cm?

9. An electron moving parallel to the x axis has an initial
speed of 3.70 % 106 m/s at the origin. Its speed is re-
duced to 1.40 % 105 m/s at the point x ! 2.00 cm. Cal-
culate the potential difference between the origin and
that point. Which point is at the higher potential?

10. A uniform electric field of magnitude 325 V/m is 
directed in the negative y direction as shown in 
Figure P25.10. The coordinates of point A are 
(# 0.200, # 0.300) m, and those of point B are 
(0.400, 0.500) m. Calculate the potential difference

using the blue path.VB # VA ,

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

y

B

x

E

A

Figure P25.10

Figure P25.11 Problems 11 and 12.

k
m, Q

E

x = 0

WEB
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13. On planet Tehar, the acceleration due to gravity is the
same as that on Earth but there is also a strong down-
ward electric field with the field being uniform close to
the planet’s surface. A 2.00-kg ball having a charge of 
5.00 ,C is thrown upward at a speed of 20.1 m/s and it
hits the ground after an interval of 4.10 s. What is the
potential difference between the starting point and the
top point of the trajectory?

14. An insulating rod having linear charge density 1 !
40.0 ,C/m and linear mass density , ! 0.100 kg/m is
released from rest in a uniform electric field E !
100 V/m directed perpendicular to the rod (Fig.
P25.14). (a) Determine the speed of the rod after it has
traveled 2.00 m. (b) How does your answer to part (a)
change if the electric field is not perpendicular to the
rod? Explain.

18. A charge * q is at the origin. A charge # 2q is at x !
2.00 m on the x axis. For what finite value(s) of x is 
(a) the electric field zero? (b) the electric potential zero?

19. The Bohr model of the hydrogen atom states that the
single electron can exist only in certain allowed orbits
around the proton. The radius of each Bohr orbit is r !
n2 (0.052 9 nm) where n ! 1, 2, 3, . . . . Calculate
the electric potential energy of a hydrogen atom when
the electron is in the (a) first allowed orbit, n ! 1; 
(b) second allowed orbit, n ! 2; and (c) when the elec-
tron has escaped from the atom Express your
answers in electron volts.

20. Two point charges nC and 
are separated by 35.0 cm. (a) What is the potential en-
ergy of the pair? What is the significance of the alge-
braic sign of your answer? (b) What is the electric po-
tential at a point midway between the charges?

21. The three charges in Figure P25.21 are at the vertices of
an isosceles triangle. Calculate the electric potential at
the midpoint of the base, taking q ! 7.00 ,C.

22. Compare this problem with Problem 55 in Chapter 23. Four
identical point charges (q ! * 10.0 ,C) are located on
the corners of a rectangle, as shown in Figure P23.55.
The dimensions of the rectangle are L ! 60.0 cm and
W ! 15.0 cm. Calculate the electric potential energy of
the charge at the lower left corner due to the other
three charges.

Q 2 ! #3.00 nCQ 1 ! *5.00

(r ! $).

string makes an angle ) ! 60.0° with a uniform electric
field of magnitude E ! 300 V/m. Determine the speed
of the particle when the string is parallel to the electric
field (point a in Fig. P25.15).

Section 25.3 Electric Potential and Potential Energy 
Due to Point Charges
Note: Unless stated otherwise, assume a reference level of po-
tential at 

16. (a) Find the potential at a distance of 1.00 cm from a
proton. (b) What is the potential difference between
two points that are 1.00 cm and 2.00 cm from a proton?
(c) Repeat parts (a) and (b) for an electron.

17. Given two 2.00-,C charges, as shown in Figure P25.17,
and a positive test charge % 10#18 C at the ori-
gin, (a) what is the net force exerted on q by the two
2.00-,C charges? (b) What is the electric field at the ori-
gin due to the two 2.00-,C charges? (c) What is the
electric potential at the origin due to the two 2.00-,C
charges?

q ! 1.28

r ! $.V ! 0

15. A particle having charge ,C and mass m !
0.010 0 kg is connected to a string that is L ! 1.50 m
long and is tied to the pivot point P in Figure P25.15.
The particle, string, and pivot point all lie on a horizon-
tal table. The particle is released from rest when the

q ! *2.00

2.00
y

q

0 x = 0.800 mx = –0.800 m
x

C Cµ 2.00 µ

θ

Top View

E
P

a

m
q

L

λ, µ

EE

,

Figure P25.14

Figure P25.15

Figure P25.17
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collide? (Hint: Consider conservation of energy and
conservation of linear momentum.) (b) If the spheres
were conductors, would the speeds be greater or less
than those calculated in part (a)?

29. A small spherical object carries a charge of 8.00 nC. At
what distance from the center of the object is the poten-
tial equal to 100 V ? 50.0 V ? 25.0 V ? Is the spacing of the
equipotentials proportional to the change in potential?

30. Two point charges of equal magnitude are located
along the y axis equal distances above and below the 
x axis, as shown in Figure P25.30. (a) Plot a graph of
the potential at points along the x axis over the interval

You should plot the potential in units of
keQ /a. (b) Let the charge located at #a be negative
and plot the potential along the y axis over the interval
# 4a & y & 4a.

#3a & x & 3a.

31. In Rutherford’s famous scattering experiments that led
to the planetary model of the atom, alpha particles
(charge * 2e, mass ! 6.64 % 10#27 kg) were fired at 
a gold nucleus (charge * 79e). An alpha particle, ini-
tially very far from the gold nucleus, is fired with a ve-
locity of 2.00 % 107 m/s directly toward the center of
the nucleus. How close does the alpha particle get to
this center before turning around? Assume the gold nu-
cleus remains stationary.

32. An electron starts from rest 3.00 cm from the center of
a uniformly charged insulating sphere of radius 2.00 cm
and total charge 1.00 nC. What is the speed of the elec-
tron when it reaches the surface of the sphere?

33. Calculate the energy required to assemble the array of
charges shown in Figure P25.33, where a ! 0.200 m, 
b ! 0.400 m, and q ! 6.00 ,C.

34. Four identical particles each have charge q and mass m.
They are released from rest at the vertices of a square of
side L . How fast is each charge moving when their dis-
tance from the center of the square doubles?

23. Show that the amount of work required to assemble
four identical point charges of magnitude Q at the cor-
ners of a square of side s is 5.41keQ2/s.

24. Compare this problem with Problem 18 in Chapter 23. Two
point charges each of magnitude 2.00 ,C are located
on the x axis. One is at x ! 1.00 m, and the other is at 
x ! # 1.00 m. (a) Determine the electric potential on
the y axis at y ! 0.500 m. (b) Calculate the electric po-
tential energy of a third charge, of # 3.00 ,C, placed on
the y axis at y ! 0.500 m.

25. Compare this problem with Problem 22 in Chapter 23. Five
equal negative point charges #q are placed symmetri-
cally around a circle of radius R. Calculate the electric
potential at the center of the circle.

26. Compare this problem with Problem 17 in Chapter 23.
Three equal positive charges q are at the corners of an
equilateral triangle of side a, as shown in Figure P23.17.
(a) At what point, if any, in the plane of the charges is
the electric potential zero? (b) What is the electric po-
tential at the point P due to the two charges at the base
of the triangle?

27. Review Problem. Two insulating spheres having radii
0.300 cm and 0.500 cm, masses 0.100 kg and 0.700 kg,
and charges # 2.00 ,C and 3.00 ,C are released from
rest when their centers are separated by 1.00 m. 
(a) How fast will each be moving when they collide?
(Hint: Consider conservation of energy and linear mo-
mentum.) (b) If the spheres were conductors would the
speeds be larger or smaller than those calculated in part
(a)? Explain.

28. Review Problem. Two insulating spheres having radii
r 1 and r 2 , masses m 1 and m 2 , and charges #q1 and q2
are released from rest when their centers are separated
by a distance d. (a) How fast is each moving when they

2.00 cm

4.00 cm

q

–q –q

Figure P25.21

a

a

x

y

Q >O

Q

Figure P25.30
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35. How much work is required to assemble eight identical
point charges, each of magnitude q, at the corners of a
cube of side s?

Section 25.4 Obtaining the Value of the Electric Field
from the Electric Potential

36. The potential in a region between x ! 0 and x !
6.00 m is where a ! 10.0 V and b !
# 7.00 V/m. Determine (a) the potential at x !
0, 3.00 m, and 6.00 m and (b) the magnitude and 
direction of the electric field at x ! 0, 3.00 m, and 
6.00 m.

37. Over a certain region of space, the electric potential is
Find the expressions for the x, y,

and z components of the electric field over this region.
What is the magnitude of the field at the point P, which
has coordinates (1, 0, # 2) m?

38. The electric potential inside a charged spherical
conductor of radius R is given by V ! ke Q /R and
outside the conductor is given by V ! ke Q /r. Using

derive the electric field (a) inside and
(b) outside this charge distribution.

39. It is shown in Example 25.7 that the potential at a point
P a distance a above one end of a uniformly charged
rod of length lying along the x axis is

Use this result to derive an expression for the y compo-
nent of the electric field at P. (Hint: Replace a with y.)

40. When an uncharged conducting sphere of radius a is
placed at the origin of an xyz coordinate system that lies
in an initially uniform electric field the result-
ing electric potential is 

for points outside the sphere, where V0 is the (constant)
electric potential on the conductor. Use this equation to
determine the x, y, and z components of the resulting
electric field.

V(x, y, z) ! V0 # E0z *
E0a3z

(x2 * y2 * z2)3/2

E ! E0k,

V !
keQ

!
 ln& ! * !!2 * a2

a '
!

Er ! #dV/dr,

V ! 5x # 3x2y * 2yz2.

V ! a * bx

Section 25.5 Electric Potential Due to Continuous 
Charge Distributions

41. Consider a ring of radius R with the total charge Q
spread uniformly over its perimeter. What is the poten-
tial difference between the point at the center of the
ring and a point on its axis a distance 2R from the 
center?

42. Compare this problem with Problem 33 in Chapter 23. A
uniformly charged insulating rod of length 14.0 cm is
bent into the shape of a semicircle, as shown in Figure
P23.33. If the rod has a total charge of # 7.50 ,C, find
the electric potential at O, the center of the semicircle.

43. A rod of length L (Fig. P25.43) lies along the x axis with
its left end at the origin and has a nonuniform charge
density 1 ! 6x (where 6 is a positive constant). 
(a) What are the units of 6? (b) Calculate the electric
potential at A.

46. A wire of finite length that has a uniform linear charge
density 1 is bent into the shape shown in Figure P25.46.
Find the electric potential at point O.

44. For the arrangement described in the previous prob-
lem, calculate the electric potential at point B that lies
on the perpendicular bisector of the rod a distance 
b above the x axis.

45. Calculate the electric potential at point P on the axis of
the annulus shown in Figure P25.45, which has a uni-
form charge density 0.

a
b

x
P

b

B
y

x
L

d

A

q –2q

2q 3q
b

a

Figure P25.33

Figure P25.43 Problems 43 and 44.

Figure P25.45
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Section 25.6 Electric Potential Due to a 
Charged Conductor

47. How many electrons should be removed from an ini-
tially uncharged spherical conductor of radius 0.300 m
to produce a potential of 7.50 kV at the surface?

48. Two charged spherical conductors are connected by a
long conducting wire, and a charge of 20.0 ,C is placed
on the combination. (a) If one sphere has a radius of
4.00 cm and the other has a radius of 6.00 cm, what is
the electric field near the surface of each sphere? 
(b) What is the electric potential of each sphere?

49. A spherical conductor has a radius of 14.0 cm and
charge of 26.0 ,C. Calculate the electric field and the
electric potential at (a) r ! 10.0 cm, (b) r ! 20.0 cm,
and (c) r ! 14.0 cm from the center.

50. Two concentric spherical conducting shells of radii a !
0.400 m and b ! 0.500 m are connected by a thin wire,
as shown in Figure P25.50. If a total charge Q !
10.0 ,C is placed on the system, how much charge
settles on each sphere?

ADDITIONAL PROBLEMS
53. The liquid-drop model of the nucleus suggests that

high-energy oscillations of certain nuclei can split the
nucleus into two unequal fragments plus a few neu-
trons. The fragments acquire kinetic energy from their
mutual Coulomb repulsion. Calculate the electric po-
tential energy (in electron volts) of two spherical frag-
ments from a uranium nucleus having the following
charges and radii: 38e and 5.50 % 10#15 m; 54e and 
6.20 % 10#15 m. Assume that the charge is distributed
uniformly throughout the volume of each spherical
fragment and that their surfaces are initially in contact
at rest. (The electrons surrounding the nucleus can be
neglected.)

54. On a dry winter day you scuff your leather-soled shoes
across a carpet and get a shock when you extend the tip
of one finger toward a metal doorknob. In a dark room
you see a spark perhaps 5 mm long. Make order-of-
magnitude estimates of (a) your electric potential and
(b) the charge on your body before you touch the door-
knob. Explain your reasoning.

55. The charge distribution shown in Figure P25.55 is re-
ferred to as a linear quadrupole. (a) Show that the po-
tential at a point on the x axis where x 2 a is

(b) Show that the expression obtained in part (a) when
reduces to

V !
2keQa2

x3

x W a

V !
2keQa2

x3 # xa2

WEB

56. (a) Use the exact result from Problem 55 to find the
electric field at any point along the axis of the linear
quadrupole for (b) Evaluate E at x ! 3a if a !
2.00 mm and Q ! 3.00 ,C.

57. At a certain distance from a point charge, the magni-
tude of the electric field is 500 V/m and the electric po-
tential is # 3.00 kV. (a) What is the distance to the
charge? (b) What is the magnitude of the charge?

58. An electron is released from rest on the axis of a uni-
form positively charged ring, 0.100 m from the ring’s

x 2 a.

(Optional)
Section 25.7 The Millikan Oil-Drop Experiment
(Optional)
Section 25.8 Applications of Electrostatics

51. Consider a Van de Graaff generator with a 30.0-cm-
diameter dome operating in dry air. (a) What is the
maximum potential of the dome? (b) What is the maxi-
mum charge on the dome?

52. The spherical dome of a Van de Graaff generator can
be raised to a maximum potential of 600 kV; then addi-
tional charge leaks off in sparks, by producing break-
down of the surrounding dry air. Determine (a) the
charge on the dome and (b) the radius of the dome.

+Q –2Q +Q
x

y

(a, 0)(–a, 0)

Quadrupole

a

b

q 1

q 2

Wire

2R 2R
O

R

Figure P25.46

Figure P25.50

Figure P25.55
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center. If the linear charge density of the ring is 
* 0.100 ,C/m and the radius of the ring is 0.200 m,
how fast will the electron be moving when it reaches the
center of the ring?

59. (a) Consider a uniformly charged cylindrical shell hav-
ing total charge Q , radius R , and height h. Determine
the electrostatic potential at a point a distance d from
the right side of the cylinder, as shown in Figure P25.59.
(Hint: Use the result of Example 25.5 by treating the
cylinder as a collection of ring charges.) (b) Use the re-
sult of Example 25.6 to solve the same problem for a
solid cylinder.

63. From Gauss’s law, the electric field set up by a uniform
line of charge is

where is a unit vector pointing radially away from the
line and 1 is the charge per unit length along the line.
Derive an expression for the potential difference be-
tween and 

64. A point charge q is located at x ! #R , and a point
charge # 2q is located at the origin. Prove that the
equipotential surface that has zero potential is a sphere
centered at (# 4R/3, 0, 0) and having a radius r !
2R/3.

65. Consider two thin, conducting, spherical shells as
shown in cross-section in Figure P25.65. The inner shell
has a radius r 1 ! 15.0 cm and a charge of 10.0 nC. The
outer shell has a radius r 2 ! 30.0 cm and a charge of
# 15.0 nC. Find (a) the electric field E and (b) the
electric potential V in regions A, B, and C, with V ! 0 at
r ! $.

r ! r2 .r ! r1

r̂

E ! & 1

2/70r ' r̂

WEB

66. The x axis is the symmetry axis of a uniformly charged
ring of radius R and charge Q (Fig. P25.66). A point
charge Q of mass M is located at the center of the ring.
When it is displaced slightly, the point charge acceler-

60. Two parallel plates having charges of equal magnitude
but opposite sign are separated by 12.0 cm. Each plate
has a surface charge density of 36.0 nC/m2. A proton is
released from rest at the positive plate. Determine 
(a) the potential difference between the plates, (b) the
energy of the proton when it reaches the negative plate,
(c) the speed of the proton just before it strikes the neg-
ative plate, (d) the acceleration of the proton, and 
(e) the force on the proton. (f) From the force, find
the magnitude of the electric field and show that it is
equal to that found from the charge densities on the
plates.

61. Calculate the work that must be done to charge a spher-
ical shell of radius R to a total charge Q.

62. A Geiger–Müller counter is a radiation detector that es-
sentially consists of a hollow cylinder (the cathode) of
inner radius ra and a coaxial cylindrical wire (the an-
ode) of radius rb (Fig. P25.62). The charge per unit
length on the anode is 1, while the charge per unit
length on the cathode is # 1. (a) Show that the magni-
tude of the potential difference between the wire and
the cylinder in the sensitive region of the detector is

(b) Show that the magnitude of the electric field over
that region is given by

where r is the distance from the center of the anode to
the point where the field is to be calculated.

E !
"V

ln(ra/rb)
 & 1

r '

"V ! 2ke 1 ln& ra

rb
'

d

R

h

Figure P25.59

rb
λ

ra –λ

Cathode

Anode

λ

C

B

A

r1

r2

Figure P25.62

Figure P25.65
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ates along the x axis to infinity. Show that the ultimate
speed of the point charge is

v ! & 2keQ2

MR '1/2

R
Q

v
x

Uniformly
charged ring

Q

Figure P25.66

Figure P25.68

Figure P25.69

Figure P25.70

(b) For the dipole arrangement shown, express V in
terms of cartesian coordinates using r ! (x2 + y2)1/2

and

Using these results and taking calculate the field
components Ex and Ey .

70. Figure P25.70 shows several equipotential lines each la-
beled by its potential in volts. The distance between the
lines of the square grid represents 1.00 cm. (a) Is the
magnitude of the field bigger at A or at B? Why? 
(b) What is E at B? (c) Represent what the field looks
like by drawing at least eight field lines.

r W a,

cos ) !
y

(x2 * y2)1/2

69. A dipole is located along the y axis as shown in Figure
P25.69. (a) At a point P, which is far from the dipole

the electric potential is

where p ! 2qa. Calculate the radial component Er and
the perpendicular component E) of the associated elec-
tric field. Note that Do these re-
sults seem reasonable for ) ! 90° and 0°? for r ! 0? 

E) ! #(1/r)(-V/-)).

V ! ke 
p cos )

r 2

(r W a),

67. An infinite sheet of charge that has a surface charge
density of 25.0 nC/m2 lies in the yz plane, passes
through the origin, and is at a potential of 1.00 kV at
the point . A long wire having a linear
charge density of 80.0 nC/m lies parallel to the y axis
and intersects the x axis at x ! 3.00 m. (a) Determine,
as a function of x, the potential along the x axis between
wire and sheet. (b) What is the potential energy of a
2.00-nC charge placed at x ! 0.800 m?

68. The thin, uniformly charged rod shown in Figure
P25.68 has a linear charge density 1. Find an expression
for the electric potential at P.

y ! 0, z ! 0

a

–q

a

+q

r 1

r 2

r

θ
x

y
P

Er

Eθθ

b

a L
x

P

y

71. A disk of radius R has a nonuniform surface charge
density 0 ! Cr, where C is a constant and r is measured
from the center of the disk (Fig. P25.71). Find (by di-
rect integration) the potential at P.

×

B

×0
2

4
6

8

A
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ANSWERS TO QUICK QUIZZES

electric potential is zero at the center of the dipole, but
the magnitude of the field at that point is not zero. (The
two charges in a dipole are by definition of opposite
sign; thus, the electric field lines created by the two
charges extend from the positive to the negative charge
and do not cancel anywhere.) This is the situation we
presented in Example 25.4c, in which the equations we
obtained give and .Ex 8 0V ! 0

25.1 We do if the electric field is uniform. (This is precisely
what we do in the next section.) In general, however, an
electric field changes from one place to another.

25.2 B : C, C : D, A : B, D : E. Moving from B to C de-
creases the electric potential by 2 V, so the electric field
performs 2 J of work on each coulomb of charge that
moves. Moving from C to D decreases the electric poten-
tial by 1 V, so 1 J of work is done by the field. It takes no
work to move the charge from A to B because the elec-
tric potential does not change. Moving from D to E in-
creases the electric potential by 1 V, and thus the field
does # 1 J of work, just as raising a mass to a higher ele-
vation causes the gravitational field to do negative work
on the mass.

25.3 The electric potential decreases in inverse proportion to
the radius (see Eq. 25.11). The electric field magnitude
decreases as the reciprocal of the radius squared (see
Eq. 23.4). Because the surface area increases as r 2 while
the electric field magnitude decreases as 1/r 2, the elec-
tric flux through the surface remains constant (see 
Eq. 24.1).

25.4 (a) Yes. Consider four equal charges placed at the cor-
ners of a square. The electric potential graph for this sit-
uation is shown in the figure. At the center of the
square, the electric field is zero because the individual
fields from the four charges cancel, but the potential is
not zero. This is also the situation inside a charged con-
ductor. (b) Yes again. In Figure 25.8, for instance, the

Figure P25.71

electric potential energy. (Hint: Imagine that the sphere
is constructed by adding successive layers of concentric
shells of charge and use 

73. The results of Problem 62 apply also to an electrostatic
precipitator (see Figs. 25.28a and P25.62). An applied
voltage is to produce an elec-
tric field of magnitude 5.50 MV/m at the surface of the
central wire. The outer cylindrical wall has uniform ra-
dius ra ! 0.850 m. (a) What should be the radius rb of
the central wire? You will need to solve a transcendental
equation. (b) What is the magnitude of the electric
field at the outer wall?

"V ! Va # Vb ! 50.0 kV

dU ! V dq.)dq ! (4/r 2 dr)9
R
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x
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72. A solid sphere of radius R has a uniform charge density
9 and total charge Q. Derive an expression for its total
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n this chapter, we discuss capacitors—devices that store electric charge. Capaci-
tors are commonly used in a variety of electric circuits. For instance, they are
used to tune the frequency of radio receivers, as filters in power supplies, to

eliminate sparking in automobile ignition systems, and as energy-storing devices in
electronic flash units.

A capacitor consists of two conductors separated by an insulator. We shall see
that the capacitance of a given capacitor depends on its geometry and on the ma-
terial—called a dielectric—that separates the conductors.

DEFINITION OF CAPACITANCE
Consider two conductors carrying charges of equal magnitude but of opposite
sign, as shown in Figure 26.1. Such a combination of two conductors is called a ca-
pacitor. The conductors are called plates. A potential difference !V exists between
the conductors due to the presence of the charges. Because the unit of potential
difference is the volt, a potential difference is often called a voltage. We shall use
this term to describe the potential difference across a circuit element or between
two points in space.

What determines how much charge is on the plates of a capacitor for a given
voltage? In other words, what is the capacity of the device for storing charge at a
particular value of !V ? Experiments show that the quantity of charge Q on a ca-
pacitor1 is linearly proportional to the potential difference between the conduc-
tors; that is, The proportionality constant depends on the shape and sepa-
ration of the conductors.2 We can write this relationship as if we define
capacitance as follows:

Q " C !V
Q # !V.

26.1

The capacitance C of a capacitor is the ratio of the magnitude of the charge on
either conductor to the magnitude of the potential difference between them:

(26.1)C !
Q

!V

I

Note that by definition capacitance is always a positive quantity. Furthermore, the po-
tential difference !V is always expressed in Equation 26.1 as a positive quantity. Be-
cause the potential difference increases linearly with the stored charge, the ratio
Q /!V is constant for a given capacitor. Therefore, capacitance is a measure of a
capacitor’s ability to store charge and electric potential energy.

From Equation 26.1, we see that capacitance has SI units of coulombs per volt.
The SI unit of capacitance is the farad (F), which was named in honor of Michael
Faraday:

The farad is a very large unit of capacitance. In practice, typical devices have ca-
pacitances ranging from microfarads (10$6 F) to picofarads (10$12 F). For practi-
cal purposes, capacitors often are labeled “mF” for microfarads and “mmF” for mi-
cromicrofarads or, equivalently, “pF” for picofarads.

1 F " 1 C/V

Definition of capacitance

1 Although the total charge on the capacitor is zero (because there is as much excess positive charge
on one conductor as there is excess negative charge on the other), it is common practice to refer to the
magnitude of the charge on either conductor as “the charge on the capacitor.”
2 The proportionality between !V and Q can be proved from Coulomb’s law or by experiment.

13.5

–Q

+Q

Figure 26.1 A capacitor consists
of two conductors carrying charges
of equal magnitude but opposite
sign.
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Let us consider a capacitor formed from a pair of parallel plates, as shown in
Figure 26.2. Each plate is connected to one terminal of a battery (not shown in
Fig. 26.2), which acts as a source of potential difference. If the capacitor is initially
uncharged, the battery establishes an electric field in the connecting wires when
the connections are made. Let us focus on the plate connected to the negative ter-
minal of the battery. The electric field applies a force on electrons in the wire just
outside this plate; this force causes the electrons to move onto the plate. This
movement continues until the plate, the wire, and the terminal are all at the same
electric potential. Once this equilibrium point is attained, a potential difference
no longer exists between the terminal and the plate, and as a result no electric
field is present in the wire, and the movement of electrons stops. The plate now
carries a negative charge. A similar process occurs at the other capacitor plate,
with electrons moving from the plate to the wire, leaving the plate positively
charged. In this final configuration, the potential difference across the capacitor
plates is the same as that between the terminals of the battery.

Suppose that we have a capacitor rated at 4 pF. This rating means that the ca-
pacitor can store 4 pC of charge for each volt of potential difference between the
two conductors. If a 9-V battery is connected across this capacitor, one of the con-
ductors ends up with a net charge of $ 36 pC and the other ends up with a net
charge of % 36 pC.

CALCULATING CAPACITANCE
We can calculate the capacitance of a pair of oppositely charged conductors in the
following manner: We assume a charge of magnitude Q , and we calculate the po-
tential difference using the techniques described in the preceding chapter. We
then use the expression to evaluate the capacitance. As we might ex-
pect, we can perform this calculation relatively easily if the geometry of the capaci-
tor is simple.

We can calculate the capacitance of an isolated spherical conductor of radius
R and charge Q if we assume that the second conductor making up the capacitor is
a concentric hollow sphere of infinite radius. The electric potential of the sphere
of radius R is simply keQ /R, and setting at infinity as usual, we have

(26.2)

This expression shows that the capacitance of an isolated charged sphere is pro-
portional to its radius and is independent of both the charge on the sphere and
the potential difference.

C "
Q
!V

"
Q

keQ /R
"

R
ke

" 4&'0R

V " 0

C " Q /!V

26.2

QuickLab
Roll some socks into balls and stuff
them into a shoebox. What deter-
mines how many socks fit in the box?
Relate how hard you push on the
socks to !V for a capacitor. How does
the size of the box influence its “sock
capacity”?

A collection of capacitors used in a variety of applica-
tions. 

d

–Q
+Q

Area = A

Figure 26.2 A parallel-plate ca-
pacitor consists of two parallel con-
ducting plates, each of area A, sepa-
rated by a distance d. When the
capacitor is charged, the plates
carry equal amounts of charge.
One plate carries positive charge,
and the other carries negative
charge.
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The capacitance of a pair of conductors depends on the geometry of the con-
ductors. Let us illustrate this with three familiar geometries, namely, parallel
plates, concentric cylinders, and concentric spheres. In these examples, we assume
that the charged conductors are separated by a vacuum. The effect of a dielectric
material placed between the conductors is treated in Section 26.5.

Parallel-Plate Capacitors

Two parallel metallic plates of equal area A are separated by a distance d, as shown
in Figure 26.2. One plate carries a charge Q , and the other carries a charge $Q .
Let us consider how the geometry of these conductors influences the capacity of
the combination to store charge. Recall that charges of like sign repel one an-
other. As a capacitor is being charged by a battery, electrons flow into the negative
plate and out of the positive plate. If the capacitor plates are large, the accumu-
lated charges are able to distribute themselves over a substantial area, and the
amount of charge that can be stored on a plate for a given potential difference in-
creases as the plate area is increased. Thus, we expect the capacitance to be pro-
portional to the plate area A.

Now let us consider the region that separates the plates. If the battery has a
constant potential difference between its terminals, then the electric field between
the plates must increase as d is decreased. Let us imagine that we move the plates
closer together and consider the situation before any charges have had a chance
to move in response to this change. Because no charges have moved, the electric
field between the plates has the same value but extends over a shorter distance.
Thus, the magnitude of the potential difference between the plates (Eq.
25.6) is now smaller. The difference between this new capacitor voltage and the
terminal voltage of the battery now exists as a potential difference across the wires
connecting the battery to the capacitor. This potential difference results in an elec-
tric field in the wires that drives more charge onto the plates, increasing the po-
tential difference between the plates. When the potential difference between the
plates again matches that of the battery, the potential difference across the wires
falls back to zero, and the flow of charge stops. Thus, moving the plates closer to-
gether causes the charge on the capacitor to increase. If d is increased, the charge
decreases. As a result, we expect the device’s capacitance to be inversely propor-
tional to d.

!V " Ed

Figure 26.3 (a) The electric field between the plates of a parallel-plate capacitor is uniform
near the center but nonuniform near the edges. (b) Electric field pattern of two oppositely
charged conducting parallel plates. Small pieces of thread on an oil surface align with the elec-
tric field.

+Q

–Q

(a) (b)
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We can verify these physical arguments with the following derivation. The sur-
face charge density on either plate is If the plates are very close to-
gether (in comparison with their length and width), we can assume that the elec-
tric field is uniform between the plates and is zero elsewhere. According to the last
paragraph of Example 24.8, the value of the electric field between the plates is

Because the field between the plates is uniform, the magnitude of the potential
difference between the plates equals Ed (see Eq. 25.6); therefore,

Substituting this result into Equation 26.1, we find that the capacitance is

(26.3)

That is, the capacitance of a parallel-plate capacitor is proportional to the
area of its plates and inversely proportional to the plate separation, just as
we expect from our conceptual argument.

A careful inspection of the electric field lines for a parallel-plate capacitor re-
veals that the field is uniform in the central region between the plates, as shown in
Figure 26.3a. However, the field is nonuniform at the edges of the plates. Figure
26.3b is a photograph of the electric field pattern of a parallel-plate capacitor.
Note the nonuniform nature of the electric field at the ends of the plates. Such
end effects can be neglected if the plate separation is small compared with the
length of the plates.

Many computer keyboard buttons are constructed of capacitors, as shown in Figure 26.4.
When a key is pushed down, the soft insulator between the movable plate and the fixed
plate is compressed. When the key is pressed, the capacitance (a) increases, (b) decreases,
or (c) changes in a way that we cannot determine because the complicated electric circuit
connected to the keyboard button may cause a change in !V.

Quick Quiz 26.1

C "
'0A
d

C "
Q
!V

"
Q

Qd/'0A

!V " Ed "
Qd
'0A

E "
(

'0
"

Q
'0A

( " Q /A.

Key

Movable
plate

Soft
insulator

Fixed
plate

B

Parallel-Plate CapacitorEXAMPLE 26.1

Exercise What is the capacitance for a plate separation of
3.00 mm?

Answer 0.590 pF.

1.77 pF " 1.77 ) 10$12 F "
A parallel-plate capacitor has an area 
and a plate separation mm. Find its capacitance.

Solution From Equation 26.3, we find that

C " '0 
A
d

" (8.85 ) 10$12 C2/N*m2)" 2.00 ) 10$4 m2

1.00 ) 10$3 m #

d " 1.00
A " 2.00 ) 10$4 m2

Figure 26.4 One type of com-
puter keyboard button.
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The Cylindrical CapacitorEXAMPLE 26.2
by (b/a), a positive quantity. As
predicted, the capacitance is proportional to the length of
the cylinders. As we might expect, the capacitance also de-
pends on the radii of the two cylindrical conductors. From
Equation 26.4, we see that the capacitance per unit length of
a combination of concentric cylindrical conductors is

(26.5)

An example of this type of geometric arrangement is a coaxial
cable, which consists of two concentric cylindrical conductors
separated by an insulator. The cable carries electrical signals
in the inner and outer conductors. Such a geometry is espe-
cially useful for shielding the signals from any possible exter-
nal influences.

C
!

"
1

2ke ln" b
a #

!V " $ Vb $ Va $ " 2ke + lnA solid cylindrical conductor of radius a and charge Q is
coaxial with a cylindrical shell of negligible thickness, radius

and charge $Q (Fig. 26.5a). Find the capacitance of
this cylindrical capacitor if its length is !.

Solution It is difficult to apply physical arguments to this
configuration, although we can reasonably expect the capaci-
tance to be proportional to the cylinder length ! for the same
reason that parallel-plate capacitance is proportional to plate
area: Stored charges have more room in which to be distrib-
uted. If we assume that ! is much greater than a and b, we can
neglect end effects. In this case, the electric field is perpen-
dicular to the long axis of the cylinders and is confined to the
region between them (Fig. 26.5b). We must first calculate the
potential difference between the two cylinders, which is given
in general by

where E is the electric field in the region In Chap-
ter 24, we showed using Gauss’s law that the magnitude of the
electric field of a cylindrical charge distribution having linear
charge density + is (Eq. 24.7). The same result
applies here because, according to Gauss’s law, the charge on
the outer cylinder does not contribute to the electric field in-
side it. Using this result and noting from Figure 26.5b that E
is along r, we find that

Substituting this result into Equation 26.1 and using the fact
that we obtain

(26.4)

where !V is the magnitude of the potential difference, given

!

2ke ln" b
a #

C "
Q
!V

"
Q

2keQ
!

 ln" b
a #

"

+ " Q /!,

Vb $ Va " $%b

a
 Er dr " $2ke + %b

a
 
dr
r

" $2ke + ln" b
a #

Er " 2ke +/r

a , r , b.

Vb $ Va " $%b

a
 E ! ds

b - a,

The Spherical CapacitorEXAMPLE 26.3
Solution As we showed in Chapter 24, the field outside
a spherically symmetric charge distribution is radial and
given by the expression In this case, this result ap-
plies to the field between the spheres From(a , r , b).

keQ /r 2.

A spherical capacitor consists of a spherical conducting shell
of radius b and charge $Q concentric with a smaller conduct-
ing sphere of radius a and charge Q (Fig. 26.6). Find the ca-
pacitance of this device.

b
a

!

(a) (b)

Gaussian
surface

–Q
a

Q

b

r

Figure 26.5 (a) A cylindrical capacitor consists of a solid cylindri-
cal conductor of radius a and length ! surrounded by a coaxial cylin-
drical shell of radius b. (b) End view. The dashed line represents the
end of the cylindrical gaussian surface of radius r and length !.

Cylindrical and Spherical Capacitors

From the definition of capacitance, we can, in principle, find the capacitance of
any geometric arrangement of conductors. The following examples demonstrate
the use of this definition to calculate the capacitance of the other familiar geome-
tries that we mentioned: cylinders and spheres.
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What is the magnitude of the electric field in the region outside the spherical capacitor de-
scribed in Example 26.3?

COMBINATIONS OF CAPACITORS
Two or more capacitors often are combined in electric circuits. We can calculate
the equivalent capacitance of certain combinations using methods described in
this section. The circuit symbols for capacitors and batteries, as well as the color
codes used for them in this text, are given in Figure 26.7. The symbol for the ca-
pacitor reflects the geometry of the most common model for a capacitor—a pair
of parallel plates. The positive terminal of the battery is at the higher potential
and is represented in the circuit symbol by the longer vertical line.

Parallel Combination

Two capacitors connected as shown in Figure 26.8a are known as a parallel combina-
tion of capacitors. Figure 26.8b shows a circuit diagram for this combination of ca-
pacitors. The left plates of the capacitors are connected by a conducting wire to
the positive terminal of the battery and are therefore both at the same electric po-
tential as the positive terminal. Likewise, the right plates are connected to the neg-
ative terminal and are therefore both at the same potential as the negative termi-
nal. Thus, the individual potential differences across capacitors connected in
parallel are all the same and are equal to the potential difference applied
across the combination.

In a circuit such as that shown in Figure 26.8, the voltage applied across the
combination is the terminal voltage of the battery. Situations can occur in which

26.3

Quick Quiz 26.2

Figure 26.6 A spherical capacitor consists of an inner sphere of
radius a surrounded by a concentric spherical shell of radius b. The
electric field between the spheres is directed radially outward when
the inner sphere is positively charged.

a

b

– Q

+Q

Exercise Show that as the radius b of the outer sphere ap-
proaches infinity, the capacitance approaches the value
a/ke " 4&'0a .

Figure 26.7 Circuit symbols for
capacitors, batteries, and switches.
Note that capacitors are in blue
and batteries and switches are in
red.

Capacitor
symbol

Battery
symbol +–

Switch
symbol

13.5

Gauss’s law we see that only the inner sphere contributes 
to this field. Thus, the potential difference between the
spheres is

The magnitude of the potential difference is

Substituting this value for !V into Equation 26.1, we obtain

(26.6)
ab

ke(b $ a)
C "

Q
!V

"

!V " $ Vb $ Va $ " keQ 
(b $ a)

ab

 " keQ " 1
b

$
1
a #

Vb $ Va " $%b

a
 Er dr " $keQ %b

a
 
dr
r 2 " keQ & 1

r '
b

a
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the parallel combination is in a circuit with other circuit elements; in such situa-
tions, we must determine the potential difference across the combination by ana-
lyzing the entire circuit.

When the capacitors are first connected in the circuit shown in Figure 26.8,
electrons are transferred between the wires and the plates; this transfer leaves the
left plates positively charged and the right plates negatively charged. The energy
source for this charge transfer is the internal chemical energy stored in the bat-
tery, which is converted to electric potential energy associated with the charge sep-
aration. The flow of charge ceases when the voltage across the capacitors is equal
to that across the battery terminals. The capacitors reach their maximum charge
when the flow of charge ceases. Let us call the maximum charges on the two ca-
pacitors Q 1 and Q 2 . The total charge Q stored by the two capacitors is

(26.7)

That is, the total charge on capacitors connected in parallel is the sum of the
charges on the individual capacitors. Because the voltages across the capacitors
are the same, the charges that they carry are

Suppose that we wish to replace these two capacitors by one equivalent capacitor
having a capacitance Ceq , as shown in Figure 26.8c. The effect this equivalent ca-
pacitor has on the circuit must be exactly the same as the effect of the combina-
tion of the two individual capacitors. That is, the equivalent capacitor must store Q
units of charge when connected to the battery. We can see from Figure 26.8c that
the voltage across the equivalent capacitor also is !V because the equivalent capac-

Q 1 " C1 !V  Q 2 " C2 !V

Q " Q 1 % Q 2

(a)

+ –

C2

+ –

C1

+ –

(b)

∆V

+ –

Q2

C2

Q1

C1

∆V1 = ∆V2 = ∆V

∆V

+ –

Ceq = C1 + C2

(c)

∆V

Figure 26.8 (a) A parallel combination of two capacitors in an electric circuit in which the po-
tential difference across the battery terminals is !V. (b) The circuit diagram for the parallel com-
bination. (c) The equivalent capacitance is C eq " C 1 % C 2 .
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itor is connected directly across the battery terminals. Thus, for the equivalent ca-
pacitor,

Substituting these three relationships for charge into Equation 26.7, we have

If we extend this treatment to three or more capacitors connected in parallel,
we find the equivalent capacitance to be

(26.8)

Thus, the equivalent capacitance of a parallel combination of capacitors is
greater than any of the individual capacitances. This makes sense because we
are essentially combining the areas of all the capacitor plates when we connect
them with conducting wire.

Series Combination

Two capacitors connected as shown in Figure 26.9a are known as a series combina-
tion of capacitors. The left plate of capacitor 1 and the right plate of capacitor 2
are connected to the terminals of a battery. The other two plates are connected to
each other and to nothing else; hence, they form an isolated conductor that is ini-
tially uncharged and must continue to have zero net charge. To analyze this com-
bination, let us begin by considering the uncharged capacitors and follow what
happens just after a battery is connected to the circuit. When the battery is con-

Ceq " C1 % C2 % C3 % ***  (parallel combination)

Ceq " C1 % C2  "parallel
combination#

Ceq !V " C1 !V % C2 !V 

Q " Ceq !V

(a)

+ –

C2

∆V

C1
∆V1 ∆V2

+Q –Q +Q –Q

(b)

+ –

∆V

Ceq

Figure 26.9 (a) A series combination of two capacitors. The charges on the two capacitors are
the same. (b) The capacitors replaced by a single equivalent capacitor. The equivalent capaci-
tance can be calculated from the relationship

1
C eq

"
1

C 1
%

1
C 2
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nected, electrons are transferred out of the left plate of C1 and into the right plate
of C2 . As this negative charge accumulates on the right plate of C2 , an equivalent
amount of negative charge is forced off the left plate of C2 , and this left plate
therefore has an excess positive charge. The negative charge leaving the left plate
of C2 travels through the connecting wire and accumulates on the right plate of
C1 . As a result, all the right plates end up with a charge $Q , and all the left plates
end up with a charge %Q. Thus, the charges on capacitors connected in series
are the same.

From Figure 26.9a, we see that the voltage !V across the battery terminals is
split between the two capacitors:

(26.9)

where !V1 and !V2 are the potential differences across capacitors C1 and C2 , re-
spectively. In general, the total potential difference across any number of ca-
pacitors connected in series is the sum of the potential differences across
the individual capacitors.

Suppose that an equivalent capacitor has the same effect on the circuit as the
series combination. After it is fully charged, the equivalent capacitor must have a
charge of $Q on its right plate and a charge of %Q on its left plate. Applying the
definition of capacitance to the circuit in Figure 26.9b, we have

Because we can apply the expression to each capacitor shown in Figure
26.9a, the potential difference across each is

Substituting these expressions into Equation 26.9 and noting that 
we have

Canceling Q , we arrive at the relationship

When this analysis is applied to three or more capacitors connected in series, the
relationship for the equivalent capacitance is

(26.10)

This demonstrates that the equivalent capacitance of a series combination is
always less than any individual capacitance in the combination.

1
Ceq

"
1

C1
%

1
C2

%
1

C3
% ***  "series

combination#

1
Ceq

"
1

C1
%

1
C2

  "series
combination#

Q
Ceq

"
Q
C1

%
Q
C2

!V " Q /Ceq ,

!V1 "
Q
C1

  !V2 "
Q
C2

Q " C !V

!V "
Q

Ceq

!V " !V1 % !V2

Equivalent CapacitanceEXAMPLE 26.4
Solution Using Equations 26.8 and 26.10, we reduce the
combination step by step as indicated in the figure. The 
1.0-.F and 3.0-.F capacitors are in parallel and combine ac-

Find the equivalent capacitance between a and b for the com-
bination of capacitors shown in Figure 26.10a. All capaci-
tances are in microfarads.
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ENERGY STORED IN A CHARGED CAPACITOR
Almost everyone who works with electronic equipment has at some time verified
that a capacitor can store energy. If the plates of a charged capacitor are con-
nected by a conductor, such as a wire, charge moves between the plates and the
connecting wire until the capacitor is uncharged. The discharge can often be ob-
served as a visible spark. If you should accidentally touch the opposite plates of a
charged capacitor, your fingers act as a pathway for discharge, and the result is an
electric shock. The degree of shock you receive depends on the capacitance and
on the voltage applied to the capacitor. Such a shock could be fatal if high voltages
are present, such as in the power supply of a television set. Because the charges
can be stored in a capacitor even when the set is turned off, unplugging the televi-
sion does not make it safe to open the case and touch the components inside.

Consider a parallel-plate capacitor that is initially uncharged, such that the ini-
tial potential difference across the plates is zero. Now imagine that the capacitor is
connected to a battery and develops a maximum charge Q. (We assume that the
capacitor is charged slowly so that the problem can be considered as an electrosta-
tic system.) When the capacitor is connected to the battery, electrons in the wire
just outside the plate connected to the negative terminal move into the plate to
give it a negative charge. Electrons in the plate connected to the positive terminal
move out of the plate into the wire to give the plate a positive charge. Thus,
charges move only a small distance in the wires. 

To calculate the energy of the capacitor, we shall assume a different process—
one that does not actually occur but gives the same final result. We can make this

26.4

cording to the expression .F. The 
2.0-.F and 6.0-.F capacitors also are in parallel and have an
equivalent capacitance of 8.0 .F. Thus, the upper branch in
Figure 26.10b consists of two 4.0-.F capacitors in series,
which combine as follows:

Ceq "
1

1/2.0 .F
" 2.0 .F 

1
Ceq

"
1

C1
%

1
C2

"
1

4.0 .F
%

1
4.0 .F

"
1

2.0 .F

Ceq " C1 % C2 " 4.0 The lower branch in Figure 26.10b consists of two 8.0-.F ca-
pacitors in series, which combine to yield an equivalent ca-
pacitance of 4.0 .F. Finally, the 2.0-.F and 4.0-.F capacitors
in Figure 26.10c are in parallel and thus have an equivalent
capacitance of 6.0 .F.

Exercise Consider three capacitors having capacitances of
3.0 .F, 6.0 .F, and 12 .F. Find their equivalent capacitance
when they are connected (a) in parallel and (b) in series.

Answer (a) 21 .F; (b) 1.7 .F.

4.0
4.0

8.0
8.0

ba

(b)

4.0

ba

(c)

2.0

6.0 ba

(d)

4.0

8.0

ba

(a)

2.0

6.0

3.0

1.0

Figure 26.10 To find the equivalent capacitance of the capacitors in part (a), we
reduce the various combinations in steps as indicated in parts (b), (c), and (d), using
the series and parallel rules described in the text.

13.5
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assumption because the energy in the final configuration does not depend on the
actual charge-transfer process. We imagine that we reach in and grab a small
amount of positive charge on the plate connected to the negative terminal and ap-
ply a force that causes this positive charge to move over to the plate connected to
the positive terminal. Thus, we do work on the charge as we transfer it from one
plate to the other. At first, no work is required to transfer a small amount of
charge dq from one plate to the other.3 However, once this charge has been trans-
ferred, a small potential difference exists between the plates. Therefore, work
must be done to move additional charge through this potential difference. As
more and more charge is transferred from one plate to the other, the potential dif-
ference increases in proportion, and more work is required.

Suppose that q is the charge on the capacitor at some instant during the
charging process. At the same instant, the potential difference across the capacitor
is !V " q/C . From Section 25.2, we know that the work necessary to transfer an in-
crement of charge dq from the plate carrying charge $q to the plate carrying
charge q (which is at the higher electric potential) is

This is illustrated in Figure 26.11. The total work required to charge the capacitor
from to some final charge is

The work done in charging the capacitor appears as electric potential energy U
stored in the capacitor. Therefore, we can express the potential energy stored in a
charged capacitor in the following forms:

(26.11)

This result applies to any capacitor, regardless of its geometry. We see that for a
given capacitance, the stored energy increases as the charge increases and as the
potential difference increases. In practice, there is a limit to the maximum energy

U "
Q2

2C
" 1

2Q !V " 1
2C(!V )2

W " %Q

0
 

q
C

 dq "
1
C

 %Q

0
 q dq "

Q2

2C

q " Qq " 0

dW " !V dq "
q
C

 dq

Energy stored in a charged
capacitor

QuickLab
Here’s how to find out whether your
calculator has a capacitor to protect
values or programs during battery
changes: Store a number in your cal-
culator’s memory, remove the calcu-
lator battery for a moment, and then
quickly replace it. Was the number
that you stored preserved while the
battery was out of the calculator?
(You may want to write down any crit-
ical numbers or programs that are
stored in the calculator before trying
this!)

3 We shall use lowercase q for the varying charge on the capacitor while it is charging, to distinguish it
from uppercase Q , which is the total charge on the capacitor after it is completely charged.

V

dq

q

∆

Figure 26.11 A plot of potential difference versus charge for
a capacitor is a straight line having a slope 1/C. The work re-
quired to move charge dq through the potential difference !V
across the capacitor plates is given by the area of the shaded
rectangle. The total work required to charge the capacitor to a
final charge Q is the triangular area under the straight line,

. (Don’t forget that J/C; hence, the unit
for the area is the joule.)

1 V " 1W " 1
2Q !V
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(or charge) that can be stored because, at a sufficiently great value of !V, dis-
charge ultimately occurs between the plates. For this reason, capacitors are usually
labeled with a maximum operating voltage.

You have three capacitors and a battery. How should you combine the capacitors and the
battery in one circuit so that the capacitors will store the maximum possible energy?

We can consider the energy stored in a capacitor as being stored in the elec-
tric field created between the plates as the capacitor is charged. This description is
reasonable in view of the fact that the electric field is proportional to the charge
on the capacitor. For a parallel-plate capacitor, the potential difference is related
to the electric field through the relationship !V " Ed. Furthermore, its capaci-
tance is (Eq. 26.3). Substituting these expressions into Equation 26.11,
we obtain

(26.12)

Because the volume V (volume, not voltage!) occupied by the electric field is Ad,
the energy per unit volume known as the energy density, is

(26.13)

Although Equation 26.13 was derived for a parallel-plate capacitor, the expression
is generally valid. That is, the energy density in any electric field is propor-
tional to the square of the magnitude of the electric field at a given point.

uE " 1
2'0E2

uE " U/V " U/Ad,

U "
1
2

 
'0A

d
 (E2d2) "

1
2

 ('0Ad)E2

C " '0A/d

Quick Quiz 26.3

Energy stored in a parallel-plate
capacitor

Energy density in an electric field

This bank of capacitors stores electrical en-
ergy for use in the particle accelerator at
FermiLab, located outside Chicago. Be-
cause the electric utility company cannot
provide a large enough burst of energy to
operate the equipment, these capacitors
are slowly charged up, and then the energy
is rapidly “dumped” into the accelerator. In
this sense, the setup is much like a fire-
protection water tank on top of a building.
The tank collects water and stores it for sit-
uations in which a lot of water is needed in
a short time. 



816 C H A P T E R  2 6 Capacitance and Dielectrics

Rewiring Two Charged CapacitorsEXAMPLE 26.5

As noted earlier, 
To express !Vf in terms of the given quantities and

we substitute the value of Q from Equation (1) to obtain

(b) Find the total energy stored in the capacitors before
and after the switches are closed and the ratio of the final en-
ergy to the initial energy.

Solution Before the switches are closed, the total energy
stored in the capacitors is

After the switches are closed, the total energy stored in the
capacitors is

Using Equation (1), we can express this as

Therefore, the ratio of the final energy stored to the initial
energy stored is

" C1 $ C2

C1 % C2
#2Uf

Ui
"

1
2

 
(C1 $ C2)2(!Vi)2

(C1 % C2)
1
2

 (C1 % C2)(!Vi)2
"

1
2

 
(C1 $ C2)2(!Vi)2

(C1 % C2)
Uf "

1
2

 
Q2

(C1 % C2)
"  

 "
1
2

 (C1 % C2)" Q
C1 % C2

#2
"

1
2

 
Q2

C1 % C2
 

Uf " 1
2C1(!Vf)2 % 1

2C2(!Vf)2 " 1
2 (C1 % C2)(!Vf)2

1
2 (C1 % C2)(!Vi)2Ui " 1

2C1(!Vi)2 % 1
2C2(!Vi)2 "

!Vf " " C1 $ C2

C1 % C2
# !Vi

!Vi ,
C1, C2,

!V1f " !V2 f " !Vf .

!V2 f "
Q 2 f

C2
"

Q " C2

C1 % C2
#

C2
"

Q
C1 % C2

Two capacitors C1 and C2 (where are charged to
the same initial potential difference !Vi , but with opposite
polarity. The charged capacitors are removed from the bat-
tery, and their plates are connected as shown in Figure
26.12a. The switches S1 and S2 are then closed, as shown in
Figure 26.12b. (a) Find the final potential difference !Vf be-
tween a and b after the switches are closed.

Solution Let us identify the left-hand plates of the capaci-
tors as an isolated system because they are not connected to
the right-hand plates by conductors. The charges on the left-
hand plates before the switches are closed are

The negative sign for Q 2i is necessary because the charge on
the left plate of capacitor C2 is negative. The total charge Q
in the system is

(1)

After the switches are closed, the total charge in the system
remains the same:

(2)

The charges redistribute until the entire system is at the same
potential !Vf . Thus, the final potential difference across C1
must be the same as the final potential difference across C2 .
To satisfy this requirement, the charges on the capacitors af-
ter the switches are closed are

Dividing the first equation by the second, we have

(3)

Combining Equations (2) and (3), we obtain

Using Equation (3) to find Q 1 f in terms of Q , we have

Finally, using Equation 26.1 to find the voltage across each ca-
pacitor, we find that

!V1f "
Q 1f

C1
"

Q " C1

C1 % C2
#

C1
"

Q
C1 % C2

Q 1f "
C1

C2
 Q 2f "

C1

C2
 Q " C2

C1 % C2
# " Q " C1

C1 % C2
#

 Q 2 f " Q " C2

C1 % C2
#

Q " Q 1f % Q 2 f "
C1

C2
 Q 2f % Q 2f " Q 2f "1 %

C1

C2
#

Q 1f "
C1

C2
 Q 2f

Q 1f

Q 2f
"

C1 !Vf

C2 !Vf
"

C1

C2
 

Q 1f " C1 !Vf  and  Q 2f " C2 !Vf

Q " Q 1f % Q 2f

Q " Q 1i % Q 2i " (C1 $ C2)!Vi

Q 1i " C1 !Vi  and  Q 2i " $C2 !Vi

C1 - C2)

+ –

Q1i
+

ba

(a)

–
C1

Q 2i
– +

C2

S1 S2

+

ba

(b)

–

S1 S2

Q1f
C1

Q 2f C2

Figure 26.12
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You charge a parallel-plate capacitor, remove it from the battery, and prevent the wires con-
nected to the plates from touching each other. When you pull the plates apart, do the fol-
lowing quantities increase, decrease, or stay the same? (a) C ; (b) Q ; (c) E between the
plates; (d) !V ; (e) energy stored in the capacitor.

Repeat Quick Quiz 26.4, but this time answer the questions for the situation in which the
battery remains connected to the capacitor while you pull the plates apart.

One device in which capacitors have an important role is the defibrillator (Fig.
26.13). Up to 360 J is stored in the electric field of a large capacitor in a defibrilla-
tor when it is fully charged. The defibrillator can deliver all this energy to a patient
in about 2 ms. (This is roughly equivalent to 3 000 times the power output of a 
60-W lightbulb!) The sudden electric shock stops the fibrillation (random contrac-
tions) of the heart that often accompanies heart attacks and helps to restore the
correct rhythm.

A camera’s flash unit also uses a capacitor, although the total amount of en-
ergy stored is much less than that stored in a defibrillator. After the flash unit’s ca-
pacitor is charged, tripping the camera’s shutter causes the stored energy to be
sent through a special lightbulb that briefly illuminates the subject being pho-
tographed.

Quick Quiz 26.5

Quick Quiz 26.4

web
To learn more about defibrillators, visit
www.physiocontrol.com

This ratio is less than unity, indicating that the final energy 
is less than the initial energy. At first, you might think that
the law of energy conservation has been violated, but this 

is not the case. The “missing” energy is radiated away in 
the form of electromagnetic waves, as we shall see in Chap-
ter 34.

Figure 26.13 In a hospital
or at an emergency scene, you
might see a patient being re-
vived with a defibrillator. The
defibrillator’s paddles are ap-
plied to the patient’s chest,
and an electric shock is sent
through the chest cavity. The
aim of this technique is to re-
store the heart’s normal
rhythm pattern.
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CAPACITORS WITH DIELECTRICS
A dielectric is a nonconducting material, such as rubber, glass, or waxed paper.
When a dielectric is inserted between the plates of a capacitor, the capacitance in-
creases. If the dielectric completely fills the space between the plates, the capaci-
tance increases by a dimensionless factor /, which is called the dielectric con-
stant. The dielectric constant is a property of a material and varies from one
material to another. In this section, we analyze this change in capacitance in terms
of electrical parameters such as electric charge, electric field, and potential differ-
ence; in Section 26.7, we shall discuss the microscopic origin of these changes.

We can perform the following experiment to illustrate the effect of a dielectric
in a capacitor: Consider a parallel-plate capacitor that without a dielectric has a
charge Q 0 and a capacitance C 0 . The potential difference across the capacitor is

Figure 26.14a illustrates this situation. The potential difference is
measured by a voltmeter, which we shall study in greater detail in Chapter 28. Note
that no battery is shown in the figure; also, we must assume that no charge can
flow through an ideal voltmeter, as we shall learn in Section 28.5. Hence, there is
no path by which charge can flow and alter the charge on the capacitor. If a dielec-
tric is now inserted between the plates, as shown in Figure 26.14b, the voltmeter
indicates that the voltage between the plates decreases to a value !V. The voltages
with and without the dielectric are related by the factor / as follows:

Because !V , !V0 , we see that 
Because the charge Q 0 on the capacitor does not change, we conclude that

the capacitance must change to the value

(26.14)

That is, the capacitance increases by the factor / when the dielectric completely fills
the region between the plates.4 For a parallel-plate capacitor, where 
(Eq. 26.3), we can express the capacitance when the capacitor is filled with a di-
electric as

(26.15)

From Equations 26.3 and 26.15, it would appear that we could make the ca-
pacitance very large by decreasing d, the distance between the plates. In practice,
the lowest value of d is limited by the electric discharge that could occur through
the dielectric medium separating the plates. For any given separation d, the maxi-
mum voltage that can be applied to a capacitor without causing a discharge de-
pends on the dielectric strength (maximum electric field) of the dielectric. If the
magnitude of the electric field in the dielectric exceeds the dielectric strength,
then the insulating properties break down and the dielectric begins to conduct.
Insulating materials have values of / greater than unity and dielectric strengths

C " / 
'0A
d

C0 " '0A/d

C " /C0

C "
Q 0

!V
"

Q 0

!V0//
" / 

Q 0

!V0

/ - 1.

!V "
!V0

/

!V0 " Q 0/C0 .

26.5

The capacitance of a filled
capacitor is greater than that of an
empty one by a factor /.

4 If the dielectric is introduced while the potential difference is being maintained constant by a battery,
the charge increases to a value Q " /Q 0 . The additional charge is supplied by the battery, and the ca-
pacitance again increases by the factor /.
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greater than that of air, as Table 26.1 indicates. Thus, we see that a dielectric pro-
vides the following advantages:

• Increase in capacitance
• Increase in maximum operating voltage
• Possible mechanical support between the plates, which allows the plates to be

close together without touching, thereby decreasing d and increasing C

C0 Q 0

+
–

C Q 0

Dielectric

∆V∆V0

+
–

(a) (b)

Figure 26.14 A charged capacitor (a) before and (b) after insertion of a dielectric between the
plates. The charge on the plates remains unchanged, but the potential difference decreases from
!V0 to !V " !V0//. Thus, the capacitance increases from C0 to /C0 .

TABLE 26.1 Dielectric Constants and Dielectric Strengths
of Various Materials at Room Temperature

Dielectric Dielectric
Material Constant " Strengtha (V/m)

Air (dry) 1.000 59 3 ) 106

Bakelite 4.9 24 ) 106

Fused quartz 3.78 8 ) 106

Neoprene rubber 6.7 12 ) 106

Nylon 3.4 14 ) 106

Paper 3.7 16 ) 106

Polystyrene 2.56 24 ) 106

Polyvinyl chloride 3.4 40 ) 106

Porcelain 6 12 ) 106

Pyrex glass 5.6 14 ) 106

Silicone oil 2.5 15 ) 106

Strontium titanate 233 8 ) 106

Teflon 2.1 60 ) 106

Vacuum 1.000 00 —
Water 80 —

a The dielectric strength equals the maximum electric field that can exist in a
dielectric without electrical breakdown. Note that these values depend
strongly on the presence of impurities and flaws in the materials.
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Types of Capacitors

Commercial capacitors are often made from metallic foil interlaced with thin
sheets of either paraffin-impregnated paper or Mylar as the dielectric material.
These alternate layers of metallic foil and dielectric are rolled into a cylinder to
form a small package (Fig. 26.15a). High-voltage capacitors commonly consist of a
number of interwoven metallic plates immersed in silicone oil (Fig. 26.15b). Small
capacitors are often constructed from ceramic materials. Variable capacitors (typi-
cally 10 to 500 pF) usually consist of two interwoven sets of metallic plates, one
fixed and the other movable, and contain air as the dielectric.

Often, an electrolytic capacitor is used to store large amounts of charge at rela-
tively low voltages. This device, shown in Figure 26.15c, consists of a metallic foil in
contact with an electrolyte—a solution that conducts electricity by virtue of the mo-
tion of ions contained in the solution. When a voltage is applied between the foil
and the electrolyte, a thin layer of metal oxide (an insulator) is formed on the foil,

(a) Kirlian photograph created by dropping a steel ball into a high-energy electric field. Kirlian
photography is also known as electrophotography. (b) Sparks from static electricity discharge be-
tween a fork and four electrodes. Many sparks were used to create this image because only one
spark forms for a given discharge. Note that the bottom prong discharges to both electrodes at
the bottom right. The light of each spark is created by the excitation of gas atoms along its path.

(a) (b)

Metal foil

Paper

Plates

Oil

Electrolyte

Case

Metallic foil + oxide layer

Contacts

(a) (b) (c)

Figure 26.15 Three commercial capacitor designs. (a) A tubular capacitor, whose plates are
separated by paper and then rolled into a cylinder. (b) A high-voltage capacitor consisting of
many parallel plates separated by insulating oil. (c) An electrolytic capacitor.
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A Paper-Filled CapacitorEXAMPLE 26.6
the paper is 1.0 mm, the maximum voltage that can be ap-
plied before breakdown is

Hence, the maximum charge is

Exercise What is the maximum energy that can be stored
in the capacitor?

Answer 2.6 ) 10$3 J.

0.32 .CQ max " C !Vmax " (20 ) 10$12 F)(16 ) 103 V) "

 " 16 ) 103 V

!Vmax " Emaxd " (16 ) 106 V/m)(1.0 ) 10$3 m)

A parallel-plate capacitor has plates of dimensions 2.0 cm by
3.0 cm separated by a 1.0-mm thickness of paper. (a) Find its
capacitance.

Solution Because / " 3.7 for paper (see Table 26.1), we
have

(b) What is the maximum charge that can be placed on
the capacitor?

Solution From Table 26.1 we see that the dielectric
strength of paper is 16 ) 106 V/m. Because the thickness of

20 pF " 20 ) 10$12 F "

C " / 
'0A

d
" 3.7(8.85 ) 10$12 C2/N*m2)" 6.0 ) 10$4 m2

1.0 ) 10$3 m #

and this layer serves as the dielectric. Very large values of capacitance can be ob-
tained in an electrolytic capacitor because the dielectric layer is very thin, and thus
the plate separation is very small.

Electrolytic capacitors are not reversible as are many other capacitors—they
have a polarity, which is indicated by positive and negative signs marked on the de-
vice. When electrolytic capacitors are used in circuits, the polarity must be aligned
properly. If the polarity of the applied voltage is opposite that which is intended,
the oxide layer is removed and the capacitor conducts electricity instead of storing
charge.

If you have ever tried to hang a picture, you know it can be difficult to locate a wooden stud
in which to anchor your nail or screw. A carpenter’s stud-finder is basically a capacitor with
its plates arranged side by side instead of facing one another, as shown in Figure 26.16.
When the device is moved over a stud, does the capacitance increase or decrease?

Quick Quiz 26.6

Capacitor
plates

Stud-finder

Wall board

Stud

(b)(a)

Figure 26.16 A stud-finder. (a)The materials between the plates of the capacitor are the wall-
board and air. (b) When the capacitor moves across a stud in the wall, the materials between the
plates are the wallboard and the wood. The change in the dielectric constant causes a signal light
to illuminate.
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Energy Stored Before and AfterEXAMPLE 26.7
Exercise Suppose that the capacitance in the absence of a
dielectric is 8.50 pF and that the capacitor is charged to a po-
tential difference of 12.0 V. If the battery is disconnected and
a slab of polystyrene is inserted between the plates, what is

Answer 373 pJ.

U0 $ U  ?

A parallel-plate capacitor is charged with a battery to a charge
Q 0 , as shown in Figure 26.17a. The battery is then removed,
and a slab of material that has a dielectric constant / is in-
serted between the plates, as shown in Figure 26.17b. Find
the energy stored in the capacitor before and after the dielec-
tric is inserted.

Solution The energy stored in the absence of the dielec-
tric is (see Eq. 26.11):

After the battery is removed and the dielectric inserted, the
charge on the capacitor remains the same. Hence, the energy
stored in the presence of the dielectric is

But the capacitance in the presence of the dielectric is
so U becomes

Because / - 1, the final energy is less than the initial energy.
We can account for the “missing” energy by noting that the
dielectric, when inserted, gets pulled into the device (see the
following discussion and Figure 26.18). An external agent
must do negative work to keep the dielectric from accelerat-
ing. This work is simply the difference (Alternatively,
the positive work done by the system on the external agent is
U0 $ U.)

U $ U0 .

U "
Q 0 

2

2/C0
"

U0

/

C " /C0 ,

U "
Q 0 

2

2C

U0 "
Q 0 

2

2C0

As we have seen, the energy of a capacitor not connected to a battery is low-
ered when a dielectric is inserted between the plates; this means that negative
work is done on the dielectric by the external agent inserting the dielectric into
the capacitor. This, in turn, implies that a force that draws it into the capacitor
must be acting on the dielectric. This force originates from the nonuniform na-
ture of the electric field of the capacitor near its edges, as indicated in Figure
26.18. The horizontal component of this fringe field acts on the induced charges on
the surface of the dielectric, producing a net horizontal force directed into the
space between the capacitor plates.

A fully charged parallel-plate capacitor remains connected to a battery while you slide a di-
electric between the plates. Do the following quantities increase, decrease, or stay the same?
(a) C ; (b) Q ; (c) E between the plates; (d) !V ; (e) energy stored in the capacitor.

Quick Quiz 26.7

Figure 26.17

–+

Q 0
C 0

∆V 0

(a)

Dielectric

–+
Q 0

(b)
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Optional Section

ELECTRIC DIPOLE IN AN ELECTRIC FIELD
We have discussed the effect on the capacitance of placing a dielectric between the
plates of a capacitor. In Section 26.7, we shall describe the microscopic origin of
this effect. Before we can do so, however, we need to expand upon the discussion
of the electric dipole that we began in Section 23.4 (see Example 23.6). The elec-
tric dipole consists of two charges of equal magnitude but opposite sign separated
by a distance 2a, as shown in Figure 26.19. The electric dipole moment of this
configuration is defined as the vector p directed from $q to % q along the line
joining the charges and having magnitude 2aq:

(26.16)

Now suppose that an electric dipole is placed in a uniform electric field E, as
shown in Figure 26.20. We identify E as the field external to the dipole, distin-
guishing it from the field due to the dipole, which we discussed in Section 23.4.
The field E is established by some other charge distribution, and we place the di-
pole into this field. Let us imagine that the dipole moment makes an angle 0
with the field. 

The electric forces acting on the two charges are equal in magnitude but op-
posite in direction as shown in Figure 26.20 (each has a magnitude Thus,
the net force on the dipole is zero. However, the two forces produce a net torque
on the dipole; as a result, the dipole rotates in the direction that brings the dipole
moment vector into greater alignment with the field. The torque due to the force
on the positive charge about an axis through O in Figure 26.20 is Fa sin 0, where 
a sin 0 is the moment arm of F about O. This force tends to produce a clockwise
rotation. The torque about O on the negative charge also is Fa sin 0; here again,
the force tends to produce a clockwise rotation. Thus, the net torque about O is

Because and we can express 1 as

(26.17)1 " 2aqE sin 0 " pE sin 0

p " 2aq,F " qE

1 " 2Fa sin 0

F " qE).

p ! 2aq

26.6

+Q

–Q

+

–

+

–

+

–

+

–

+

–

+

–

+

–

Figure 26.18 The nonuniform electric field near the edges of a parallel-plate capacitor causes
a dielectric to be pulled into the capacitor. Note that the field acts on the induced surface
charges on the dielectric, which are nonuniformly distributed.

+ q

θ

– q

F

E
– F

O

+

–

Figure 26.20 An electric dipole
in a uniform external electric field.
The dipole moment p is at an an-
gle 0 to the field, causing the di-
pole to experience a torque.

+ q

– q

2a

p–

+

Figure 26.19 An electric dipole
consists of two charges of equal
magnitude but opposite sign sepa-
rated by a distance of 2a . The elec-
tric dipole moment p is directed
from $q to %q .
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It is convenient to express the torque in vector form as the cross product of the
vectors p and E:

(26.18)

We can determine the potential energy of the system of an electric dipole in
an external electric field as a function of the orientation of the dipole with respect
to the field. To do this, we recognize that work must be done by an external agent
to rotate the dipole through an angle so as to cause the dipole moment vector to
become less aligned with the field. The work done is then stored as potential en-
ergy in the system of the dipole and the external field. The work dW required to
rotate the dipole through an angle d0 is (Eq. 10.22). Because

and because the work is transformed into potential energy U, we find
that, for a rotation from 0i to 0f , the change in potential energy is

The term that contains cos 0i is a constant that depends on the initial orienta-
tion of the dipole. It is convenient for us to choose so that cos 
90° " 0. Furthermore, let us choose at as our reference of poten-
tial energy. Hence, we can express a general value of as

(26.19)

We can write this expression for the potential energy of a dipole in an electric field
as the dot product of the vectors p and E:

(26.20)

To develop a conceptual understanding of Equation 26.19, let us compare this
expression with the expression for the potential energy of an object in the gravita-
tional field of the Earth, (see Chapter 8). The gravitational expression in-
cludes a parameter associated with the object we place in the field—its mass m.
Likewise, Equation 26.19 includes a parameter of the object in the electric field—
its dipole moment p. The gravitational expression includes the magnitude of the
gravitational field g. Similarly, Equation 26.19 includes the magnitude of the elec-
tric field E . So far, these two contributions to the potential energy expressions ap-
pear analogous. However, the final contribution is somewhat different in the two
cases. In the gravitational expression, the potential energy depends on how high
we lift the object, measured by h. In Equation 26.19, the potential energy depends
on the angle 0 through which we rotate the dipole. In both cases, we are making a
change in the system. In the gravitational case, the change involves moving an ob-
ject in a translational sense, whereas in the electrical case, the change involves mov-
ing an object in a rotational sense. In both cases, however, once the change is
made, the system tends to return to the original configuration when the object is
released: the object of mass m falls back to the ground, and the dipole begins to
rotate back toward the configuration in which it was aligned with the field. Thus,
apart from the type of motion, the expressions for potential energy in these two
cases are similar.

U " mgh

U " $p ! E

U " $pE cos 0

U " Uf

0i " 902Ui " 0
0i " cos0i " 902,

 " pE &$cos 0'0f

0i

" pE(cos 0i $ cos 0f)

Uf $ Ui " %0f

0i

 1 d0 " %0f

0i

 p3 sin 0 d0 " pE %0f

0i

 sin 0 d0

1 " pE sin 0
dW " 1 d0

# " p $ ETorque on an electric dipole in an
external electric field

Potential energy of a dipole in an
electric field
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Molecules are said to be polarized when a separation exists between the average
position of the negative charges and the average position of the positive charges in
the molecule. In some molecules, such as water, this condition is always present—
such molecules are called polar molecules. Molecules that do not possess a per-
manent polarization are called nonpolar molecules.

We can understand the permanent polarization of water by inspecting the
geometry of the water molecule. In the water molecule, the oxygen atom is
bonded to the hydrogen atoms such that an angle of 105° is formed between the
two bonds (Fig. 26.21). The center of the negative charge distribution is near the
oxygen atom, and the center of the positive charge distribution lies at a point mid-
way along the line joining the hydrogen atoms (the point labeled ) in Fig. 26.21).
We can model the water molecule and other polar molecules as dipoles because
the average positions of the positive and negative charges act as point charges. As a
result, we can apply our discussion of dipoles to the behavior of polar molecules.

Microwave ovens take advantage of the polar nature of the water molecule.
When in operation, microwave ovens generate a rapidly changing electric field
that causes the polar molecules to swing back and forth, absorbing energy from
the field in the process. Because the jostling molecules collide with each other, the
energy they absorb from the field is converted to internal energy, which corre-
sponds to an increase in temperature of the food.

Another household scenario in which the dipole structure of water is ex-
ploited is washing with soap and water. Grease and oil are made up of nonpolar
molecules, which are generally not attracted to water. Plain water is not very useful
for removing this type of grime. Soap contains long molecules called surfactants. In
a long molecule, the polarity characteristics of one end of the molecule can be dif-
ferent from those at the other end. In a surfactant molecule, one end acts like a
nonpolar molecule and the other acts like a polar molecule. The nonpolar end
can attach to a grease or oil molecule, and the polar end can attach to a water mol-
ecule. Thus, the soap serves as a chain, linking the dirt and water molecules to-
gether. When the water is rinsed away, the grease and oil go with it.

A symmetric molecule (Fig. 26.22a) has no permanent polarization, but polar-
ization can be induced by placing the molecule in an electric field. A field directed
to the left, as shown in Figure 26.22b, would cause the center of the positive
charge distribution to shift to the left from its initial position and the center of the
negative charge distribution to shift to the right. This induced polarization is the ef-
fect that predominates in most materials used as dielectrics in capacitors.

The H2O MoleculeEXAMPLE 26.8
obtain

Because there are 1021 molecules in the sample, the total
work required is

1.6 ) 10$3 JWtotal " (1021)(1.6 ) 10$24 J) "

 " 1.6 ) 10$24 J 

 " pE " (6.3 ) 10$30 C *m)(2.5 ) 105 N/C)

W " U90 $ U0 " ($pE cos 902) $ ($pE cos 02) 

The water (H2O) molecule has an electric dipole moment of
6.3 ) 10$30 C * m. A sample contains 1021 water molecules,
with the dipole moments all oriented in the direction of an
electric field of magnitude 2.5 ) 105 N/C. How much work
is required to rotate the dipoles from this orientation

to one in which all the dipole moments are perpen-
dicular to the field 

Solution The work required to rotate one molecule 90° is
equal to the difference in potential energy between the 90°
orientation and the 0° orientation. Using Equation 26.19, we

(0 " 902)?
(0 " 02)

O

HH 105°

−−

+ +)

E

(a)

(b)

++ −

−+ − +

Figure 26.21 The water mole-
cule, H2O, has a permanent polar-
ization resulting from its bent
geometry. The center of the posi-
tive charge distribution is at the
point ).

Figure 26.22 (a) A symmetric
molecule has no permanent polar-
ization. (b) An external electric
field induces a polarization in the
molecule.
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Optional Section

AN ATOMIC DESCRIPTION OF DIELECTRICS
In Section 26.5 we found that the potential difference !V0 between the plates of a
capacitor is reduced to V0// when a dielectric is introduced. Because the poten-
tial difference between the plates equals the product of the electric field and the
separation d, the electric field is also reduced. Thus, if E0 is the electric field with-
out the dielectric, the field in the presence of a dielectric is

(26.21)

Let us first consider a dielectric made up of polar molecules placed in the
electric field between the plates of a capacitor. The dipoles (that is, the polar mol-
ecules making up the dielectric) are randomly oriented in the absence of an elec-
tric field, as shown in Figure 26.23a. When an external field E0 due to charges on
the capacitor plates is applied, a torque is exerted on the dipoles, causing them to
partially align with the field, as shown in Figure 26.23b. We can now describe the
dielectric as being polarized. The degree of alignment of the molecules with the
electric field depends on temperature and on the magnitude of the field. In gen-
eral, the alignment increases with decreasing temperature and with increasing
electric field.

If the molecules of the dielectric are nonpolar, then the electric field due to
the plates produces some charge separation and an induced dipole moment. These
induced dipole moments tend to align with the external field, and the dielectric is
polarized. Thus, we can polarize a dielectric with an external field regardless of
whether the molecules are polar or nonpolar.

With these ideas in mind, consider a slab of dielectric material placed between
the plates of a capacitor so that it is in a uniform electric field E0 , as shown in Fig-
ure 26.24a. The electric field due to the plates is directed to the right and polar-
izes the dielectric. The net effect on the dielectric is the formation of an induced
positive surface charge density (ind on the right face and an equal negative surface
charge density $ (ind on the left face, as shown in Figure 26.24b. These induced
surface charges on the dielectric give rise to an induced electric field Eind in the
direction opposite the external field E0 . Therefore, the net electric field E in the

E "
E0

/

!

26.7
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(a)

(b)
E0

Figure 26.23 (a) Polar mole-
cules are randomly oriented in the
absence of an external electric
field. (b) When an external field is
applied, the molecules partially
align with the field.

Figure 26.24 (a) When a dielectric is polarized, the dipole moments of the molecules in the
dielectric are partially aligned with the external field E0 . (b) This polarization causes an induced
negative surface charge on one side of the dielectric and an equal induced positive surface
charge on the opposite side. This separation of charge results in a reduction in the net electric
field within the dielectric.
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dielectric has a magnitude

(26.22)

In the parallel-plate capacitor shown in Figure 26.25, the external field E0 is
related to the charge density ( on the plates through the relationship 
The induced electric field in the dielectric is related to the induced charge density
(ind through the relationship Because substitu-
tion into Equation 26.22 gives

(26.23)

Because this expression shows that the charge density (ind induced on the
dielectric is less than the charge density ( on the plates. For instance, if we
see that the induced charge density is two-thirds the charge density on the plates.
If no dielectric is present, then and as expected. However, if the di-
electric is replaced by an electrical conductor, for which then Equation
26.22 indicates that this corresponds to That is, the surface
charge induced on the conductor is equal in magnitude but opposite in sign to
that on the plates, resulting in a net electric field of zero in the conductor.

(ind " (.E0 " E ind ;
E " 0,

(ind " 0/ " 1

/ " 3,
/ - 1,

(ind " " / $ 1
/ # (

(

/'0
"

(

'0
$

(ind

'0

E " E0// " (//'0 ,E ind " (ind/'0 .

E0 " (/'0 .

E " E0 $ E ind

Effect of a Metallic SlabEXAMPLE 26.9
Solution In the result for part (a), we let a : 0:

which is the original capacitance.

C " lim
a :0

 
'0A

d $ a
"

'0A
d

A parallel-plate capacitor has a plate separation d and plate
area A. An uncharged metallic slab of thickness a is inserted
midway between the plates. (a) Find the capacitance of the
device.

Solution We can solve this problem by noting that any
charge that appears on one plate of the capacitor must in-
duce a charge of equal magnitude but opposite sign on the
near side of the slab, as shown in Figure 26.26a. Conse-
quently, the net charge on the slab remains zero, and the
electric field inside the slab is zero. Hence, the capacitor is
equivalent to two capacitors in series, each having a plate sep-
aration as shown in Figure 26.26b.

Using the rule for adding two capacitors in series (Eq.
26.10), we obtain

Note that C approaches infinity as a approaches d. Why?

(b) Show that the capacitance is unaffected if the metallic
slab is infinitesimally thin.
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Figure 26.25 Induced charge on
a dielectric placed between the
plates of a charged capacitor. Note
that the induced charge density on
the dielectric is less than the charge
density on the plates.
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σ

σ

Figure 26.26 (a) A parallel-plate capacitor of plate separation d
partially filled with a metallic slab of thickness a. (b) The equivalent
circuit of the device in part (a) consists of two capacitors in series,
each having a plate separation (d $ a)/2.
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A Partially Filled CapacitorEXAMPLE 26.10
Solution In Example 26.9, we found that we could insert a
metallic slab between the plates of a capacitor and consider
the combination as two capacitors in series. The resulting ca-
pacitance was independent of the location of the slab. Fur-
thermore, if the thickness of the slab approaches zero, then
the capacitance of the system approaches the capacitance
when the slab is absent. From this, we conclude that we can
insert an infinitesimally thin metallic slab anywhere between
the plates of a capacitor without affecting the capacitance.
Thus, let us imagine sliding an infinitesimally thin metallic
slab along the bottom face of the dielectric shown in Figure
26.27a. We can then consider this system to be the series com-
bination of the two capacitors shown in Figure 26.27b: one
having a plate separation d/3 and filled with a dielectric, and
the other having a plate separation 2d/3 and air between its
plates.

From Equations 26.15 and 26.3, the two capacitances are

Using Equation 26.10 for two capacitors combined in series,
we have

Because the capacitance without the dielectric is 
we see that

C " " 3/

2/ % 1 # C0

C0 " '0A/d,

C " " 3/

2/ % 1 # 
'0A

d
 

"
d

3'0A
 " 1

/
% 2# "

d
3'0A

 " 1 % 2/

/ #

1
C

"
1

C1
%

1
C2

"
d/3

/'0A
%

2d/3
'0A

C1 "
/'0A
d/3

  and  C2 "
'0A

2d/3

A parallel-plate capacitor with a plate separation d has a ca-
pacitance C0 in the absence of a dielectric. What is the capac-
itance when a slab of dielectric material of dielectric constant
/ and thickness is inserted between the plates (Fig.
26.27a)?

1
3d

(c) Show that the answer to part (a) does not depend on
where the slab is inserted.

Solution Let us imagine that the slab in Figure 26.26a is
moved upward so that the distance between the upper edge
of the slab and the upper plate is b. Then, the distance be-
tween the lower edge of the slab and the lower plate is

As in part (a), we find the total capacitance of the
series combination:
d $ b $ a.

This is the same result as in part (a). It is independent of the
value of b, so it does not matter where the slab is located.

C "
'0A

d $ a
 

 "
b

'0A
%

d $ b $ a
'0A

"
d $ a
'0A

1
C

"
1

C1
%

1
C2

"
1

'0A
b

%
1

'0A
d $ b $ a

1
3
– d

2
3
– d d

(a)

κ

(b)

C 1

C 2

1
3
– d

2
3
– d

κ

Figure 26.27 (a) A parallel-plate capacitor of plate separation d
partially filled with a dielectric of thickness d/3. (b) The equivalent
circuit of the capacitor consists of two capacitors connected in series.
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SUMMARY

A capacitor consists of two conductors carrying charges of equal magnitude but
opposite sign. The capacitance C of any capacitor is the ratio of the charge Q on
either conductor to the potential difference !V between them:

(26.1)

This relationship can be used in situations in which any two of the three variables
are known. It is important to remember that this ratio is constant for a given con-
figuration of conductors because the capacitance depends only on the geometry
of the conductors and not on an external source of charge or potential difference.

The SI unit of capacitance is coulombs per volt, or the farad (F), and

Capacitance expressions for various geometries are summarized in Table 26.2. 
If two or more capacitors are connected in parallel, then the potential differ-

ence is the same across all of them. The equivalent capacitance of a parallel com-
bination of capacitors is

(26.8)

If two or more capacitors are connected in series, the charge is the same on all
of them, and the equivalent capacitance of the series combination is given by

(26.10)

These two equations enable you to simplify many electric circuits by replacing mul-
tiple capacitors with a single equivalent capacitance.

Work is required to charge a capacitor because the charging process is equiva-
lent to the transfer of charges from one conductor at a lower electric potential to
another conductor at a higher potential. The work done in charging the capacitor
to a charge Q equals the electric potential energy U stored in the capacitor, where

(26.11)U "
Q2

2C
" 1

2Q !V " 1
2C(!V )2

1
Ceq

"
1

C1
%

1
C2

%
1

C3
% ***

Ceq " C1 % C2 % C3 % ***

1 F " 1 C/V.

C !
Q

!V

TABLE 26.2 Capacitance and Geometry

Geometry Capacitance Equation

Isolated charged sphere of radius
R (second charged conductor 26.2
assumed at infinity)

Parallel-plate capacitor of plate
area A and plate separation d

26.3

Cylindrical capacitor of length
! and inner and outer radii 26.4
a and b, respectively

Spherical capacitor with inner 
and outer radii a and b, 26.6
respectively

C "
ab

ke (b $ a)

C " 4&'0R

C "
!

2ke ln" b
a #

C " '0 
A
d
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When a dielectric material is inserted between the plates of a capacitor, the ca-
pacitance increases by a dimensionless factor /, called the dielectric constant:

(26.14)

where C 0 is the capacitance in the absence of the dielectric. The increase in capac-
itance is due to a decrease in the magnitude of the electric field in the presence of
the dielectric and to a corresponding decrease in the potential difference between
the plates—if we assume that the charging battery is removed from the circuit be-
fore the dielectric is inserted. The decrease in the magnitude of E arises from an
internal electric field produced by aligned dipoles in the dielectric. This internal
field produced by the dipoles opposes the applied field due to the capacitor
plates, and the result is a reduction in the net electric field.

The electric dipole moment p of an electric dipole has a magnitude

(26.16)

The direction of the electric dipole moment vector is from the negative charge to-
ward the positive charge.

The torque acting on an electric dipole in a uniform electric field E is

(26.18)

The potential energy of an electric dipole in a uniform external electric field
E is

(26.20)U " $ p ! E

# " p $ E

p ! 2aq

C " /C0

Problem-Solving Hints
Capacitors

• Be careful with units. When you calculate capacitance in farads, make sure
that distances are expressed in meters and that you use the SI value of '0 .
When checking consistency of units, remember that the unit for electric
fields can be either N/C or V/m.

• When two or more capacitors are connected in parallel, the potential differ-
ence across each is the same. The charge on each capacitor is proportional
to its capacitance; hence, the capacitances can be added directly to give the
equivalent capacitance of the parallel combination. The equivalent capaci-
tance is always larger than the individual capacitances.

• When two or more capacitors are connected in series, they carry the same
charge, and the sum of the potential differences equals the total potential
difference applied to the combination. The sum of the reciprocals of the ca-
pacitances equals the reciprocal of the equivalent capacitance, which is al-
ways less than the capacitance of the smallest individual capacitor.

• A dielectric increases the capacitance of a capacitor by a factor / (the dielec-
tric constant) over its capacitance when air is between the plates.

• For problems in which a battery is being connected or disconnected, note
whether modifications to the capacitor are made while it is connected to the
battery or after it has been disconnected. If the capacitor remains con-
nected to the battery, the voltage across the capacitor remains unchanged
(equal to the battery voltage), and the charge is proportional to the capaci-
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tance, although it may be modified (for instance, by the insertion of a di-
electric). If you disconnect the capacitor from the battery before making
any modifications to the capacitor, then its charge remains fixed. In this
case, as you vary the capacitance, the voltage across the plates changes ac-
cording to the expression !V " Q /C .

QUESTIONS

10. Explain why the work needed to move a charge Q
through a potential difference !V is whereas 
the energy stored in a charged capacitor is 
Where does the factor come from?

11. If the potential difference across a capacitor is doubled,
by what factor does the stored energy change?

12. Why is it dangerous to touch the terminals of a high-
voltage capacitor even after the applied voltage has been
turned off? What can be done to make the capacitor safe
to handle after the voltage source has been removed?

13. Describe how you can increase the maximum operating
voltage of a parallel-plate capacitor for a fixed plate sepa-
ration.

14. An air-filled capacitor is charged, disconnected from the
power supply, and, finally, connected to a voltmeter. Ex-
plain how and why the voltage reading changes when a
dielectric is inserted between the plates of the capacitor.

15. Using the polar molecule description of a dielectric, ex-
plain how a dielectric affects the electric field inside a ca-
pacitor.

16. Explain why a dielectric increases the maximum operat-
ing voltage of a capacitor even though the physical size of
the capacitor does not change.

17. What is the difference between dielectric strength and
the dielectric constant?

18. Explain why a water molecule is permanently polarized.
What type of molecule has no permanent polarization?

19. If a dielectric-filled capacitor is heated, how does its ca-
pacitance change? (Neglect thermal expansion and as-
sume that the dipole orientations are temperature depen-
dent.)

1
2

U " 1
2Q !V.

W " Q !V,
1. If you were asked to design a capacitor in a situation for

which small size and large capacitance were required,
what factors would be important in your design?

2. The plates of a capacitor are connected to a battery. What
happens to the charge on the plates if the connecting
wires are removed from the battery? What happens to the
charge if the wires are removed from the battery and con-
nected to each other?

3. A farad is a very large unit of capacitance. Calculate the
length of one side of a square, air-filled capacitor that has
a plate separation of 1 m. Assume that it has a capaci-
tance of 1 F.

4. A pair of capacitors are connected in parallel, while an
identical pair are connected in series. Which pair would
be more dangerous to handle after being connected to
the same voltage source? Explain.

5. If you are given three different capacitors C1 , C2 , C3 ,
how many different combinations of capacitance can you
produce?

6. What advantage might there be in using two identical ca-
pacitors in parallel connected in series with another iden-
tical parallel pair rather than a single capacitor?

7. Is it always possible to reduce a combination of capacitors
to one equivalent capacitor with the rules we have devel-
oped? Explain.

8. Because the net charge in a capacitor is always zero, what
does a capacitor store?

9. Because the charges on the plates of a parallel-plate ca-
pacitor are of opposite sign, they attract each other.
Hence, it would take positive work to increase the plate
separation. What happens to the external work done in
this process?

PROBLEMS

2. Two conductors having net charges of % 10.0 .C and
$ 10.0 .C have a potential difference of 10.0 V. Deter-
mine (a) the capacitance of the system and (b) the poten-
tial difference between the two conductors if the charges
on each are increased to % 100 .C and $ 100 .C.

Section 26.1 Definition of Capacitance
1. (a) How much charge is on each plate of a 4.00-.F ca-

pacitor when it is connected to a 12.0-V battery? 
(b) If this same capacitor is connected to a 1.50-V bat-
tery, what charge is stored?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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WEB

WEB

Section 26.2 Calculating Capacitance
3. An isolated charged conducting sphere of radius 

12.0 cm creates an electric field of 4.90 ) 104 N/C at a
distance 21.0 cm from its center. (a) What is its surface
charge density? (b) What is its capacitance?

4. (a) If a drop of liquid has capacitance 1.00 pF, what is
its radius? (b) If another drop has radius 2.00 mm, what
is its capacitance? (c) What is the charge on the smaller
drop if its potential is 100 V?

5. Two conducting spheres with diameters of 0.400 m and
1.00 m are separated by a distance that is large com-
pared with the diameters. The spheres are connected by
a thin wire and are charged to 7.00 .C. (a) How is this
total charge shared between the spheres? (Neglect any
charge on the wire.) (b) What is the potential of the sys-
tem of spheres when the reference potential is taken to
be at 

6. Regarding the Earth and a cloud layer 800 m above the
Earth as the “plates” of a capacitor, calculate the capaci-
tance if the cloud layer has an area of 1.00 km2. Assume
that the air between the cloud and the ground is pure
and dry. Assume that charge builds up on the cloud and 
on the ground until a uniform electric field with a mag-
nitude of 3.00 ) 106 N/C throughout the space be-
tween them makes the air break down and conduct
electricity as a lightning bolt. What is the maximum
charge the cloud can hold?

7. An air-filled capacitor consists of two parallel plates,
each with an area of 7.60 cm2, separated by a distance
of 1.80 mm. If a 20.0-V potential difference is applied to
these plates, calculate (a) the electric field between the
plates, (b) the surface charge density, (c) the capaci-
tance, and (d) the charge on each plate.

8. A 1-megabit computer memory chip contains many
60.0-fF capacitors. Each capacitor has a plate area of
21.0 ) 10$12 m2. Determine the plate separation of
such a capacitor (assume a parallel-plate configura-
tion). The characteristic atomic diameter is 10$10 m "
0.100 nm. Express the plate separation in nanometers.

9. When a potential difference of 150 V is applied to the
plates of a parallel-plate capacitor, the plates carry a sur-
face charge density of 30.0 nC/cm2. What is the spacing
between the plates?

10. A variable air capacitor used in tuning circuits is made
of N semicircular plates each of radius R and positioned
a distance d from each other. As shown in Figure
P26.10, a second identical set of plates is enmeshed with
its plates halfway between those of the first set. The sec-
ond set can rotate as a unit. Determine the capacitance
as a function of the angle of rotation 0, where 
corresponds to the maximum capacitance.

11. A 50.0-m length of coaxial cable has an inner conductor
that has a diameter of 2.58 mm and carries a charge of
8.10 .C. The surrounding conductor has an inner di-
ameter of 7.27 mm and a charge of $ 8.10 .C. 
(a) What is the capacitance of this cable? (b) What is

0 " 0

r " 4 ?V " 0

the potential difference between the two conductors?
Assume the region between the conductors is air.

12. A 20.0-.F spherical capacitor is composed of two metal-
lic spheres, one having a radius twice as large as the
other. If the region between the spheres is a vacuum,
determine the volume of this region.

13. A small object with a mass of 350 mg carries a charge of
30.0 nC and is suspended by a thread between the verti-
cal plates of a parallel-plate capacitor. The plates are
separated by 4.00 cm. If the thread makes an angle of
15.0° with the vertical, what is the potential difference
between the plates?

14. A small object of mass m carries a charge q and is sus-
pended by a thread between the vertical plates of a
parallel-plate capacitor. The plate separation is d. If the
thread makes an angle 0 with the vertical, what is the
potential difference between the plates?

15. An air-filled spherical capacitor is constructed with in-
ner and outer shell radii of 7.00 and 14.0 cm, respec-
tively. (a) Calculate the capacitance of the device. 
(b) What potential difference between the spheres re-
sults in a charge of 4.00 .C on the capacitor?

16. Find the capacitance of the Earth. (Hint: The outer
conductor of the “spherical capacitor” may be consid-
ered as a conducting sphere at infinity where V ap-
proaches zero.)

Section 26.3 Combinations of Capacitors
17. Two capacitors and C2 " 12.0 .F are con-

nected in parallel, and the resulting combination is con-
nected to a 9.00-V battery. (a) What is the value of the
equivalent capacitance of the combination? What are
(b) the potential difference across each capacitor and
(c) the charge stored on each capacitor?

18. The two capacitors of Problem 17 are now connected in
series and to a 9.00-V battery. Find (a) the value of the
equivalent capacitance of the combination, (b) the volt-
age across each capacitor, and (c) the charge on each
capacitor.

19. Two capacitors when connected in parallel give an
equivalent capacitance of 9.00 pF and an equivalent ca-

C1 " 5.00 .F

R

d

0

Figure P26.10
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pacitance of 2.00 pF when connected in series. What is
the capacitance of each capacitor?

20. Two capacitors when connected in parallel give an
equivalent capacitance of Cp and an equivalent capaci-
tance of Cs when connected in series. What is the capac-
itance of each capacitor?

21. Four capacitors are connected as shown in Figure
P26.21. (a) Find the equivalent capacitance between
points a and b. (b) Calculate the charge on each capaci-
tor if !Vab " 15.0 V.

24. According to its design specification, the timer circuit
delaying the closing of an elevator door is to have a ca-
pacitance of 32.0 .F between two points A and B. 
(a) When one circuit is being constructed, the inexpen-
sive capacitor installed between these two points is
found to have capacitance 34.8 .F. To meet the specifi-
cation, one additional capacitor can be placed between
the two points. Should it be in series or in parallel with
the 34.8-.F capacitor? What should be its capacitance?
(b) The next circuit comes down the assembly line with
capacitance 29.8 .F between A and B. What additional
capacitor should be installed in series or in parallel in
that circuit, to meet the specification?

25. The circuit in Figure P26.25 consists of two identical
parallel metallic plates connected by identical metallic
springs to a 100-V battery. With the switch open, the
plates are uncharged, are separated by a distance

and have a capacitance 
When the switch is closed, the distance between the
plates decreases by a factor of 0.500. (a) How much
charge collects on each plate and (b) what is the spring
constant for each spring? (Hint: Use the result of Prob-
lem 35.)

C " 2.00 .F.d " 8.00 mm,

WEB

26. Figure P26.26 shows six concentric conducting spheres,
A, B, C, D, E, and F having radii R, 2R, 3R, 4R, 5R, and
6R, respectively. Spheres B and C are connected by a
conducting wire, as are spheres D and E. Determine the
equivalent capacitance of this system.

27. A group of identical capacitors is connected first in se-
ries and then in parallel. The combined capacitance in
parallel is 100 times larger than for the series connec-
tion. How many capacitors are in the group?

28. Find the equivalent capacitance between points a and b
for the group of capacitors connected as shown in Fig-
ure P26.28 if and

29. For the network described in the previous problem if
the potential difference between points a and b is 
60.0 V, what charge is stored on C3 ?

C3 " 2.00 .F.
C2 " 10.0 .F,C1 " 5.00 .F,

23. Consider the circuit shown in Figure P26.23, where
and Capaci-

tor C1 is first charged by the closing of switch S1 . Switch
S1 is then opened, and the charged capacitor is con-
nected to the uncharged capacitor by the closing of S2 .
Calculate the initial charge acquired by C1 and the final
charge on each.

!V " 20.0 V.C2 " 3.00 .F,C1 " 6.00 .F,

22. Evaluate the equivalent capacitance of the configura-
tion shown in Figure P26.22. All the capacitors are iden-
tical, and each has capacitance C.

6.00 µF

20.0 µF

3.00 µF15.0 µF

a b

µ µ

µ

µ

+ –

kk

d

∆V

S

C1 C2

S2S1

∆V

CC

C

C CC

Figure P26.21

Figure P26.22

Figure P26.23

Figure P26.25
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30. Find the equivalent capacitance between points a and b
in the combination of capacitors shown in Figure
P26.30.

energy stored in the two capacitors. (b) What potential
difference would be required across the same two ca-
pacitors connected in series so that the combination
stores the same energy as in part (a)? Draw a circuit dia-
gram of this circuit.

33. A parallel-plate capacitor is charged and then discon-
nected from a battery. By what fraction does the stored
energy change (increase or decrease) when the plate
separation is doubled?

34. A uniform electric field exists within a
certain region. What volume of space contains an en-
ergy equal to 1.00 ) 10$7 J ? Express your answer in cu-
bic meters and in liters.

35. A parallel-plate capacitor has a charge Q and plates of
area A. Show that the force exerted on each plate by the
other is (Hint: Let for an arbi-
trary plate separation x ; then require that the work
done in separating the two charged plates be

36. Plate a of a parallel-plate, air-filled capacitor is con-
nected to a spring having force constant k , and plate b is
fixed. They rest on a table top as shown (top view) in
Figure P26.36. If a charge % Q is placed on plate a and a
charge $Q is placed on plate b, by how much does the
spring expand?

W " % F dx.)

C " '0A/xF " Q2/2'0A.

E " 3 000 V/m

WEB

37. Review Problem. A certain storm cloud has a potential
difference of 1.00 ) 108 V relative to a tree. If, during a
lightning storm, 50.0 C of charge is transferred through
this potential difference and 1.00% of the energy is ab-
sorbed by the tree, how much water (sap in the tree)
initially at 30.0°C can be boiled away? Water has a spe-
cific heat of 4 186 J/kg * °C, a boiling point of 100°C,
and a heat of vaporization of 2.26 ) 106 J/kg.

38. Show that the energy associated with a conducting
sphere of radius R and charge Q surrounded by a vac-
uum is 

39. Einstein said that energy is associated with mass accord-
ing to the famous relationship Estimate the ra-
dius of an electron, assuming that its charge is distrib-
uted uniformly over the surface of a sphere of radius R
and that the mass–energy of the electron is equal to the
total energy stored in the resulting nonzero electric
field between R and infinity. (See Problem 38. Experi-
mentally, an electron nevertheless appears to be a point
particle. The electric field close to the electron must be
described by quantum electrodynamics, rather than the
classical electrodynamics that we study.)

E " mc 2.

U " keQ2/2R.

Section 26.4 Energy Stored in a Charged Capacitor
31. (a) A 3.00-.F capacitor is connected to a 12.0-V battery.

How much energy is stored in the capacitor? (b) If the
capacitor had been connected to a 6.00-V battery, how
much energy would have been stored?

32. Two capacitors and are con-
nected in parallel and charged with a 100-V power sup-
ply. (a) Draw a circuit diagram and calculate the total

C2 " 5.00 .FC1 " 25.0 .F

ba

6.0 µF

5.0 µF

7.0 µF

4.0 µFµ

µ

µ

µ

C2 C2

C1 C1

C2 C2

C3

b

a

k

a b

A
B

C
D

E
F

Figure P26.26

Figure P26.28 Problems 28 and 29.

Figure P26.30

Figure P26.36
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Section 26.5 Capacitors with Dielectrics
40. Find the capacitance of a parallel-plate capacitor that

uses Bakelite as a dielectric, if each of the plates has an
area of 5.00 cm2 and the plate separation is 2.00 mm.

41. Determine (a) the capacitance and (b) the maximum
voltage that can be applied to a Teflon-filled parallel-
plate capacitor having a plate area of 1.75 cm2 and plate
separation of 0.040 0 mm.

42. (a) How much charge can be placed on a capacitor with
air between the plates before it breaks down, if the area
of each of the plates is 5.00 cm2? (b) Find the maxi-
mum charge if polystyrene is used between the plates
instead of air.

43. A commercial capacitor is constructed as shown in Fig-
ure 26.15a. This particular capacitor is rolled from two
strips of aluminum separated by two strips of paraffin-
coated paper. Each strip of foil and paper is 7.00 cm
wide. The foil is 0.004 00 mm thick, and the paper is
0.025 0 mm thick and has a dielectric constant of 
3.70. What length should the strips be if a capacitance
of 9.50 ) 10$8 F is desired? (Use the parallel-plate
formula.)

44. The supermarket sells rolls of aluminum foil, plastic
wrap, and waxed paper. Describe a capacitor made from
supermarket materials. Compute order-of-magnitude es-
timates for its capacitance and its breakdown voltage.

45. A capacitor that has air between its plates is connected
across a potential difference of 12.0 V and stores 
48.0 .C of charge. It is then disconnected from the
source while still charged. (a) Find the capacitance of
the capacitor. (b) A piece of Teflon is inserted between
the plates. Find its new capacitance. (c) Find the voltage
and charge now on the capacitor.

46. A parallel-plate capacitor in air has a plate separation of
1.50 cm and a plate area of 25.0 cm2. The plates are
charged to a potential difference of 250 V and discon-
nected from the source. The capacitor is then im-
mersed in distilled water. Determine (a) the charge on
the plates before and after immersion, (b) the capaci-
tance and voltage after immersion, and (c) the change
in energy of the capacitor. Neglect the conductance of
the liquid.

47. A conducting spherical shell has inner radius a and
outer radius c . The space between these two surfaces is
filled with a dielectric for which the dielectric constant
is /1 between a and b, and /2 between b and c (Fig.
P26.47). Determine the capacitance of this system.

48. A wafer of titanium dioxide has an area of
1.00 cm2 and a thickness of 0.100 mm. Aluminum is
evaporated on the parallel faces to form a parallel-plate
capacitor. (a) Calculate the capacitance. (b) When the
capacitor is charged with a 12.0-V battery, what is the
magnitude of charge delivered to each plate? (c) For
the situation in part (b), what are the free and induced
surface charge densities? (d) What is the magnitude E
of the electric field?

(/ " 173)

49. Each capacitor in the combination shown in Figure
P26.49 has a breakdown voltage of 15.0 V. What is the
breakdown voltage of the combination?

(Optional)
Section 26.6 Electric Dipole in an Electric Field

50. A small rigid object carries positive and negative 3.50-nC
charges. It is oriented so that the positive charge is at the
point ($ 1.20 mm, 1.10 mm) and the negative charge is
at the point (1.40 mm, $ 1.30 mm). (a) Find the electric
dipole moment of the object. The object is placed in an
electric field E " (7 800i $ 4 900j) N/C. (b) Find the
torque acting on the object. (c) Find the potential en-
ergy of the object in this orientation. (d) If the orienta-
tion of the object can change, find the difference be-
tween its maximum and its minimum potential energies.

51. A small object with electric dipole moment p is placed
in a nonuniform electric field That is, the
field is in the x direction, and its magnitude depends on
the coordinate x . Let 0 represent the angle between the
dipole moment and the x direction. (a) Prove that the
dipole experiences a net force cos 0 in
the direction toward which the field increases. (b) Con-
sider the field created by a spherical balloon centered
at the origin. The balloon has a radius of 15.0 cm and
carries a charge of 2.00 .C. Evaluate dE/dx at the point
(16 cm, 0, 0). Assume that a water droplet at this point
has an induced dipole moment of (6.30i) nC * m. Find
the force on it.

(Optional)
Section 26.7 An Atomic Description of Dielectrics

52. A detector of radiation called a Geiger–Muller counter
consists of a closed, hollow, conducting cylinder with a

F " p(dE/dx)

E " E(x) i.

20.0 µF

10.0 µF

20.0 µF

20.0 µF

20.0 µF

µ

µ

µ

µ

µ

a

b

c

–Q

+Q
κ2

κ1

Figure P26.47

Figure P26.49
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fine wire along its axis. Suppose that the internal diame-
ter of the cylinder is 2.50 cm and that the wire along the
axis has a diameter of 0.200 mm. If the dielectric
strength of the gas between the central wire and the
cylinder is 1.20 ) 106 V/m, calculate the maximum
voltage that can be applied between the wire and the
cylinder before breakdown occurs in the gas.

53. The general form of Gauss’s law describes how a charge
creates an electric field in a material, as well as in a vac-
uum. It is

where is the permittivity of the material. 
(a) A sheet with charge Q uniformly distributed over 
its area A is surrounded by a dielectric. Show that the
sheet creates a uniform electric field with magnitude

at nearby points. (b) Two large sheets of
area A carrying opposite charges of equal magnitude Q
are a small distance d apart. Show that they create a uni-
form electric field of magnitude between
them. (c) Assume that the negative plate is at zero po-
tential. Show that the positive plate is at a potential
Qd /A'. (d) Show that the capacitance of the pair of
plates is 

ADDITIONAL PROBLEMS
54. For the system of capacitors shown in Figure P26.54,

find (a) the equivalent capacitance of the system, 
(b) the potential difference across each capacitor, 
(c) the charge on each capacitor, and (d) the total 
energy stored by the group.

A'/d " /A'0/d .

E " Q /A'

E " Q /2A'

' " /'0

( E ! dA "
q
'

56. A 2.00-nF parallel-plate capacitor is charged to an initial
potential difference and then isolated. The
dielectric material between the plates is mica (/ "
5.00). (a) How much work is required to withdraw the
mica sheet? (b) What is the potential difference of the
capacitor after the mica is withdrawn?

57. A parallel-plate capacitor is constructed using a dielec-
tric material whose dielectric constant is 3.00 and whose
dielectric strength is 2.00 ) 108 V/m. The desired ca-
pacitance is 0.250 .F, and the capacitor must withstand
a maximum potential difference of 4 000 V. Find the
minimum area of the capacitor plates.

58. A parallel-plate capacitor is constructed using three
dielectric materials, as shown in Figure P26.58. You may
assume that ! d. (a) Find an expression for the ca-
pacitance of the device in terms of the plate area A and
d , /1 , /2 , and /3 . (b) Calculate the capacitance using
the values cm2, mm, /1 " 4.90, /2 "
5.60, and /3 " 2.10.

d " 2.00A " 1.00

W

!Vi " 100 V

60. (a) Two spheres have radii a and b and their centers are
a distance d apart. Show that the capacitance of this sys-
tem is

provided that d is large compared with a and b. (Hint:
Because the spheres are far apart, assume that the

C )
4&'0

1
a

%
1
b

$
2
d

59. A conducting slab of thickness d and area A is inserted
into the space between the plates of a parallel-plate ca-
pacitor with spacing s and surface area A, as shown in
Figure P26.59. The slab is not necessarily halfway be-
tween the capacitor plates. What is the capacitance of
the system?

55. Consider two long, parallel, and oppositely charged
wires of radius d with their centers separated by a dis-
tance D. Assuming the charge is distributed uniformly
on the surface of each wire, show that the capacitance
per unit length of this pair of wires is

C
!

"
&'0

ln" D $ d
d #

A

A

ds

d
d/2

!/2

!

κ2

κ3

κ1

κ

κ
κ

4.00 µF2.00 µF

6.00 µF3.00 µF

90.0 V

µ µ

µ µ

Figure P26.54

Figure P26.58

Figure P26.59

WEB
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68. It is possible to obtain large potential differences by first
charging a group of capacitors connected in parallel
and then activating a switch arrangement that in effect
disconnects the capacitors from the charging source
and from each other and reconnects them in a series
arrangement. The group of charged capacitors is then
discharged in series. What is the maximum potential
difference that can be obtained in this manner by using
ten capacitors each of 500 .F and a charging source of
800 V?

69. A parallel-plate capacitor of plate separation d is
charged to a potential difference !V0 . A dielectric slab

64. When considering the energy supply for an automobile,
the energy per unit mass of the energy source is an im-
portant parameter. Using the following data, compare
the energy per unit mass ( J/kg) for gasoline, lead–acid
batteries, and capacitors. (The ampere A will be intro-
duced in Chapter 27 and is the SI unit of electric cur-
rent. 1 A " 1 C/s.)

Gasoline: 126 000 Btu/gal; density " 670 kg/m3

Lead–acid battery: 12.0 V; 100 A * h; mass " 16.0 kg
Capacitor: potential difference at full charge "

12.0 V; capacitance " 0.100 F; mass " 0.100 kg

65. An isolated capacitor of unknown capacitance has been
charged to a potential difference of 100 V. When the
charged capacitor is then connected in parallel to an
uncharged 10.0-.F capacitor, the voltage across the
combination is 30.0 V. Calculate the unknown capaci-
tance.

66. A certain electronic circuit calls for a capacitor having a
capacitance of 1.20 pF and a breakdown potential of 
1 000 V. If you have a supply of 6.00-pF capacitors, each
having a breakdown potential of 200 V, how could you
meet this circuit requirement?

67. In the arrangement shown in Figure P26.67, a potential
difference !V is applied, and C1 is adjusted so that the
voltmeter between points b and d reads zero. This “bal-
ance” occurs when If and

calculate the value of C2 .C4 " 12.0 .F,
C3 " 9.00 .FC1 " 4.00 .F.

63. A capacitor is constructed from two square plates of
sides ! and separation d, as suggested in Figure P26.62.
You may assume that d is much less than !. The plates
carry charges %Q 0 and $Q 0 . A block of metal has a
width !, a length !, and a thickness slightly less than d. It
is inserted a distance x into the capacitor. The charges
on the plates are not disturbed as the block slides in. 
In a static situation, a metal prevents an electric field
from penetrating it. The metal can be thought of as a
perfect dielectric, with / : 4. (a) Calculate the stored
energy as a function of x. (b) Find the direction and
magnitude of the force that acts on the metallic block. 
(c) The area of the advancing front face of the block is
essentially equal to !d. Considering the force on the
block as acting on this face, find the stress (force per
area) on it. (d) For comparison, express the energy
density in the electric field between the capacitor plates
in terms of Q 0 , !, d, and '0 .

charge on one sphere does not perturb the charge dis-
tribution on the other sphere. Thus, the potential of
each sphere is expressed as that of a symmetric charge
distribution, , and the total potential at each
sphere is the sum of the potentials due to each sphere.
(b) Show that as d approaches infinity the above result
reduces to that of two isolated spheres in series.

61. When a certain air-filled parallel-plate capacitor is con-
nected across a battery, it acquires a charge (on each
plate) of q0 . While the battery connection is main-
tained, a dielectric slab is inserted into and fills the re-
gion between the plates. This results in the accumula-
tion of an additional charge q on each plate. What is the
dielectric constant of the slab?

62. A capacitor is constructed from two square plates of
sides ! and separation d. A material of dielectric con-
stant / is inserted a distance x into the capacitor, as
shown in Figure P26.62. (a) Find the equivalent capaci-
tance of the device. (b) Calculate the energy stored in
the capacitor if the potential difference is !V. (c) Find
the direction and magnitude of the force exerted on
the dielectric, assuming a constant potential difference
!V. Neglect friction. (d) Obtain a numerical value for
the force assuming that !V " 2 000 V,

and the dielectric is glass (/ " 4.50).
(Hint: The system can be considered as two capacitors
connected in parallel.)

d " 2.00 mm,
! " 5.00 cm,

V " keQ /r

C 1

C 2

C 4

C 3

a

b

c

d∆V V

x
d

!

κ

Figure P26.62 Problems 62 and 63.

Figure P26.67
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76. Determine the effective capacitance of the combination
shown in Figure P26.76. (Hint: Consider the symmetry
involved!)

pacitors are disconnected from the battery and from
each other. They are then connected positive plate to
negative plate and negative plate to positive plate. Cal-
culate the resulting charge on each capacitor.

73. The inner conductor of a coaxial cable has a radius of
0.800 mm, and the outer conductor’s inside radius is
3.00 mm. The space between the conductors is filled
with polyethylene, which has a dielectric constant of
2.30 and a dielectric strength of 18.0 ) 106 V/m. What
is the maximum potential difference that this cable can
withstand?

74. You are optimizing coaxial cable design for a major
manufacturer. Show that for a given outer conductor ra-
dius b, maximum potential difference capability is at-
tained when the radius of the inner conductor is

where e is the base of natural logarithms.
75. Calculate the equivalent capacitance between the points

a and b in Figure P26.75. Note that this is not a simple
series or parallel combination. (Hint: Assume a poten-
tial difference !V between points a and b. Write expres-
sions for !Vab in terms of the charges and capacitances
for the various possible pathways from a to b, and re-
quire conservation of charge for those capacitor plates
that are connected to each other.)

a " b/e

72. Capacitors and are charged
as a parallel combination across a 250-V battery. The ca-

C2 " 2.00 .FC1 " 6.00 .F

71. A vertical parallel-plate capacitor is half filled with a di-
electric for which the dielectric constant is 2.00 (Fig.
P26.71a). When this capacitor is positioned horizon-
tally, what fraction of it should be filled with the same
dielectric (Fig. P26.71b) so that the two capacitors have
equal capacitance?

of thickness d and dielectric constant / is introduced
between the plates while the battery remains connected to the
plates. (a) Show that the ratio of energy stored after the
dielectric is introduced to the energy stored in the
empty capacitor is Give a physical explana-
tion for this increase in stored energy. (b) What hap-
pens to the charge on the capacitor? (Note that this sit-
uation is not the same as Example 26.7, in which the
battery was removed from the circuit before the dielec-
tric was introduced.)

70. A parallel-plate capacitor with plates of area A and plate
separation d has the region between the plates filled
with two dielectric materials as in Figure P26.70. As-
sume that and that (a) Determine the
capacitance and (b) show that when /1 " /2 " / your
result becomes the same as that for a capacitor contain-
ing a single dielectric, C " /'0A/d.

d V W.d V L

U/U0 " /.

C

C

3C

2C

2C

a

b2.00 µF

4.00 µF

2.00 µF 4.00 µF8.00 µF

µ

µ µ

µ

µ

(b)(a)

d
κ1

κ2

L
W

Figure P26.70

Figure P26.71

Figure P26.76

Figure P26.75
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ANSWERS TO QUICK QUIZZES

crease. (c) E decreases because the charge density on
the plates decreases. (d) !V remains constant because
of the presence of the battery. (e) The energy stored in
the capacitor decreases (Eq. 26.11).

26.6 It increases. The dielectric constant of wood (and of all
other insulating materials, for that matter) is greater
than 1; therefore, the capacitance increases (Eq. 26.14).
This increase is sensed by the stud-finder’s special cir-
cuitry, which causes an indicator on the device to light
up.

26.7 (a) C increases (Eq. 26.14). (b) Q increases. Because
the battery maintains a constant !V, Q must increase if
C increases. (c) E between the plates remains
constant because !V " Ed and neither !V nor d
changes. The electric field due to the charges on the
plates increases because more charge has flowed onto
the plates. The induced surface charges on the dielec-
tric create a field that opposes the increase in the field
caused by the greater number of charges on the plates.
(d) The battery maintains a constant !V. (e) The energy
stored in the capacitor increases (Eq. 26.11). You would
have to push the dielectric into the capacitor, just as you
would have to do positive work to raise a mass and in-
crease its gravitational potential energy.

("Q /!V )

26.1 (a) because the plate separation is decreased. Capaci-
tance depends only on how a capacitor is constructed
and not on the external circuit.

26.2 Zero. If you construct a spherical gaussian surface out-
side and concentric with the capacitor, the net charge
inside the surface is zero. Applying Gauss’s law to this
configuration, we find that at points outside the
capacitor.

26.3 For a given voltage, the energy stored in a capacitor is
proportional to C : . Thus, you want to
maximize the equivalent capacitance. You do this by
connecting the three capacitors in parallel, so that the
capacitances add.

26.4 (a) C decreases (Eq. 26.3). (b) Q stays the same because
there is no place for the charge to flow. (c) E remains
constant (see Eq. 24.8 and the paragraph following it). 
(d) !V increases because !V " Q /C , Q is constant
(part b), and C decreases (part a). (e) The energy
stored in the capacitor is proportional to both Q and 
!V (Eq. 26.11) and thus increases. The additional en-
ergy comes from the work you do in pulling the two
plates apart.

26.5 (a) C decreases (Eq. 26.3). (b) Q decreases. The battery
supplies a constant potential difference !V ; thus, charge
must flow out of the capacitor if is to de-C " Q /!V

U " C(!V )2/2

E " 0
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Electrical workers restoring power to the
eastern Ontario town of St. Isadore,
which was without power for several
days in January 1998 because of a se-
vere ice storm. It is very dangerous to
touch fallen power transmission lines be-
cause of their high electric potential,
which might be hundreds of thousands of
volts relative to the ground. Why is such
a high potential difference used in power
transmission if it is so dangerous, and
why aren’t birds that perch on the wires
electrocuted? (AP/Wide World
Photos/Fred Chartrand)
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27.1 Electric Current 841

hus far our treatment of electrical phenomena has been confined to the study
of charges at rest, or electrostatics. We now consider situations involving electric
charges in motion. We use the term electric current, or simply current, to describe

the rate of flow of charge through some region of space. Most practical applica-
tions of electricity deal with electric currents. For example, the battery in a flash-
light supplies current to the filament of the bulb when the switch is turned on. A
variety of home appliances operate on alternating current. In these common situa-
tions, the charges flow through a conductor, such as a copper wire. It also is possi-
ble for currents to exist outside a conductor. For instance, a beam of electrons in a
television picture tube constitutes a current.

This chapter begins with the definitions of current and current density. A mi-
croscopic description of current is given, and some of the factors that contribute
to the resistance to the flow of charge in conductors are discussed. A classical
model is used to describe electrical conduction in metals, and some of the limita-
tions of this model are cited.

ELECTRIC CURRENT
It is instructive to draw an analogy between water flow and current. In many locali-
ties it is common practice to install low-flow showerheads in homes as a water-
conservation measure. We quantify the flow of water from these and similar de-
vices by specifying the amount of water that emerges during a given time interval,
which is often measured in liters per minute. On a grander scale, we can charac-
terize a river current by describing the rate at which the water flows past a particu-
lar location. For example, the flow over the brink at Niagara Falls is maintained at
rates between 1 400 m3/s and 2 800 m3/s.

Now consider a system of electric charges in motion. Whenever there is a net
flow of charge through some region, a current is said to exist. To define current
more precisely, suppose that the charges are moving perpendicular to a surface of
area A, as shown in Figure 27.1. (This area could be the cross-sectional area of a wire,
for example.) The current is the rate at which charge flows through this sur-
face. If !Q is the amount of charge that passes through this area in a time interval !t,
the average current Iav is equal to the charge that passes through A per unit time:

(27.1)

If the rate at which charge flows varies in time, then the current varies in time; we
define the instantaneous current I as the differential limit of average current:

(27.2)

The SI unit of current is the ampere (A):

(27.3)

That is, 1 A of current is equivalent to 1 C of charge passing through the surface
area in 1 s.

The charges passing through the surface in Figure 27.1 can be positive or neg-
ative, or both. It is conventional to assign to the current the same direction
as the flow of positive charge. In electrical conductors, such as copper or alu-

1 A "
1 C
1 s

I !
dQ
dt

Iav "
!Q
!t

27.1

T

Electric current

13.2

A

I

+

+

+
+

+

Figure 27.1 Charges in motion
through an area A. The time rate at
which charge flows through the
area is defined as the current I.
The direction of the current is the
direction in which positive charges
flow when free to do so.

The direction of the current
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minum, the current is due to the motion of negatively charged electrons. There-
fore, when we speak of current in an ordinary conductor, the direction of the
current is opposite the direction of flow of electrons. However, if we are con-
sidering a beam of positively charged protons in an accelerator, the current is in
the direction of motion of the protons. In some cases—such as those involving
gases and electrolytes, for instance—the current is the result of the flow of both
positive and negative charges.

If the ends of a conducting wire are connected to form a loop, all points on
the loop are at the same electric potential, and hence the electric field is zero
within and at the surface of the conductor. Because the electric field is zero, there
is no net transport of charge through the wire, and therefore there is no current.
The current in the conductor is zero even if the conductor has an excess of charge
on it. However, if the ends of the conducting wire are connected to a battery, all
points on the loop are not at the same potential. The battery sets up a potential
difference between the ends of the loop, creating an electric field within the wire.
The electric field exerts forces on the conduction electrons in the wire, causing
them to move around the loop and thus creating a current.

It is common to refer to a moving charge (positive or negative) as a mobile
charge carrier. For example, the mobile charge carriers in a metal are electrons.

Microscopic Model of Current

We can relate current to the motion of the charge carriers by describing a micro-
scopic model of conduction in a metal. Consider the current in a conductor of
cross-sectional area A (Fig. 27.2). The volume of a section of the conductor of
length !x (the gray region shown in Fig. 27.2) is A !x. If n represents the number
of mobile charge carriers per unit volume (in other words, the charge carrier den-
sity), the number of carriers in the gray section is nA !x. Therefore, the charge
!Q in this section is

!Q " number of carriers in section # charge per carrier " (nA !x)q

where q is the charge on each carrier. If the carriers move with a speed vd , the dis-
tance they move in a time !t is !x " vd !t. Therefore, we can write !Q in the
form

If we divide both sides of this equation by !t , we see that the average current in
the conductor is

(27.4)

The speed of the charge carriers vd is an average speed called the drift speed.
To understand the meaning of drift speed, consider a conductor in which the
charge carriers are free electrons. If the conductor is isolated—that is, the poten-
tial difference across it is zero—then these electrons undergo random motion
that is analogous to the motion of gas molecules. As we discussed earlier, when a
potential difference is applied across the conductor (for example, by means of a
battery), an electric field is set up in the conductor; this field exerts an electric
force on the electrons, producing a current. However, the electrons do not move
in straight lines along the conductor. Instead, they collide repeatedly with the
metal atoms, and their resultant motion is complicated and zigzag (Fig. 27.3). De-
spite the collisions, the electrons move slowly along the conductor (in a direction
opposite that of E) at the drift velocity vd .

Iav "
!Q
!t

" nqvdA

!Q " (nAvd !t)q

Average current in a conductor

∆x

A
q

vd

vd∆t

Figure 27.2 A section of a uni-
form conductor of cross-sectional
area A. The mobile charge carriers
move with a speed vd , and the dis-
tance they travel in a time !t is
!x " vd !t . The number of carriers
in the section of length !x is 
nAvd !t, where n is the number of
carriers per unit volume.



We can think of the atom–electron collisions in a conductor as an effective inter-
nal friction (or drag force) similar to that experienced by the molecules of a liquid
flowing through a pipe stuffed with steel wool. The energy transferred from the elec-
trons to the metal atoms during collision causes an increase in the vibrational energy
of the atoms and a corresponding increase in the temperature of the conductor.

Consider positive and negative charges moving horizontally through the four regions shown
in Figure 27.4. Rank the current in these four regions, from lowest to highest.

Quick Quiz 27.1

27.1 Electric Current 843

–

–

vd

E

Figure 27.3 A schematic representation of the zigzag
motion of an electron in a conductor. The changes in di-
rection are the result of collisions between the electron
and atoms in the conductor. Note that the net motion of
the electron is opposite the direction of the electric field.
Each section of the zigzag path is a parabolic segment.

(a)

–

–

+
+

+

+
+

+
+

+
+

–

–

–

–

(b) (c) (d) Figure 27.4

Drift Speed in a Copper WireEXAMPLE 27.1
From Equation 27.4, we find that the drift speed is

where q is the absolute value of the charge on each electron.
Thus,

Exercise If a copper wire carries a current of 80.0 mA, how
many electrons flow past a given cross-section of the wire in
10.0 min?

Answer 3.0 # 1020 electrons.

2.22 # 10$4 m/s "

 "
10.0 C/s

(8.49 # 1028 m$3)(1.60 # 10$19 C)(3.31 # 10$6 m2)

vd "
I

nqA
 

vd "
I

nqA

The 12-gauge copper wire in a typical residential building has
a cross-sectional area of 3.31 # 10$6 m2. If it carries a current
of 10.0 A, what is the drift speed of the electrons? Assume
that each copper atom contributes one free electron to the
current. The density of copper is 8.95 g/cm3.

Solution From the periodic table of the elements in
Appendix C, we find that the molar mass of copper is 
63.5 g/mol. Recall that 1 mol of any substance contains Avo-
gadro’s number of atoms (6.02 # 1023). Knowing the density
of copper, we can calculate the volume occupied by 63.5 g

of copper:

Because each copper atom contributes one free electron
to the current, we have

 " 8.49 # 1028 electrons/m3

n "
6.02 # 1023 electrons

7.09 cm3 
 (1.00 # 106 cm3/m3)

V "
m
%

"
63.5 g

8.95 g/cm3 " 7.09 cm3

("1 mol)
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for many materials (including most metals), the ratio of the current density to
the electric field is a constant & that is independent of the electric field produc-
ing the current.

1 Do not confuse conductivity & with surface charge density, for which the same symbol is used.

Current density

Ohm’s law

13.3

Example 27.1 shows that typical drift speeds are very low. For instance, elec-
trons traveling with a speed of 2.46 # 10$4 m/s would take about 68 min to travel
1 m! In view of this, you might wonder why a light turns on almost instantaneously
when a switch is thrown. In a conductor, the electric field that drives the free elec-
trons travels through the conductor with a speed close to that of light. Thus, when
you flip on a light switch, the message for the electrons to start moving through
the wire (the electric field) reaches them at a speed on the order of 108 m/s.

RESISTANCE AND OHM’S LAW
In Chapter 24 we found that no electric field can exist inside a conductor. How-
ever, this statement is true only if the conductor is in static equilibrium. The pur-
pose of this section is to describe what happens when the charges in the conductor
are allowed to move.

Charges moving in a conductor produce a current under the action of an elec-
tric field, which is maintained by the connection of a battery across the conductor.
An electric field can exist in the conductor because the charges in this situation
are in motion—that is, this is a nonelectrostatic situation.

Consider a conductor of cross-sectional area A carrying a current I. The cur-
rent density J in the conductor is defined as the current per unit area. Because
the current the current density is

(27.5)

where J has SI units of A/m2. This expression is valid only if the current density is
uniform and only if the surface of cross-sectional area A is perpendicular to the di-
rection of the current. In general, the current density is a vector quantity:

(27.6)

From this equation, we see that current density, like current, is in the direction of
charge motion for positive charge carriers and opposite the direction of motion
for negative charge carriers.

A current density J and an electric field E are established in a conductor
whenever a potential difference is maintained across the conductor. If the
potential difference is constant, then the current also is constant. In some materi-
als, the current density is proportional to the electric field:

(27.7)

where the constant of proportionality & is called the conductivity of the con-
ductor.1 Materials that obey Equation 27.7 are said to follow Ohm’s law, named af-
ter Georg Simon Ohm (1787–1854). More specifically, Ohm’s law states that

J " &E

J " nqvd

J !
I
A

" nqvd

I " nqvdA,

27.2

Materials that obey Ohm’s law and hence demonstrate this simple relationship be-
tween E and J are said to be ohmic. Experimentally, it is found that not all materials
have this property, however, and materials that do not obey Ohm’s law are said to
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be nonohmic. Ohm’s law is not a fundamental law of nature but rather an empirical
relationship valid only for certain materials.

Suppose that a current-carrying ohmic metal wire has a cross-sectional area that gradually
becomes smaller from one end of the wire to the other. How do drift velocity, current den-
sity, and electric field vary along the wire? Note that the current must have the same value
everywhere in the wire so that charge does not accumulate at any one point.

We can obtain a form of Ohm’s law useful in practical applications by consid-
ering a segment of straight wire of uniform cross-sectional area A and length , as
shown in Figure 27.5. A potential difference is maintained across
the wire, creating in the wire an electric field and a current. If the field is assumed
to be uniform, the potential difference is related to the field through the relation-
ship2

Therefore, we can express the magnitude of the current density in the wire as

Because we can write the potential difference as

The quantity /&A is called the resistance R of the conductor. We can define the
resistance as the ratio of the potential difference across a conductor to the current
through the conductor:

(27.8)

From this result we see that resistance has SI units of volts per ampere. One volt
per ampere is defined to be 1 ohm ('):

(27.9)1 ' !
1 V
1 A

R !
!

&A
!

!V
I

!

!V "
!

&
 J " " !

&A #I

J " I/A,

J " &E " & 
!V
!

!V " E!

!V " Vb $ Va

!

Quick Quiz 27.2

2 This result follows from the definition of potential difference:

Vb $ Va " $$b

a
 E ! ds " E $!

0
 dx " E!

!

E

Vb Va

IA

Figure 27.5 A uniform conductor of length 
and cross-sectional area A. A potential difference
!V " Vb $ Va maintained across the conductor
sets up an electric field E, and this field produces
a current I that is proportional to the potential
difference.

!

Resistance of a conductor
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Resistance of a uniform conductor

This expression shows that if a potential difference of 1 V across a conductor
causes a current of 1 A, the resistance of the conductor is 1 '. For example, if an
electrical appliance connected to a 120-V source of potential difference carries a
current of 6 A, its resistance is 20 '. 

Equation 27.8 solved for potential difference (!V ) explains part of the
chapter-opening puzzler: How can a bird perch on a high-voltage power line without
being electrocuted? Even though the potential difference between the ground and
the wire might be hundreds of thousands of volts, that between the bird’s feet (which
is what determines how much current flows through the bird) is very small.

The inverse of conductivity is resistivity3 %:

(27.10)

where % has the units ohm-meters (' ( m). We can use this definition and Equation
27.8 to express the resistance of a uniform block of material as

(27.11)

Every ohmic material has a characteristic resistivity that depends on the properties
of the material and on temperature. Additionally, as you can see from Equation
27.11, the resistance of a sample depends on geometry as well as on resistivity.
Table 27.1 gives the resistivities of a variety of materials at 20°C. Note the enor-
mous range, from very low values for good conductors such as copper and silver,
to very high values for good insulators such as glass and rubber. An ideal conduc-
tor would have zero resistivity, and an ideal insulator would have infinite resistivity.

Equation 27.11 shows that the resistance of a given cylindrical conductor is
proportional to its length and inversely proportional to its cross-sectional area. If
the length of a wire is doubled, then its resistance doubles. If its cross-sectional
area is doubled, then its resistance decreases by one half. The situation is analo-
gous to the flow of a liquid through a pipe. As the pipe’s length is increased, the

R " % 
!

A

% !
1
&

" I!/&A

Resistivity

3 Do not confuse resistivity with mass density or charge density, for which the same symbol is used.

An assortment of resistors used in electric circuits.
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resistance to flow increases. As the pipe’s cross-sectional area is increased, more
liquid crosses a given cross-section of the pipe per unit time. Thus, more liquid
flows for the same pressure differential applied to the pipe, and the resistance to
flow decreases.

Most electric circuits use devices called resistors to control the current level
in the various parts of the circuit. Two common types of resistors are the composi-
tion resistor, which contains carbon, and the wire-wound resistor, which consists of a
coil of wire. Resistors’ values in ohms are normally indicated by color-coding, as
shown in Figure 27.6 and Table 27.2.

Ohmic materials have a linear current–potential difference relationship over
a broad range of applied potential differences (Fig. 27.7a). The slope of the 
I -versus-!V curve in the linear region yields a value for 1/R . Nonohmic materials

TABLE 27.1 Resistivities and Temperature Coefficients of
Resistivity for Various Materials

Resistivitya Temperature
Material (" m) Coefficient #[($C)%1]

Silver 1.59 # 10$8 3.8 # 10$3

Copper 1.7 # 10$8 3.9 # 10$3

Gold 2.44 # 10$8 3.4 # 10$3

Aluminum 2.82 # 10$8 3.9 # 10$3

Tungsten 5.6 # 10$8 4.5 # 10$3

Iron 10 # 10$8 5.0 # 10$3

Platinum 11 # 10$8 3.92 # 10$3

Lead 22 # 10$8 3.9 # 10$3

Nichromeb 1.50 # 10$6 0.4 # 10$3

Carbon 3.5 # 10$5 $ 0.5 # 10$3

Germanium 0.46 $ 48 # 10$3

Silicon 640 $ 75 # 10$3

Glass 1010 to 1014

Hard rubber % 1013

Sulfur 1015

Quartz (fused) 75 # 1016

a All values at 20°C.
b A nickel–chromium alloy commonly used in heating elements.

!

Figure 27.6 The colored bands on a re-
sistor represent a code for determining re-
sistance. The first two colors give the first
two digits in the resistance value. The third
color represents the power of ten for the
multiplier of the resistance value. The last
color is the tolerance of the resistance
value. As an example, the four colors on
the circled resistors are red black

orange and gold 
and so the resistance value is 20 # 103 ' "
20 k' with a tolerance value of 5% " 1 k'.
(The values for the colors are from Table
27.2.)

(" 5%),(" 103),(" 0),
(" 2),



848 C H A P T E R  2 7 Current and Resistance

have a nonlinear current–potential difference relationship. One common semi-
conducting device that has nonlinear I -versus-!V characteristics is the junction
diode (Fig. 27.7b). The resistance of this device is low for currents in one direction
(positive !V ) and high for currents in the reverse direction (negative !V ). In fact,
most modern electronic devices, such as transistors, have nonlinear current–
potential difference relationships; their proper operation depends on the particu-
lar way in which they violate Ohm’s law.

What does the slope of the curved line in Figure 27.7b represent?

Your boss asks you to design an automobile battery jumper cable that has a low resistance.
In view of Equation 27.11, what factors would you consider in your design?

Quick Quiz 27.4

Quick Quiz 27.3

TABLE 27.2 Color Coding for Resistors

Color Number Multiplier Tolerance

Black 0 1
Brown 1 101

Red 2 102

Orange 3 103

Yellow 4 104

Green 5 105

Blue 6 106

Violet 7 107

Gray 8 108

White 9 109

Gold 10$1 5%
Silver 10$2 10%
Colorless 20%

Figure 27.7 (a) The current–potential difference curve for an ohmic material. The curve is
linear, and the slope is equal to the inverse of the resistance of the conductor. (b) A nonlinear
current–potential difference curve for a semiconducting diode. This device does not obey
Ohm’s law.

(a)

I

Slope = 1
R

!V

(b)

I

!V
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The Resistance of a ConductorEXAMPLE 27.2
ties, the resistance of identically shaped cylinders of alu-
minum and glass differ widely. The resistance of the glass
cylinder is 18 orders of magnitude greater than that of the
aluminum cylinder.

Calculate the resistance of an aluminum cylinder that is 
10.0 cm long and has a cross-sectional area of 2.00 # 10$4 m2.
Repeat the calculation for a cylinder of the same dimensions
and made of glass having a resistivity of 

Solution From Equation 27.11 and Table 27.1, we can cal-
culate the resistance of the aluminum cylinder as follows:

Similarly, for glass we find that

As you might guess from the large difference in resistivi-

1.5 # 1013 '"

R " % 
!

A
" (3.0 # 1010 '(m) " 0.100 m

2.00 # 10$4 m2 #

1.41 # 10$5 '"

R " % 
!

A
" (2.82 # 10$8 '(m) " 0.100 m

2.00 # 10$4 m2 #

3.0 # 1010 '(m.

Electrical insulators on telephone poles are often made of glass because
of its low electrical conductivity. 

The Resistance of Nichrome WireEXAMPLE 27.3
Note from Table 27.1 that the resistivity of Nichrome wire

is about 100 times that of copper. A copper wire of the same
radius would have a resistance per unit length of only 
0.052 '/m. A 1.0-m length of copper wire of the same radius
would carry the same current (2.2 A) with an applied poten-
tial difference of only 0.11 V.

Because of its high resistivity and its resistance to oxida-
tion, Nichrome is often used for heating elements in toasters,
irons, and electric heaters.

Exercise What is the resistance of a 6.0-m length of 22-
gauge Nichrome wire? How much current does the wire carry
when connected to a 120-V source of potential difference?

Answer 28 '; 4.3 A.

Exercise Calculate the current density and electric field in
the wire when it carries a current of 2.2 A.

Answer 6.8 # 106 A/m2; 10 N/C.

(a) Calculate the resistance per unit length of a 22-gauge
Nichrome wire, which has a radius of 0.321 mm.

Solution The cross-sectional area of this wire is

The resistivity of Nichrome is (see Table
27.1). Thus, we can use Equation 27.11 to find the resistance
per unit length:

(b) If a potential difference of 10 V is maintained across a
1.0-m length of the Nichrome wire, what is the current in the
wire?

Solution Because a 1.0-m length of this wire has a resis-
tance of 4.6 ', Equation 27.8 gives

2.2 AI "
!V
R

"
10 V
4.6 '

"

4.6 '/m
R
!

"
%

A
"

1.5 # 10$6 '(m
3.24 # 10$7 m2 "

1.5 # 10$6 '(m

A " )r 2 " )(0.321 # 10$3 m)2 " 3.24 # 10$7 m2

The Radial Resistance of a Coaxial CableEXAMPLE 27.4
completely filled with silicon, as shown in Figure 27.8a, and
current leakage through the silicon is unwanted. (The cable
is designed to conduct current along its length.) The radius

Coaxial cables are used extensively for cable television and
other electronic applications. A coaxial cable consists of two
cylindrical conductors. The gap between the conductors is



850 C H A P T E R  2 7 Current and Resistance

of the inner conductor is the radius of the
outer one is and the length of the cable is

Calculate the resistance of the silicon between
the two conductors.

Solution In this type of problem, we must divide the ob-
ject whose resistance we are calculating into concentric ele-
ments of infinitesimal thickness dr (Fig. 27.8b). We start by
using the differential form of Equation 27.11, replacing 
with r for the distance variable: where dR is the
resistance of an element of silicon of thickness dr and surface
area A. In this example, we take as our representative concen-
tric element a hollow silicon cylinder of radius r, thickness dr,
and length L, as shown in Figure 27.8. Any current that
passes from the inner conductor to the outer one must pass
radially through this concentric element, and the area
through which this current passes is (This is the
curved surface area—circumference multiplied by length—
of our hollow silicon cylinder of thickness dr .) Hence, we can
write the resistance of our hollow cylinder of silicon as

A " 2)rL .

dR " % dr/A,
!

L " 15.0 cm.
b " 1.75 cm,

a " 0.500 cm,

Because we wish to know the total resistance across the entire
thickness of the silicon, we must integrate this expression
from to 

Substituting in the values given, and using % " 640 ' ( m for
silicon, we obtain

Exercise If a potential difference of 12.0 V is applied be-
tween the inner and outer conductors, what is the value of
the total current that passes between them?

Answer 14.1 mA.

851 'R "
640 '(m

2)(0.150 m)
 ln" 1.75 cm

0.500 cm # "

R " $b

a
 dR "

%

2)L
 $b

a
 
dr
r

"
%

2)L
 ln" b

a #
r " b :r " a

dR "
%

2)rL
 dr

(a)

L

Outer
conductor

Inner
conductor

Silicon

a

b

Current
direction

End view
(b)

dr

r

Figure 27.8 A coaxial cable. (a) Silicon fills the gap between the two conductors. 
(b) End view, showing current leakage.

A MODEL FOR ELECTRICAL CONDUCTION
In this section we describe a classical model of electrical conduction in metals that
was first proposed by Paul Drude in 1900. This model leads to Ohm’s law and
shows that resistivity can be related to the motion of electrons in metals. Although
the Drude model described here does have limitations, it nevertheless introduces
concepts that are still applied in more elaborate treatments.

Consider a conductor as a regular array of atoms plus a collection of free elec-
trons, which are sometimes called conduction electrons. The conduction electrons,
although bound to their respective atoms when the atoms are not part of a solid,
gain mobility when the free atoms condense into a solid. In the absence of an elec-
tric field, the conduction electrons move in random directions through the con-

27.3
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ductor with average speeds of the order of 106 m/s. The situation is similar to the
motion of gas molecules confined in a vessel. In fact, some scientists refer to con-
duction electrons in a metal as an electron gas. There is no current through the con-
ductor in the absence of an electric field because the drift velocity of the free elec-
trons is zero. That is, on the average, just as many electrons move in one direction
as in the opposite direction, and so there is no net flow of charge.

This situation changes when an electric field is applied. Now, in addition to
undergoing the random motion just described, the free electrons drift slowly in a
direction opposite that of the electric field, with an average drift speed vd that is
much smaller (typically 10$4 m/s) than their average speed between collisions
(typically 106 m/s).

Figure 27.9 provides a crude description of the motion of free electrons in a
conductor. In the absence of an electric field, there is no net displacement after
many collisions (Fig. 27.9a). An electric field E modifies the random motion and
causes the electrons to drift in a direction opposite that of E (Fig. 27.9b). The
slight curvature in the paths shown in Figure 27.9b results from the acceleration of
the electrons between collisions, which is caused by the applied field.

In our model, we assume that the motion of an electron after a collision is in-
dependent of its motion before the collision. We also assume that the excess en-
ergy acquired by the electrons in the electric field is lost to the atoms of the con-
ductor when the electrons and atoms collide. The energy given up to the atoms
increases their vibrational energy, and this causes the temperature of the conduc-
tor to increase. The temperature increase of a conductor due to resistance is uti-
lized in electric toasters and other familiar appliances.

We are now in a position to derive an expression for the drift velocity. When a
free electron of mass me and charge is subjected to an electric field E, it
experiences a force Because we conclude that the acceleration
of the electron is

(27.12)

This acceleration, which occurs for only a short time between collisions, enables
the electron to acquire a small drift velocity. If t is the time since the last collision
and vi is the electron’s initial velocity the instant after that collision, then the veloc-
ity of the electron after a time t is

(27.13)

We now take the average value of vf over all possible times t and all possible values
of vi . If we assume that the initial velocities are randomly distributed over all possi-
ble values, we see that the average value of vi is zero. The term is the ve-
locity added by the field during one trip between atoms. If the electron starts with
zero velocity, then the average value of the second term of Equation 27.13 is

where * is the average time interval between successive collisions. Because the
average value of vf is equal to the drift velocity,4 we have

(27.14)vf " vd "
qE
me

 *

(qE/me)*,

(qE/me)t

vf " vi + at " vi +
qE
me

 t

a "
qE
me

,F " mea,F " qE.
q ("$e)

4 Because the collision process is random, each collision event is independent of what happened earlier.
This is analogous to the random process of throwing a die. The probability of rolling a particular num-
ber on one throw is independent of the result of the previous throw. On average, the particular num-
ber comes up every sixth throw, starting at any arbitrary time.

–

–

–

–

E

(a)

(b)

–

–

––

Figure 27.9 (a) A schematic dia-
gram of the random motion of two
charge carriers in a conductor in
the absence of an electric field.
The drift velocity is zero. (b) The
motion of the charge carriers in a
conductor in the presence of an
electric field. Note that the random
motion is modified by the field,
and the charge carriers have a drift
velocity.

Drift velocity
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Although this classical model of conduction is consistent with Ohm’s law, it is
not satisfactory for explaining some important phenomena. For example, classical
values for calculated on the basis of an ideal-gas model (see Section 21.6) are
smaller than the true values by about a factor of ten. Furthermore, if we substitute

/ for * in Equation 27.17 and rearrange terms so that appears in the numera-
tor, we find that the resistivity % is proportional to . According to the ideal-gas 
model, is proportional to hence, it should also be true that . This is in
disagreement with the fact that, for pure metals, resistivity depends linearly on
temperature. We are able to account for the linear dependence only by using a
quantum mechanical model, which we now describe briefly.

% - !T!T ;v
v

vv!

v

Electron Collisions in a WireEXAMPLE 27.5

(b) Assuming that the average speed for free electrons in
copper is 1.6 # 106 m/s and using the result from part (a),
calculate the mean free path for electrons in copper.

Solution

which is equivalent to 40 nm (compared with atomic spacings
of about 0.2 nm). Thus, although the time between collisions
is very short, an electron in the wire travels about 200 atomic
spacings between collisions.

4.0 # 10$8 m"

! " v * " (1.6 # 106 m/s)(2.5 # 10$14 s)

2.5 # 10$14 s "
(a) Using the data and results from Example 27.1 and the
classical model of electron conduction, estimate the average
time between collisions for electrons in household copper
wiring.

Solution From Equation 27.17, we see that

where for copper and the carrier den-
sity is n " 8.49 # 1028 electrons/m3 for the wire described in
Example 27.1. Substitution of these values into the expres-
sion above gives

* "
(9.11 # 10$31 kg)

(8.49 # 1028 m$3)(1.6 # 10$19 C)2(1.7 # 10$8 '(m)

% " 1.7 # 10$8 '(m

* "
me

nq2%

Conductivity

Resistivity

We can relate this expression for drift velocity to the current in the conductor.
Substituting Equation 27.14 into Equation 27.6, we find that the magnitude of the
current density is

(27.15)

where n is the number of charge carriers per unit volume. Comparing this expres-
sion with Ohm’s law, we obtain the following relationships for conductivity
and resistivity:

(27.16)

(27.17)

According to this classical model, conductivity and resistivity do not depend on the
strength of the electric field. This feature is characteristic of a conductor obeying
Ohm’s law.

The average time between collisions * is related to the average distance be-
tween collisions (that is, the mean free path; see Section 21.7) and the average
speed through the expression

(27.18)* "
!

v

v
!

% "
1
&

"
me

nq 2*

& "
nq2*

me
 

J " &E,

J " nqvd "
nq 2E

me
 *Current density
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According to quantum mechanics, electrons have wave-like properties. If the
array of atoms in a conductor is regularly spaced (that is, it is periodic), then the
wave-like character of the electrons enables them to move freely through the con-
ductor, and a collision with an atom is unlikely. For an idealized conductor, no col-
lisions would occur, the mean free path would be infinite, and the resistivity would
be zero. Electron waves are scattered only if the atomic arrangement is irregular
(not periodic) as a result of, for example, structural defects or impurities. At low
temperatures, the resistivity of metals is dominated by scattering caused by colli-
sions between electrons and defects or impurities. At high temperatures, the resis-
tivity is dominated by scattering caused by collisions between electrons and atoms
of the conductor, which are continuously displaced from the regularly spaced ar-
ray as a result of thermal agitation. The thermal motion of the atoms causes the
structure to be irregular (compared with an atomic array at rest), thereby reduc-
ing the electron’s mean free path.

RESISTANCE AND TEMPERATURE
Over a limited temperature range, the resistivity of a metal varies approximately
linearly with temperature according to the expression

(27.19)

where % is the resistivity at some temperature T (in degrees Celsius), %0 is the resis-
tivity at some reference temperature T0 (usually taken to be 20°C), and . is the
temperature coefficient of resistivity. From Equation 27.19, we see that the tem-
perature coefficient of resistivity can be expressed as

(27.20)

where is the change in resistivity in the temperature interval

The temperature coefficients of resistivity for various materials are given in
Table 27.1. Note that the unit for . is degrees Celsius$1 [(°C)$1]. Because resis-
tance is proportional to resistivity (Eq. 27.11), we can write the variation of resis-
tance as

(27.21)

Use of this property enables us to make precise temperature measurements, as
shown in the following example.

R " R 0[1 + .(T $ T0)]

!T " T $ T0 .
!% " % $ %0

. "
1
%0

 
!%

!T

% " %0[1 + .(T $ T0)]

27.4

A Platinum Resistance ThermometerEXAMPLE 27.6
value for platinum given in Table 27.1, we obtain

Because we find that T, the temperature of the 

melting indium sample, is 157/C.

T0 " 20.0°C,

!T "
R $ R0

.R0
"

76.8 ' $ 50.0 '
[3.92 # 10$3 (/C)$1](50.0 ')

" 137/C

A resistance thermometer, which measures temperature by
measuring the change in resistance of a conductor, is made
from platinum and has a resistance of 50.0 ' at 20.0°C.
When immersed in a vessel containing melting indium, its re-
sistance increases to 76.8 '. Calculate the melting point of
the indium.

Solution Solving Equation 27.21 for !T and using the .

Variation of % with temperature

Temperature coefficient of
resistivity
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For metals like copper, resistivity is nearly proportional to temperature, as
shown in Figure 27.10. However, a nonlinear region always exists at very low tem-
peratures, and the resistivity usually approaches some finite value as the tempera-
ture nears absolute zero. This residual resistivity near absolute zero is caused pri-
marily by the collision of electrons with impurities and imperfections in the metal.
In contrast, high-temperature resistivity (the linear region) is predominantly char-
acterized by collisions between electrons and metal atoms.

Notice that three of the . values in Table 27.1 are negative; this indicates that
the resistivity of these materials decreases with increasing temperature (Fig.
27.11). This behavior is due to an increase in the density of charge carriers at
higher temperatures. 

Because the charge carriers in a semiconductor are often associated with im-
purity atoms, the resistivity of these materials is very sensitive to the type and con-
centration of such impurities. We shall return to the study of semiconductors in
Chapter 43 of the extended version of this text.

When does a lightbulb carry more current—just after it is turned on and the glow of the
metal filament is increasing, or after it has been on for a few milliseconds and the glow is
steady?

Optional Section

SUPERCONDUCTORS
There is a class of metals and compounds whose resistance decreases to zero when
they are below a certain temperature Tc , known as the critical temperature. These
materials are known as superconductors. The resistance–temperature graph for
a superconductor follows that of a normal metal at temperatures above Tc (Fig.
27.12). When the temperature is at or below Tc , the resistivity drops suddenly to
zero. This phenomenon was discovered in 1911 by the Dutch physicist Heike
Kamerlingh-Onnes (1853–1926) as he worked with mercury, which is a supercon-
ductor below 4.2 K. Recent measurements have shown that the resistivities of su-
perconductors below their Tc values are less than m—around 1017

times smaller than the resistivity of copper and in practice considered to be zero.
Today thousands of superconductors are known, and as Figure 27.13 illus-

trates, the critical temperatures of recently discovered superconductors are sub-
stantially higher than initially thought possible. Two kinds of superconductors are
recognized. The more recently identified ones, such as YBa2Cu3O7 , are essentially
ceramics with high critical temperatures, whereas superconducting materials such

4 # 10$25 '(

27.5

Quick Quiz 27.5

T

ρ

0

T
ρ0

0
ρ

ρ

ρ

T Figure 27.11 Resistivity versus temperature for a pure
semiconductor, such as silicon or germanium.

Figure 27.10 Resistivity versus
temperature for a metal such as
copper. The curve is linear over a
wide range of temperatures, and %
increases with increasing tempera-
ture. As T approaches absolute
zero (inset), the resistivity ap-
proaches a finite value %0 .
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as those observed by Kamerlingh-Onnes are metals. If a room-temperature super-
conductor is ever identified, its impact on technology could be tremendous. 

The value of Tc is sensitive to chemical composition, pressure, and molecular
structure. It is interesting to note that copper, silver, and gold, which are excellent
conductors, do not exhibit superconductivity.

Hg
0.125

0.10

0.075

0.05

0.025

4.44.34.24.14.0
T(K)

0.15
R(Ω)

Tc

0.00
Figure 27.12 Resistance versus temperature for a sample
of mercury (Hg). The graph follows that of a normal metal
above the critical temperature Tc . The resistance drops to
zero at Tc , which is 4.2 K for mercury.
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Figure 27.13 Evolution of the superconducting critical temperature since the discovery of the
phenomenon.

A small permanent magnet levi-
tated above a disk of the supercon-
ductor Y Ba2Cu3O7 , which is at 
77 K.
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One of the truly remarkable features of superconductors is that once a current
is set up in them, it persists without any applied potential difference (because R " 0).
Steady currents have been observed to persist in superconducting loops for several
years with no apparent decay!

An important and useful application of superconductivity is in the develop-
ment of superconducting magnets, in which the magnitudes of the magnetic field
are about ten times greater than those produced by the best normal electromag-
nets. Such superconducting magnets are being considered as a means of storing en-
ergy. Superconducting magnets are currently used in medical magnetic resonance
imaging (MRI) units, which produce high-quality images of internal organs without
the need for excessive exposure of patients to x-rays or other harmful radiation.

For further information on superconductivity, see Section 43.8.

ELECTRICAL ENERGY AND POWER
If a battery is used to establish an electric current in a conductor, the chemical en-
ergy stored in the battery is continuously transformed into kinetic energy of the
charge carriers. In the conductor, this kinetic energy is quickly lost as a result of
collisions between the charge carriers and the atoms making up the conductor,
and this leads to an increase in the temperature of the conductor. In other words,
the chemical energy stored in the battery is continuously transformed to internal
energy associated with the temperature of the conductor.

Consider a simple circuit consisting of a battery whose terminals are con-
nected to a resistor, as shown in Figure 27.14. (Resistors are designated by the sym-
bol .) Now imagine following a positive quantity of charge !Q that is
moving clockwise around the circuit from point a through the battery and resistor
back to point a. Points a and d are grounded (ground is designated by the symbol

); that is, we take the electric potential at these two points to be zero. As the
charge moves from a to b through the battery, its electric potential energy U

increases by an amount !V !Q (where !V is the potential difference between b and
a), while the chemical potential energy in the battery decreases by the same
amount. (Recall from Eq. 25.9 that However, as the charge moves
from c to d through the resistor, it loses this electric potential energy as it collides
with atoms in the resistor, thereby producing internal energy. If we neglect the re-
sistance of the connecting wires, no loss in energy occurs for paths bc and da.
When the charge arrives at point a, it must have the same electric potential energy
(zero) that it had at the start.5 Note that because charge cannot build up at any
point, the current is the same everywhere in the circuit.

The rate at which the charge !Q loses potential energy in going through the
resistor is

where I is the current in the circuit. In contrast, the charge regains this energy
when it passes through the battery. Because the rate at which the charge loses en-
ergy equals the power delivered to the resistor (which appears as internal en-
ergy), we have

(27.22)" " I !V

"

!U
!t

"
!Q
!t

 !V " I !V

!U " q !V.)

27.6

Power

13.3

b

a

c

d

R

I

∆V
+
–

Figure 27.14 A circuit consisting
of a resistor of resistance R and a
battery having a potential differ-
ence !V across its terminals. Posi-
tive charge flows in the clockwise
direction. Points a and d are
grounded.

5 Note that once the current reaches its steady-state value, there is no change in the kinetic energy of
the charge carriers creating the current.
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In this case, the power is supplied to a resistor by a battery. However, we can use
Equation 27.22 to determine the power transferred to any device carrying a cur-
rent I and having a potential difference !V between its terminals.

Using Equation 27.22 and the fact that !V " IR for a resistor, we can express
the power delivered to the resistor in the alternative forms

(27.23)

When I is expressed in amperes, !V in volts, and R in ohms, the SI unit of power
is the watt, as it was in Chapter 7 in our discussion of mechanical power. The
power lost as internal energy in a conductor of resistance R is called joule heating 6;
this transformation is also often referred to as an I 2R loss.

A battery, a device that supplies electrical energy, is called either a source of elec-
tromotive force or, more commonly, an emf source. The concept of emf is discussed in
greater detail in Chapter 28. (The phrase electromotive force is an unfortunate
choice because it describes not a force but rather a potential difference in volts.)
When the internal resistance of the battery is neglected, the potential differ-
ence between points a and b in Figure 27.14 is equal to the emf 0 of the bat-
tery—that is, This being true, we can state that the current in
the circuit is Because !V " , the power supplied by the emf
source can be expressed as which equals the power delivered to the resis-
tor, I 2R.

When transporting electrical energy through power lines, such as those shown
in Figure 27.15, utility companies seek to minimize the power transformed to in-
ternal energy in the lines and maximize the energy delivered to the consumer. Be-
cause the same amount of power can be transported either at high cur-
rents and low potential differences or at low currents and high potential
differences. Utility companies choose to transport electrical energy at low currents
and high potential differences primarily for economic reasons. Copper wire is very
expensive, and so it is cheaper to use high-resistance wire (that is, wire having a
small cross-sectional area; see Eq. 27.11). Thus, in the expression for the power de-
livered to a resistor, , the resistance of the wire is fixed at a relatively high
value for economic considerations. The loss can be reduced by keeping the
current I as low as possible. In some instances, power is transported at potential
differences as great as 765 kV. Once the electricity reaches your city, the potential
difference is usually reduced to 4 kV by a device called a transformer. Another trans-
former drops the potential difference to 240 V before the electricity finally reaches
your home. Of course, each time the potential difference decreases, the current
increases by the same factor, and the power remains the same. We shall discuss
transformers in greater detail in Chapter 33.

The same potential difference is applied to the two lightbulbs shown in Figure 27.16. Which
one of the following statements is true?
(a) The 30-W bulb carries the greater current and has the higher resistance.
(b) The 30-W bulb carries the greater current, but the 60-W bulb has the higher resistance.

Quick Quiz 27.6

I 
2R

" " I 
2R

" " I !V,

" " I0,
0I " !V/R " 0/R .

!V " Vb $ Va " 0.

" " I 2R "
(!V )2

R

QuickLab
If you have access to an ohmmeter,
verify your answer to Quick Quiz 27.6
by testing the resistance of a few light-
bulbs.

6 It is called joule heating even though the process of heat does not occur. This is another example of in-
correct usage of the word heat that has become entrenched in our language.

Power delivered to a resistor

Figure 27.15 Power companies
transfer electrical energy at high
potential differences.
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(c) The 30-W bulb has the higher resistance, but the 60-W bulb carries the greater current.
(d) The 60-W bulb carries the greater current and has the higher resistance.

For the two lightbulbs shown in Figure 27.17, rank the current values at points a through f ,
from greatest to least.

Quick Quiz 27.7

Power in an Electric HeaterEXAMPLE 27.7
We can find the power rating using the expression 

If we doubled the applied potential difference, the current
would double but the power would quadruple because
" " (!V )2/R .

1.80 kW" " I 2R " (15.0 A)2(8.00 ') "

" " I 2R :An electric heater is constructed by applying a potential dif-
ference of 120 V to a Nichrome wire that has a total resis-
tance of 8.00 '. Find the current carried by the wire and the
power rating of the heater.

Solution Because !V " IR , we have

15.0 AI "
!V
R

"
120 V
8.00 '

"

QuickLab
From the labels on household appli-
ances such as hair dryers, televisions,
and stereos, estimate the annual cost
of operating them. 

Figure 27.16 These light-
bulbs operate at their rated
power only when they are con-
nected to a 120-V source. 

∆V

30 W

60 W

e f

c d

a b
Figure 27.17 Two lightbulbs connected across the same poten-
tial difference. The bulbs operate at their rated power only if they
are connected to a 120-V battery.
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Current in an Electron BeamEXAMPLE 27.9

(b) What is the average current per pulse delivered by the
accelerator?

Solution Average current is given by Equation 27.1,
Because the time interval between pulses is

4.00 ms, and because we know the charge per pulse from part
(a), we obtain

This represents only 0.005% of the peak current, which is 
250 mA.

12.5 1AIav "
Q pulse

!t
"

5.00 # 10$8 C
4.00 # 10$3 s

"

Iav " !Q /!t.

3.13 # 1011 electrons/pulse "

Electrons per pulse "
5.00 # 10$8 C/pulse

1.60 # 10$19 C/electron

In a certain particle accelerator, electrons emerge with an en-
ergy of 40.0 MeV (1 MeV " 1.60 # 10$13 J). The electrons
emerge not in a steady stream but rather in pulses at the rate
of 250 pulses/s. This corresponds to a time between pulses of
4.00 ms (Fig. 27.18). Each pulse has a duration of 200 ns, and
the electrons in the pulse constitute a current of 250 mA.
The current is zero between pulses. (a) How many electrons
are delivered by the accelerator per pulse?

Solution We use Equation 27.2 in the form and
integrate to find the charge per pulse. While the pulse is on,
the current is constant; thus,

Dividing this quantity of charge per pulse by the electronic
charge gives the number of electrons per pulse:

 " 5.00 # 10$8 C

Q pulse " I $ dt " I!t " (250 # 10$3 A)(200 # 10$9 s)

dQ " I dt

The Cost of Making DinnerEXAMPLE 27.8
Demands on our dwindling energy supplies have made it nec-
essary for us to be aware of the energy requirements of our
electrical devices. Every electrical appliance carries a label
that contains the information you need to calculate the appli-
ance’s power requirements. In many cases, the power con-
sumption in watts is stated directly, as it is on a lightbulb. In
other cases, the amount of current used by the device and
the potential difference at which it operates are given. This
information and Equation 27.22 are sufficient for calculating
the operating cost of any electrical device.

Exercise What does it cost to operate a 100-W lightbulb for 
24 h if the power company charges $0.08/kWh?

Answer $0.19.

Estimate the cost of cooking a turkey for 4 h in an oven that
operates continuously at 20.0 A and 240 V.

Solution The power used by the oven is

Because the energy consumed equals power # time, the
amount of energy for which you must pay is

If the energy is purchased at an estimated price of 8.00¢ per
kilowatt hour, the cost is

$1.54Cost " (19.2 kWh)($0.080/kWh) "

Energy " "t " (4.80 kW)(4 h) " 19.2 kWh

" " I !V " (20.0 A)(240 V) " 4 800 W " 4.80 kW

I 2.00 × 10–7 s

t (s)

4.00 ms

Figure 27.18 Current versus time for a pulsed beam of
electrons.
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SUMMARY

The electric current I in a conductor is defined as

(27.2)

where dQ is the charge that passes through a cross-section of the conductor in a
time dt. The SI unit of current is the ampere (A), where 1 A " 1 C/s.

The average current in a conductor is related to the motion of the charge car-
riers through the relationship

(27.4)

where n is the density of charge carriers, q is the charge on each carrier, vd is the
drift speed, and A is the cross-sectional area of the conductor.

The magnitude of the current density J in a conductor is the current per
unit area:

(27.5)

The current density in a conductor is proportional to the electric field accord-
ing to the expression

(27.7)

The proportionality constant & is called the conductivity of the material of which
the conductor is made. The inverse of & is known as resistivity % (% " 1/&). Equa-
tion 27.7 is known as Ohm’s law, and a material is said to obey this law if the ratio
of its current density J to its applied electric field E is a constant that is indepen-
dent of the applied field.

The resistance R of a conductor is defined either in terms of the length of
the conductor or in terms of the potential difference across it:

(27.8)

where is the length of the conductor, & is the conductivity of the material of
which it is made, A is its cross-sectional area, !V is the potential difference across
it, and I is the current it carries.

!

R !
!

&A
!

!V
I

J " &E

J !
I
A

" nqvd

Iav " nqvd A

I !
dQ
dt

(c) What is the maximum power delivered by the electron
beam?

Solution By definition, power is energy delivered per unit
time. Thus, the maximum power is equal to the energy deliv-
ered by a pulse divided by the pulse duration:

 "
(3.13 # 1011 electrons/pulse)(40.0 MeV/electron)

2.00 # 10$7 s/pulse

" "
E
!t

 

We could also compute this power directly. We assume that
each electron had zero energy before being accelerated.
Thus, by definition, each electron must have gone through a
potential difference of 40.0 MV to acquire a final energy of
40.0 MeV. Hence, we have

10.0 MW" " I !V " (250 # 10$3 A)(40.0 # 106 V) "

10.0 MW " 1.00 # 107 W "

 " (6.26 # 1019 MeV/s)(1.60 # 10$13 J/MeV )
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The SI unit of resistance is volts per ampere, which is defined to be 1 ohm
('); that is, 1 ' " 1 V/A. If the resistance is independent of the applied potential
difference, the conductor obeys Ohm’s law.

In a classical model of electrical conduction in metals, the electrons are
treated as molecules of a gas. In the absence of an electric field, the average veloc-
ity of the electrons is zero. When an electric field is applied, the electrons move
(on the average) with a drift velocity vd that is opposite the electric field and
given by the expression

(27.14)

where * is the average time between electron–atom collisions, me is the mass of the
electron, and q is its charge. According to this model, the resistivity of the metal is

(27.17)

where n is the number of free electrons per unit volume.
The resistivity of a conductor varies approximately linearly with temperature

according to the expression

(27.19)

where . is the temperature coefficient of resistivity and %0 is the resistivity at
some reference temperature T0 .

If a potential difference !V is maintained across a resistor, the power, or rate
at which energy is supplied to the resistor, is

(27.22)

Because the potential difference across a resistor is given by !V " IR , we can ex-
press the power delivered to a resistor in the form

(27.23)

The electrical energy supplied to a resistor appears in the form of internal energy
in the resistor.

" " I 
2R "

(!V )2

R

" " I !V

% " %0[1 + .(T $ T0)]

% "
me

nq2*

vd "
qE
me

 *

QUESTIONS

7. In the water analogy of an electric circuit, what corre-
sponds to the power supply, resistor, charge, and poten-
tial difference?

8. Why might a “good” electrical conductor also be a “good”
thermal conductor?

9. On the basis of the atomic theory of matter, explain why
the resistance of a material should increase as its tempera-
ture increases.

10. How does the resistance for copper and silicon change
with temperature? Why are the behaviors of these two ma-
terials different?

11. Explain how a current can persist in a superconductor in
the absence of any applied voltage.

12. What single experimental requirement makes supercon-
ducting devices expensive to operate? In principle, can
this limitation be overcome?

1. Newspaper articles often contain statements such as 
“10 000 volts of electricity surged through the victim’s
body.” What is wrong with this statement?

2. What is the difference between resistance and resistivity?
3. Two wires A and B of circular cross-section are made of

the same metal and have equal lengths, but the resistance
of wire A is three times greater than that of wire B. What
is the ratio of their cross-sectional areas? How do their
radii compare?

4. What is required in order to maintain a steady current in
a conductor?

5. Do all conductors obey Ohm’s law? Give examples to jus-
tify your answer.

6. When the voltage across a certain conductor is doubled,
the current is observed to increase by a factor of three.
What can you conclude about the conductor?
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PROBLEMS

6. A small sphere that carries a charge q is whirled in a cir-
cle at the end of an insulating string. The angular fre-
quency of rotation is 2. What average current does this
rotating charge represent?

7. The quantity of charge q (in coulombs) passing
through a surface of area 2.00 cm2 varies with time ac-
cording to the equation 
where t is in seconds. (a) What is the instantaneous cur-
rent through the surface at (b) What is the
value of the current density?

8. An electric current is given by the expression 
sin(120)t), where I is in amperes and t is in sec-

onds. What is the total charge carried by the current
from to 

9. Figure P27.9 represents a section of a circular conduc-
tor of nonuniform diameter carrying a current of 
5.00 A. The radius of cross-section A1 is 0.400 cm. 
(a) What is the magnitude of the current density across
A1 ? (b) If the current density across A2 is one-fourth the
value across A1 , what is the radius of the conductor at
A2 ?

t " 1/240 s?t " 0

100
I(t) "

t " 1.00 s?

q " 4.00t3 + 5.00t + 6.00,

Section 27.1 Electric Current
1. In a particular cathode ray tube, the measured beam

current is 30.0 1A. How many electrons strike the tube
screen every 40.0 s?

2. A teapot with a surface area of 700 cm2 is to be silver
plated. It is attached to the negative electrode of an
electrolytic cell containing silver nitrate (Ag+NO3

$). If
the cell is powered by a 12.0-V battery and has a resis-
tance of 1.80 ', how long does it take for a 0.133-mm
layer of silver to build up on the teapot? (The density of
silver is 10.5 # 103 kg/m3.)

3. Suppose that the current through a conductor de-
creases exponentially with time according to the expres-
sion where I0 is the initial current (at

and * is a constant having dimensions of time.
Consider a fixed observation point within the conduc-
tor. (a) How much charge passes this point between

and (b) How much charge passes this
point between and (c) How much
charge passes this point between and 

4. In the Bohr model of the hydrogen atom, an electron
in the lowest energy state follows a circular path at a dis-
tance of 5.29 # 10$11 m from the proton. (a) Show that
the speed of the electron is 2.19 # 106 m/s. (b) What is
the effective current associated with this orbiting elec-
tron?

5. A small sphere that carries a charge of 8.00 nC is
whirled in a circle at the end of an insulating string.
The angular frequency of rotation is 100) rad/s. What
average current does this rotating charge represent?

t " 3 ?t " 0
t " 10* ?t " 0

t " * ?t " 0

t " 0)
I(t) " I0e$t/*,

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

13. What would happen to the drift velocity of the electrons
in a wire and to the current in the wire if the electrons
could move freely without resistance through the wire?

14. If charges flow very slowly through a metal, why does it
not require several hours for a light to turn on when you
throw a switch?

15. In a conductor, the electric field that drives the electrons
through the conductor propagates with a speed that is al-
most the same as the speed of light, even though the drift
velocity of the electrons is very small. Explain how these
can both be true. Does a given electron move from one
end of the conductor to the other?

16. Two conductors of the same length and radius are con-
nected across the same potential difference. One conduc-
tor has twice the resistance of the other. To which con-
ductor is more power delivered?

17. Car batteries are often rated in ampere-hours. Does this
designate the amount of current, power, energy, or
charge that can be drawn from the battery?

18. If you were to design an electric heater using Nichrome
wire as the heating element, what parameters of the wire
could you vary to meet a specific power output, such as 
1 000 W ?

19. Consider the following typical monthly utility rate struc-
ture: $2.00 for the first 16 kWh, 8.00¢/kWh for the next
34 kWh, 6.50¢/kWh for the next 50 kWh, 5.00¢/kWh for
the next 100 kWh, 4.00¢/kWh for the next 200 kWh, and
3.50¢/kWh for all kilowatt-hours in excess of 400 kWh.
On the basis of these rates, determine the amount
charged for 327 kWh.

A1

A2

I

Figure P27.9
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Figure P27.24

10. A Van de Graaff generator produces a beam of 
2.00-MeV deuterons, which are heavy hydrogen nuclei
containing a proton and a neutron. (a) If the beam
current is 10.0 1A, how far apart are the deuterons? 
(b) Is their electrostatic repulsion a factor in beam sta-
bility? Explain.

11. The electron beam emerging from a certain high-
energy electron accelerator has a circular cross-section
of radius 1.00 mm. (a) If the beam current is 8.00 1A,
what is the current density in the beam, assuming that it
is uniform throughout? (b) The speed of the electrons
is so close to the speed of light that their speed can be
taken as with negligible error. Find
the electron density in the beam. (c) How long does it
take for Avogadro’s number of electrons to emerge
from the accelerator?

12. An aluminum wire having a cross-sectional area of 
4.00 # 10$6 m2 carries a current of 5.00 A. Find the
drift speed of the electrons in the wire. The density of
aluminum is 2.70 g/cm3. (Assume that one electron is
supplied by each atom.)

Section 27.2 Resistance and Ohm’s Law
13. A lightbulb has a resistance of 240 ' when operating at

a voltage of 120 V. What is the current through the
lightbulb?

14. A resistor is constructed of a carbon rod that has a uni-
form cross-sectional area of 5.00 mm2. When a potential
difference of 15.0 V is applied across the ends of the
rod, there is a current of 4.00 # 10$3 A in the rod. Find
(a) the resistance of the rod and (b) the rod’s length.

15. A 0.900-V potential difference is maintained across a
1.50-m length of tungsten wire that has a cross-sectional
area of 0.600 mm2. What is the current in the wire?

16. A conductor of uniform radius 1.20 cm carries a cur-
rent of 3.00 A produced by an electric field of 120 V/m.
What is the resistivity of the material?

17. Suppose that you wish to fabricate a uniform wire out 
of 1.00 g of copper. If the wire is to have a resistance of 
R " 0.500 ', and if all of the copper is to be used, what
will be (a) the length and (b) the diameter of this wire?

18. (a) Make an order-of-magnitude estimate of the resis-
tance between the ends of a rubber band. (b) Make an
order-of-magnitude estimate of the resistance between
the ‘heads’ and ‘tails’ sides of a penny. In each case,
state what quantities you take as data and the values you
measure or estimate for them. (c) What would be the
order of magnitude of the current that each carries if it
were connected across a 120-V power supply? 
(WARNING! Do not try this at home!)

19. A solid cube of silver (density " 10.5 g/cm3) has a mass
of 90.0 g. (a) What is the resistance between opposite
faces of the cube? (b) If there is one conduction elec-
tron for each silver atom, what is the average drift speed
of electrons when a potential difference of 
1.00 # 10$5 V is applied to opposite faces? (The 

c " 3.00 # 108 m/s

Section 27.3 A Model for Electrical Conduction
25. If the drift velocity of free electrons in a copper wire is

7.84 # 10$4 m/s, what is the electric field in the con-
ductor?

26. If the current carried by a conductor is doubled, what
happens to the (a) charge carrier density? (b) current
density? (c) electron drift velocity? (d) average time be-
tween collisions?

27. Use data from Example 27.1 to calculate the collision
mean free path of electrons in copper, assuming that
the average thermal speed of conduction electrons is
8.60 # 105 m/s.

Section 27.4 Resistance and Temperature
28. While taking photographs in Death Valley on a day when

the temperature is 58.0°C, Bill Hiker finds that a certain
voltage applied to a copper wire produces a current of
1.000 A. Bill then travels to Antarctica and applies the
same voltage to the same wire. What current does he
register there if the temperature is $ 88.0°C? Assume
that no change occurs in the wire’s shape and size.

29. A certain lightbulb has a tungsten filament with a resis-
tance of 19.0 ' when cold and of 140 ' when hot. As-
suming that Equation 27.21 can be used over the large

atomic number of silver is 47, and its molar mass is
107.87 g/mol.)

20. A metal wire of resistance R is cut into three equal
pieces that are then connected side by side to form a
new wire whose length is equal to one-third the original
length. What is the resistance of this new wire?

21. A wire with a resistance R is lengthened to 1.25 times its
original length by being pulled through a small hole.
Find the resistance of the wire after it has been stretched.

22. Aluminum and copper wires of equal length are found
to have the same resistance. What is the ratio of their
radii?

23. A current density of 6.00 # 10$13 A/m2 exists in the at-
mosphere where the electric field (due to charged
thunderclouds in the vicinity) is 100 V/m. Calculate the
electrical conductivity of the Earth’s atmosphere in this
region.

24. The rod in Figure P27.24 (not drawn to scale) is made
of two materials. Both have a square cross section of
3.00 mm on a side. The first material has a resistivity of
4.00 # 10$3 ' ( m and is 25.0 cm long, while the second
material has a resistivity of 6.00 # 10$3 ' ( m and is 
40.0 cm long. What is the resistance between the ends
of the rod?

25.0 cm 40.0 cm

WEB

WEB
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temperature range involved here, find the temperature
of the filament when hot. (Assume an initial tempera-
ture of 20.0°C.)

30. A carbon wire and a Nichrome wire are connected in
series. If the combination has a resistance of 10.0 k' at
0°C, what is the resistance of each wire at 0°C such that
the resistance of the combination does not change with
temperature? (Note that the equivalent resistance of
two resistors in series is the sum of their resistances.)

31. An aluminum wire with a diameter of 0.100 mm has a
uniform electric field with a magnitude of 0.200 V/m
imposed along its entire length. The temperature of the
wire is 50.0°C. Assume one free electron per atom. 
(a) Using the information given in Table 27.1, deter-
mine the resistivity. (b) What is the current density in
the wire? (c) What is the total current in the wire? 
(d) What is the drift speed of the conduction electrons?
(e) What potential difference must exist between the
ends of a 2.00-m length of the wire if the stated electric
field is to be produced?

32. Review Problem. An aluminum rod has a resistance of
1.234 ' at 20.0°C. Calculate the resistance of the rod at
120°C by accounting for the changes in both the resis-
tivity and the dimensions of the rod.

33. What is the fractional change in the resistance of an
iron filament when its temperature changes from
25.0°C to 50.0°C?

34. The resistance of a platinum wire is to be calibrated for
low-temperature measurements. A platinum wire with a
resistance of 1.00 ' at 20.0°C is immersed in liquid ni-
trogen at 77 K ($ 196°C). If the temperature response
of the platinum wire is linear, what is the expected resis-
tance of the platinum wire at $ 196°C?

35. The temperature of a tungsten sample is raised while a
copper sample is maintained at 20°C. At what tempera-
ture will the resistivity of the tungsten sample be four
times that of the copper sample?

36. A segment of Nichrome wire is initially at 20.0°C. Using
the data from Table 27.1, calculate the temperature to
which the wire must be heated if its resistance is to be
doubled.

Section 27.6 Electrical Energy and Power
37. A toaster is rated at 600 W when connected to a 120-V

source. What current does the toaster carry, and what is
its resistance?

38. In a hydroelectric installation, a turbine delivers 
1 500 hp to a generator, which in turn converts 80.0%
of the mechanical energy into electrical energy. Under
these conditions, what current does the generator de-
liver at a terminal potential difference of 2 000 V ?

39. Review Problem. What is the required resistance of an
immersion heater that increases the temperature of
1.50 kg of water from 10.0°C to 50.0°C in 10.0 min
while operating at 110 V ?

(.platinum " 3.92 # 10$3/°C)

40. Review Problem. What is the required resistance of an
immersion heater that increases the temperature of a
mass m of liquid water from T1 to T2 in a time t while
operating at a voltage !V ?

41. Suppose that a voltage surge produces 140 V for a mo-
ment. By what percentage does the power output of a
120-V, 100-W lightbulb increase? (Assume that its resis-
tance does not change.)

42. A 500-W heating coil designed to operate from 110 V is
made of Nichrome wire 0.500 mm in diameter. (a) As-
suming that the resistivity of the Nichrome remains con-
stant at its 20.0°C value, find the length of wire used.
(b) Now consider the variation of resistivity with tem-
perature. What power does the coil of part (a) actually
deliver when it is heated to 1 200°C?

43. A coil of Nichrome wire is 25.0 m long. The wire has a
diameter of 0.400 mm and is at 20.0°C. If it carries a
current of 0.500 A, what are (a) the magnitude of the
electric field in the wire and (b) the power delivered to
it? (c) If the temperature is increased to 340°C and the
potential difference across the wire remains constant,
what is the power delivered?

44. Batteries are rated in terms of ampere-hours (A ( h): For
example, a battery that can produce a current of 2.00 A
for 3.00 h is rated at 6.00 A ( h. (a) What is the total en-
ergy, in kilowatt-hours, stored in a 12.0-V battery rated
at 55.0 A ( h? (b) At a rate of $0.060 0 per kilowatt-hour,
what is the value of the electricity produced by this bat-
tery?

45. A 10.0-V battery is connected to a 120-' resistor. Ne-
glecting the internal resistance of the battery, calculate
the power delivered to the resistor.

46. It is estimated that each person in the United States
(population " 270 million) has one electric clock, and
that each clock uses energy at a rate of 2.50 W. To sup-
ply this energy, about how many metric tons of coal are
burned per hour in coal-fired electricity generating
plants that are, on average, 25.0% efficient? (The heat
of combustion for coal is 33.0 MJ/kg.)

47. Compute the cost per day of operating a lamp that
draws 1.70 A from a 110-V line if the cost of electrical
energy is $0.060 0/kWh.

48. Review Problem. The heating element of a coffee-
maker operates at 120 V and carries a current of 2.00 A.
Assuming that all of the energy transferred from the
heating element is absorbed by the water, calculate how
long it takes to heat 0.500 kg of water from room tem-
perature (23.0°C) to the boiling point.

49. A certain toaster has a heating element made of
Nichrome resistance wire. When the toaster is first con-
nected to a 120-V source of potential difference (and
the wire is at a temperature of 20.0°C), the initial cur-
rent is 1.80 A. However, the current begins to decrease
as the resistive element warms up. When the toaster has
reached its final operating temperature, the current has
dropped to 1.53 A. (a) Find the power the toaster con-

WEB
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sumes when it is at its operating temperature. (b) What
is the final temperature of the heating element?

50. To heat a room having ceilings 8.0 ft high, about 10.0 W
of electric power are required per square foot. At a cost
of $0.080 0/kWh, how much does it cost per day to use
electricity to heat a room measuring 10.0 ft # 15.0 ft?

51. Estimate the cost of one person’s routine use of a hair
dryer for 1 yr. If you do not use a blow dryer yourself,
observe or interview someone who does. State the quan-
tities you estimate and their values.

ADDITIONAL PROBLEMS
52. One lightbulb is marked “25 W 120 V,” and another

“100 W 120 V”; this means that each bulb converts its
respective power when plugged into a constant 120-V
potential difference. (a) Find the resistance of each
bulb. (b) How long does it take for 1.00 C to pass
through the dim bulb? How is this charge different at
the time of its exit compared with the time of its entry?
(c) How long does it take for 1.00 J to pass through the
dim bulb? How is this energy different at the time of its
exit compared with the time of its entry? (d) Find the
cost of running the dim bulb continuously for 30.0 days
if the electric company sells its product at $0.070 0 per
kWh. What product does the electric company sell? What
is its price for one SI unit of this quantity?

53. A high-voltage transmission line with a diameter of 
2.00 cm and a length of 200 km carries a steady current
of 1 000 A. If the conductor is copper wire with a free
charge density of 8.00 # 1028 electrons/m3, how long
does it take one electron to travel the full length of the
cable?

54. A high-voltage transmission line carries 1 000 A starting
at 700 kV for a distance of 100 mi. If the resistance in
the wire is 0.500 '/mi, what is the power loss due to re-
sistive losses?

55. A more general definition of the temperature coeffi-
cient of resistivity is

where % is the resistivity at temperature T. (a) Assuming
that . is constant, show that

where %0 is the resistivity at temperature T0 . (b) Using
the series expansion ( for show that
the resistivity is given approximately by the expression

for 
56. A copper cable is to be designed to carry a current of

300 A with a power loss of only 2.00 W/m. What is the
required radius of the copper cable?

57. An experiment is conducted to measure the electrical
resistivity of Nichrome in the form of wires with differ-
ent lengths and cross-sectional areas. For one set of

.(T $ T0) V 1.% " %0[1 + .(T $ T0)]

x V 1),ex & 1 + x

% " %0e.(T$T0 )

. "
1
%

 
d%

dT

measurements, a student uses 30-gauge wire, which has
a cross-sectional area of 7.30 # 10$8 m2. The student
measures the potential difference across the wire and
the current in the wire with a voltmeter and ammeter,
respectively. For each of the measurements given in the
table taken on wires of three different lengths, calculate
the resistance of the wires and the corresponding values
of the resistivity. What is the average value of the resistiv-
ity, and how does this value compare with the value
given in Table 27.1?

WEB

58. An electric utility company supplies a customer’s house
from the main power lines (120 V) with two copper
wires, each of which is 50.0 m long and has a resistance
of 0.108 ' per 300 m. (a) Find the voltage at the cus-
tomer’s house for a load current of 110 A. For this load
current, find (b) the power that the customer is receiv-
ing and (c) the power lost in the copper wires.

59. A straight cylindrical wire lying along the x axis has a
length of 0.500 m and a diameter of 0.200 mm. It is
made of a material described by Ohm’s law with a resis-
tivity of Assume that a potential
of 4.00 V is maintained at and that at

Find (a) the electric field E in the wire,
(b) the resistance of the wire, (c) the electric current in
the wire, and (d) the current density J in the wire. Ex-
press vectors in vector notation. (e) Show that 

60. A straight cylindrical wire lying along the x axis has a
length L and a diameter d . It is made of a material de-
scribed by Ohm’s law with a resistivity %. Assume that a
potential V is maintained at and that at

In terms of L, d, V, %, and physical constants, de-
rive expressions for (a) the electric field in the wire, 
(b) the resistance of the wire, (c) the electric current in
the wire, and (d) the current density in the wire. Ex-
press vectors in vector notation. (e) Show that 

61. The potential difference across the filament of a lamp is
maintained at a constant level while equilibrium tem-
perature is being reached. It is observed that the steady-
state current in the lamp is only one tenth of the cur-
rent drawn by the lamp when it is first turned on. If the
temperature coefficient of resistivity for the lamp at
20.0°C is 0.004 50 (°C)$1, and if the resistance increases
linearly with increasing temperature, what is the final
operating temperature of the filament?

62. The current in a resistor decreases by 3.00 A when the
potential difference applied across the resistor de-
creases from 12.0 V to 6.00 V. Find the resistance of the
resistor.

E " %J.

x " L .
V " 0x " 0,

E " % J.

x " 0.500 m.
V " 0x " 0,

% " 4.00 # 10$8 '(m.

L (m) !V (V) I (A) R (") & ("!m)

0.540 5.22 0.500
1.028 5.82 0.276
1.543 5.94 0.187
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63. An electric car is designed to run off a bank of 12.0-V
batteries with a total energy storage of 2.00 # 107 J. 
(a) If the electric motor draws 8.00 kW, what is the cur-
rent delivered to the motor? (b) If the electric motor
draws 8.00 kW as the car moves at a steady speed of 
20.0 m/s, how far will the car travel before it is “out of
juice”?

64. Review Problem. When a straight wire is heated, 
its resistance is given by the expression 

according to Equation 27.21, 
where . is the temperature coefficient of resistivity. 
(a) Show that a more precise result, one that accounts
for the fact that the length and area of the wire change
when heated, is

where .4 is the coefficient of linear expansion (see
Chapter 19). (b) Compare these two results for a 
2.00-m-long copper wire of radius 0.100 mm, first at
20.0°C and then heated to 100.0°C.

65. The temperature coefficients of resistivity in Table 
27.1 were determined at a temperature of 20°C. What
would they be at 0°C? (Hint: The temperature coeffi-
cient of resistivity at 20°C satisfies the expression 

where %0 is the resistivity of
the material at The temperature coefficient
of resistivity .4 at 0°C must satisfy the expression

where is the resistivity of the mate-
rial at 0°C.)

66. A resistor is constructed by shaping a material of resis-
tivity % into a hollow cylinder of length L and with inner
and outer radii ra and rb , respectively (Fig. P27.66). In
use, the application of a potential difference between
the ends of the cylinder produces a current parallel to
the axis. (a) Find a general expression for the resistance
of such a device in terms of L, %, ra , and rb . (b) Obtain 
a numerical value for R when 

and 
(c) Now suppose that the potential difference is applied
between the inner and outer surfaces so that the result-
ing current flows radially outward. Find a general ex-
pression for the resistance of the device in terms of L, %,

105 '(m.% " 3.50 #rb " 1.20 cm,0.500 cm,
ra "L " 4.00 cm,

%40% " %40[1 + .4T ],

T0 " 20/C.
%0[1 + .(T $ T0)],

% "

R "
R 0[1 + .(T $ T0)][1 + .4(T $ T0)]

[1 + 2.4(T $ T0)]

R 0[1 + .(T $ T0)]
R "

ra , and rb . (d) Calculate the value of R , using the para-
meter values given in part (b).

67. In a certain stereo system, each speaker has a resistance
of 4.00 '. The system is rated at 60.0 W in each chan-
nel, and each speaker circuit includes a fuse rated at
4.00 A. Is this system adequately protected against over-
load? Explain your reasoning.

68. A close analogy exists between the flow of energy due to
a temperature difference (see Section 20.7) and the
flow of electric charge due to a potential difference.
The energy dQ and the electric charge dq are both
transported by free electrons in the conducting mater-
ial. Consequently, a good electrical conductor is usually
a good thermal conductor as well. Consider a thin con-
ducting slab of thickness dx, area A, and electrical con-
ductivity &, with a potential difference dV between op-
posite faces. Show that the current is given by
the equation on the left:

Charge Analogous thermal
conduction conduction

(Eq. 20.14)

In the analogous thermal conduction equation on the
right, the rate of energy flow dQ /dt (in SI units of
joules per second) is due to a temperature gradient
dT/dx in a material of thermal conductivity k. State
analogous rules relating the direction of the electric
current to the change in potential and relating the di-
rection of energy flow to the change in temperature.

69. Material with uniform resistivity % is formed into a
wedge, as shown in Figure P27.69. Show that the resis-
tance between face A and face B of this wedge is

R " % 
L

w(y2 $ y1)
 ln" y2

y1
#

dQ
dt

" kA ' dT
dx 'dq

dt
" &A ' dV

dx '

I " dq/dt

Figure P27.69

Figure P27.66
70. A material of resistivity % is formed into the shape of a

truncated cone of altitude h, as shown in Figure P27.70.

Face A

Face B

L

w

y 1

y 2

ra

L

r b
ρ
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The bottom end has a radius b, and the top end has a
radius a. Assuming that the current is distributed uni-
formly over any particular cross-section of the cone so
that the current density is not a function of radial posi-
tion (although it does vary with position along the axis

of the cone), show that the resistance between the two
ends is given by the expression

71. The current–voltage characteristic curve for a semicon-
ductor diode as a function of temperature T is given by
the equation

Here, the first symbol e represents the base of the nat-
ural logarithm. The second e is the charge on the elec-
tron. The kB is Boltzmann’s constant, and T is the ab-
solute temperature. Set up a spreadsheet to calculate I
and R " (!V )/I for !V " 0.400 V to 0.600 V in incre-
ments of 0.005 V. Assume that Plot R ver-
sus !V for 300 K, and 320 K.T " 280 K,

I0 " 1.00 nA.

I " I0(e e!V/k BT $ 1)

R "
%

)
 " h

ab #

Figure P27.70

a

h

b

ANSWERS TO QUICK QUIZZES

terial with a low resistivity %. Referring to Table 27.1, you
should probably choose copper or aluminum because
the only two materials in the table that have lower % val-
ues—silver and gold—are prohibitively expensive for
your purposes.

27.5 Just after it is turned on. When the filament is at room
temperature, its resistance is low, and hence the current
is relatively large As the filament warms up,
its resistance increases, and the current decreases. Older
lightbulbs often fail just as they are turned on because
this large initial current “spike” produces rapid tempera-
ture increase and stress on the filament.

27.6 (c). Because the potential difference !V is the same
across the two bulbs and because the power delivered to
a conductor is the 60-W bulb, with its higher
power rating, must carry the greater current. The 30-W
bulb has the higher resistance because it draws less cur-
rent at the same potential difference.

27.7 The current Ia leaves the
positive terminal of the battery and then splits to flow
through the two bulbs; thus, From Quick
Quiz 27.6, we know that the current in the 60-W bulb is
greater than that in the 30-W bulb. (Note that all the
current does not follow the “path of least resistance,”
which in this case is through the 60-W bulb.) Because
charge does not build up in the bulbs, we know that all
the charge flowing into a bulb from the left must flow
out on the right; consequently, and The
two currents leaving the bulbs recombine to form the
current back into the battery, I f + Id " I b .

I e " I f .Ic " Id 

Ia " I c + I e .

Ia " I b 5 I c " Id 5 I e " I f .

" " I !V,

(I " !V/R).

27.1 d, b " c, a. The current in part (d) is equivalent to two
positive charges moving to the left. Parts (b) and (c)
each represent four positive charges moving in the same
direction because negative charges moving to the left
are equivalent to positive charges moving to the right.
The current in part (a) is equivalent to five positive
charges moving to the right.

27.2 Every portion of the wire carries the same current even
though the wire constricts. As the cross-sectional area
decreases, the drift velocity must increase in order for
the constant current to be maintained, in accordance
with Equation 27.4. Equations 27.5 and 27.6 indicate
that the current density also increases. An increasing
electric field must be causing the increasing current
density, as indicated by Equation 27.7. If you were to
draw this situation, you would show the electric field
lines being compressed into the smaller area, indicating
increasing magnitude of the electric field.

27.3 The curvature of the line indicates that the device is
nonohmic (that is, its resistance varies with potential dif-
ference). Being the definition of resistance, Equation
27.8 still applies, giving different values for R at differ-
ent points on the curve. The slope of the tangent to the
graph line at a point is the reciprocal of the “dynamic
resistance” at that point. Note that the resistance of the
device (as measured by an ohmmeter) is the reciprocal
of the slope of a secant line joining the origin to a par-
ticular point on the curve.

27.4 The cable should be as short as possible but still able to
reach from one vehicle to another (small ), it should
be quite thick (large A), and it should be made of a ma-

!
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If all these appliances were operating at
one time, a circuit breaker would proba-
bly be tripped, preventing a potentially
dangerous situation. What causes a cir-
cuit breaker to trip when too many elec-
trical devices are plugged into one cir-
cuit? (George Semple)
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28.1 Electromotive Force
28.2 Resistors in Series and in Parallel
28.3 Kirchhoff’s Rules
28.4 RC Circuits

28.5 (Optional) Electrical Instruments
28.6 (Optional) Household Wiring and

Electrical Safety
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28.1 Electromotive Force 869

his chapter is concerned with the analysis of some simple electric circuits that
contain batteries, resistors, and capacitors in various combinations. The analysis
of these circuits is simplified by the use of two rules known as Kirchhoff ’s rules,

which follow from the laws of conservation of energy and conservation of electric
charge. Most of the circuits analyzed are assumed to be in steady state, which means
that the currents are constant in magnitude and direction. In Section 28.4 we dis-
cuss circuits in which the current varies with time. Finally, we describe a variety of
common electrical devices and techniques for measuring current, potential differ-
ence, resistance, and emf.

ELECTROMOTIVE FORCE
In Section 27.6 we found that a constant current can be maintained in a closed cir-
cuit through the use of a source of emf, which is a device (such as a battery or gen-
erator) that produces an electric field and thus may cause charges to move around
a circuit. One can think of a source of emf as a “charge pump.” When an electric
potential difference exists between two points, the source moves charges “uphill”
from the lower potential to the higher. The emf ! describes the work done per
unit charge, and hence the SI unit of emf is the volt.

Consider the circuit shown in Figure 28.1, consisting of a battery connected to
a resistor. We assume that the connecting wires have no resistance. The positive
terminal of the battery is at a higher potential than the negative terminal. If we ne-
glect the internal resistance of the battery, the potential difference across it (called
the terminal voltage) equals its emf. However, because a real battery always has some
internal resistance r, the terminal voltage is not equal to the emf for a battery in a
circuit in which there is a current. To understand why this is so, consider the cir-
cuit diagram in Figure 28.2a, where the battery of Figure 28.1 is represented by
the dashed rectangle containing an emf ! in series with an internal resistance r.
Now imagine moving through the battery clockwise from a to b and measuring the
electric potential at various locations. As we pass from the negative terminal to the
positive terminal, the potential increases by an amount !. However, as we move
through the resistance r, the potential decreases by an amount Ir, where I is the cur-
rent in the circuit. Thus, the terminal voltage of the battery is1"V # Vb $ Va

28.1

T

1 The terminal voltage in this case is less than the emf by an amount Ir. In some situations, the terminal
voltage may exceed the emf by an amount Ir. This happens when the direction of the current is opposite
that of the emf, as in the case of charging a battery with another source of emf.

+

Resistor

Battery
–

Figure 28.1 A circuit consisting of a resistor con-
nected to the terminals of a battery.



(28.1)

From this expression, note that ! is equivalent to the open-circuit voltage—that
is, the terminal voltage when the current is zero. The emf is the voltage labeled on a
battery—for example, the emf of a D cell is 1.5 V. The actual potential difference
between the terminals of the battery depends on the current through the battery,
as described by Equation 28.1.

Figure 28.2b is a graphical representation of the changes in electric potential
as the circuit is traversed in the clockwise direction. By inspecting Figure 28.2a, we
see that the terminal voltage "V must equal the potential difference across the ex-
ternal resistance R , often called the load resistance. The load resistor might be a
simple resistive circuit element, as in Figure 28.1, or it could be the resistance of
some electrical device (such as a toaster, an electric heater, or a lightbulb) con-
nected to the battery (or, in the case of household devices, to the wall outlet). The
resistor represents a load on the battery because the battery must supply energy to
operate the device. The potential difference across the load resistance is 
Combining this expression with Equation 28.1, we see that

(28.2)

Solving for the current gives

(28.3)

This equation shows that the current in this simple circuit depends on both the
load resistance R external to the battery and the internal resistance r. If R is much
greater than r, as it is in many real-world circuits, we can neglect r.

If we multiply Equation 28.2 by the current I, we obtain

(28.4)

This equation indicates that, because power (see Eq. 27.22), the total
power output I! of the battery is delivered to the external load resistance in the
amount I 2R and to the internal resistance in the amount I 2r. Again, if then
most of the power delivered by the battery is transferred to the load resistance.

r V R ,

! # I "V

I! # I 2R % I 2r

I #
!

R % r

! # IR % Ir

"V # IR .

"V # ! $ Ir
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Terminal Voltage of a BatteryEXAMPLE 28.1
(b) Calculate the power delivered to the load resistor, the

power delivered to the internal resistance of the battery, and
the power delivered by the battery.

Solution The power delivered to the load resistor is

The power delivered to the internal resistance is

Hence, the power delivered by the battery is the sum of these
quantities, or 47.1 W. You should check this result, using the
expression ! # I!.

0.772 W!r # I 2r # (3.93 A)2 (0.05 &) #

46.3 W!R # I 2R # (3.93 A)2 (3.00 &) #

A battery has an emf of 12.0 V and an internal resistance of
0.05 &. Its terminals are connected to a load resistance of
3.00 &. (a) Find the current in the circuit and the terminal
voltage of the battery.

Solution Using first Equation 28.3 and then Equation
28.1, we obtain

To check this result, we can calculate the voltage across the
load resistance R :

"V # IR # (3.93 A)(3.00 &) # 11.8 V

11.8 V"V # ! $ Ir # 12.0 V $ (3.93 A)(0.05 &) #

3.93 A I #
!

R % r
#

12.0 V
3.05 &

#

a c

(b)

Rr

db

V

IR
Ir

ε

ε

ε
a

d R

I

br
– +

c

(a)

I

Figure 28.2 (a) Circuit diagram
of a source of emf ! (in this case, a
battery), of internal resistance r,
connected to an external resistor of
resistance R . (b) Graphical repre-
sentation showing how the electric
potential changes as the circuit in
part (a) is traversed clockwise.
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Matching the LoadEXAMPLE 28.2
Show that the maximum power delivered to the load resis-
tance R in Figure 28.2a occurs when the load resistance
matches the internal resistance—that is, when R # r .

Solution The power delivered to the load resistance is
equal to I 2R , where I is given by Equation 28.3:

When is plotted versus R as in Figure 28.3, we find that 
reaches a maximum value of at We can also
prove this by differentiating with respect to R , setting the
result equal to zero, and solving for R . The details are left as
a problem for you to solve (Problem 57).

!
R # r.!2/4r

!!

! # I 2R #
!2R

(R % r)2

r 2r 3r
R

!max

!

Figure 28.3 Graph of the power delivered by a battery to a load
resistor of resistance R as a function of R . The power delivered to the
resistor is a maximum when the load resistance equals the internal
resistance of the battery.

!

RESISTORS IN SERIES AND IN PARALLEL
Suppose that you and your friends are at a crowded basketball game in a sports
arena and decide to leave early. You have two choices: (1) your whole group can
exit through a single door and walk down a long hallway containing several con-
cession stands, each surrounded by a large crowd of people waiting to buy food or
souvenirs; or (b) each member of your group can exit through a separate door in
the main hall of the arena, where each will have to push his or her way through a
single group of people standing by the door. In which scenario will less time be re-
quired for your group to leave the arena?

It should be clear that your group will be able to leave faster through the separate
doors than down the hallway where each of you has to push through several groups of
people. We could describe the groups of people in the hallway as acting in series, be-
cause each of you must push your way through all of the groups. The groups of peo-
ple around the doors in the arena can be described as acting in parallel. Each member
of your group must push through only one group of people, and each member
pushes through a different group of people. This simple analogy will help us under-
stand the behavior of currents in electric circuits containing more than one resistor.

When two or more resistors are connected together as are the lightbulbs in
Figure 28.4a, they are said to be in series. Figure 28.4b is the circuit diagram for the
lightbulbs, which are shown as resistors, and the battery. In a series connection, all
the charges moving through one resistor must also pass through the second resis-
tor. (This is analogous to all members of your group pushing through the crowds
in the single hallway of the sports arena.) Otherwise, charge would accumulate be-
tween the resistors. Thus,

28.2

for a series combination of resistors, the currents in the two resistors are the
same because any charge that passes through R1 must also pass through R2 .

The potential difference applied across the series combination of resistors will di-
vide between the resistors. In Figure 28.4b, because the voltage drop2 from a to b

2 The term voltage drop is synonymous with a decrease in electric potential across a resistor and is used
often by individuals working with electric circuits.
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equals IR1 and the voltage drop from b to c equals IR2 , the voltage drop from a to
c is

Therefore, we can replace the two resistors in series with a single resistor having an
equivalent resistance Req , where

(28.5)

The resistance Req is equivalent to the series combination in the sense
that the circuit current is unchanged when R eq replaces 

The equivalent resistance of three or more resistors connected in series is

(28.6)

This relationship indicates that the equivalent resistance of a series connec-
tion of resistors is always greater than any individual resistance.

If a piece of wire is used to connect points b and c in Figure 28.4b, does the brightness of
bulb R1 increase, decrease, or stay the same? What happens to the brightness of bulb R2 ?

Now consider two resistors connected in parallel, as shown in Figure 28.5.
When the current I reaches point a in Figure 28.5b, called a junction, it splits into
two parts, with I1 going through R1 and I2 going through R2 . A junction is any
point in a circuit where a current can split ( just as your group might split up and
leave the arena through several doors, as described earlier.) This split results in
less current in each individual resistor than the current leaving the battery. Be-
cause charge must be conserved, the current I that enters point a must equal the
total current leaving that point:

I # I1 % I2

Quick Quiz 28.1

R eq # R 1 % R 2 % R 3 % '''

R 1 % R 2 .
R 1 % R 2

R eq # R 1 % R 2

"V # IR 1 % IR 2 # I(R 1 % R 2)

+ –

(a) (b)

I

R1 R2

I

∆V
+ –

a b c

Battery

R1 R2

(c)

Req

I

∆V
+ –

a c

Figure 28.4 (a) A series connection of two resistors R1 and R2 . The current in R1 is the same
as that in R2 . (b) Circuit diagram for the two-resistor circuit. (c) The resistors replaced with a sin-
gle resistor having an equivalent resistance R eq # R 1 % R 2 .

A series connection of three light-
bulbs, all rated at 120 V but having
power ratings of 60 W, 75 W, and
200 W. Why are the intensities of
the bulbs different? Which bulb
has the greatest resistance? How
would their relative intensities dif-
fer if they were connected in paral-
lel?
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As can be seen from Figure 28.5, both resistors are connected directly across
the terminals of the battery. Thus,

when resistors are connected in parallel, the potential differences across them
are the same.

Because the potential differences across the resistors are the same, the expression
gives

From this result, we see that the equivalent resistance of two resistors in parallel is
given by

(28.7)

or

An extension of this analysis to three or more resistors in parallel gives

(28.8)
1

R eq
#

1
R 1

%
1

R 2
%

1
R 3

% '''

R eq #
1

1
R 1

%
1

R 2

1
R eq

#
1

R 1
%

1
R 2

I # I1 % I2 #
"V
R 1

%
"V
R 2

# "V ! 1
R 1

%
1

R 2
" #

"V
R eq

"V # IR

b

(c)

Req

I

∆V
+ –

+ –

(a)

R1

R2

Battery

(b)

I1

R1

R2

∆V
+ –

a

I
I2

Figure 28.5 (a) A parallel connection of two resistors R1 and R2 . The potential difference
across R1 is the same as that across R2 . (b) Circuit diagram for the two-resistor circuit. (c) The
resistors replaced with a single resistor having an equivalent resistance R eq # (R 1 

$1 % R 2 

$1 )$1.

Straws in series

Straws in parallel

The equivalent resistance of
several resistors in parallel

QuickLab
Tape one pair of drinking straws end
to end, and tape a second pair side by
side. Which pair is easier to blow
through? What would happen if you
were comparing three straws taped
end to end with three taped side by
side?
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We can see from this expression that the equivalent resistance of two or more
resistors connected in parallel is always less than the least resistance in the
group.

Household circuits are always wired such that the appliances are connected in
parallel. Each device operates independently of the others so that if one is
switched off, the others remain on. In addition, the devices operate on the same
voltage.

Assume that the battery of Figure 28.1 has zero internal resistance. If we add a second resis-
tor in series with the first, does the current in the battery increase, decrease, or stay the
same? How about the potential difference across the battery terminals? Would your answers
change if the second resistor were connected in parallel to the first one?

Are automobile headlights wired in series or in parallel? How can you tell?

Quick Quiz 28.3

Quick Quiz 28.2

Find the Equivalent ResistanceEXAMPLE 28.3
We could have guessed this at the start by noting

that the current through the 3.0-& resistor has to be twice that
through the 6.0-& resistor, in view of their relative resistances
and the fact that the same voltage is applied to each of them.

As a final check of our results, note that 
and therefore,

as it must."Vac # "Vab % "Vbc # 42 V,
"Vab # (12 &)I # 36 V;(3.0 &)I2 # 6.0 V

"Vbc # (6.0 &)I1 #

I2 # 2.0 A.Four resistors are connected as shown in Figure 28.6a. 
(a) Find the equivalent resistance between points a and c.

Solution The combination of resistors can be reduced in
steps, as shown in Figure 28.6. The 8.0-& and 4.0-& resistors
are in series; thus, the equivalent resistance between a and b
is 12 & (see Eq. 28.5). The 6.0-& and 3.0-& resistors are in
parallel, so from Equation 28.7 we find that the equivalent re-
sistance from b to c is 2.0 &. Hence, the equivalent resistance 

from a to c is 

(b) What is the current in each resistor if a potential dif-
ference of 42 V is maintained between a and c?

Solution The currents in the 8.0-& and 4.0-& resistors are
the same because they are in series. In addition, this is the
same as the current that would exist in the 14-& equivalent
resistor subject to the 42-V potential difference. Therefore,
using Equation 27.8 and the results from part
(a), we obtain

This is the current in the 8.0-& and 4.0-& resistors. When this
3.0-A current enters the junction at b , however, it splits, with
part passing through the 6.0-& resistor (I1) and part through
the 3.0-& resistor (I2). Because the potential difference is "Vbc
across each of these resistors (since they are in parallel), we see
that (6.0 &) or Using this result and
the fact that we find that andI1 # 1.0 AI1 % I2 # 3.0 A,

I2 # 2I1 .I1 # (3.0 &)I2 ,

I #
"Vac

R eq
#

42 V
14 &

# 3.0 A

(R # "V/I )

14 &.

Three lightbulbs having power rat-
ings of 25 W, 75 W, and 150 W,
connected in parallel to a voltage
source of about 100 V. All bulbs are
rated at the same voltage. Why do
the intensities differ? Which bulb
draws the most current? Which has
the least resistance?

6.0 Ω

3.0 Ω

c
b

I1

I2

4.0 Ω8.0 Ω

a

c

2.0 Ω12 Ω

ba

14 Ω

ca

(a)

(b)

(c)

I

Figure 28.6
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Three Resistors in ParallelEXAMPLE 28.4
(c) Calculate the equivalent resistance of the circuit.

Solution We can use Equation 28.8 to find Req :

Exercise Use Req to calculate the total power delivered by
the battery.

Answer 200 W.

1.6 &R eq #
18 &
11

#

 #
6

18 &
%

3
18 &

%
2

18 &
#

11
18 &

1
R eq

#
1

3.0 &
%

1
6.0 &

%
1

9.0 &

Three resistors are connected in parallel as shown in Figure
28.7. A potential difference of 18 V is maintained between
points a and b. (a) Find the current in each resistor.

Solution The resistors are in parallel, and so the potential
difference across each must be 18 V. Applying the relation-
ship to each resistor gives

(b) Calculate the power delivered to each resistor and the
total power delivered to the combination of resistors.

Solution We apply the relationship to each
resistor and obtain

This shows that the smallest resistor receives the most power.
Summing the three quantities gives a total power of 200 W.

36 W !3 #
"V 2

R 3
#

(18 V)2

9.0 &
#

54 W !2 #
"V 2

R 2
#

(18 V)2

6.0 &
#

110 W!1 #
"V 2

R 1
#

(18 V)2

3.0 &
#

! # ("V )2/R

2.0 AI3 #
"V
R 3

#
18 V
9.0 &

#

3.0 AI2 #
"V
R 2

#
18 V
6.0 &

#

6.0 AI1 #
"V
R 1

#
18 V
3.0 &

#

"V # IR

Finding Req by Symmetry ArgumentsEXAMPLE 28.5
Solution In this type of problem, it is convenient to as-
sume a current entering junction a and then apply symmetry

Consider five resistors connected as shown in Figure 28.8a.
Find the equivalent resistance between points a and b.

(c)

1/2 Ω

ba c,d

1/2 Ω

(a)

1 Ω1 Ω

1 Ω1 Ω

5 Ω
ba

c

d

1 Ω

5 Ω

1 Ω
ba c,d

1 Ω

1 Ω

(b) (d)

1 Ω

ba

Figure 28.7 Three resistors connected in parallel. The voltage
across each resistor is 18 V.

3.0 Ω 6.0 Ω 9.0 Ω18 V

b

a

I1 I2 I3

I

Figure 28.8 Because of the symmetry in this circuit, the 5-& resistor does not contribute to the resistance between points a
and b and therefore can be disregarded when we calculate the equivalent resistance.
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Operation of a Three-Way LightbulbCONCEPTUAL EXAMPLE 28.6
Exercise Determine the resistances of the two filaments
and their parallel equivalent resistance.

Answer 144 &, 192 &, 82.3 &.

Figure 28.9 illustrates how a three-way lightbulb is con-
structed to provide three levels of light intensity. The socket
of the lamp is equipped with a three-way switch for selecting
different light intensities. The bulb contains two filaments.
When the lamp is connected to a 120-V source, one filament
receives 100 W of power, and the other receives 75 W. Ex-
plain how the two filaments are used to provide three differ-
ent light intensities.

Solution The three light intensities are made possible by
applying the 120 V to one filament alone, to the other fila-
ment alone, or to the two filaments in parallel. When switch
S1 is closed and switch S2 is opened, current passes only
through the 75-W filament. When switch S1 is open and
switch S2 is closed, current passes only through the 100-W fil-
ament. When both switches are closed, current passes
through both filaments, and the total power is 175 W.

If the filaments were connected in series and one of them
were to break, no current could pass through the bulb, and
the bulb would give no illumination, regardless of the switch
position. However, with the filaments connected in parallel, if
one of them (for example, the 75-W filament) breaks, the
bulb will still operate in two of the switch positions as current
passes through the other (100-W) filament.

120 V

100-W filament

75-W filament

S1

S2

arguments. Because of the symmetry in the circuit (all 1-& re-
sistors in the outside loop), the currents in branches ac and
ad must be equal; hence, the electric potentials at points c
and d must be equal. This means that and, as a re-
sult, points c and d may be connected together without affect-
ing the circuit, as in Figure 28.8b. Thus, the 5-& resistor may

"Vcd # 0

be removed from the circuit and the remaining circuit then
reduced as in Figures 28.8c and d. From this reduction we see
that the equivalent resistance of the combination is 1 &. Note
that the result is 1 & regardless of the value of the resistor
connected between c and d .

Figure 28.9 A three-way lightbulb.

Strings of LightsAPPLICATION
In a parallel-wired string, each bulb operates at 120 V. By

design, the bulbs are brighter and hotter than those on a
series-wired string. As a result, these bulbs are inherently
more dangerous (more likely to start a fire, for instance), but
if one bulb in a parallel-wired string fails or is removed, the
rest of the bulbs continue to glow. (A 25-bulb string of 4-W
bulbs results in a power of 100 W; the total power becomes
substantial when several strings are used.)

A new design was developed for so-called “miniature”
lights wired in series, to prevent the failure of one bulb from
extinguishing the entire string. The solution is to create a
connection (called a jumper) across the filament after it fails.
(If an alternate connection existed across the filament before

Strings of lights are used for many ornamental purposes,
such as decorating Christmas trees. Over the years, both par-
allel and series connections have been used for multilight
strings powered by 120 V.3 Series-wired bulbs are safer than
parallel-wired bulbs for indoor Christmas-tree use because 
series-wired bulbs operate with less light per bulb and at a
lower temperature. However, if the filament of a single bulb
fails (or if the bulb is removed from its socket), all the lights
on the string are extinguished. The popularity of series-wired
light strings diminished because troubleshooting a failed
bulb was a tedious, time-consuming chore that involved trial-
and-error substitution of a good bulb in each socket along
the string until the defective bulb was found.

3 These and other household devices, such as the three-way lightbulb in Conceptual Example 28.6 and
the kitchen appliances shown in this chapter’s Puzzler, actually operate on alternating current (ac), to
be introduced in Chapter 33.
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KIRCHHOFF’S RULES
As we saw in the preceding section, we can analyze simple circuits using the ex-
pression "V # IR and the rules for series and parallel combinations of resistors.
Very often, however, it is not possible to reduce a circuit to a single loop. The pro-
cedure for analyzing more complex circuits is greatly simplified if we use two prin-
ciples called Kirchhoff ’s rules:

28.3

Suppose that all the bulbs in a 50-bulb miniature-light
string are operating. A 2.4-V potential drop occurs across each
bulb because the bulbs are in series. The power input to this
style of bulb is 0.34 W, so the total power supplied to the
string is only 17 W. We calculate the filament resistance at 
the operating temperature to be (2.4 V)2/(0.34 W) # 17 &.
When the bulb fails, the resistance across its terminals is re-
duced to zero because of the alternate jumper connection
mentioned in the preceding paragraph. All the other bulbs
not only stay on but glow more brightly because the total resis-
tance of the string is reduced and consequently the current in
each bulb increases.

Let us assume that the operating resistance of a bulb re-
mains at 17 & even though its temperature rises as a result of
the increased current. If one bulb fails, the potential drop
across each of the remaining bulbs increases to 2.45 V, the
current increases from 0.142 A to 0.145 A, and the power in-
creases to 0.354 W. As more lights fail, the current keeps ris-
ing, the filament of each bulb operates at a higher tempera-
ture, and the lifetime of the bulb is reduced. It is therefore a
good idea to check for failed (nonglowing) bulbs in such a
series-wired string and replace them as soon as possible, in or-
der to maximize the lifetimes of all the bulbs.

it failed, each bulb would represent a parallel circuit; in this
circuit, the current would flow through the alternate connec-
tion, forming a short circuit, and the bulb would not glow.)
When the filament breaks in one of these miniature light-
bulbs, 120 V appears across the bulb because no current is
present in the bulb and therefore no drop in potential occurs
across the other bulbs. Inside the lightbulb, a small loop cov-
ered by an insulating material is wrapped around the fila-
ment leads. An arc burns the insulation and connects the fila-
ment leads when 120 V appears across the bulb—that is,
when the filament fails. This “short” now completes the cir-
cuit through the bulb even though the filament is no longer
active (Fig. 28.10).

Filament

Jumper

Glass insulator

(a)

Figure 28.10 (a) Schematic diagram of
a modern “miniature” holiday lightbulb,
with a jumper connection to provide a cur-
rent path if the filament breaks. (b) A
Christmas-tree lightbulb.

(b)

13.4

1. The sum of the currents entering any junction in a circuit must equal the
sum of the currents leaving that junction:

(28.9)(I in # (Iout



Kirchhoff’s first rule is a statement of conservation of electric charge. All cur-
rent that enters a given point in a circuit must leave that point because charge can-
not build up at a point. If we apply this rule to the junction shown in Figure
28.11a, we obtain

Figure 28.11b represents a mechanical analog of this situation, in which water
flows through a branched pipe having no leaks. The flow rate into the pipe equals
the total flow rate out of the two branches on the right.

Kirchhoff’s second rule follows from the law of conservation of energy. Let us
imagine moving a charge around the loop. When the charge returns to the start-
ing point, the charge–circuit system must have the same energy as when the
charge started from it. The sum of the increases in energy in some circuit ele-
ments must equal the sum of the decreases in energy in other elements. The po-
tential energy decreases whenever the charge moves through a potential drop $IR
across a resistor or whenever it moves in the reverse direction through a source of
emf. The potential energy increases whenever the charge passes through a battery
from the negative terminal to the positive terminal. Kirchhoff’s second rule ap-
plies only for circuits in which an electric potential is defined at each point; this
criterion may not be satisfied if changing electromagnetic fields are present, as we
shall see in Chapter 31.

In justifying our claim that Kirchhoff’s second rule is a statement of conserva-
tion of energy, we imagined carrying a charge around a loop. When applying this
rule, we imagine traveling around the loop and consider changes in electric potential,
rather than the changes in potential energy described in the previous paragraph.
You should note the following sign conventions when using the second rule:

• Because charges move from the high-potential end of a resistor to the low-
potential end, if a resistor is traversed in the direction of the current, the
change in potential "V across the resistor is $IR (Fig. 28.12a).

• If a resistor is traversed in the direction opposite the current, the change in po-
tential "V across the resistor is % IR (Fig. 28.12b).

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction of the emf (from $ to %), the change in potential "V is %! (Fig.
28.12c). The emf of the battery increases the electric potential as we move
through it in this direction.

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction opposite the emf (from % to $), the change in potential "V is $!
(Fig. 28.12d). In this case the emf of the battery reduces the electric potential as
we move through it.

Limitations exist on the numbers of times you can usefully apply Kirchhoff’s
rules in analyzing a given circuit. You can use the junction rule as often as you
need, so long as each time you write an equation you include in it a current that
has not been used in a preceding junction-rule equation. In general, the number
of times you can use the junction rule is one fewer than the number of junction

I1 # I2 % I3
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2. The sum of the potential differences across all elements around any closed
circuit loop must be zero:

(28.10)(
closed
loop

 "V # 0

QuickLab
Draw an arbitrarily shaped closed
loop that does not cross over itself.
Label five points on the loop a, b, c, d,
and e, and assign a random number
to each point. Now start at a and
work your way around the loop, cal-
culating the difference between each
pair of adjacent numbers. Some of
these differences will be positive, and
some will be negative. Add the differ-
ences together, making sure you accu-
rately keep track of the algebraic
signs. What is the sum of the differ-
ences all the way around the loop?

Gustav Kirchhoff (1824– 1887)
Kirchhoff, a professor at Heidelberg,
Germany, and Robert Bunsen in-
vented the spectroscope and founded
the science of spectroscopy, which
we shall study in Chapter 40. They
discovered the elements cesium and
rubidium and invented astronomical
spectroscopy. Kirchhoff formulated
another Kirchhoff’s rule, namely, “a
cool substance will absorb light of the
same wavelengths that it emits when
hot.” (AIP ESVA/W. F. Meggers Collection)
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points in the circuit. You can apply the loop rule as often as needed, so long as a
new circuit element (resistor or battery) or a new current appears in each new
equation. In general, in order to solve a particular circuit problem, the num-
ber of independent equations you need to obtain from the two rules equals
the number of unknown currents.

Complex networks containing many loops and junctions generate great num-
bers of independent linear equations and a correspondingly great number of un-
knowns. Such situations can be handled formally through the use of matrix alge-
bra. Computer programs can also be written to solve for the unknowns.

The following examples illustrate how to use Kirchhoff’s rules. In all cases, it is
assumed that the circuits have reached steady-state conditions—that is, the cur-
rents in the various branches are constant. Any capacitor acts as an open circuit;
that is, the current in the branch containing the capacitor is zero under steady-
state conditions.

(a)

I1

I2

I3

(b)

Flow in
Flow out

(a)

I

a b∆V =  –IR

(b)

I

a b∆V =  +IR

(c)

ε
a b

∆V =  +ε
– +

(d)
a b

∆V =  –ε
–+

ε

ε

ε

Figure 28.11 (a) Kirchhoff’s
junction rule. Conservation of
charge requires that all current en-
tering a junction must leave that
junction. Therefore, 
(b) A mechanical analog of the
junction rule: the amount of water
flowing out of the branches on the
right must equal the amount flow-
ing into the single branch on the
left.

I 1 # I 2 % I 3 .
Figure 28.12 Rules for determin-
ing the potential changes across a
resistor and a battery. (The battery
is assumed to have no internal re-
sistance.) Each circuit element is
traversed from left to right.

Problem-Solving Hints
Kirchhoff’s Rules
• Draw a circuit diagram, and label all the known and unknown quantities.

You must assign a direction to the current in each branch of the circuit. Do
not be alarmed if you guess the direction of a current incorrectly; your re-
sult will be negative, but its magnitude will be correct. Although the assignment
of current directions is arbitrary, you must adhere rigorously to the assigned
directions when applying Kirchhoff’s rules.

• Apply the junction rule to any junctions in the circuit that provide new rela-
tionships among the various currents.
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A Single-Loop CircuitEXAMPLE 28.7

Solving for I and using the values given in Figure 28.13, we
obtain

The negative sign for I indicates that the direction of the cur-
rent is opposite the assumed direction.

(b) What power is delivered to each resistor? What power
is delivered by the 12-V battery?

Solution

Hence, the total power delivered to the resistors is

The 12-V battery delivers power Half of this
power is delivered to the two resistors, as we just calculated.
The other half is delivered to the 6-V battery, which is being
charged by the 12-V battery. If we had included the internal
resistances of the batteries in our analysis, some of the power
would appear as internal energy in the batteries; as a result,
we would have found that less power was being delivered to
the 6-V battery.

I!2 # 4.0 W.
!1 % !2 # 2.0 W.

1.1 W!2 # I 2R 2 # (0.33 A)2(10 &) #

0.87 W!1 # I 2R 1 # (0.33 A)2(8.0 &) #

$0.33 AI #
!1 $ !2

R 1 % R 2
#

6.0 V $ 12 V
8.0 & % 10 &

#

!1 $ IR 1 $ !2 $ IR 2 # 0

 (  "V # 0A single-loop circuit contains two resistors and two batteries,
as shown in Figure 28.13. (Neglect the internal resistances of
the batteries.) (a) Find the current in the circuit.

Solution We do not need Kirchhoff’s rules to analyze this
simple circuit, but let us use them anyway just to see how they
are applied. There are no junctions in this single-loop circuit;
thus, the current is the same in all elements. Let us assume
that the current is clockwise, as shown in Figure 28.13. Tra-
versing the circuit in the clockwise direction, starting at a, we
see that a : b represents a potential change of %!1 , b : c
represents a potential change of $IR1 , c : d represents a po-
tential change of $!2 , and d : a represents a potential
change of $IR2 . Applying Kirchhoff’s loop rule gives

Applying Kirchhoff’s RulesEXAMPLE 28.8
We now have one equation with three unknowns— I1 , I2 , and
I3 . There are three loops in the circuit—abcda, befcb, and
aefda. We therefore need only two loop equations to deter-
mine the unknown currents. (The third loop equation would
give no new information.) Applying Kirchhoff’s loop rule to
loops abcda and befcb and traversing these loops clockwise, we
obtain the expressions

(2) abcda 10 V $ (6 &)I1 $ (2 &)I3 # 0

(3) befcb $ 14 V % (6 &)I1 $ 10 V $ (4 &)I2 # 0

Find the currents I1 , I2 , and I3 in the circuit shown in Figure
28.14.

Solution Notice that we cannot reduce this circuit to a
simpler form by means of the rules of adding resistances in
series and in parallel. We must use Kirchhoff’s rules to ana-
lyze this circuit. We arbitrarily choose the directions of the
currents as labeled in Figure 28.14. Applying Kirchhoff’s
junction rule to junction c gives

(1) I1 % I2 # I3

• Apply the loop rule to as many loops in the circuit as are needed to solve for
the unknowns. To apply this rule, you must correctly identify the change in
potential as you imagine crossing each element in traversing the closed loop
(either clockwise or counterclockwise). Watch out for errors in sign!

• Solve the equations simultaneously for the unknown quantities.

a b
I

cd

  1 = 6.0 V

+–

R 1 = 8.0 ΩR 2 = 10 Ω

  2 = 12 V

+–
ε

ε
Figure 28.13 A series circuit containing two batteries and two re-
sistors, where the polarities of the batteries are in opposition.
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14 V
e

b

4 Ω

– +

10 V 6 Ω

–+ f

I2

c

I3

I1

2 Ω
da

Figure 28.14 A circuit containing three loops.

A Multiloop CircuitEXAMPLE 28.9

Because our value for I2 is negative, we conclude that the di-
rection of I2 is from c to f through the 3.00-& resistor. Despite

$0.364 AI2 # $
4.00 V
11.0 &

#
(a) Under steady-state conditions, find the unknown currents
I1 , I2 , and I3 in the multiloop circuit shown in Figure 28.15.

Solution First note that because the capacitor represents
an open circuit, there is no current between g and b along
path ghab under steady-state conditions. Therefore, when the
charges associated with I1 reach point g, they all go through
the 8.00-V battery to point b ; hence, Labeling the
currents as shown in Figure 28.15 and applying Equation 28.9
to junction c, we obtain

(1)

Equation 28.10 applied to loops defcd and cfgbc, traversed
clockwise, gives

(2) defcd 4.00 V $ (3.00 &)I2 $ (5.00 &)I3 # 0

(3) cfgbc (3.00 &)I2 $ (5.00 &)I1 % 8.00 V # 0

From Equation (1) we see that which, when
substituted into Equation (3), gives

(4) (8.00 &)I2 $ (5.00 &)I3 % 8.00 V # 0

Subtracting Equation (4) from Equation (2), we eliminate I3
and find that

I1 # I3 $ I2 ,

I1 % I2 # I3

I gb # I1 .

Note that in loop befcb we obtain a positive value when travers-
ing the 6-& resistor because our direction of travel is opposite
the assumed direction of I1 .

Expressions (1), (2), and (3) represent three independent
equations with three unknowns. Substituting Equation (1)
into Equation (2) gives

(4) 10 V # (8 &)I1 % (2 &)I2

Dividing each term in Equation (3) by 2 and rearranging
gives

10 V $ (6 &)I1 $ (2 &) (I1 % I2) # 0

(5)

Subtracting Equation (5) from Equation (4) eliminates I2 ,
giving

Using this value of I1 in Equation (5) gives a value for I2 :

Finally,

The fact that I2 and I3 are both negative indicates only that
the currents are opposite the direction we chose for them.
However, the numerical values are correct. What would have
happened had we left the current directions as labeled in Fig-
ure 28.14 but traversed the loops in the opposite direction?

Exercise Find the potential difference between points b
and c .

Answer 2 V.

$1 AI3 # I1 % I2 #

$3 A I2 #

(2 &)I2 # (3 &)I1 $ 12 V # (3 &) (2 A) $ 12 V # $6 V

2 A I1 #

22 V # (11 &)I1

$12 V # $(3 &)I1 % (2 &)I2

4.00 V

d

c

5.00 Ω

–+

8.00 V

3.00 Ω

– + e

I3

f

I1

I2
5.00 Ω

ha

g

– +

3.00 V

–+

6.00   F

I = 0

b

I3

I1

µ

Figure 28.15 A multiloop circuit. Kirchhoff’s loop rule can be ap-
plied to any closed loop, including the one containing the capacitor.
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4 In previous discussions of capacitors, we assumed a steady-state situation, in which no current was
present in any branch of the circuit containing a capacitor. Now we are considering the case before the
steady-state condition is realized; in this situation, charges are moving and a current exists in the wires
connected to the capacitor.

RC CIRCUITS
So far we have been analyzing steady-state circuits, in which the current is con-
stant. In circuits containing capacitors, the current may vary in time. A circuit con-
taining a series combination of a resistor and a capacitor is called an RC circuit.

Charging a Capacitor

Let us assume that the capacitor in Figure 28.16 is initially uncharged. There is no
current while switch S is open (Fig. 28.16b). If the switch is closed at how-
ever, charge begins to flow, setting up a current in the circuit, and the capacitor
begins to charge.4 Note that during charging, charges do not jump across the ca-
pacitor plates because the gap between the plates represents an open circuit. In-
stead, charge is transferred between each plate and its connecting wire due to the
electric field established in the wires by the battery, until the capacitor is fully
charged. As the plates become charged, the potential difference across the capaci-
tor increases. The value of the maximum charge depends on the voltage of the
battery. Once the maximum charge is reached, the current in the circuit is zero
because the potential difference across the capacitor matches that supplied by the
battery.

To analyze this circuit quantitatively, let us apply Kirchhoff’s loop rule to the
circuit after the switch is closed. Traversing the loop clockwise gives

(28.11)

where q/C is the potential difference across the capacitor and IR is the potential

! $
q
C

$ IR # 0

t # 0,

28.4

this interpretation of the direction, however, we must con-
tinue to use this negative value for I2 in subsequent calcula-
tions because our equations were established with our origi-
nal choice of direction.

Using in Equations (3) and (1) gives

(b) What is the charge on the capacitor?

Solution We can apply Kirchhoff’s loop rule to loop bghab
(or any other loop that contains the capacitor) to find the po-
tential difference "Vcap across the capacitor. We enter this po-
tential difference in the equation without reference to a sign
convention because the charge on the capacitor depends
only on the magnitude of the potential difference. Moving
clockwise around this loop, we obtain

 "Vcap # 11.0 V

$8.00 V % "Vcap $ 3.00 V # 0 

1.02 AI3 #1.38 AI1 #

I2 # $0.364 A

Because (see Eq. 26.1), the charge on the capac-
itor is

Why is the left side of the capacitor positively charged?

Exercise Find the voltage across the capacitor by traversing
any other loop.

Answer 11.0 V.

Exercise Reverse the direction of the 3.00-V battery and an-
swer parts (a) and (b) again.

Answer (a) 
(b) 30 )C.

I3 # 1.02 A;I2 # $0.364 A,I1 # 1.38 A,

66.0 )CQ # (6.00 )F)(11.0 V) #

Q # C "Vcap



28.4 RC Circuits 883

difference across the resistor. We have used the sign conventions discussed earlier
for the signs on ! and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:

dq
dt

#
C!
RC

$
q

RC
# $

q $ C!
RC

dq
dt

#
!
R

$
q

RC

I # dq /dt

Q # C!
I # 0

t # 0)I0 #
!
R

(t # 0),

Maximum current

Maximum charge on the capacitor

+ –

Resistor

Battery

Capacitor

Switch

(a)

ε
(b)

S

t < 0

R

C

(c) t > 0

ε

R

S

I
q–

+ q

Figure 28.16 (a) A capacitor in series with a resistor, switch, and battery. (b) Circuit diagram
representing this system at time before the switch is closed. (c) Circuit diagram at time

after the switch has been closed.t * 0,
t + 0,
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Now we multiply by dt and divide by q $ C! to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.

We can find an expression for the charging current by differentiating Equa-
tion 28.14 with respect to time. Using we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
C! as t : ,. The current has its maximum value at and decays ex-
ponentially to zero as t : ,. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant - of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time -, In a time 2-, and so forth. Like-
wise, in a time -, the charge increases from zero to 

The following dimensional analysis shows that - has the units of time:

[-] # [RC] # # "V
I

.
Q
"V $ # # Q

Q /"t $ # ["t] # T

C! (1 $ e$1) # 0.632C!.
I # e$2I0 # 0.135I0 ,I # e$1I0 # 0.368I0 .

t # 0I0 # !/R
t # 0

I(t ) #
!
R

 e$t /RC

I # dq /dt,

C! # Q

q(t ) # C! (1 $ e$t/RC) # Q(1 $ e$t /RC )

ln! q $ C!
$C! " # $

t
RC

 

 %q

0
 

dq
q $ C! # $

1
RC

 %t

0
 dt

t # 0q # 0

dq
q $ C! # $

1
RC

 dt

Charge versus time for a capacitor
being charged

Current versus time for a charging
capacitor

q

=RC

τ t

C

0.632

(a)

I

τ t

0.368I0

(b)

I0 I0 = R

ε

Cε τ

ε

Figure 28.17 (a) Plot of capacitor charge versus time for the circuit shown in Figure 28.16. Af-
ter a time interval equal to one time constant - has passed, the charge is 63.2% of the maximum
value C!. The charge approaches its maximum value as t approaches infinity. (b) Plot of current
versus time for the circuit shown in Figure 28.16. The current has its maximum value 
at and decays to zero exponentially as t approaches infinity. After a time interval equal to
one time constant - has passed, the current is 36.8% of its initial value.

t # 0
I 0 # !/R
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Because has units of time, the combination t /RC is dimensionless, as it
must be in order to be an exponent of e in Equations 28.14 and 28.15.

The energy output of the battery as the capacitor is fully charged is
After the capacitor is fully charged, the energy stored in the capacitor

is which is just half the energy output of the battery. It is left as a
problem (Problem 60) to show that the remaining half of the energy supplied by
the battery appears as internal energy in the resistor.

Discharging a Capacitor

Now let us consider the circuit shown in Figure 28.18, which consists of a capaci-
tor carrying an initial charge Q , a resistor, and a switch. The initial charge Q is
not the same as the maximum charge Q in the previous discussion, unless the dis-
charge occurs after the capacitor is fully charged (as described earlier). When the
switch is open, a potential difference Q /C exists across the capacitor and there is
zero potential difference across the resistor because If the switch is closed
at the capacitor begins to discharge through the resistor. At some time t
during the discharge, the current in the circuit is I and the charge on the capaci-
tor is q (Fig. 28.18b). The circuit in Figure 28.18 is the same as the circuit in Fig-
ure 28.16 except for the absence of the battery. Thus, we eliminate the emf !
from Equation 28.11 to obtain the appropriate loop equation for the circuit in
Figure 28.18:

(28.16)

When we substitute into this expression, it becomes

Integrating this expression, using the fact that at gives

(28.17)

Differentiating this expression with respect to time gives the instantaneous current
as a function of time:

(28.18)

where is the initial current. The negative sign indicates that the cur-
rent direction now that the capacitor is discharging is opposite the current direc-
tion when the capacitor was being charged. (Compare the current directions in
Figs. 28.16c and 28.18b.) We see that both the charge on the capacitor and the
current decay exponentially at a rate characterized by the time constant - # RC .

Q /RC # I0

I(t) #
dq
dt

#
d
dt

 (Qe$t /RC ) # $
Q

RC
 e$t /RC

q(t ) # Qe$t /RC

ln! q
Q " # $

t
RC

 

 %q

Q
 
dq
q

# $
1

RC
 %t

0
 dt

t # 0,q # Q

 
dq
q

# $
1

RC
 dt

$R 
dq
dt

#
q
C

 

I # dq /dt

$
q
C

$ IR # 0

t # 0,
I # 0.

1
2Q! # 1

2C!2,
Q! # C!2.

- # RC

Charge versus time for a
discharging capacitor

Current versus time for a
discharging capacitor

(a)

S

RC

t < 0

–Q

+Q

R

S

I
–q

+q
C

(b)
t > 0

Figure 28.18 (a) A charged ca-
pacitor connected to a resistor and
a switch, which is open at 
(b) After the switch is closed, a cur-
rent that decreases in magnitude
with time is set up in the direction
shown, and the charge on the ca-
pacitor decreases exponentially
with time.

t + 0.
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Intermittent Windshield WipersCONCEPTUAL EXAMPLE 28.10
through a multiposition switch. As it increases with time, the
voltage across the capacitor reaches a point at which it trig-
gers the wipers and discharges, ready to begin another charg-
ing cycle. The time interval between the individual sweeps of
the wipers is determined by the value of the time constant.

Many automobiles are equipped with windshield wipers that
can operate intermittently during a light rainfall. How does
the operation of such wipers depend on the charging and dis-
charging of a capacitor?

Solution The wipers are part of an RC circuit whose time
constant can be varied by selecting different values of R

Charging a Capacitor in an RC CircuitEXAMPLE 28.11
Exercise Calculate the charge on the capacitor and the cur-
rent in the circuit after one time constant has elapsed.

Answer 37.9 )C, 5.52 )A.

An uncharged capacitor and a resistor are connected in se-
ries to a battery, as shown in Figure 28.19. If 

and find the time constant
of the circuit, the maximum charge on the capacitor, the
maximum current in the circuit, and the charge and current
as functions of time.

Solution The time constant of the circuit is 
The maximum

charge on the capacitor is 
The maximum current in the circuit is

Using these
values and Equations 28.14 and 28.15, we find that

Graphs of these functions are provided in Figure 28.20.

(15.0 )A) e$t/4.00 sI(t) #

(60.0 )C)(1 $ e$t/4.00 s )q(t) #

I0 # !/R # (12.0 V)/(8.00 . 105 &) # 15.0 )A.
60.0 )C.

(12.0 V) #Q # C! # (5.00 )F)
(8.00 . 105 &)(5.00 . 10$6 F) # 4.00 s.

- # RC #

R # 8.00 . 105 &,C # 5.00 )F,
! # 12.0 V,

R

ε
C

+ – S

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

q(µC)

Q = 60.0 µC

t(s)

0 1 2 3 4 5 6 7
0

5

10

15

I(µA)

I 0 = 15.0 µA

t(s)

(a)

(b)

t   = τ

µ

µ

µ

µ

τ

t   = ττ

Figure 28.19 The switch of this series RC circuit, open for times
is closed at t # 0.t + 0,

Figure 28.20 Plots of (a) charge versus time and (b) current ver-
sus time for the RC circuit shown in Figure 28.19, with 

, and C # 5.00 )F.R # 8.00 . 105 &
! # 12.0 V,

Discharging a Capacitor in an RC CircuitEXAMPLE 28.12
Solution The charge on the capacitor varies with time ac-
cording to Equation 28.17, To find the time
it takes q to drop to one-fourth its initial value, we substitute

into this expression and solve for t :q(t) # Q /4

q(t) # Qe$t /RC.
Consider a capacitor of capacitance C that is being dis-
charged through a resistor of resistance R , as shown in Figure
28.18. (a) After how many time constants is the charge on the
capacitor one-fourth its initial value?
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Taking logarithms of both sides, we find

(b) The energy stored in the capacitor decreases with
time as the capacitor discharges. After how many time con-
stants is this stored energy one-fourth its initial value?

Solution Using Equations 26.11 and 28.17,
we can express the energy stored in the capacitor at any time
t as

(U # Q2/2C)

1.39- t # RC(ln 4) # 1.39RC #

$ln 4 # $
t

RC
 

 14 # e$t /RC 

Q
4

# Qe$t /RC

where is the initial energy stored in the capaci-
tor. As in part (a), we now set and solve for t :

Again, taking logarithms of both sides and solving for t gives

Exercise After how many time constants is the current in
the circuit one-half its initial value?

Answer 0.693RC # 0.693-.

0.693-t # 1
2RC(ln 4) # 0.693RC #

 14 # e$2t /RC 

U0

4
# U0e$2t /RC

U # U0/4
U0 # Q2/2C

U #
q 2

2C
#

(Q e$t /RC)2

2C
#

Q2

2C
 e$2t /RC # U0e$2t /RC

Energy Delivered to a ResistorEXAMPLE 28.13

To evaluate this integral, we note that the initial current is
equal to and that all parameters except t are constant.
Thus, we find

(1)

This integral has a value of RC/2; hence, we find

which agrees with the result we obtained using the simpler
approach, as it must. Note that we can use this second ap-
proach to find the total energy delivered to the resistor at any
time after the switch is closed by simply replacing the upper
limit in the integral with that specific value of t.

Exercise Show that the integral in Equation (1) has the
value RC/2.

Energy # 1
2C!2

Energy #
!2

R
 %,

0
 e$2t/RC dt

!/R
I0

Energy # %,

0
 I 2R dt # %,

0
 (I0e$t /RC)2 R dt

A 5.00-)F capacitor is charged to a potential difference of
800 V and then discharged through a 25.0-k& resistor. How
much energy is delivered to the resistor in the time it takes to
fully discharge the capacitor?

Solution We shall solve this problem in two ways. The first
way is to note that the initial energy in the circuit equals the
energy stored in the capacitor, C!2/2 (see Eq. 26.11). Once
the capacitor is fully discharged, the energy stored in it is
zero. Because energy is conserved, the initial energy stored in
the capacitor is transformed into internal energy in the resis-
tor. Using the given values of C and !, we find

The second way, which is more difficult but perhaps more
instructive, is to note that as the capacitor discharges through
the resistor, the rate at which energy is delivered to the resis-
tor is given by I 2R, where I is the instantaneous current given
by Equation 28.18. Because power is defined as the time rate
of change of energy, we conclude that the energy delivered to
the resistor must equal the time integral of I 2R dt:

1.60 JEnergy # 1
2 C!2 # 1

2(5.00 . 10$6 F)(800 V)2 #

Optional Section

ELECTRICAL INSTRUMENTS
The Ammeter

A device that measures current is called an ammeter. The current to be measured
must pass directly through the ammeter, so the ammeter must be connected in se-

28.5



ries with other elements in the circuit, as shown in Figure 28.21. When using an
ammeter to measure direct currents, you must be sure to connect it so that current
enters the instrument at the positive terminal and exits at the negative terminal.

Ideally, an ammeter should have zero resistance so that the current be-
ing measured is not altered. In the circuit shown in Figure 28.21, this condition
requires that the resistance of the ammeter be much less than Because
any ammeter always has some internal resistance, the presence of the ammeter in
the circuit slightly reduces the current from the value it would have in the meter’s
absence.

The Voltmeter

A device that measures potential difference is called a voltmeter. The potential
difference between any two points in a circuit can be measured by attaching the
terminals of the voltmeter between these points without breaking the circuit, as
shown in Figure 28.22. The potential difference across resistor R2 is measured by
connecting the voltmeter in parallel with R2 . Again, it is necessary to observe the
polarity of the instrument. The positive terminal of the voltmeter must be con-
nected to the end of the resistor that is at the higher potential, and the negative
terminal to the end of the resistor at the lower potential.

An ideal voltmeter has infinite resistance so that no current passes
through it. In Figure 28.22, this condition requires that the voltmeter have a resis-
tance much greater than R2 . In practice, if this condition is not met, corrections
should be made for the known resistance of the voltmeter.

The Galvanometer

The galvanometer is the main component in analog ammeters and voltmeters.
Figure 28.23a illustrates the essential features of a common type called the 
D’Arsonval galvanometer. It consists of a coil of wire mounted so that it is free to ro-
tate on a pivot in a magnetic field provided by a permanent magnet. The basic op-

R 1 % R 2 .
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R1

ε

–

+

R2

A

R1

ε

V

R2

Figure 28.21 Current can be
measured with an ammeter con-
nected in series with the resistor
and battery of a circuit. An ideal
ammeter has zero resistance.

Figure 28.22 The potential dif-
ference across a resistor can be
measured with a voltmeter con-
nected in parallel with the resistor.
An ideal voltmeter has infinite re-
sistance.

Spring

S

Coil

Scale

N

(a)

Figure 28.23 (a) The principal components of a D’Arsonval galvanometer. When the coil situ-
ated in a magnetic field carries a current, the magnetic torque causes the coil to twist. The angle
through which the coil rotates is proportional to the current in the coil because of the counter-
acting torque of the spring. (b) A large-scale model of a galvanometer movement. Why does the
coil rotate about the vertical axis after the switch is closed?

(b)
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eration of the galvanometer makes use of the fact that a torque acts on a current
loop in the presence of a magnetic field (Chapter 29). The torque experienced by
the coil is proportional to the current through it: the larger the current, the
greater the torque and the more the coil rotates before the spring tightens
enough to stop the rotation. Hence, the deflection of a needle attached to the coil
is proportional to the current. Once the instrument is properly calibrated, it can
be used in conjunction with other circuit elements to measure either currents or
potential differences.

A typical off-the-shelf galvanometer is often not suitable for use as an ammeter,
primarily because it has a resistance of about 60 &. An ammeter resistance this
great considerably alters the current in a circuit. You can understand this by con-
sidering the following example: The current in a simple series circuit containing a
3-V battery and a 3-& resistor is 1 A. If you insert a 60-& galvanometer in this cir-
cuit to measure the current, the total resistance becomes 63 & and the current is
reduced to 0.048 A!

A second factor that limits the use of a galvanometer as an ammeter is the fact
that a typical galvanometer gives a full-scale deflection for currents of the order of
1 mA or less. Consequently, such a galvanometer cannot be used directly to mea-
sure currents greater than this value. However, it can be converted to a useful am-
meter by placing a shunt resistor Rp in parallel with the galvanometer, as shown in
Figure 28.24a. The value of Rp must be much less than the galvanometer resis-
tance so that most of the current to be measured passes through the shunt resistor.

A galvanometer can also be used as a voltmeter by adding an external resistor
Rs in series with it, as shown in Figure 28.24b. In this case, the external resistor
must have a value much greater than the resistance of the galvanometer to ensure
that the galvanometer does not significantly alter the voltage being measured.

The Wheatstone Bridge

An unknown resistance value can be accurately measured using a circuit known as
a Wheatstone bridge (Fig. 28.25). This circuit consists of the unknown resistance
Rx , three known resistances R1 , R2 , and R3 (where R1 is a calibrated variable resis-
tor), a galvanometer, and a battery. The known resistor R1 is varied until the gal-
vanometer reading is zero—that is, until there is no current from a to b. Under
this condition the bridge is said to be balanced. Because the electric potential at

60 Ω

Rp

Galvanometer

(a)

60 Ω

Galvanometer

Rs

(b)

Figure 28.24 (a) When a galvanometer is to be used as an ammeter, a shunt resistor Rp is con-
nected in parallel with the galvanometer. (b) When the galvanometer is used as a voltmeter, a re-
sistor Rs is connected in series with the galvanometer.

Figure 28.25 Circuit diagram for
a Wheatstone bridge, an instru-
ment used to measure an unknown
resistance Rx in terms of known re-
sistances R1 , R2 , and R3 . When the
bridge is balanced, no current is
present in the galvanometer. The
arrow superimposed on the circuit
symbol for resistor R1 indicates that
the value of this resistor can be var-
ied by the person operating the
bridge.

G

R1 R2

R3 Rx

+
–

a b

I1 I2
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point a must equal the potential at point b when the bridge is balanced, the poten-
tial difference across R1 must equal the potential difference across R2 . Likewise,
the potential difference across R3 must equal the potential difference across Rx .
From these considerations we see that

(1)

(2)

Dividing Equation (1) by Equation (2) eliminates the currents, and solving for R x ,
we find that

(28.19)

A number of similar devices also operate on the principle of null measure-
ment (that is, adjustment of one circuit element to make the galvanometer read
zero). One example is the capacitance bridge used to measure unknown capaci-
tances. These devices do not require calibrated meters and can be used with any
voltage source.

Wheatstone bridges are not useful for resistances above 105 &, but modern
electronic instruments can measure resistances as high as 1012 &. Such instru-
ments have an extremely high resistance between their input terminals. For exam-
ple, input resistances of 1010 & are common in most digital multimeters, which are
devices that are used to measure voltage, current, and resistance (Fig. 28.26).

The Potentiometer

A potentiometer is a circuit that is used to measure an unknown emf !x by com-
parison with a known emf. In Figure 28.27, point d represents a sliding contact
that is used to vary the resistance (and hence the potential difference) between
points a and d. The other required components are a galvanometer, a battery of
known emf !0 , and a battery of unknown emf !x .

With the currents in the directions shown in Figure 28.27, we see from Kirch-
hoff’s junction rule that the current in the resistor Rx is where I is the cur-
rent in the left branch (through the battery of emf !0) and Ix is the current in the
right branch. Kirchhoff’s loop rule applied to loop abcda traversed clockwise gives

Because current Ix passes through it, the galvanometer displays a nonzero reading.
The sliding contact at d is now adjusted until the galvanometer reads zero (indicat-
ing a balanced circuit and that the potentiometer is another null-measurement de-
vice). Under this condition, the current in the galvanometer is zero, and the po-
tential difference between a and d must equal the unknown emf !x :

Next, the battery of unknown emf is replaced by a standard battery of known
emf !s , and the procedure is repeated. If Rs is the resistance between a and d
when balance is achieved this time, then

where it is assumed that I remains the same. Combining this expression with the
preceding one, we see that

(28.20)!x #
R x

R s
 !s

!s # IR s

!x # IR x

$!x % (I $ Ix)R x # 0

I $ Ix ,

R x #
R 2R 3

R 1

I1R 3 # I2R x

I1R 1 # I2R 2

The strain gauge, a device used for
experimental stress analysis, con-
sists of a thin coiled wire bonded to
a flexible plastic backing. The
gauge measures stresses by detect-
ing changes in the resistance of the
coil as the strip bends. Resistance
measurements are made with this
device as one element of a Wheat-
stone bridge. Strain gauges are
commonly used in modern elec-
tronic balances to measure the
masses of objects.

Figure 28.26 Voltages, currents,
and resistances are frequently mea-
sured with digital multimeters like
this one.
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If the resistor is a wire of resistivity /, its resistance can be varied by using the
sliding contact to vary the length L, indicating how much of the wire is part of the
circuit. With the substitutions and Equation 28.20 be-
comes

(28.21)

where Lx is the resistor length when the battery of unknown emf !x is in the cir-
cuit and Ls is the resistor length when the standard battery is in the circuit.

The sliding-wire circuit of Figure 28.27 without the unknown emf and the 
galvanometer is sometimes called a voltage divider. This circuit makes it possible to
tap into any desired smaller portion of the emf !0 by adjusting the length of the
resistor.

Optional Section

HOUSEHOLD WIRING AND ELECTRICAL SAFETY
Household circuits represent a practical application of some of the ideas pre-
sented in this chapter. In our world of electrical appliances, it is useful to under-
stand the power requirements and limitations of conventional electrical systems
and the safety measures that prevent accidents. 

In a conventional installation, the utility company distributes electric power to
individual homes by means of a pair of wires, with each home connected in paral-
lel to these wires. One wire is called the live wire,5 as illustrated in Figure 28.28, and
the other is called the neutral wire. The potential difference between these two
wires is about 120 V. This voltage alternates in time, with the neutral wire con-
nected to ground and the potential of the live wire oscillating relative to ground.
Much of what we have learned so far for the constant-emf situation (direct cur-
rent) can also be applied to the alternating current that power companies supply
to businesses and households. (Alternating voltage and current are discussed in
Chapter 33.)

A meter is connected in series with the live wire entering the house to record
the household’s usage of electricity. After the meter, the wire splits so that there
are several separate circuits in parallel distributed throughout the house. Each cir-
cuit contains a circuit breaker (or, in older installations, a fuse). The wire and cir-
cuit breaker for each circuit are carefully selected to meet the current demands
for that circuit. If a circuit is to carry currents as large as 30 A, a heavy wire and an
appropriate circuit breaker must be selected to handle this current. A circuit used
to power only lamps and small appliances often requires only 15 A. Each circuit
has its own circuit breaker to accommodate various load conditions.

As an example, consider a circuit in which a toaster oven, a microwave oven,
and a coffee maker are connected (corresponding to R1 , R2 , and R 3 in Figure
28.28 and as shown in the chapter-opening photograph). We can calculate the cur-
rent drawn by each appliance by using the expression The toaster oven,
rated at 1 000 W, draws a current of 1 000 W/120 V # 8.33 A. The microwave
oven, rated at 1 300 W, draws 10.8 A, and the coffee maker, rated at 800 W, draws
6.67 A. If the three appliances are operated simultaneously, they draw a total cur-

! # I "V.

28.6

!x #
Lx

Ls
 !s

R x # /Lx /A,R s # /Ls /A

G

x

a b

d
c

ε0
Rx

I – Ix

I Ix

ε ε

Figure 28.27 Circuit diagram for
a potentiometer. The circuit is used
to measure an unknown emf !x .

R1

Live
120 V

Neutral

0 V

R2

Circuit
breaker

Meter

R3

Figure 28.28 Wiring diagram for
a household circuit. The resistances
represent appliances or other elec-
trical devices that operate with an
applied voltage of 120 V.

5 Live wire is a common expression for a conductor whose electric potential is above or below ground
potential.
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rent of 25.8 A. Therefore, the circuit should be wired to handle at least this much
current. If the rating of the circuit breaker protecting the circuit is too small—say,
20 A—the breaker will be tripped when the third appliance is turned on, prevent-
ing all three appliances from operating. To avoid this situation, the toaster oven
and coffee maker can be operated on one 20-A circuit and the microwave oven on
a separate 20-A circuit.

Many heavy-duty appliances, such as electric ranges and clothes dryers, require
240 V for their operation (Fig. 28.29). The power company supplies this voltage by
providing a third wire that is 120 V below ground potential. The potential differ-
ence between this live wire and the other live wire (which is 120 V above ground
potential) is 240 V. An appliance that operates from a 240-V line requires half the
current of one operating from a 120-V line; therefore, smaller wires can be used in
the higher-voltage circuit without overheating.

Electrical Safety

When the live wire of an electrical outlet is connected directly to ground, the cir-
cuit is completed and a short-circuit condition exists. A short circuit occurs when al-
most zero resistance exists between two points at different potentials; this results in
a very large current. When this happens accidentally, a properly operating circuit
breaker opens the circuit and no damage is done. However, a person in contact
with ground can be electrocuted by touching the live wire of a frayed cord or
other exposed conductor. An exceptionally good (although very dangerous)
ground contact is made when the person either touches a water pipe (normally at
ground potential) or stands on the ground with wet feet. The latter situation rep-
resents a good ground because normal, nondistilled water is a conductor because
it contains a large number of ions associated with impurities. This situation should
be avoided at all cost.

Electric shock can result in fatal burns, or it can cause the muscles of vital or-
gans, such as the heart, to malfunction. The degree of damage to the body de-
pends on the magnitude of the current, the length of time it acts, the part of the
body touched by the live wire, and the part of the body through which the current
passes. Currents of 5 mA or less cause a sensation of shock but ordinarily do little
or no damage. If the current is larger than about 10 mA, the muscles contract and
the person may be unable to release the live wire. If a current of about 100 mA
passes through the body for only a few seconds, the result can be fatal. Such a
large current paralyzes the respiratory muscles and prevents breathing. In some
cases, currents of about 1 A through the body can produce serious (and some-
times fatal) burns. In practice, no contact with live wires is regarded as safe when-
ever the voltage is greater than 24 V.

Many 120-V outlets are designed to accept a three-pronged power cord such as
the one shown in Figure 28.30. (This feature is required in all new electrical instal-
lations.) One of these prongs is the live wire at a nominal potential of 120 V. The
second, called the “neutral,” is nominally at 0 V and carries current to ground.
The third, round prong is a safety ground wire that normally carries no current
but is both grounded and connected directly to the casing of the appliance. If the
live wire is accidentally shorted to the casing (which can occur if the wire insula-
tion wears off), most of the current takes the low-resistance path through the ap-
pliance to ground. In contrast, if the casing of the appliance is not properly
grounded and a short occurs, anyone in contact with the appliance experiences an
electric shock because the body provides a low-resistance path to ground.

Figure 28.29 A power connec-
tion for a 240-V appliance. 

Figure 28.30 A three-pronged
power cord for a 120-V appliance.
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Special power outlets called ground-fault interrupters (GFIs) are now being used
in kitchens, bathrooms, basements, exterior outlets, and other hazardous areas of
new homes. These devices are designed to protect persons from electric shock by
sensing small currents (& 5 mA) leaking to ground. (The principle of their opera-
tion is described in Chapter 31.) When an excessive leakage current is detected,
the current is shut off in less than 1 ms.

Is a circuit breaker wired in series or in parallel with the device it is protecting?

SUMMARY

The emf of a battery is equal to the voltage across its terminals when the current is
zero. That is, the emf is equivalent to the open-circuit voltage of the battery.

The equivalent resistance of a set of resistors connected in series is

(28.6)

The equivalent resistance of a set of resistors connected in parallel is 

(28.8)

If it is possible to combine resistors into series or parallel equivalents, the preced-
ing two equations make it easy to determine how the resistors influence the rest of
the circuit.

Circuits involving more than one loop are conveniently analyzed with the use
of Kirchhoff ’s rules:

1. The sum of the currents entering any junction in an electric circuit must equal
the sum of the currents leaving that junction:

(28.9)

2. The sum of the potential differences across all elements around any circuit
loop must be zero:

(28.10)

The first rule is a statement of conservation of charge; the second is equivalent to
a statement of conservation of energy.

When a resistor is traversed in the direction of the current, the change in po-
tential "V across the resistor is $IR . When a resistor is traversed in the direction
opposite the current, When a source of emf is traversed in the direc-
tion of the emf (negative terminal to positive terminal), the change in potential is
%!. When a source of emf is traversed opposite the emf (positive to negative),
the change in potential is $!. The use of these rules together with Equations 28.9
and 28.10 allows you to analyze electric circuits.

If a capacitor is charged with a battery through a resistor of resistance R , the
charge on the capacitor and the current in the circuit vary in time according to

"V # %IR .

(
closed
loop

 "V # 0

(I in # (Iout

1
R eq

#
1

R 1
%

1
R 2

%
1

R 3
% '''

R eq # R 1 % R 2 % R 3 % '''

Quick Quiz 28.4
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the expressions

(28.14)

(28.15)

where is the maximum charge on the capacitor. The product RC is called
the time constant - of the circuit. If a charged capacitor is discharged through a
resistor of resistance R , the charge and current decrease exponentially in time ac-
cording to the expressions

(28.17)

(28.18)

where Q is the initial charge on the capacitor and is the initial current
in the circuit. Equations 28.14, 28.15, 28.17, and 28.18 permit you to analyze the
current and potential differences in an RC circuit and the charge stored in the cir-
cuit’s capacitor.

Q /RC # I0

I(t) # $
Q

RC
 e$t/RC

q(t) # Qe$t/RC 

Q # C!

I(t) #
!
R

 e$t /RC 

q(t) # Q(1 $ e$t /RC)

QUESTIONS

13. Describe what happens to the lightbulb shown in Figure
Q28.13 after the switch is closed. Assume that the capaci-
tor has a large capacitance and is initially uncharged, and
assume that the light illuminates when connected directly
across the battery terminals.

1. Explain the difference between load resistance in a cir-
cuit and internal resistance in a battery.

2. Under what condition does the potential difference
across the terminals of a battery equal its emf ? Can the
terminal voltage ever exceed the emf ? Explain.

3. Is the direction of current through a battery always from
the negative terminal to the positive one? Explain.

4. How would you connect resistors so that the equivalent
resistance is greater than the greatest individual resis-
tance? Give an example involving three resistors.

5. How would you connect resistors so that the equivalent
resistance is less than the least individual resistance? Give
an example involving three resistors.

6. Given three lightbulbs and a battery, sketch as many dif-
ferent electric circuits as you can.

7. Which of the following are the same for each resistor in a
series connection—potential difference, current, power?

8. Which of the following are the same for each resistor in a
parallel connection—potential difference, current,
power?

9. What advantage might there be in using two identical re-
sistors in parallel connected in series with another identi-
cal parallel pair, rather than just using a single resistor?

10. An incandescent lamp connected to a 120-V source with a
short extension cord provides more illumination than the
same lamp connected to the same source with a very long
extension cord. Explain why.

11. When can the potential difference across a resistor be
positive?

12. In Figure 28.15, suppose the wire between points g and h
is replaced by a 10-& resistor. Explain why this change
does not affect the currents calculated in Example 28.9.

14. What are the internal resistances of an ideal ammeter? of
an ideal voltmeter? Do real meters ever attain these
ideals?

15. Although the internal resistances of all sources of emf
were neglected in the treatment of the potentiometer
(Section 28.5), it is really not necessary to make this as-
sumption. Explain why internal resistances play no role in
the measurement of !x .

Switch
Battery
+ –

C

Figure Q28.13
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16. Why is it dangerous to turn on a light when you are in the
bathtub?

17. Suppose you fall from a building, and on your way down
you grab a high-voltage wire. Assuming that you are hang-
ing from the wire, will you be electrocuted? If the wire
then breaks, should you continue to hold onto an end of
the wire as you fall?

18. What advantage does 120-V operation offer over 240 V ?
What are its disadvantages compared with 240 V?

19. When electricians work with potentially live wires, they of-
ten use the backs of their hands or fingers to move the
wires. Why do you suppose they employ this technique?

20. What procedure would you use to try to save a person
who is “frozen” to a live high-voltage wire without endan-
gering your own life?

21. If it is the current through the body that determines the
seriousness of a shock, why do we see warnings of high
voltage rather than high current near electrical equipment?

22. Suppose you are flying a kite when it strikes a high-
voltage wire. What factors determine how great a shock
you receive?

23. A series circuit consists of three identical lamps that are
connected to a battery as shown in Figure Q28.23. When
switch S is closed, what happens (a) to the intensities of
lamps A and B, (b) to the intensity of lamp C, (c) to the
current in the circuit, and (d) to the voltage across the
three lamps? (e) Does the power delivered to the circuit
increase, decrease, or remain the same?

24. If your car’s headlights are on when you start the igni-
tion, why do they dim while the car is starting?

25. A ski resort consists of a few chair lifts and several inter-
connected downhill runs on the side of a mountain, with
a lodge at the bottom. The lifts are analogous to batteries,
and the runs are analogous to resistors. Describe how two
runs can be in series. Describe how three runs can be in
parallel. Sketch a junction of one lift and two runs. State
Kirchhoff’s junction rule for ski resorts. One of the skiers,
who happens to be carrying an altimeter, stops to warm
up her toes each time she passes the lodge. State Kirch-
hoff’s loop rule for altitude.

Figure Q28.23

A

S

B C

ε

PROBLEMS

4. An automobile battery has an emf of 12.6 V and an in-
ternal resistance of 0.080 0 &. The headlights have a to-
tal resistance of 5.00 & (assumed constant). What is the
potential difference across the headlight bulbs (a) when
they are the only load on the battery and (b) when the
starter motor, which takes an additional 35.0 A from the
battery, is operated?

Section 28.2 Resistors in Series and in Parallel
5. The current in a loop circuit that has a resistance of R1

is 2.00 A. The current is reduced to 1.60 A when an ad-
ditional resistor is added in series with R1 .
What is the value of R1 ?

6. (a) Find the equivalent resistance between points a and
b in Figure P28.6. (b) Calculate the current in each re-
sistor if a potential difference of 34.0 V is applied be-
tween points a and b.

7. A television repairman needs a 100-& resistor to repair
a malfunctioning set. He is temporarily out of resistors

R 2 # 3.00 &

Section 28.1 Electromotive Force
1. A battery has an emf of 15.0 V. The terminal voltage of

the battery is 11.6 V when it is delivering 20.0 W of
power to an external load resistor R. (a) What is the
value of R? (b) What is the internal resistance of the
battery?

2. (a) What is the current in a 5.60-& resistor connected to
a battery that has a 0.200-& internal resistance if the ter-
minal voltage of the battery is 10.0 V ? (b) What is the
emf of the battery?

3. Two 1.50-V batteries—with their positive terminals in
the same direction—are inserted in series into the bar-
rel of a flashlight. One battery has an internal resistance
of 0.255 &, the other an internal resistance of 0.153 &.
When the switch is closed, a current of 600 mA occurs
in the lamp. (a) What is the lamp’s resistance? (b) What
percentage of the power from the batteries appears in
the batteries themselves, as represented by an increase
in temperature?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB



896 C H A P T E R  2 8 Direct Current Circuits

WEB

16. Two resistors connected in series have an equivalent re-
sistance of 690 &. When they are connected in parallel,
their equivalent resistance is 150 &. Find the resistance
of each resistor.

17. In Figures 28.4 and 28.5, let &, let 
and let the battery have a terminal voltage of

33.0 V. (a) In the parallel circuit shown in Figure 28.5,
which resistor uses more power? (b) Verify that the sum
of the power (I 2R) used by each resistor equals the
power supplied by the battery (I "V ). (c) In the series
circuit, which resistor uses more power? (d) Verify that
the sum of the power (I 2R) used by each resistor equals

22.0 &,
R 2 #R 1 # 11.0

15. Calculate the power delivered to each resistor in the cir-
cuit shown in Figure P28.15.

10. Four copper wires of equal length are connected in se-
ries. Their cross-sectional areas are 1.00 cm2, 2.00 cm2,
3.00 cm2, and 5.00 cm2. If a voltage of 120 V is applied
to the arrangement, what is the voltage across the 
2.00-cm2 wire?

11. Three 100-& resistors are connected as shown in Figure
P28.11. The maximum power that can safely be deliv-
ered to any one resistor is 25.0 W. (a) What is the maxi-
mum voltage that can be applied to the terminals a and
b? (b) For the voltage determined in part (a), what is

of this value. All he has in his toolbox are a 500-& resis-
tor and two 250-& resistors. How can he obtain the de-
sired resistance using the resistors he has on hand?

8. A lightbulb marked “75 W [at] 120 V” is screwed into a
socket at one end of a long extension cord in which
each of the two conductors has a resistance of 0.800 &.
The other end of the extension cord is plugged into a
120-V outlet. Draw a circuit diagram, and find the actual
power delivered to the bulb in this circuit.

9. Consider the circuit shown in Figure P28.9. Find (a) the
current in the 20.0-& resistor and (b) the potential dif-
ference between points a and b.

the power delivered to each resistor? What is the total
power delivered?

12. Using only three resistors—2.00 &, 3.00 &, and 
4.00 &—find 17 resistance values that can be obtained
with various combinations of one or more resistors. Tab-
ulate the combinations in order of increasing resistance.

13. The current in a circuit is tripled by connecting a 500-&
resistor in parallel with the resistance of the circuit. De-
termine the resistance of the circuit in the absence of
the 500-& resistor.

14. The power delivered to the top part of the circuit shown
in Figure P28.14 does not depend on whether the switch
is opened or closed. If R # 1.00 &, what is R 0? Neglect
the internal resistance of the voltage source.

9.00 Ω4.00 Ω

10.0 Ω

7.00 Ω

ba

2.00 Ω

18.0 V
3.00 Ω

4.00 Ω

1.00 Ω

ε

S R ′

R

R ′

a

100 Ω

100 Ω

100 Ω

b

20.0 Ω

a 10.0 Ω

10.0 Ω 25.0 V

5.00 Ω

b

5.00 Ω

Figure P28.6

Figure P28.9

Figure P28.11

Figure P28.14

Figure P28.15
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the power supplied by the battery 
(e) Which circuit configuration uses more power?

Section 28.3 Kirchhoff’s Rules
Note: The currents are not necessarily in the direction shown
for some circuits.

18. The ammeter shown in Figure P28.18 reads 2.00 A.
Find I 1 , I 2 , and !.

(! # I "V ). 22. (a) Using Kirchhoff’s rules, find the current in each re-
sistor shown in Figure P28.22 and (b) find the potential
difference between points c and f. Which point is at the
higher potential?

WEB

25. A dead battery is charged by connecting it to the live
battery of another car with jumper cables (Fig. P28.25).
Determine the current in the starter and in the dead
battery.

24. In the circuit of Figure P28.24, determine the current
in each resistor and the voltage across the 200-& resis-
tor.

23. If and in Figure P28.23, deter-
mine the direction and magnitude of the current in the
horizontal wire between a and e.

! # 250 VR # 1.00 k&

20. In Figure P28.19, show how to add just enough amme-
ters to measure every different current that is flowing.
Show how to add just enough voltmeters to measure the
potential difference across each resistor and across each
battery.

21. The circuit considered in Problem 19 and shown in Fig-
ure P28.19 is connected for 2.00 min. (a) Find the en-
ergy supplied by each battery. (b) Find the energy deliv-
ered to each resistor. (c) Find the total amount of
energy converted from chemical energy in the battery
to internal energy in the circuit resistance.

19. Determine the current in each branch of the circuit
shown in Figure P28.19.

80 Ω200 Ω 20 Ω 70 Ω

40 V 360 V 80 V

ε

R

a

b
2R

3R4R

c d

e

+
–

+
– ε2

60.0 V70.0 V 80.0 V

R2

a f e

R3

3.00 kΩ

2.00 kΩ

4.00 kΩcb d

ε1ε ε2ε ε3ε

R1

3.00 Ω

1.00 Ω

5.00 Ω

1.00 Ω

4.00 V
+

8.00 Ω

12.0 V
+

$

$

7.00 Ω 15.0 V

5.00 Ω

2.00 Ω ε
I2

I1

A

Figure P28.18

Figure P28.19 Problems 19, 20, and 21.

Figure P28.22

Figure P28.23

Figure P28.24
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26. For the network shown in Figure P28.26, show that the
resistance R ab # 27

17 &.

Section 28.4 RC Circuits
29. Consider a series RC circuit (see Fig. 28.16) for which

and Find 
(a) the time constant of the circuit and (b) the maxi-
mum charge on the capacitor after the switch is closed.
(c) If the switch is closed at find the current in
the resistor 10.0 s later.

30. A 2.00-nF capacitor with an initial charge of 5.10 )C is
discharged through a 1.30-k& resistor. (a) Calculate the
current through the resistor 9.00 )s after the resistor is
connected across the terminals of the capacitor. 
(b) What charge remains on the capacitor after 8.00 )s?
(c) What is the maximum current in the resistor?

31. A fully charged capacitor stores energy U0 . How much
energy remains when its charge has decreased to half its
original value?

32. In the circuit of Figure P28.32, switch S has been open
for a long time. It is then suddenly closed. Determine
the time constant (a) before the switch is closed and
(b) after the switch is closed. (c) If the switch is closed
at , determine the current through it as a function
of time.

t # 0

t # 0,

! # 30.0 V.C # 5.00 )F,R # 1.00 M&,
WEB

34. A 4.00-M& resistor and a 3.00-)F capacitor are con-
nected in series with a 12.0-V power supply. (a) What is
the time constant for the circuit? (b) Express the cur-
rent in the circuit and the charge on the capacitor as
functions of time.

33. The circuit shown in Figure P28.33 has been connected
for a long time. (a) What is the voltage across the capac-
itor? (b) If the battery is disconnected, how long does it
take the capacitor to discharge to one-tenth its initial
voltage?

28. Calculate the power delivered to each of the resistors
shown in Figure P28.28.

27. For the circuit shown in Figure P28.27, calculate (a) the
current in the 2.00-& resistor and (b) the potential dif-
ference between points a and b.

10.0 V

1.00 Ω 8.00 Ω

2.00 Ω4.00 Ω

1.00 µFµ

50.0 kΩ

100 kΩ

10.0 V
S

10.0 Fµ

2.0 Ω

20 V50 V

2.0 Ω

4.0 Ω 4.0 Ω

4.00 Ω

b

a

2.00 Ω

6.00 Ω8.00 V

12.0 V

0.01 Ω

Live
battery

+
–

+
–

1.00 Ω
0.06 Ω
Starter

Dead
battery

12 V 10 V

1.0 Ω

1.0 Ω 1.0 Ω

5.0 Ω3.0 Ω

a b

Figure P28.25

Figure P28.26

Figure P28.27

Figure P28.28

Figure P28.32

Figure P28.33
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35. Dielectric materials used in the manufacture of capaci-
tors are characterized by conductivities that are small
but not zero. Therefore, a charged capacitor slowly
loses its charge by “leaking” across the dielectric. If a
certain 3.60-)F capacitor leaks charge such that the po-
tential difference decreases to half its initial value in
4.00 s, what is the equivalent resistance of the dielectric?

36. Dielectric materials used in the manufacture of capaci-
tors are characterized by conductivities that are small
but not zero. Therefore, a charged capacitor slowly
loses its charge by “leaking” across the dielectric. If a ca-
pacitor having capacitance C leaks charge such that the
potential difference decreases to half its initial value in
a time t, what is the equivalent resistance of the dielec-
tric?

37. A capacitor in an RC circuit is charged to 60.0% of its
maximum value in 0.900 s. What is the time constant of
the circuit?

(Optional)
Section 28.5 Electrical Instruments

38. A typical galvanometer, which requires a current of 
1.50 mA for full-scale deflection and has a resistance of
75.0 &, can be used to measure currents of much
greater values. A relatively small shunt resistor is wired
in parallel with the galvanometer (refer to Fig. 28.24a)
so that an operator can measure large currents without
causing damage to the galvanometer. Most of the cur-
rent then flows through the shunt resistor. Calculate the
value of the shunt resistor that enables the galvanome-
ter to be used to measure a current of 1.00 A at full-
scale deflection. (Hint: Use Kirchhoff’s rules.)

39. The galvanometer described in the preceding problem
can be used to measure voltages. In this case a large re-
sistor is wired in series with the galvanometer in a way
similar to that shown in Figure 28.24b. This arrange-
ment, in effect, limits the current that flows through the
galvanometer when large voltages are applied. Most of
the potential drop occurs across the resistor placed in
series. Calculate the value of the resistor that enables
the galvanometer to measure an applied voltage of 
25.0 V at full-scale deflection.

40. A galvanometer with a full-scale sensitivity of 1.00 mA
requires a 900-& series resistor to make a voltmeter
reading full scale when 1.00 V is measured across the
terminals. What series resistor is required to make the
same galvanometer into a 50.0-V (full-scale) voltmeter?

41. Assume that a galvanometer has an internal resistance
of 60.0 & and requires a current of 0.500 mA to pro-
duce full-scale deflection. What resistance must be con-
nected in parallel with the galvanometer if the combina-
tion is to serve as an ammeter that has a full-scale
deflection for a current of 0.100 A?

42. A Wheatstone bridge of the type shown in Figure 28.25
is used to make a precise measurement of the resistance
of a wire connector. If and the bridge is
balanced by adjusting R1 such that what is
Rx ?

43. Consider the case in which the Wheatstone bridge
shown in Figure 28.25 is unbalanced. Calculate the cur-
rent through the galvanometer when 

and Assume that the
voltage across the bridge is 70.0 V, and neglect the gal-
vanometer’s resistance.

44. Review Problem. A Wheatstone bridge can be used to
measure the strain of a wire (see Section 12.4),
where Li is the length before stretching, L is the length
after stretching, and Let 
Show that the resistance is for
any length, where Assume that the resistiv-
ity and volume of the wire stay constant.

45. Consider the potentiometer circuit shown in Figure
28.27. If a standard battery with an emf of 1.018 6 V is
used in the circuit and the resistance between a and d is
36.0 &, the galvanometer reads zero. If the standard
battery is replaced by an unknown emf, the galvanome-
ter reads zero when the resistance is adjusted to 48.0 &.
What is the value of the emf ?

46. Meter loading. Work this problem to five-digit precision.
Refer to Figure P28.46. (a) When a 180.00-& resistor is
put across a battery with an emf of 6.000 0 V and an in-
ternal resistance of 20.000 &, what current flows in the
resistor? What will be the potential difference across 
it? (b) Suppose now that an ammeter with a resistance
of 0.500 00 & and a voltmeter with a resistance of 

R i # /Li/Ai .
R # R i(1 % 21 % 12)

1 # "L/Li ."L # L $ Li .

("L/Li)

R 1 # 14.0 &.R 2 # 21.0 &,7.00 &,
R x # R 3 #

R 1 # 2.50R 2 ,
R 3 # 1.00 k&

(a)
180.00 Ω

20.000 Ω
6.000 0 V

(b)

AV

(c)

AV

Figure P28.46
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20 000 & are added to the circuit, as shown in Figure
P28.46b. Find the reading of each. (c) One terminal of
one wire is moved, as shown in Figure P28.46c. Find the
new meter readings.

(Optional)
Section 28.6 Household Wiring and Electrical Safety

47. An electric heater is rated at 1 500 W, a toaster at 
750 W, and an electric grill at 1 000 W. The three appli-
ances are connected to a common 120-V circuit. 
(a) How much current does each draw? (b) Is a 25.0-A
circuit breaker sufficient in this situation? Explain your
answer.

48. An 8.00-ft extension cord has two 18-gauge copper
wires, each with a diameter of 1.024 mm. What is the
I 2R loss in this cord when it carries a current of 
(a) 1.00 A? (b) 10.0 A?

49. Sometimes aluminum wiring has been used instead of
copper for economic reasons. According to the Na-
tional Electrical Code, the maximum allowable current
for 12-gauge copper wire with rubber insulation is 20 A.
What should be the maximum allowable current in a
12-gauge aluminum wire if it is to have the same I 2R
loss per unit length as the copper wire?

50. Turn on your desk lamp. Pick up the cord with your
thumb and index finger spanning its width. (a) Com-
pute an order-of-magnitude estimate for the current
that flows through your hand. You may assume that at a
typical instant the conductor inside the lamp cord next
to your thumb is at potential and that the con-
ductor next to your index finger is at ground potential
(0 V). The resistance of your hand depends strongly on
the thickness and moisture content of the outer layers
of your skin. Assume that the resistance of your hand
between fingertip and thumb tip is  . You may
model the cord as having rubber insulation. State the
other quantities you measure or estimate and their val-
ues. Explain your reasoning. (b) Suppose that your
body is isolated from any other charges or currents. In
order-of-magnitude terms, describe the potential of
your thumb where it contacts the cord and the potential
of your finger where it touches the cord.

ADDITIONAL PROBLEMS
51. Four 1.50-V AA batteries in series are used to power a

transistor radio. If the batteries can provide a total
charge of 240 C, how long will they last if the radio has
a resistance of 200 &?

52. A battery has an emf of 9.20 V and an internal resis-
tance of 1.20 &. (a) What resistance across the battery
will extract from it a power of 12.8 W? (b) a power of
21.2 W ?

53. Calculate the potential difference between points a and
b in Figure P28.53, and identify which point is at the
higher potential.

'104 &

'102 V

54. A 10.0-)F capacitor is charged by a 10.0-V battery
through a resistance R . The capacitor reaches a poten-
tial difference of 4.00 V at a time 3.00 s after charging
begins. Find R .

55. When two unknown resistors are connected in series
with a battery, 225 W is delivered to the combination
with a total current of 5.00 A. For the same total cur-
rent, 50.0 W is delivered when the resistors are con-
nected in parallel. Determine the values of the two resis-
tors.

56. When two unknown resistors are connected in series
with a battery, a total power is delivered to the com-
bination with a total current of I. For the same total cur-
rent, a total power is delivered when the resistors are
connected in parallel. Determine the values of the two
resistors.

57. A battery has an emf ! and internal resistance r. A vari-
able resistor R is connected across the terminals of the
battery. Determine the value of R such that (a) the po-
tential difference across the terminals is a maximum,
(b) the current in the circuit is a maximum, (c) the
power delivered to the resistor is a maximum.

58. A power supply has an open-circuit voltage of 40.0 V
and an internal resistance of 2.00 &. It is used to charge
two storage batteries connected in series, each having
an emf of 6.00 V and internal resistance of 0.300 &. If
the charging current is to be 4.00 A, (a) what additional
resistance should be added in series? (b) Find the
power delivered to the internal resistance of the supply,
the I 2R loss in the batteries, and the power delivered to
the added series resistance. (c) At what rate is the chem-
ical energy in the batteries increasing?

59. The value of a resistor R is to be determined using the
ammeter-voltmeter setup shown in Figure P28.59. The
ammeter has a resistance of 0.500 &, and the voltmeter
has a resistance of 20 000 &. Within what range of ac-
tual values of R will the measured values be correct, to
within 5.00%, if the measurement is made using (a) the
circuit shown in Figure P28.59a? (b) the circuit shown
in Figure P28.59b?

!p

!s

2.00 Ω

4.00 Ω

10.0 Ω

4.00 V

12.0 V

a

b

WEB

Figure P28.53



Problems 901

64. Design a multirange voltmeter capable of full-scale de-
flection for 20.0 V, 50.0 V, and 100 V. Assume that the
meter movement is a galvanometer that has a resistance
of 60.0 & and gives a full-scale deflection for a current
of 1.00 mA.

65. Design a multirange ammeter capable of full-scale de-
flection for 25.0 mA, 50.0 mA, and 100 mA. Assume
that the meter movement is a galvanometer that has a
resistance of 25.0 & and gives a full-scale deflection for
1.00 mA.

66. A particular galvanometer serves as a 2.00-V full-scale
voltmeter when a 2 500-& resistor is connected in series
with it. It serves as a 0.500-A full-scale ammeter when a
0.220-& resistor is connected in parallel with it. Deter-
mine the internal resistance of the galvanometer and
the current required to produce full-scale deflection.

67. In Figure P28.67, suppose that the switch has been
closed for a length of time sufficiently long for the ca-
pacitor to become fully charged. (a) Find the steady-
state current in each resistor. (b) Find the charge Q on
the capacitor. (c) The switch is opened at Write
an equation for the current in R2 as a function of
time, and (d) find the time that it takes for the charge
on the capacitor to fall to one-fifth its initial value.

IR 2

t # 0.

63. Three 60.0-W, 120-V lightbulbs are connected across a
120-V power source, as shown in Figure P28.63. Find 
(a) the total power delivered to the three bulbs and 
(b) the voltage across each. Assume that the resistance
of each bulb conforms to Ohm’s law (even though in
reality the resistance increases markedly with current).

60. A battery is used to charge a capacitor through a resis-
tor, as shown in Figure 28.16. Show that half the energy
supplied by the battery appears as internal energy in the
resistor and that half is stored in the capacitor.

61. The values of the components in a simple series RC cir-
cuit containing a switch (Fig. 28.16) are 

and At the instant 10.0 s
after the switch is closed, calculate (a) the charge on
the capacitor, (b) the current in the resistor, (c) the
rate at which energy is being stored in the capacitor,
and (d) the rate at which energy is being delivered by
the battery.

62. The switch in Figure P28.62a closes when 
and opens when The voltmeter reads a
voltage as plotted in Figure P28.62b. What is the period
T of the waveform in terms of RA , RB , and C ?

"Vc + "V/3.
"Vc * 2"V/3

! # 10.0 V.R # 2.00 . 106 &,
C # 1.00 )F,

3.00 kΩ

S

R2 =15.0 kΩ

12.0 kΩ

10.0 µF

9.00 V

µ

R1

120 V R2 R3

"V
3

2"V
3

Voltage–
controlled
switch

(a)

"V

RA

RB

T

"Vc(t

"V

t
(b)

C "VcV

(a)

V

R
A

V

A
R

(b)

Figure P28.59

Figure P28.62

Figure P28.63

Figure P28.67
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72. The circuit in Figure P28.72 contains two resistors,
and and two capacitors,
and connected to a battery

with emf If no charges exist on the capaci-
tors before switch S is closed, determine the charges q1
and q2 on capacitors C1 and C2 , respectively, after the
switch is closed. (Hint: First reconstruct the circuit so
that it becomes a simple RC circuit containing a single
resistor and single capacitor in series, connected to the
battery, and then determine the total charge q stored in
the equivalent circuit.)

! # 120 V.
C2 # 3.00 )F,C1 # 2.00 )F
R 2 # 3.00 k&,R 1 # 2.00 k&

71. Three 2.00-& resistors are connected as shown in Figure
P28.71. Each can withstand a maximum power of 
32.0 W without becoming excessively hot. Determine
the maximum power that can be delivered to the com-
bination of resistors.

70. The student engineer of a campus radio station wishes
to verify the effectiveness of the lightning rod on the an-

69. (a) Using symmetry arguments, show that the current
through any resistor in the configuration of Figure
P28.69 is either I/3 or I/6. All resistors have the same
resistance r. (b) Show that the equivalent resistance be-
tween points a and b is (5/6)r.

68. The circuit shown in Figure P28.68 is set up in the labo-
ratory to measure an unknown capacitance C with the
use of a voltmeter of resistance and a bat-
tery whose emf is 6.19 V. The data given in the table be-
low are the measured voltages across the capacitor as a
function of time, where represents the time at
which the switch is opened. (a) Construct a graph of
ln(!/"V ) versus t , and perform a linear least-squares
fit to the data. (b) From the slope of your graph, obtain
a value for the time constant of the circuit and a value
for the capacitance.

t # 0

R # 10.0 M&

tenna mast (Fig. P28.70). The unknown resistance R x is
between points C and E . Point E is a true ground but is
inaccessible for direct measurement since this stratum is
several meters below the Earth’s surface. Two identical
rods are driven into the ground at A and B, introducing
an unknown resistance Ry . The procedure is as follows.
Measure resistance R1 between points A and B, then
connect A and B with a heavy conducting wire and mea-
sure resistance R2 between points A and C . (a) Derive a
formula for Rx in terms of the observable resistances R1
and R2 . (b) A satisfactory ground resistance would be

Is the grounding of the station adequate if
measurements give and R 2 # 6.00 &?R 1 # 13.0 &
R x + 2.00 &.

2.00 Ω

2.00 Ω

2.00 Ω

Ry Rx

A BC

Ry

E

b I

aI

S

C

R

Voltmeter

ε

Figure P28.68

Figure P28.69

Figure P28.70

Figure P28.71

!V (V) t (s) ln(!/!V )

6.19 0
5.55 4.87
4.93 11.1
4.34 19.4
3.72 30.8
3.09 46.6
2.47 67.3
1.83 102.2



Answers to Quick Quizzes 903

ANSWERS TO QUICK QUIZZES

If the second resistor were connected in parallel, the
total resistance of the circuit would decrease, and an in-
crease in current through the battery would result. The
potential difference across the terminals would decrease
because the increased current results in a greater volt-
age decrease across the internal resistance.

28.3 They must be in parallel because if one burns out, the
other continues to operate. If they were in series, one
failed headlamp would interrupt the current through-
out the entire circuit, including the other headlamp.

28.4 Because the circuit breaker trips and opens the circuit
when the current in that circuit exceeds a certain preset
value, it must be in series to sense the appropriate cur-
rent (see Fig. 28.28).

28.1 Bulb R1 becomes brighter. Connecting b to c “shorts
out” bulb R2 and changes the total resistance of the cir-
cuit from to just R1 . Because the resistance has
decreased (and the potential difference supplied by the
battery does not change), the current through the bat-
tery increases. This means that the current through bulb
R1 increases, and bulb R1 glows more brightly. Bulb R2
goes out because the new piece of wire provides an al-
most resistance-free path for the current; hence, essen-
tially zero current exists in bulb R2 .

28.2 Adding another series resistor increases the total resis-
tance of the circuit and thus reduces the current in the
battery. The potential difference across the battery ter-
minals would increase because the reduced current re-
sults in a smaller voltage decrease across the internal re-
sistance. 

R 1 % R 2

73. Assume that you have a battery of emf ! and three
identical lightbulbs, each having constant resistance R .
What is the total power from the battery if the bulbs are
connected (a) in series? (b) in parallel? (c) For which
connection do the bulbs shine the brightest?

ε
+    –

R2

R1 C1

C2

a

b c

f

S

d e

Figure P28.72
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Aurora Borealis, the Northern Lights,
photographed near Fairbanks, Alaska.
Such beautiful auroral displays are a
common sight in far northern or southern
latitudes, but they are quite rare in the
middle latitudes. What causes these
shimmering curtains of light, and why are
they usually visible only near the Earth’s
North and South poles? (George
Lepp/Tony Stone Images)
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Magnetic Fields 905

any historians of science believe that the compass, which uses a magnetic
needle, was used in China as early as the 13th century B.C., its invention be-
ing of Arabic or Indian origin. The early Greeks knew about magnetism as

early as 800 B.C. They discovered that the stone magnetite (Fe3O4) attracts pieces
of iron. Legend ascribes the name magnetite to the shepherd Magnes, the nails of
whose shoes and the tip of whose staff stuck fast to chunks of magnetite while he
pastured his flocks.

In 1269 a Frenchman named Pierre de Maricourt mapped out the directions
taken by a needle placed at various points on the surface of a spherical natural
magnet. He found that the directions formed lines that encircled the sphere and
passed through two points diametrically opposite each other, which he called the
poles of the magnet. Subsequent experiments showed that every magnet, regardless
of its shape, has two poles, called north and south poles, that exert forces on other
magnetic poles just as electric charges exert forces on one another. That is, like
poles repel each other, and unlike poles attract each other.

The poles received their names because of the way a magnet behaves in the
presence of the Earth’s magnetic field. If a bar magnet is suspended from its mid-
point and can swing freely in a horizontal plane, it will rotate until its north pole
points to the Earth’s geographic North Pole and its south pole points to the
Earth’s geographic South Pole.1 (The same idea is used in the construction of a
simple compass.)

In 1600 William Gilbert (1540–1603) extended de Maricourt’s experiments to
a variety of materials. Using the fact that a compass needle orients in preferred di-
rections, he suggested that the Earth itself is a large permanent magnet. In 1750
experimenters used a torsion balance to show that magnetic poles exert attractive
or repulsive forces on each other and that these forces vary as the inverse square
of the distance between interacting poles. Although the force between two mag-
netic poles is similar to the force between two electric charges, there is an impor-
tant difference. Electric charges can be isolated (witness the electron and proton),
whereas a single magnetic pole has never been isolated. That is, magnetic
poles are always found in pairs. All attempts thus far to detect an isolated mag-
netic pole have been unsuccessful. No matter how many times a permanent mag-
net is cut in two, each piece always has a north and a south pole. (There is some
theoretical basis for speculating that magnetic monopoles—isolated north or south
poles—may exist in nature, and attempts to detect them currently make up an ac-
tive experimental field of investigation.)

The relationship between magnetism and electricity was discovered in 1819
when, during a lecture demonstration, the Danish scientist Hans Christian Oer-
sted found that an electric current in a wire deflected a nearby compass needle.2
Shortly thereafter, André Ampère (1775–1836) formulated quantitative laws for
calculating the magnetic force exerted by one current-carrying electrical conduc-
tor on another. He also suggested that on the atomic level, electric current loops
are responsible for all magnetic phenomena.

In the 1820s, further connections between electricity and magnetism were
demonstrated by Faraday and independently by Joseph Henry (1797–1878). They

M

1 Note that the Earth’s geographic North Pole is magnetically a south pole, whereas its geographic
South Pole is magnetically a north pole. Because opposite magnetic poles attract each other, the pole on
a magnet that is attracted to the Earth’s geographic North Pole is the magnet’s north pole and the pole
attracted to the Earth’s geographic South Pole is the magnet’s south pole.
2 The same discovery was reported in 1802 by an Italian jurist, Gian Dominico Romognosi, but was
overlooked, probably because it was published in the newspaper Gazetta de Trentino rather than in a
scholarly journal.

Hans Christian Oersted
Danish physicist (1777– 1851)
(North Wind Picture Archives)

An electromagnet is used to move
tons of scrap metal.
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12.2

QuickLab
If iron or steel is left in a weak mag-
netic field (such as that due to the
Earth) long enough, it can become
magnetized. Use a compass to see if
you can detect a magnetic field near
a steel file cabinet, cast iron radiator,
or some other piece of ferrous metal
that has been in one position for sev-
eral years.

showed that an electric current can be produced in a circuit either by moving a
magnet near the circuit or by changing the current in a nearby circuit. These ob-
servations demonstrate that a changing magnetic field creates an electric field.
Years later, theoretical work by Maxwell showed that the reverse is also true: A
changing electric field creates a magnetic field.

A similarity between electric and magnetic effects has provided methods of
making permanent magnets. In Chapter 23 we learned that when rubber and wool
are rubbed together, both become charged—one positively and the other nega-
tively. In an analogous fashion, one can magnetize an unmagnetized piece of iron
by stroking it with a magnet. Magnetism can also be induced in iron (and other
materials) by other means. For example, if a piece of unmagnetized iron is placed
near (but not touching) a strong magnet, the unmagnetized piece eventually be-
comes magnetized.

This chapter examines the forces that act on moving charges and on current-
carrying wires in the presence of a magnetic field. The source of the magnetic
field itself is described in Chapter 30.

THE MAGNETIC FIELD
In our study of electricity, we described the interactions between charged objects
in terms of electric fields. Recall that an electric field surrounds any stationary or
moving electric charge. In addition to an electric field, the region of space sur-
rounding any moving electric charge also contains a magnetic field, as we shall see
in Chapter 30. A magnetic field also surrounds any magnetic substance.

Historically, the symbol B has been used to represent a magnetic field, and
this is the notation we use in this text. The direction of the magnetic field B at any
location is the direction in which a compass needle points at that location. Figure
29.1 shows how the magnetic field of a bar magnet can be traced with the aid of a
compass. Note that the magnetic field lines outside the magnet point away from
north poles and toward south poles. One can display magnetic field patterns of a
bar magnet using small iron filings, as shown in Figure 29.2.

We can define a magnetic field B at some point in space in terms of the mag-
netic force FB that the field exerts on a test object, for which we use a charged par-
ticle moving with a velocity v. For the time being, let us assume that no electric or
gravitational fields are present at the location of the test object. Experiments on
various charged particles moving in a magnetic field give the following results:

• The magnitude FB of the magnetic force exerted on the particle is proportional
to the charge q and to the speed v of the particle.

29.1

N S

Figure 29.1 Compass needles can be used to
trace the magnetic field lines of a bar magnet.

These refrigerator magnets are sim-
ilar to a series of very short bar
magnets placed end to end. If you
slide the back of one refrigerator
magnet in a circular path across
the back of another one, you can
feel a vibration as the two series of
north and south poles move across
each other.
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• The magnitude and direction of FB depend on the velocity of the particle and
on the magnitude and direction of the magnetic field B.

• When a charged particle moves parallel to the magnetic field vector, the mag-
netic force acting on the particle is zero.

• When the particle’s velocity vector makes any angle with the magnetic
field, the magnetic force acts in a direction perpendicular to both v and B; that
is, FB is perpendicular to the plane formed by v and B (Fig. 29.3a).

! " 0

Properties of the magnetic force
on a charge moving in a magnetic
field B

Figure 29.2 (a) Magnetic field pattern surrounding a bar magnet as displayed with iron filings.
(b) Magnetic field pattern between unlike poles of two bar magnets. (c) Magnetic field pattern
between like poles of two bar magnets.

(a) (b) (c)

(a)

B
+ q

v

θ

(b)

B
–

v

v

+

FB

FB

FB

Figure 29.3 The direction of the magnetic force FB acting on a charged particle moving with a
velocity v in the presence of a magnetic field B. (a) The magnetic force is perpendicular to both
v and B. (b) Oppositely directed magnetic forces FB are exerted on two oppositely charged parti-
cles moving at the same velocity in a magnetic field.
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• The magnetic force exerted on a positive charge is in the direction opposite the
direction of the magnetic force exerted on a negative charge moving in the
same direction (Fig. 29.3b).

• The magnitude of the magnetic force exerted on the moving particle is propor-
tional to sin !, where ! is the angle the particle’s velocity vector makes with the
direction of B.

We can summarize these observations by writing the magnetic force in the
form

(29.1)

where the direction of FB is in the direction of if q is positive, which by defi-
nition of the cross product (see Section 11.2) is perpendicular to both v and B.
We can regard this equation as an operational definition of the magnetic field at
some point in space. That is, the magnetic field is defined in terms of the force
acting on a moving charged particle.

Figure 29.4 reviews the right-hand rule for determining the direction of the
cross product You point the four fingers of your right hand along the direc-
tion of v with the palm facing B and curl them toward B. The extended thumb,
which is at a right angle to the fingers, points in the direction of Becausev ! B.

v ! B.

v ! B

FB # qv ! B

(b)

–

B

FB

v

(a)

+

FB

B

v

θ θ

Figure 29.4 The right-hand rule
for determining the direction of the
magnetic force acting
on a particle with charge q moving
with a velocity v in a magnetic field B.
The direction of is the direc-
tion in which the thumb points. (a) If
q is positive, FB is upward. (b) If q is
negative, FB is downward, antiparallel
to the direction in which the thumb
points.

v ! B

FB # qv ! B

The blue-white arc in this photograph indi-
cates the circular path followed by an elec-
tron beam moving in a magnetic field. The
vessel contains gas at very low pressure, and
the beam is made visible as the electrons
collide with the gas atoms, which then emit
visible light. The magnetic field is pro-
duced by two coils (not shown). The appa-
ratus can be used to measure the ratio e/me
for the electron.
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is in the direction of if q is positive (Fig. 29.4a) and opposite
the direction of if q is negative (Fig. 29.4b). (If you need more help under-
standing the cross product, you should review pages 333 to 334, including Fig. 11.8.)

The magnitude of the magnetic force is

(29.2)

where ! is the smaller angle between v and B. From this expression, we see that F
is zero when v is parallel or antiparallel to B or 180°) and maximum

when v is perpendicular to B

What is the maximum work that a constant magnetic field B can perform on a charge q
moving through the field with velocity v?

There are several important differences between electric and magnetic forces:

• The electric force acts in the direction of the electric field, whereas the mag-
netic force acts perpendicular to the magnetic field.

• The electric force acts on a charged particle regardless of whether the particle is
moving, whereas the magnetic force acts on a charged particle only when the
particle is in motion.

• The electric force does work in displacing a charged particle, whereas the mag-
netic force associated with a steady magnetic field does no work when a particle
is displaced.

From the last statement and on the basis of the work–kinetic energy theorem,
we conclude that the kinetic energy of a charged particle moving through a mag-
netic field cannot be altered by the magnetic field alone. In other words,

Quick Quiz 29.1

(! # 90$).(FB, max # ! q !vB)
(! # 0

FB # ! q !vB sin !

v ! B
v ! BFB # qv ! B, FB

when a charged particle moves with a velocity v through a magnetic field, the
field can alter the direction of the velocity vector but cannot change the speed
or kinetic energy of the particle.

From Equation 29.2, we see that the SI unit of magnetic field is the newton
per coulomb-meter per second, which is called the tesla (T):

Because a coulomb per second is defined to be an ampere, we see that

A non-SI magnetic-field unit in common use, called the gauss (G), is related to
the tesla through the conversion Table 29.1 shows some typical values
of magnetic fields.

The north-pole end of a bar magnet is held near a positively charged piece of plastic. Is the
plastic attracted, repelled, or unaffected by the magnet?

Quick Quiz 29.2

1 T # 104 G.

1 T # 1 
N

A%m

1 T #
N

C%m/s

Magnitude of the magnetic force
on a charged particle moving in a
magnetic field

Differences between electric and
magnetic forces

A magnetic field cannot change
the speed of a particle
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MAGNETIC FORCE ACTING ON A
CURRENT-CARRYING CONDUCTOR

If a magnetic force is exerted on a single charged particle when the particle moves
through a magnetic field, it should not surprise you that a current-carrying wire
also experiences a force when placed in a magnetic field. This follows from the
fact that the current is a collection of many charged particles in motion; hence,
the resultant force exerted by the field on the wire is the vector sum of the individ-
ual forces exerted on all the charged particles making up the current. The force
exerted on the particles is transmitted to the wire when the particles collide with
the atoms making up the wire.

Before we continue our discussion, some explanation of the notation used in
this book is in order. To indicate the direction of B in illustrations, we sometimes
present perspective views, such as those in Figures 29.5, 29.6a, and 29.7. In flat il-

29.2

12.3

TABLE 29.1 Some Approximate Magnetic Field Magnitudes

Source of Field Field Magnitude (T)

Strong superconducting laboratory magnet 30
Strong conventional laboratory magnet 2
Medical MRI unit 1.5
Bar magnet 10&2

Surface of the Sun 10&2

Surface of the Earth 0.5 ' 10&4

Inside human brain (due to nerve impulses) 10&13

An Electron Moving in a Magnetic FieldEXAMPLE 29.1

in the negative z direction.

3.1 ' 1016 m/s2a #
FB

me
#

2.8 ' 10&14 N
9.11 ' 10&31 kg

#
An electron in a television picture tube moves toward the
front of the tube with a speed of 8.0 ' 106 m/s along the x
axis (Fig. 29.5). Surrounding the neck of the tube are coils of
wire that create a magnetic field of magnitude 0.025 T, di-
rected at an angle of 60° to the x axis and lying in the xy
plane. Calculate the magnetic force on and acceleration of
the electron.

Solution Using Equation 29.2, we can find the magnitude
of the magnetic force:

Because is in the positive z direction (from the right-
hand rule) and the charge is negative, FB is in the negative z
direction.

The mass of the electron is 9.11 ' 10&31 kg, and so its ac-
celeration is

v ! B

2.8 ' 10&14 N  #

 # (1.6 ' 10&19 C)(8.0 ' 106 m/s)(0.025 T )(sin 60$)

FB # ! q !vB sin ! 

z

B

v

y

x

FB

60°

–e

Figure 29.5 The magnetic force FB acting on the electron is in
the negative z direction when v and B lie in the xy plane.
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lustrations, such as in Figure 29.6b to d, we depict a magnetic field directed into
the page with blue crosses, which represent the tails of arrows shot perpendicularly
and away from you. In this case, we call the field Bin , where the subscript “in” indi-
cates “into the page.” If B is perpendicular and directed out of the page, we use a
series of blue dots, which represent the tips of arrows coming toward you (see Fig.
P29.56). In this case, we call the field Bout . If B lies in the plane of the page, we
use a series of blue field lines with arrowheads, as shown in Figure 29.8.

One can demonstrate the magnetic force acting on a current-carrying conduc-
tor by hanging a wire between the poles of a magnet, as shown in Figure 29.6a. For
ease in visualization, part of the horseshoe magnet in part (a) is removed to show
the end face of the south pole in parts (b), (c), and (d) of Figure 29.6. The mag-
netic field is directed into the page and covers the region within the shaded cir-
cles. When the current in the wire is zero, the wire remains vertical, as shown in
Figure 29.6b. However, when a current directed upward flows in the wire, as shown
in Figure 29.6c, the wire deflects to the left. If we reverse the current, as shown in
Figure 29.6d, the wire deflects to the right.

Let us quantify this discussion by considering a straight segment of wire of
length L and cross-sectional area A, carrying a current I in a uniform magnetic
field B, as shown in Figure 29.7. The magnetic force exerted on a charge q moving
with a drift velocity vd is To find the total force acting on the wire, we
multiply the force exerted on one charge by the number of charges in
the segment. Because the volume of the segment is AL , the number of charges in
the segment is nAL , where n is the number of charges per unit volume. Hence,
the total magnetic force on the wire of length L is

We can write this expression in a more convenient form by noting that, from Equa-
tion 27.4, the current in the wire is Therefore,

(29.3)FB # I L ! B

I # nqvdA.

FB # (q vd ! B)nAL

q vd ! B
q vd ! B.

(b)

Bin

×
×
×
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×
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×
×
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×
×
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×
×
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×
×
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×
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×
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I
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×
×
×
×
×
×

×
×
×
×
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×

×
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×

I

(c) (d)(a)

Figure 29.6 (a) A wire suspended vertically between the poles of a magnet. (b) The setup
shown in part (a) as seen looking at the south pole of the magnet, so that the magnetic field
(blue crosses) is directed into the page. When there is no current in the wire, it remains vertical.
(c) When the current is upward, the wire deflects to the left. (d) When the current is downward,
the wire deflects to the right.

L

q
vd

A

B

+

FB

Figure 29.7 A segment of a cur-
rent-carrying wire located in a mag-
netic field B. The magnetic force
exerted on each charge making up
the current is and the net
force on the segment of length L is
I L ! B.

qvd ! B,

Force on a segment of a wire in a
uniform magnetic field
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where L is a vector that points in the direction of the current I and has a magni-
tude equal to the length L of the segment. Note that this expression applies only
to a straight segment of wire in a uniform magnetic field.

Now let us consider an arbitrarily shaped wire segment of uniform cross-
section in a magnetic field, as shown in Figure 29.8. It follows from Equation 29.3
that the magnetic force exerted on a small segment of vector length ds in the pres-
ence of a field B is

(29.4)

where d FB is directed out of the page for the directions assumed in Figure 29.8.
We can consider Equation 29.4 as an alternative definition of B. That is, we can de-
fine the magnetic field B in terms of a measurable force exerted on a current ele-
ment, where the force is a maximum when B is perpendicular to the element and
zero when B is parallel to the element.

To calculate the total force FB acting on the wire shown in Figure 29.8, we in-
tegrate Equation 29.4 over the length of the wire:

(29.5)

where a and b represent the end points of the wire. When this integration is car-
ried out, the magnitude of the magnetic field and the direction the field makes
with the vector ds (in other words, with the orientation of the element) may differ
at different points.

Now let us consider two special cases involving Equation 29.5. In both cases,
the magnetic field is taken to be constant in magnitude and direction.

Case 1 A curved wire carries a current I and is located in a uniform magnetic
field B, as shown in Figure 29.9a. Because the field is uniform, we can take B out-
side the integral in Equation 29.5, and we obtain

(29.6)FB # I "#b

a
 ds$ ! B

FB # I #b

a
 ds ! B

dFB # I ds ! B

B
ds

I

Figure 29.8 A wire segment of
arbitrary shape carrying a current I
in a magnetic field B experiences a
magnetic force. The force on any
segment ds is I ds ! B and is di-
rected out of the page. You should
use the right-hand rule to confirm
this force direction.

(b)

d s

B

I

I

b

a

d s

L′

B

(a)

Figure 29.9 (a) A curved wire carrying a current I in a uniform magnetic field. The total mag-
netic force acting on the wire is equivalent to the force on a straight wire of length L( running be-
tween the ends of the curved wire. (b) A current-carrying loop of arbitrary shape in a uniform
magnetic field. The net magnetic force on the loop is zero.
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But the quantity represents the vector sum of all the length elements from a to
b. From the law of vector addition, the sum equals the vector L(, directed from a to
b. Therefore, Equation 29.6 reduces to

(29.7)

Case 2 An arbitrarily shaped closed loop carrying a current I is placed in a uni-
form magnetic field, as shown in Figure 29.9b. We can again express the force act-
ing on the loop in the form of Equation 29.6, but this time we must take the vector
sum of the length elements ds over the entire loop:

Because the set of length elements forms a closed polygon, the vector sum must be
zero. This follows from the graphical procedure for adding vectors by the polygon
method. Because we conclude that FB # 0:% ds # 0,

FB # I "% ds$ ! B

FB # I L( ! B

#b
a ds

The net magnetic force acting on any closed current loop in a uniform mag-
netic field is zero.

Force on a Semicircular ConductorEXAMPLE 29.2
curved wire must also be into the page. Integrating our ex-
pression for dF2 over the limits to (that is, the
entire semicircle) gives

Because , with a magnitude of , is directed into the
page and because , with a magnitude of , is directed
out of the page, the net force on the closed loop is zero. This
result is consistent with Case 2 described earlier.

2IRBF1

2IRBF2

 # &IRB(cos ) & cos 0) # &IRB(&1 & 1) # 2IRB

F2 # IRB #)

0
 sin ! d! # IRB &&cos !'

)

0
 

! # )! # 0
A wire bent into a semicircle of radius R forms a closed cir-
cuit and carries a current I. The wire lies in the xy plane, and
a uniform magnetic field is directed along the positive y axis,
as shown in Figure 29.10. Find the magnitude and direction
of the magnetic force acting on the straight portion of the
wire and on the curved portion.

Solution The force F1 acting on the straight portion has a
magnitude because and the wire is
oriented perpendicular to B. The direction of F1 is out of the
page because is along the positive z axis. (That is, L is
to the right, in the direction of the current; thus, according
to the rule of cross products, is out of the page in Fig.
29.10.)

To find the force F2 acting on the curved part, we first
write an expression for the force dF2 on the length element
ds shown in Figure 29.10. If ! is the angle between B and ds,
then the magnitude of dF2 is

To integrate this expression, we must express ds in terms of !.
Because we have and we can make this
substitution for dF2 :

To obtain the total force F2 acting on the curved portion,
we can integrate this expression to account for contributions
from all elements ds. Note that the direction of the force on
every element is the same: into the page (because is
into the page). Therefore, the resultant force F2 on the

ds ! B

dF2 # IRB sin ! d!

ds # R d!,s # R!,

dF2 # I ! ds ! B ! # IB sin ! ds

L ! B

L ! B

L # 2RF1 # ILB # 2IRB

R

I

θ
d

ds
θ

B

θ

Figure 29.10 The net force acting on a closed current loop in a
uniform magnetic field is zero. In the setup shown here, the force on
the straight portion of the loop is 2IRB and directed out of the page,
and the force on the curved portion is 2IRB directed into the page.
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The four wires shown in Figure 29.11 all carry the same current from point A to point B
through the same magnetic field. Rank the wires according to the magnitude of the mag-
netic force exerted on them, from greatest to least.

Quick Quiz 29.3

A

B

0 4m3m2m1m
(a)

A

B

0 4m3m2m1m
(b)

A B

0 4m3m2m1m
(c)

A

B

0 4m3m2m1m
(d)

Figure 29.11 Which wire experiences the greatest magnetic force?

(a)

b

a

I

B

(b)

B

F2

O

F4

b
2

!

"

# $

# $×

Figure 29. 12 (a) Overhead view
of a rectangular current loop in a
uniform magnetic field. No forces
are acting on sides ! and " be-
cause these sides are parallel to B.
Forces are acting on sides # and
$, however. (b) Edge view of the
loop sighting down sides # and $
shows that the forces F2 and F4 ex-
erted on these sides create a torque
that tends to twist the loop clock-
wise. The purple dot in the left cir-
cle represents current in wire #
coming toward you; the purple
cross in the right circle represents
current in wire $ moving away
from you.

TORQUE ON A CURRENT LOOP IN A
UNIFORM MAGNETIC FIELD

In the previous section, we showed how a force is exerted on a current-carrying
conductor placed in a magnetic field. With this as a starting point, we now show
that a torque is exerted on any current loop placed in a magnetic field. The results
of this analysis will be of great value when we discuss motors in Chapter 31.

Consider a rectangular loop carrying a current I in the presence of a uniform
magnetic field directed parallel to the plane of the loop, as shown in Figure
29.12a. No magnetic forces act on sides ! and " because these wires are parallel
to the field; hence, for these sides. However, magnetic forces do act on
sides # and $ because these sides are oriented perpendicular to the field. The
magnitude of these forces is, from Equation 29.3,

The direction of F2 , the force exerted on wire # is out of the page in the view
shown in Figure 29.12a, and that of F4 , the force exerted on wire $, is into the
page in the same view. If we view the loop from side " and sight along sides #
and $, we see the view shown in Figure 29.12b, and the two forces F2 and F4 are
directed as shown. Note that the two forces point in opposite directions but are
not directed along the same line of action. If the loop is pivoted so that it can ro-
tate about point O, these two forces produce about O a torque that rotates the
loop clockwise. The magnitude of this torque *max is

where the moment arm about O is b/2 for each force. Because the area enclosed
by the loop is A # ab, we can express the maximum torque as

(29.8)

Remember that this maximum-torque result is valid only when the magnetic field
is parallel to the plane of the loop. The sense of the rotation is clockwise when
viewed from side ", as indicated in Figure 29.12b. If the current direction were re-

*max # IAB

*max # F2 
b
2

+ F4 
b
2

# (IaB) 
b
2

+ (IaB) 
b
2

# IabB

F2 # F4 # IaB

L ! B # 0

29.3
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versed, the force directions would also reverse, and the rotational tendency would
be counterclockwise.

Now let us suppose that the uniform magnetic field makes an angle ! , 90°
with a line perpendicular to the plane of the loop, as shown in Figure 29.13a. For
convenience, we assume that B is perpendicular to sides ! and ". In this case, the
magnetic forces F2 and F4 exerted on sides # and $ cancel each other and pro-
duce no torque because they pass through a common origin. However, the forces
acting on sides ! and ", F1 and F3 , form a couple and hence produce a torque
about any point. Referring to the end view shown in Figure 29.13b, we note that
the moment arm of F1 about the point O is equal to (a/2) sin !. Likewise, the mo-
ment arm of F3 about O is also (a/2) sin !. Because the net torque
about O has the magnitude

where is the area of the loop. This result shows that the torque has its maxi-
mum value IAB when the field is perpendicular to the normal to the plane of the
loop as we saw when discussing Figure 29.12, and that it is zero when
the field is parallel to the normal to the plane of the loop As we see in
Figure 29.13, the loop tends to rotate in the direction of decreasing values of !
(that is, such that the area vector A rotates toward the direction of the magnetic
field).

(! # 0).
(! # 90$),

A # ab

 # IAB sin ! 

 # IbB" a
2

 sin !$ + IbB" a
2

 sin !$ # IabB sin !

* # F1 
a
2

 sin ! + F3 
a
2

 sin ! 

F1 # F3 # IbB,

(a)

F1

b

O

F4

F3

a

F2
I B

θ

A

(b)

F1

F3

O
B

A

µ

a
2
– sin θ

a
2
–

θ θ

θ

!

"

#

$

!

"×

Figure 29.13 (a) A rectangular current loop in a uniform magnetic field. The area vector A
perpendicular to the plane of the loop makes an angle ! with the field. The magnetic forces ex-
erted on sides # and $ cancel, but the forces exerted on sides ! and " create a torque on the
loop. (b) Edge view of the loop sighting down sides ! and ".
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Describe the forces on the rectangular current loop shown in Figure 29.13 if the magnetic
field is directed as shown but increases in magnitude going from left to right.

A convenient expression for the torque exerted on a loop placed in a uniform
magnetic field B is

(29.9)

where A, the vector shown in Figure 29.13, is perpendicular to the plane of the
loop and has a magnitude equal to the area of the loop. We determine the direc-
tion of A using the right-hand rule described in Figure 29.14. When you curl the
fingers of your right hand in the direction of the current in the loop, your thumb
points in the direction of A. The product I A is defined to be the magnetic dipole
moment " (often simply called the “magnetic moment”) of the loop:

(29.10)

The SI unit of magnetic dipole moment is ampere–meter2 (A % m2). Using this de-
finition, we can express the torque exerted on a current-carrying loop in a mag-
netic field B as

(29.11)

Note that this result is analogous to Equation 26.18, for the torque ex-
erted on an electric dipole in the presence of an electric field E, where p is the
electric dipole moment.

Although we obtained the torque for a particular orientation of B with respect
to the loop, the equation is valid for any orientation. Furthermore, al-
though we derived the torque expression for a rectangular loop, the result is valid
for a loop of any shape.

If a coil consists of N turns of wire, each carrying the same current and enclos-
ing the same area, the total magnetic dipole moment of the coil is N times the
magnetic dipole moment for one turn. The torque on an N-turn coil is N times
that on a one-turn coil. Thus, we write # # N"loop ! B # "coil ! B.

In Section 26.6, we found that the potential energy of an electric dipole in an
electric field is given by This energy depends on the orientation of
the dipole in the electric field. Likewise, the potential energy of a magnetic dipole
in a magnetic field depends on the orientation of the dipole in the magnetic field
and is given by

(29.12)

From this expression, we see that a magnetic dipole has its lowest energy
when " points in the same direction as B. The dipole has its highest

energy when " points in the direction opposite B.

Rank the magnitude of the torques acting on the rectangular loops shown in Figure 29.15,
from highest to lowest. All loops are identical and carry the same current.

Quick Quiz 29.5

Umax # +-B
Umin # &-B

U # &" $ B

U # & p $ E.

# # " ! B

# # p ! E,

# # " ! B

" # IA

* # IA ! B

Quick Quiz 29.4

A

I

µ

Figure 29.14 Right-hand rule for
determining the direction of the
vector A. The direction of the mag-
netic moment " is the same as the
direction of A.

Torque on a current loop

Magnetic dipole moment of a
current loop
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(a) (b) (c)

×
×

××

Figure 29.15 Which current loop (seen edge-on) experiences the greatest torque?

The Magnetic Dipole Moment of a CoilEXAMPLE 29.3
Solution Because B is perpendicular to "coil , Equation
29.11 gives

Exercise Show that the units A % m2 % T reduce to the torque
units N % m.

Exercise Calculate the magnitude of the torque on the coil
when the field makes an angle of (a) 60° and (b) 0° with ".

Answer (a) 5.21 ' 10&4 N % m; (b) zero.

6.02 ' 10&4 N%m#

* # - coilB # (1.72 ' 10&3 A %m2)(0.350 T)

A rectangular coil of dimensions 5.40 cm ' 8.50 cm consists
of 25 turns of wire and carries a current of 15.0 mA. A 0.350-T
magnetic field is applied parallel to the plane of the loop. 
(a) Calculate the magnitude of its magnetic dipole moment.

Solution Because the coil has 25 turns, we modify Equa-
tion 29.10 to obtain

(b) What is the magnitude of the torque acting on the
loop?

1.72 ' 10&3 A %m2 #

-coil # NIA # (25)(15.0 ' 10&3 A)(0.054 0 m)(0.085 0 m)

Satellite Attitude ControlEXAMPLE 29.4
dipole moment of the torquer is perpendicular to the Earth’s
magnetic field:

Exercise If the torquer requires 1.3 W of power at a poten-
tial difference of 28 V, how much current does it draw when
it operates?

Answer 46 mA.

7.5 ' 10&3 N%m#

*max # -B # (250 A %m2)(3.0 ' 10&5 T)

Many satellites use coils called torquers to adjust their orienta-
tion. These devices interact with the Earth’s magnetic field to
create a torque on the spacecraft in the x, y, or z direction.
The major advantage of this type of attitude-control system is
that it uses solar-generated electricity and so does not con-
sume any thruster fuel.

If a typical device has a magnetic dipole moment of 
250 A % m2, what is the maximum torque applied to a satellite
when its torquer is turned on at an altitude where the magni-
tude of the Earth’s magnetic field is 3.0 ' 10&5 T?

Solution We once again apply Equation 29.11, recogniz-
ing that the maximum torque is obtained when the magnetic

web
For more information on torquers, visit the
Web site of a company that supplies these
devices to NASA:
http://www.smad.com
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MOTION OF A CHARGED PARTICLE IN A
UNIFORM MAGNETIC FIELD

In Section 29.1 we found that the magnetic force acting on a charged particle
moving in a magnetic field is perpendicular to the velocity of the particle and that
consequently the work done on the particle by the magnetic force is zero. Let us
now consider the special case of a positively charged particle moving in a uniform
magnetic field with the initial velocity vector of the particle perpendicular to the
field. Let us assume that the direction of the magnetic field is into the page. Fig-
ure 29.17 shows that the particle moves in a circle in a plane perpendicular to the
magnetic field.

The particle moves in this way because the magnetic force FB is at right angles
to v and B and has a constant magnitude qvB. As the force deflects the particle,
the directions of v and FB change continuously, as Figure 29.17 shows. Because FB
always points toward the center of the circle, it changes only the direction of v
and not its magnitude. As Figure 29.17 illustrates, the rotation is counterclock-
wise for a positive charge. If q were negative, the rotation would be clockwise. We
can use Equation 6.1 to equate this magnetic force to the radial force required to

29.4

The D’Arsonval GalvanometerEXAMPLE 29.5
We can substitute this expression for - in Equation (1) to ob-
tain

Thus, the angle of deflection of the pointer is directly pro-
portional to the current in the loop. The factor NAB/. tells
us that deflection also depends on the design of the meter.

NAB
.

 I / #

(NIA)B & ./ # 0 

An end view of a D’Arsonval galvanometer (see Section 28.5)
is shown in Figure 29.16. When the turns of wire making up
the coil carry a current, the magnetic field created by the
magnet exerts on the coil a torque that turns it (along with its
attached pointer) against the spring. Let us show that the an-
gle of deflection of the pointer is directly proportional to the
current in the coil.

Solution We can use Equation 29.11 to find the torque *m
the magnetic field exerts on the coil. If we assume that the
magnetic field through the coil is perpendicular to the nor-
mal to the plane of the coil, Equation 29.11 becomes

(This is a reasonable assumption because the circular cross
section of the magnet ensures radial magnetic field lines.)
This magnetic torque is opposed by the torque due to the
spring, which is given by the rotational version of Hooke’s
law, where . is the torsional spring constant and /
is the angle through which the spring turns. Because the coil
does not have an angular acceleration when the pointer is at
rest, the sum of these torques must be zero:

(1)

Equation 29.10 allows us to relate the magnetic moment of
the N turns of wire to the current through them:

- # NIA

*m + *s # -B & ./ # 0

*s # &./,

*m # -B

12.3
QuickLab
Move a bar magnet across the screen
of a black-and-white television and
watch what happens to the picture.
The electrons are deflected by the
magnetic field as they approach 
the screen, causing distortion.
(WARNING: Do not attempt to do
this with a color television or com-
puter monitor. These devices typically
contain a metallic plate that can be-
come magnetized by the bar magnet.
If this happens, a repair shop will
need to “degauss” the screen.)

S

Coil

N

Figure 29.16 End view of a moving-coil galvanometer.
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keep the charge moving in a circle:

(29.13)

That is, the radius of the path is proportional to the linear momentum mv of the
particle and inversely proportional to the magnitude of the charge on the particle
and to the magnitude of the magnetic field. The angular speed of the particle
(from Eq. 10.10) is

(29.14)

The period of the motion (the time that the particle takes to complete one revolu-
tion) is equal to the circumference of the circle divided by the linear speed of the
particle:

(29.15)

These results show that the angular speed of the particle and the period of the cir-
cular motion do not depend on the linear speed of the particle or on the radius of
the orbit. The angular speed 0 is often referred to as the cyclotron frequency be-
cause charged particles circulate at this angular speed in the type of accelerator
called a cyclotron, which is discussed in Section 29.5.

If a charged particle moves in a uniform magnetic field with its velocity at
some arbitrary angle with respect to B, its path is a helix. For example, if the field
is directed in the x direction, as shown in Figure 29.18, there is no component of
force in the x direction. As a result, and the x component of velocity re-
mains constant. However, the magnetic force causes the components vy
and vz to change in time, and the resulting motion is a helix whose axis is parallel
to the magnetic field. The projection of the path onto the yz plane (viewed along
the x axis) is a circle. (The projections of the path onto the xy and xz planes are si-
nusoids!) Equations 29.13 to 29.15 still apply provided that v is replaced by 
v! # "vy 

2 + vz 

2.

qv ! B
ax # 0,

T #
2)r

v
#

2)

0
#

2)m
qB

0 #
v
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#
qB
m

 r #
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qB

 

FB # qvB #
mv2

r

1F # mar 

r

v

v

v

q

q

q

B in

+

+

+

× × × × ×

× × × ×

×

× × × ×

× × × ×

FB

FB

FB

Figure 29.17 When the velocity
of a charged particle is perpendicu-
lar to a uniform magnetic field, the
particle moves in a circular path in
a plane perpendicular to B. The
magnetic force FB acting on the
charge is always directed toward
the center of the circle.

Figure 29.18 A charged particle
having a velocity vector that has a
component parallel to a uniform
magnetic field moves in a helical
path.

Helical
path

B

x
+qz

y

+

A Proton Moving Perpendicular to a Uniform Magnetic FieldEXAMPLE 29.6
Exercise If an electron moves in a direction perpendicular
to the same magnetic field with this same linear speed, what
is the radius of its circular orbit?

Answer 7.6 ' 10&5 m.

A proton is moving in a circular orbit of radius 14 cm in a
uniform 0.35-T magnetic field perpendicular to the velocity
of the proton. Find the linear speed of the proton.

Solution From Equation 29.13, we have

4.7 ' 106 m/s#

v #
qBr
mp

#
(1.60 ' 10&19 C)(0.35 T )(14 ' 10&2 m)

1.67 ' 10&27 kg
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When charged particles move in a nonuniform magnetic field, the motion is
complex. For example, in a magnetic field that is strong at the ends and weak in
the middle, such as that shown in Figure 29.20, the particles can oscillate back and
forth between the end points. A charged particle starting at one end spirals along
the field lines until it reaches the other end, where it reverses its path and spirals
back. This configuration is known as a magnetic bottle because charged particles can
be trapped within it. The magnetic bottle has been used to confine a plasma, a gas
consisting of ions and electrons. Such a plasma-confinement scheme could fulfill a
crucial role in the control of nuclear fusion, a process that could supply us with an
almost endless source of energy. Unfortunately, the magnetic bottle has its prob-
lems. If a large number of particles are trapped, collisions between them cause the
particles to eventually leak from the system.

The Van Allen radiation belts consist of charged particles (mostly electrons
and protons) surrounding the Earth in doughnut-shaped regions (Fig. 29.21).
The particles, trapped by the Earth’s nonuniform magnetic field, spiral around
the field lines from pole to pole, covering the distance in just a few seconds. These
particles originate mainly from the Sun, but some come from stars and other heav-
enly objects. For this reason, the particles are called cosmic rays. Most cosmic rays
are deflected by the Earth’s magnetic field and never reach the atmosphere. How-
ever, some of the particles become trapped; it is these particles that make up the
Van Allen belts. When the particles are located over the poles, they sometimes col-
lide with atoms in the atmosphere, causing the atoms to emit visible light. Such
collisions are the origin of the beautiful Aurora Borealis, or Northern Lights, in
the northern hemisphere and the Aurora Australis in the southern hemisphere.

Bending an Electron BeamEXAMPLE 29.7
(b) What is the angular speed of the electrons?

Solution Using Equation 29.14, we find that

Exercise What is the period of revolution of the electrons?

Answer 43 ns.

1.5 ' 108 rad/s0 #
v
r

#
1.11 ' 107 m/s

0.075 m
#

In an experiment designed to measure the magnitude of a
uniform magnetic field, electrons are accelerated from rest
through a potential difference of 350 V. The electrons travel
along a curved path because of the magnetic force exerted
on them, and the radius of the path is measured to be 
7.5 cm. (Fig. 29.19 shows such a curved beam of electrons.) If
the magnetic field is perpendicular to the beam, (a) what is
the magnitude of the field?

Solution First we must calculate the speed of the elec-
trons. We can use the fact that the increase in their kinetic
energy must equal the decrease in their potential energy

(because of conservation of energy). Then we can use
Equation 29.13 to find the magnitude of the magnetic field.
Because and we have

8.4 ' 10&4 T#

B #
mev
! e !r

#
(9.11 ' 10&31 kg)(1.11 ' 107 m/s)

(1.60 ' 10&19 C)(0.075 m)

 # 1.11 ' 107 m/s 

 v #" 2! e !2V
me

#" 2(1.60 ' 10&19 C)(350 V)
9.11 ' 10&31 kg

1
2mev2 # ! e !2V 

K f # mev2/2,K i # 0

! e !2V

Figure 29.19 The bending of an electron beam in a magnetic
field.

Path of
particle

+

Figure 29.20 A charged particle
moving in a nonuniform magnetic
field (a magnetic bottle) spirals
about the field (red path) and os-
cillates between the end points.
The magnetic force exerted on the
particle near either end of the bot-
tle has a component that causes the
particle to spiral back toward the
center.
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12.1 
&

12.11

Figure 29.21 The Van Allen belts are made up of charged particles trapped by the Earth’s
nonuniform magnetic field. The magnetic field lines are in blue and the particle paths in red.

This color-enhanced photograph, taken at CERN, the particle physics laboratory outside Geneva,
Switzerland, shows a collection of tracks left by subatomic particles in a bubble chamber. A bubble
chamber is a container filled with liquid hydrogen that is superheated, that is, momentarily raised
above its normal boiling point by a sudden drop in pressure in the container. Any charged particle
passing through the liquid in this state leaves behind a trail of tiny bubbles as the liquid boils in its
wake. These bubbles are seen as fine tracks, showing the characteristic paths of different types of
particles. The paths are curved because there is an intense applied magnetic field. The tightly
wound spiral tracks are due to electrons and positrons.

S

N

Auroras are usually confined to the polar regions because it is here that the Van
Allen belts are nearest the Earth’s surface. Occasionally, though, solar activity
causes larger numbers of charged particles to enter the belts and significantly dis-
tort the normal magnetic field lines associated with the Earth. In these situations
an aurora can sometimes be seen at lower latitudes.



922 C H A P T E R  2 9 Magnetic Fields

Optional Section

APPLICATIONS INVOLVING CHARGED PARTICLES
MOVING IN A MAGNETIC FIELD

A charge moving with a velocity v in the presence of both an electric field E and a
magnetic field B experiences both an electric force qE and a magnetic force

The total force (called the Lorentz force) acting on the charge is

(29.16)

Velocity Selector

In many experiments involving moving charged particles, it is important that the
particles all move with essentially the same velocity. This can be achieved by apply-
ing a combination of an electric field and a magnetic field oriented as shown in
Figure 29.22. A uniform electric field is directed vertically downward (in the plane
of the page in Fig. 29.22a), and a uniform magnetic field is applied in the direc-
tion perpendicular to the electric field (into the page in Fig. 29.22a). For q posi-
tive, the magnetic force is upward and the electric force qE is downward.
When the magnitudes of the two fields are chosen so that the particle
moves in a straight horizontal line through the region of the fields. From the ex-
pression we find that

(29.17)

Only those particles having speed v pass undeflected through the mutually perpen-
dicular electric and magnetic fields. The magnetic force exerted on particles moving
at speeds greater than this is stronger than the electric force, and the particles are
deflected upward. Those moving at speeds less than this are deflected downward.

The Mass Spectrometer

A mass spectrometer separates ions according to their mass-to-charge ratio. In
one version of this device, known as the Bainbridge mass spectrometer, a beam of ions
first passes through a velocity selector and then enters a second uniform magnetic
field B0 that has the same direction as the magnetic field in the selector (Fig.
29.23). Upon entering the second magnetic field, the ions move in a semicircle of

v #
E
B

qE # qvB,

qE # qvB,
qv ! B

1 F # qE + qv ! B

qv ! B.

29.5

Lorentz force

Bin

+

E

Source

Slit
–

(a)

++++++

––––––

v

(b)

+ q

qv ×× B

qE

× × × × × × ×

× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×

Figure 29.22 (a) A velocity selector. When a positively charged particle is in the presence of a
magnetic field directed into the page and an electric field directed downward, it experiences a
downward electric force qE and an upward magnetic force (b) When these forces bal-
ance, the particle moves in a horizontal line through the fields.

qv ! B.
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radius r before striking a photographic plate at P. If the ions are positively
charged, the beam deflects upward, as Figure 29.23 shows. If the ions are nega-
tively charged, the beam would deflect downward. From Equation 29.13, we can
express the ratio m/q as

Using Equation 29.17, we find that

(29.18)

Therefore, we can determine m/q by measuring the radius of curvature and know-
ing the field magnitudes B, B0 , and E. In practice, one usually measures the
masses of various isotopes of a given ion, with the ions all carrying the same charge
q. In this way, the mass ratios can be determined even if q is unknown.

A variation of this technique was used by J. J. Thomson (1856–1940) in 1897
to measure the ratio e/me for electrons. Figure 29.24a shows the basic apparatus he
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Figure 29.23 A mass spectrom-
eter. Positively charged particles
are sent first through a velocity
selector and then into a region
where the magnetic field B0
causes the particles to move in a
semicircular path and strike a
photographic film at P.

Fluorescent
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–

SlitsCathode
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+
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Magnetic field coil
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Undeflected
electron
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Figure 29.24 (a) Thomson’s apparatus for measuring e/me . Electrons are accelerated from the
cathode, pass through two slits, and are deflected by both an electric field and a magnetic field
(directed perpendicular to the electric field). The beam of electrons then strikes a fluorescent
screen. (b) J. J. Thomson (left) in the Cavendish Laboratory, University of Cambridge. It is inter-
esting to note that the man on the right, Frank Baldwin Jewett, is a distant relative of John W.
Jewett, Jr., contributing author of this text.

(a) (b)
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used. Electrons are accelerated from the cathode and pass through two slits. They
then drift into a region of perpendicular electric and magnetic fields. The magni-
tudes of the two fields are first adjusted to produce an undeflected beam. When
the magnetic field is turned off, the electric field produces a measurable beam de-
flection that is recorded on the fluorescent screen. From the size of the deflection
and the measured values of E and B, the charge-to-mass ratio can be determined.
The results of this crucial experiment represent the discovery of the electron as a
fundamental particle of nature.

When a photographic plate from a mass spectrometer like the one shown in Figure 29.23 is
developed, the three patterns shown in Figure 29.25 are observed. Rank the particles that
caused the patterns by speed and m /q ratio.

Quick Quiz 29.6

cba

Gap for particles
from velocity

selector

Figure 29.25

The Cyclotron

A cyclotron can accelerate charged particles to very high speeds. Both electric and
magnetic forces have a key role. The energetic particles produced are used to
bombard atomic nuclei and thereby produce nuclear reactions of interest to re-
searchers. A number of hospitals use cyclotron facilities to produce radioactive
substances for diagnosis and treatment.

A schematic drawing of a cyclotron is shown in Figure 29.26. The charges
move inside two semicircular containers D1 and D2 , referred to as dees. A high-
frequency alternating potential difference is applied to the dees, and a uniform
magnetic field is directed perpendicular to them. A positive ion released at P near
the center of the magnet in one dee moves in a semicircular path (indicated by
the dashed red line in the drawing) and arrives back at the gap in a time T/2,
where T is the time needed to make one complete trip around the two dees, given
by Equation 29.15. The frequency of the applied potential difference is adjusted so
that the polarity of the dees is reversed in the same time it takes the ion to travel
around one dee. If the applied potential difference is adjusted such that D2 is at a
lower electric potential than D1 by an amount 2V, the ion accelerates across the
gap to D2 and its kinetic energy increases by an amount q2V. It then moves
around D2 in a semicircular path of greater radius (because its speed has in-
creased). After a time T/2, it again arrives at the gap between the dees. By this
time, the polarity across the dees is again reversed, and the ion is given another
“kick” across the gap. The motion continues so that for each half-circle trip
around one dee, the ion gains additional kinetic energy equal to q 2V. When the
radius of its path is nearly that of the dees, the energetic ion leaves the system
through the exit slit. It is important to note that the operation of the cyclotron is
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based on the fact that T is independent of the speed of the ion and of the radius
of the circular path.

We can obtain an expression for the kinetic energy of the ion when it exits the
cyclotron in terms of the radius R of the dees. From Equation 29.13 we know that

Hence, the kinetic energy is

(29.19)

When the energy of the ions in a cyclotron exceeds about 20 MeV, relativistic
effects come into play. (Such effects are discussed in Chapter 39.) We observe that
T increases and that the moving ions do not remain in phase with the applied po-
tential difference. Some accelerators overcome this problem by modifying the pe-
riod of the applied potential difference so that it remains in phase with the mov-
ing ions.

Optional Section

THE HALL EFFECT
When a current-carrying conductor is placed in a magnetic field, a potential differ-
ence is generated in a direction perpendicular to both the current and the mag-
netic field. This phenomenon, first observed by Edwin Hall (1855–1938) in 1879,
is known as the Hall effect. It arises from the deflection of charge carriers to one
side of the conductor as a result of the magnetic force they experience. The Hall
effect gives information regarding the sign of the charge carriers and their density;
it can also be used to measure the magnitude of magnetic fields.

The arrangement for observing the Hall effect consists of a flat conductor car-
rying a current I in the x direction, as shown in Figure 29.27. A uniform magnetic
field B is applied in the y direction. If the charge carriers are electrons moving in
the negative x direction with a drift velocity vd , they experience an upward mag-

29.6

K # 1
2mv2 #

q2B 2R2

2m

v # qBR/m.

web
More information on these accelerators is
available at
http://www.fnal.gov or
http://www.CERN.ch
The CERN site also discusses the creation
of the World Wide Web there by physicists in
the mid-1990s.

B

P

D1

D2

(a)

North pole of magnet

Particle exits here

Alternating ∆V

Figure 29.26 (a) A cyclotron consists of an ion source at P, two dees D1 and D2 across which
an alternating potential difference is applied, and a uniform magnetic field. (The south pole of
the magnet is not shown.) The red dashed curved lines represent the path of the particles. 
(b) The first cyclotron, invented by E.O. Lawrence and M.S. Livingston in 1934.

(b)



926 C H A P T E R  2 9 Magnetic Fields

netic force are deflected upward, and accumulate at the upper
edge of the flat conductor, leaving an excess of positive charge at the lower edge
(Fig. 29.28a). This accumulation of charge at the edges increases until the electric
force resulting from the charge separation balances the magnetic force acting on
the carriers. When this equilibrium condition is reached, the electrons are no
longer deflected upward. A sensitive voltmeter or potentiometer connected across
the sample, as shown in Figure 29.28, can measure the potential difference—
known as the Hall voltage 2VH —generated across the conductor.

If the charge carriers are positive and hence move in the positive x direction,
as shown in Figures 29.27 and 29.28b, they also experience an upward magnetic
force This produces a buildup of positive charge on the upper edge and
leaves an excess of negative charge on the lower edge. Hence, the sign of the Hall
voltage generated in the sample is opposite the sign of the Hall voltage resulting
from the deflection of electrons. The sign of the charge carriers can therefore be
determined from a measurement of the polarity of the Hall voltage.

In deriving an expression for the Hall voltage, we first note that the magnetic
force exerted on the carriers has magnitude qvdB. In equilibrium, this force is bal-
anced by the electric force qEH , where EH is the magnitude of the electric field
due to the charge separation (sometimes referred to as the Hall field). Therefore,

 EH # vdB

qvdB # qEH

q vd ! B.

FB # q vd ! B,

vd
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vd

x

z
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–
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F
Figure 29.27 To observe the Hall ef-
fect, a magnetic field is applied to a cur-
rent-carrying conductor. When I is in the
x direction and B in the y direction, both
positive and negative charge carriers are
deflected upward in the magnetic field.
The Hall voltage is measured between
points a and c.
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qvd × B

qEH
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a

+ ∆VH

Figure 29.28 (a) When the charge carriers in a Hall effect apparatus are negative, the upper
edge of the conductor becomes negatively charged, and c is at a lower electric potential than a.
(b) When the charge carriers are positive, the upper edge becomes positively charged, and c is at
a higher potential than a. In either case, the charge carriers are no longer deflected when the
edges become fully charged, that is, when there is a balance between the electrostatic force qEH
and the magnetic deflection force qvB.
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If d is the width of the conductor, the Hall voltage is

(29.20)

Thus, the measured Hall voltage gives a value for the drift speed of the charge car-
riers if d and B are known.

We can obtain the charge carrier density n by measuring the current in the
sample. From Equation 27.4, we can express the drift speed as

(29.21)

where A is the cross-sectional area of the conductor. Substituting Equation 29.21
into Equation 29.20, we obtain

(29.22)

Because where t is the thickness of the conductor, we can also express
Equation 29.22 as

(29.23)

where is the Hall coefficient. This relationship shows that a properly
calibrated conductor can be used to measure the magnitude of an unknown mag-
netic field.

Because all quantities in Equation 29.23 other than nq can be measured, a
value for the Hall coefficient is readily obtainable. The sign and magnitude of R H
give the sign of the charge carriers and their number density. In most metals, the
charge carriers are electrons, and the charge carrier density determined from
Hall-effect measurements is in good agreement with calculated values for such
metals as lithium (Li), sodium (Na), copper (Cu), and silver (Ag), whose atoms
each give up one electron to act as a current carrier. In this case, n is approxi-
mately equal to the number of conducting electrons per unit volume. However,
this classical model is not valid for metals such as iron (Fe), bismuth (Bi), and cad-
mium (Cd) or for semiconductors. These discrepancies can be explained only by
using a model based on the quantum nature of solids.

R H # 1/nq

2VH #
IB
nqt

#
R HIB

t

A # td,

2VH #
IBd
nqA

vd #
I

nqA

2VH # EHd # vdBd

The Hall Effect for CopperEXAMPLE 29.8

Such an extremely small Hall voltage is expected in good
conductors. (Note that the width of the conductor is not
needed in this calculation.)

In semiconductors, n is much smaller than it is in metals
that contribute one electron per atom to the current; hence,
the Hall voltage is usually greater because it varies as the in-
verse of n. Currents of the order of 0.1 mA are generally used
for such materials. Consider a piece of silicon that has the
same dimensions as the copper strip in this example and
whose value for Taking

and we find that A
potential difference of this magnitude is readily measured.

2VH # 7.5 mV.I # 0.10 mA,B # 1.2 T
n # 1.0 ' 1020 electrons/m3.

0.44 -V2VH #
A rectangular copper strip 1.5 cm wide and 0.10 cm thick 
carries a current of 5.0 A. Find the Hall voltage for a 1.2-T
magnetic field applied in a direction perpendicular to the
strip.

Solution If we assume that one electron per atom is avail-
able for conduction, we can take the charge carrier density to
be electrons/m3 (see Example 27.1). Substi-
tuting this value and the given data into Equation 29.23 gives

#
(5.0 A)(1.2 T )

(8.49 ' 1028 m&3)(1.6 ' 10&19 C)(0.001 0 m)

2VH #
IB
nqt

n # 8.49 ' 1028

The Hall voltage

web
In 1980, Klaus von Klitzing discovered that
the Hall voltage is quantized. He won the
Nobel Prize for this discovery in 1985. For a
discussion of the quantum Hall effect and
some of its consequences, visit our Web
site at
http://www.saunderscollege.com/physics/
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SUMMARY

The magnetic force that acts on a charge q moving with a velocity v in a magnetic
field B is

(29.1)

The direction of this magnetic force is perpendicular both to the velocity of the
particle and to the magnetic field. The magnitude of this force is

(29.2)

where ! is the smaller angle between v and B. The SI unit of B is the tesla (T),
where 1 T # 1 N/A % m.

When a charged particle moves in a magnetic field, the work done by the mag-
netic force on the particle is zero because the displacement is always perpendicu-
lar to the direction of the force. The magnetic field can alter the direction of the
particle’s velocity vector, but it cannot change its speed.

If a straight conductor of length L carries a current I, the force exerted on
that conductor when it is placed in a uniform magnetic field B is

(29.3)

where the direction of L is in the direction of the current and 
If an arbitrarily shaped wire carrying a current I is placed in a magnetic field,

the magnetic force exerted on a very small segment ds is

(29.4)

To determine the total magnetic force on the wire, one must integrate Equation
29.4, keeping in mind that both B and ds may vary at each point. Integration gives
for the force exerted on a current-carrying conductor of arbitrary shape in a uni-
form magnetic field

(29.7)

where L( is a vector directed from one end of the conductor to the opposite end.
Because integration of Equation 29.4 for a closed loop yields a zero result, the net
magnetic force on any closed loop carrying a current in a uniform magnetic field
is zero.

The magnetic dipole moment " of a loop carrying a current I is

(29.10)

where the area vector A is perpendicular to the plane of the loop and is equal
to the area of the loop. The SI unit of " is A % m2.

The torque # on a current loop placed in a uniform magnetic field B is

(29.11)

and the potential energy of a magnetic dipole in a magnetic field is

(29.12)

If a charged particle moves in a uniform magnetic field so that its initial veloc-
ity is perpendicular to the field, the particle moves in a circle, the plane of which is
perpendicular to the magnetic field. The radius of the circular path is

(29.13)r #
mv
qB

U # &" $ B

# # " ! B

! A !

" # IA

FB # I L( ! B

dFB # I ds ! B

! L ! # L .

FB # I L ! B

FB # ! q !vB sin !

FB # qv ! B
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QUESTIONS

17. The bubble chamber is a device used for observing tracks of
particles that pass through the chamber, which is immersed
in a magnetic field. If some of the tracks are spirals and oth-
ers are straight lines, what can you say about the particles?

18. Can a constant magnetic field set into motion an electron
initially at rest? Explain your answer.

19. You are designing a magnetic probe that uses the Hall ef-
fect to measure magnetic fields. Assume that you are re-
stricted to using a given material and that you have al-
ready made the probe as thin as possible. What, if
anything, can be done to increase the Hall voltage pro-
duced for a given magnetic field?

20. The electron beam shown in Figure Q29.20 is projected
to the right. The beam deflects downward in the presence
of a magnetic field produced by a pair of current-carrying
coils. (a) What is the direction of the magnetic field? 
(b) What would happen to the beam if the current in the
coils were reversed?

1. At a given instant, a proton moves in the positive x direc-
tion in a region where a magnetic field is directed in the
negative z direction. What is the direction of the mag-
netic force? Does the proton continue to move in the pos-
itive x direction? Explain.

2. Two charged particles are projected into a region where a
magnetic field is directed perpendicular to their veloci-
ties. If the charges are deflected in opposite directions,
what can be said about them?

3. If a charged particle moves in a straight line through
some region of space, can one say that the magnetic field
in that region is zero?

4. Suppose an electron is chasing a proton up this page
when suddenly a magnetic field directed perpendicular
into the page is turned on. What happens to the particles?

5. How can the motion of a moving charged particle be used
to distinguish between a magnetic field and an electric
field? Give a specific example to justify your argument.

6. List several similarities and differences between electric
and magnetic forces.

7. Justify the following statement: “It is impossible for a con-
stant (in other words, a time-independent) magnetic field
to alter the speed of a charged particle.”

8. In view of the preceding statement, what is the role of a
magnetic field in a cyclotron?

9. A current-carrying conductor experiences no magnetic
force when placed in a certain manner in a uniform mag-
netic field. Explain.

10. Is it possible to orient a current loop in a uniform magnetic
field such that the loop does not tend to rotate? Explain.

11. How can a current loop be used to determine the pres-
ence of a magnetic field in a given region of space?

12. What is the net force acting on a compass needle in a uni-
form magnetic field?

13. What type of magnetic field is required to exert a resul-
tant force on a magnetic dipole? What is the direction of
the resultant force?

14. A proton moving horizontally enters a region where a
uniform magnetic field is directed perpendicular to the
proton’s velocity, as shown in Figure Q29.14. Describe the
subsequent motion of the proton. How would an electron
behave under the same circumstances?

15. In a magnetic bottle, what causes the direction of the ve-
locity of the confined charged particles to reverse? (Hint:
Find the direction of the magnetic force acting on the
particles in a region where the field lines converge.)

16. In the cyclotron, why do particles of different velocities
take the same amount of time to complete one half-circle
trip around one dee?

where m is the mass of the particle and q is its charge. The angular speed of the
charged particle is

(29.14)0 #
qB
m

v
+

× × ×

× × ×

× × ×

× × ×

× ××

Figure Q29.14

Figure Q29.20
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PROBLEMS

6.00 ' 106 m/s directed to the east in this environ-
ment.

8. A 30.0-g metal ball having net charge is
thrown out of a window horizontally at a speed

The window is at a height 
above the ground. A uniform horizontal magnetic field
of magnitude is perpendicular to the
plane of the ball’s trajectory. Find the magnetic force
acting on the ball just before it hits the ground.

9. A proton moving at 4.00 ' 106 m/s through a magnetic
field of 1.70 T experiences a magnetic force of magni-
tude 8.20 ' 10&13 N. What is the angle between the
proton’s velocity and the field?

10. An electron has a velocity of 1.20 km/s (in the positive
x direction) and an acceleration of 2.00 ' 1012 m/s2

(in the positive z direction) in uniform electric and
magnetic fields. If the electric field has a magnitude of
20.0 N/C (in the positive z direction), what can you de-
termine about the magnetic field in the region? What
can you not determine?

11. A proton moves with a velocity of m/s
in a region in which the magnetic field is 

What is the magnitude of the magnetic force this
charge experiences?

12. An electron is projected into a uniform magnetic field
T. Find the vector expression 

for the force on the electron when its velocity is 

Section 29.2 Magnetic Force Acting on a 
Current-Carrying Conductor

13. A wire having a mass per unit length of 0.500 g/cm car-
ries a 2.00-A current horizontally to the south. What are
the direction and magnitude of the minimum magnetic
field needed to lift this wire vertically upward?

14. A wire carries a steady current of 2.40 A. A straight sec-
tion of the wire is 0.750 m long and lies along the x axis
within a uniform magnetic field of magnitude

in the positive z direction. If the current is in
the + x direction, what is the magnetic force on the sec-
tion of wire?

15. A wire 2.80 m in length carries a current of 5.00 A in a
region where a uniform magnetic field has a magnitude
of 0.390 T. Calculate the magnitude of the magnetic
force on the wire if the angle between the magnetic
field and the current is (a) 60.0°, (b) 90.0°, (c) 120°.

16. A conductor suspended by two flexible wires as shown in
Figure P29.16 has a mass per unit length of 0.040 0 kg/m.
What current must exist in the conductor for the tension
in the supporting wires to be zero when the magnetic

B # 1.60 T

3.70 ' 105 j m/s.
v #

B # (1.40 i + 2.10 j)

3k) T.
B # ( i + 2 j &

v # (2 i & 4 j + k)

B # 0.010 0 T

h # 20.0 mv # 20.0 m/s.

Q # 5.00 -C

Section 29.1 The Magnetic Field
1. Determine the initial direction of the deflection of

charged particles as they enter the magnetic fields, as
shown in Figure P29.1.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

WEB

2. Consider an electron near the Earth’s equator. In which
direction does it tend to deflect if its velocity is directed
(a) downward, (b) northward, (c) westward, or 
(d) southeastward?

3. An electron moving along the positive x axis perpendic-
ular to a magnetic field experiences a magnetic deflec-
tion in the negative y direction. What is the direction of
the magnetic field?

4. A proton travels with a speed of 3.00 ' 106 m/s at an
angle of 37.0° with the direction of a magnetic field of
0.300 T in the + y direction. What are (a) the magni-
tude of the magnetic force on the proton and (b) its ac-
celeration?

5. A proton moves in a direction perpendicular to a uni-
form magnetic field B at 1.00 ' 107 m/s and experi-
ences an acceleration of 2.00 ' 1013 m/s2 in the + x di-
rection when its velocity is in the + z direction.
Determine the magnitude and direction of the field.

6. An electron is accelerated through 2 400 V from rest
and then enters a region where there is a uniform 
1.70-T magnetic field. What are (a) the maximum and 
(b) the minimum values of the magnetic force this
charge can experience?

7. At the equator, near the surface of the Earth, the mag-
netic field is approximately 50.0 -T northward, and the
electric field is about 100 N/C downward in fair
weather. Find the gravitational, electric, and magnetic
forces on an electron with an instantaneous velocity of

(a)

+

+

–

+

(c)

(b)

(d)

××××
××××
××××
××××

45°

Bin

Bright

Bup

Bat 45°

Figure P29.1
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field is 3.60 T into the page? What is the required direc-
tion for the current?

17. Imagine a very long, uniform wire with a linear mass
density of 1.00 g/m that encircles the Earth at its mag-
netic equator. Suppose that the planet’s magnetic field
is 50.0 -T horizontally north throughout this region.
What are the magnitude and direction of the current in
the wire that keep it levitated just above the ground?

18. In Figure P29.18, the cube is 40.0 cm on each edge.
Four straight segments of wire—ab, bc, cd, and da—
form a closed loop that carries a current in
the direction shown. A uniform magnetic field of mag-
nitude is in the positive y direction. De-
termine the magnitude and direction of the magnetic
force on each segment.

B # 0.020 0 T

I # 5.00 A,

21. A nonuniform magnetic field exerts a net force on a magnetic
dipole. A strong magnet is placed under a horizontal
conducting ring of radius r that carries current I, as
shown in Figure P29.21. If the magnetic field B makes
an angle ! with the vertical at the ring’s location, what
are the magnitude and direction of the resultant force
on the ring?

WEB

22. Assume that in Atlanta, Georgia, the Earth’s magnetic
field is 52.0 -T northward at 60.0° below the horizontal.
A tube in a neon sign carries a current of 35.0 mA be-
tween two diagonally opposite corners of a shop win-
dow, which lies in a north–south vertical plane. The
current enters the tube at the bottom south corner of
the window. It exits at the opposite corner, which is 
1.40 m farther north and 0.850 m higher up. Between
these two points, the glowing tube spells out DONUTS.
Use the theorem proved as “Case 1” in the text to deter-
mine the total vector magnetic force on the tube.

Section 29.3 Torque on a Current Loop in a 
Uniform Magnetic Field

23. A current of 17.0 mA is maintained in a single circular
loop with a circumference of 2.00 m. A magnetic field

19. Review Problem. A rod with a mass of 0.720 kg and a
radius of 6.00 cm rests on two parallel rails (Fig.
P29.19) that are apart and 
long. The rod carries a current of (in the di-
rection shown) and rolls along the rails without slip-
ping. If it starts from rest, what is the speed of the rod as
it leaves the rails if a uniform magnetic field of magni-
tude 0.240 T is directed perpendicular to the rod and
the rails?

20. Review Problem. A rod of mass m and radius R rests
on two parallel rails (Fig. P29.19) that are a distance d
apart and have a length L . The rod carries a current I
(in the direction shown) and rolls along the rails with-
out slipping. If it starts from rest, what is the speed of
the rod as it leaves the rails if a uniform magnetic field
B is directed perpendicular to the rod and the rails?

I # 48.0 A
L # 45.0 cmd # 12.0 cm

d

L

I B

I

N

r

B

θ θ

y

x

I

a

B

b
cz

d

Bin

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

Figure P29.16

Figure P29.18

Figure P29.19 Problems 19 and 20.

Figure P29.21
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of 0.800 T is directed parallel to the plane of the loop.
(a) Calculate the magnetic moment of the loop. 
(b) What is the magnitude of the torque exerted on the
loop by the magnetic field?

24. A small bar magnet is suspended in a uniform 0.250-T
magnetic field. The maximum torque experienced by
the bar magnet is 4.60 ' 10&3 N % m. Calculate the mag-
netic moment of the bar magnet.

25. A rectangular loop consists of closely wrapped
turns and has dimensions and

The loop is hinged along the y axis, and its
plane makes an angle ! # 30.0° with the x axis (Fig.
P29.25). What is the magnitude of the torque exerted
on the loop by a uniform magnetic field di-
rected along the x axis when the current is in
the direction shown? What is the expected direction of
rotation of the loop?

I # 1.20 A
B # 0.800 T

b # 0.300 m.
a # 0.400 m

N # 100

needle has minimum potential energy and maximum
potential energy. (b) How much work must be done on
the needle for it to move from the former to the latter
orientation?

30. A wire is formed into a circle having a diameter of 
10.0 cm and is placed in a uniform magnetic field of
3.00 mT. A current of 5.00 A passes through the wire.
Find (a) the maximum torque on the wire and (b) the
range of potential energy of the wire in the field for dif-
ferent orientations of the circle.

Section 29.4 Motion of a Charged Particle 
in a Uniform Magnetic Field

31. The magnetic field of the Earth at a certain location is
directed vertically downward and has a magnitude of
50.0 -T. A proton is moving horizontally toward the
west in this field with a speed of 6.20 ' 106 m/s. 
(a) What are the direction and magnitude of the mag-
netic force that the field exerts on this charge? 
(b) What is the radius of the circular arc followed by
this proton?

32. A singly charged positive ion has a mass of 3.20 '
10&26 kg. After being accelerated from rest through a
potential difference of 833 V, the ion enters a magnetic
field of 0.920 T along a direction perpendicular to the
direction of the field. Calculate the radius of the path of
the ion in the field.

33. Review Problem. One electron collides elastically with
a second electron initially at rest. After the collision, the
radii of their trajectories are 1.00 cm and 2.40 cm. The
trajectories are perpendicular to a uniform magnetic
field of magnitude 0.044 0 T. Determine the energy (in
keV) of the incident electron.

34. A proton moving in a circular path perpendicular to a
constant magnetic field takes 1.00 -s to complete one
revolution. Determine the magnitude of the magnetic
field.

35. A proton (charge +e, mass mp), a deuteron (charge +e,
mass 2mp), and an alpha particle (charge + 2e, mass
4mp) are accelerated through a common potential dif-
ference 2V. The particles enter a uniform magnetic
field B with a velocity in a direction perpendicular to B.
The proton moves in a circular path of radius rp . Deter-
mine the values of the radii of the circular orbits for the
deuteron rd and the alpha particle r 3 in terms of rp .

36. Review Problem. An electron moves in a circular path
perpendicular to a constant magnetic field with a
magnitude of 1.00 mT. If the angular momentum 
of the electron about the center of the circle is 4.00 '
10&25 J% s, determine (a) the radius of the circular path
and (b) the speed of the electron.

37. Calculate the cyclotron frequency of a proton in a mag-
netic field with a magnitude of 5.20 T.

38. A singly charged ion of mass m is accelerated from rest
by a potential difference 2V. It is then deflected by a
uniform magnetic field (perpendicular to the ion’s ve-
locity) into a semicircle of radius R . Now a doubly

WEB

26. A long piece of wire of mass 0.100 kg and total length 
of 4.00 m is used to make a square coil with a side of
0.100 m. The coil is hinged along a horizontal side, car-
ries a 3.40-A current, and is placed in a vertical mag-
netic field with a magnitude of 0.010 0 T. (a) Determine
the angle that the plane of the coil makes with the verti-
cal when the coil is in equilibrium. (b) Find the torque
acting on the coil due to the magnetic force at equilib-
rium.

27. A 40.0-cm length of wire carries a current of 20.0 A. It is
bent into a loop and placed with its normal perpendicu-
lar to a magnetic field with a strength of 0.520 T. What
is the torque on the loop if it is bent into (a) an equilat-
eral triangle, (b) a square, (c) a circle? (d) Which
torque is greatest?

28. A current loop with dipole moment " is placed in a uni-
form magnetic field B. Prove that its potential energy is

You may imitate the discussion of the po-
tential energy of an electric dipole in an electric field
given in Chapter 26.

29. The needle of a magnetic compass has a magnetic mo-
ment of 9.70 mA % m2. At its location, the Earth’s mag-
netic field is 55.0 -T north at 48.0° below the horizon-
tal. (a) Identify the orientations at which the compass

U # &" $ B.

y

x
z

0.300 m

30.0°

I = 1.20 A

0.400 m

Figure P29.25
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charged ion of mass m( is accelerated through the same
potential difference and deflected by the same mag-
netic field into a semicircle of radius What is
the ratio of the ions’ masses?

39. A cosmic-ray proton in interstellar space has an energy
of 10.0 MeV and executes a circular orbit having a ra-
dius equal to that of Mercury’s orbit around the Sun
(5.80 ' 1010 m). What is the magnetic field in that re-
gion of space?

40. A singly charged positive ion moving at 4.60 ' 105 m/s
leaves a circular track of radius 7.94 mm along a direc-
tion perpendicular to the 1.80-T magnetic field of a
bubble chamber. Compute the mass (in atomic mass
units) of this ion, and identify it from that value.

(Optional)
Section 29.5 Applications Involving Charged 
Particles Moving in a Magnetic Field

41. A velocity selector consists of magnetic and electric
fields described by the expressions and 
If find the value of E such that a 750-eV
electron moving along the positive x axis is undeflected.

42. (a) Singly charged uranium-238 ions are accelerated
through a potential difference of 2.00 kV and enter a
uniform magnetic field of 1.20 T directed perpendicu-
lar to their velocities. Determine the radius of their cir-
cular path. (b) Repeat for uranium-235 ions. How does
the ratio of these path radii depend on the accelerating
voltage and the magnetic field strength?

43. Consider the mass spectrometer shown schematically in
Figure 29.23. The electric field between the plates of
the velocity selector is 2 500 V/m, and the magnetic
field in both the velocity selector and the deflection
chamber has a magnitude of 0.035 0 T. Calculate the ra-
dius of the path for a singly charged ion having a mass

44. What is the required radius of a cyclotron designed to
accelerate protons to energies of 34.0 MeV using a mag-
netic field of 5.20 T?

45. A cyclotron designed to accelerate protons has a mag-
netic field with a magnitude of 0.450 T over a region of
radius 1.20 m. What are (a) the cyclotron frequency
and (b) the maximum speed acquired by the protons?

46. At the Fermilab accelerator in Batavia, Illinois, protons
having momentum 4.80 ' 10&16 kg % m/s are held in a
circular orbit of radius 1.00 km by an upward magnetic
field. What is the magnitude of this field?

47. The picture tube in a television uses magnetic deflec-
tion coils rather than electric deflection plates. Suppose
an electron beam is accelerated through a 50.0-kV po-
tential difference and then travels through a region of
uniform magnetic field 1.00 cm wide. The screen is lo-
cated 10.0 cm from the center of the coils and is 
50.0 cm wide. When the field is turned off, the electron
beam hits the center of the screen. What field magni-
tude is necessary to deflect the beam to the side of the
screen? Ignore relativistic corrections.

m # 2.18 ' 10&26 kg.

B # 0.015 0 T,
B # B j.E # Ek

R ( # 2R .

49. A section of conductor 0.400 cm thick is used in a Hall-
effect measurement. A Hall voltage of 35.0 -V is 
measured for a current of 21.0 A in a magnetic field of
1.80 T. Calculate the Hall coefficient for the conductor.

50. A flat copper ribbon 0.330 mm thick carries a steady
current of 50.0 A and is located in a uniform 1.30-T
magnetic field directed perpendicular to the plane of
the ribbon. If a Hall voltage of 9.60 -V is measured
across the ribbon, what is the charge density of the free
electrons? What effective number of free electrons per
atom does this result indicate?

51. In an experiment designed to measure the Earth’s mag-
netic field using the Hall effect, a copper bar 0.500 cm
thick is positioned along an east–west direction. If a
current of 8.00 A in the conductor results in a Hall volt-
age of 5.10 pV, what is the magnitude of the Earth’s
magnetic field? (Assume that elec-
trons/m3 and that the plane of the bar is rotated to be
perpendicular to the direction of B.)

52. A Hall-effect probe operates with a 120-mA current.
When the probe is placed in a uniform magnetic field
with a magnitude of 0.080 0 T, it produces a Hall volt-
age of 0.700 -V. (a) When it is measuring an unknown
magnetic field, the Hall voltage is 0.330 -V. What is the
unknown magnitude of the field? (b) If the thickness of
the probe in the direction of B is 2.00 mm, find the
charge-carrier density (each of charge e).

ADDITIONAL PROBLEMS
53. An electron enters a region of magnetic field of magni-

tude 0.100 T, traveling perpendicular to the linear
boundary of the region. The direction of the field is
perpendicular to the velocity of the electron. (a) Deter-
mine the time it takes for the electron to leave the
“field-filled” region, noting that its path is a semicircle.
(b) Find the kinetic energy of the electron if the maxi-
mum depth of penetration in the field is 2.00 cm.

n # 8.48 ' 1028

Ag

B

I

t

d

WEB

Figure P29.48

(Optional)
Section 29.6 The Hall Effect

48. A flat ribbon of silver having a thickness 
is used in a Hall-effect measurement of a uniform
magnetic field perpendicular to the ribbon, as shown 
in Figure P29.48. The Hall coefficient for silver is

(a) What is the density of
charge carriers in silver? (b) If a current pro-
duces a Hall voltage what is the magni-
tude of the applied magnetic field?

2VH # 15.0 -V,
I # 20.0 A

R H # 0.840 ' 10&10 m3/C.

t # 0.200 mm
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54. A 0.200-kg metal rod carrying a current of 10.0 A glides
on two horizontal rails 0.500 m apart. What vertical
magnetic field is required to keep the rod moving at a
constant speed if the coefficient of kinetic friction be-
tween the rod and rails is 0.100?

55. Sodium melts at 99°C. Liquid sodium, an excellent ther-
mal conductor, is used in some nuclear reactors to cool
the reactor core. The liquid sodium is moved through
pipes by pumps that exploit the force on a moving
charge in a magnetic field. The principle is as follows:
Assume that the liquid metal is in an electrically insulat-
ing pipe having a rectangular cross-section of width w
and height h. A uniform magnetic field perpendicular
to the pipe affects a section of length L (Fig. P29.55).
An electric current directed perpendicular to the pipe
and to the magnetic field produces a current density J
in the liquid sodium. (a) Explain why this arrangement
produces on the liquid a force that is directed along the
length of the pipe. (b) Show that the section of liquid
in the magnetic field experiences a pressure increase
JLB.

(c) What would be the force on an electron
in the same field moving with velocity 

58. Review Problem. A wire having a linear mass density
of 1.00 g/cm is placed on a horizontal surface that has a
coefficient of friction of 0.200. The wire carries a cur-
rent of 1.50 A toward the east and slides horizontally to
the north. What are the magnitude and direction of the
smallest magnetic field that enables the wire to move in
this fashion?

59. A positive charge moves with a
velocity through a region
where both a uniform magnetic field and a uniform
electric field exist. (a) What is the total force on the
moving charge (in unit–vector notation) if 

and 
(b) What angle does the force vector make with the
positive x axis?

60. A cosmic-ray proton traveling at half the speed of light
is heading directly toward the center of the Earth in the
plane of the Earth’s equator. Will it hit the Earth? As-
sume that the Earth’s magnetic field is uniform over the
planet’s equatorial plane with a magnitude of 50.0 -T,
extending out 1.30 ' 107 m from the surface of the
Earth. Assume that the field is zero at greater distances.
Calculate the radius of curvature of the proton’s path in
the magnetic field. Ignore relativistic effects.

61. The circuit in Figure P29.61 consists of wires at the top
and bottom and identical metal springs as the left and
right sides. The wire at the bottom has a mass of 10.0 g
and is 5.00 cm long. The springs stretch 0.500 cm un-
der the weight of the wire, and the circuit has a total re-
sistance of 12.0 4. When a magnetic field is turned on,
directed out of the page, the springs stretch an addi-
tional 0.300 cm. What is the magnitude of the magnetic
field? (The upper portion of the circuit is fixed.)

E # (4 i & 1 j & 2k) V/m?(2 i + 4 j + 1k) T
B #

v # (2 i + 3 j & 1k) m/s
q # 3.20 ' 10&19 C

v # vi i?
v # &vi i?

62. A hand-held electric mixer contains an electric motor.
Model the motor as a single flat compact circular coil
carrying electric current in a region where a magnetic
field is produced by an external permanent magnet.
You need consider only one instant in the operation of
the motor. (We will consider motors again in Chapter
31.) The coil moves because the magnetic field exerts
torque on the coil, as described in Section 29.3. Make

56. Protons having a kinetic energy of 5.00 MeV are moving
in the positive x direction and enter a magnetic field

directed out of the plane of the page
and extending from to as shown in
Figure P29.56. (a) Calculate the y component of the
protons’ momentum as they leave the magnetic field.
(b) Find the angle 3 between the initial velocity vector
of the proton beam and the velocity vector after the
beam emerges from the field. (Hint: Neglect relativistic
effects and note that 1 eV # 1.60 ' 10&19 J.)

x # 1.00 m,x # 0
B # (0.050 0 k) T

24.0 V

5.00 cm

J

B

L

w

h

Figure P29.55

Figure P29.56

Figure P29.61

57. (a) A proton moving in the + x direction with velocity
experiences a magnetic force Explain

what you can and cannot infer about B from this infor-
mation. (b) In terms of Fi , what would be the force on a
proton in the same field moving with velocity

F # Fi j.v # vi i
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70. Table P29.70 shows measurements of a Hall voltage and
corresponding magnetic field for a probe used to mea-
sure magnetic fields. (a) Plot these data, and deduce a
relationship between the two variables. (b) If the mea-

65. A cyclotron is sometimes used for carbon dating, which
we consider in Section 44.6. Carbon-14 and carbon-12
ions are obtained from a sample of the material to be
dated and accelerated in the cyclotron. If the cyclotron
has a magnetic field of magnitude 2.40 T, what is the
difference in cyclotron frequencies for the two ions?

66. A uniform magnetic field of magnitude 0.150 T is di-
rected along the positive x axis. A positron moving at
5.00 ' 106 m/s enters the field along a direction that
makes an angle of 85.0° with the x axis (Fig. P29.66).

order-of-magnitude estimates of the magnetic field, the
torque on the coil, the current in it, its area, and the
number of turns in the coil, so that they are related ac-
cording to Equation 29.11. Note that the input power to
the motor is electric, given by and the useful
output power is mechanical, given by 

63. A metal rod having a mass per unit length of 
0.010 0 kg/m carries a current of The rod
hangs from two wires in a uniform vertical magnetic
field, as shown in Figure P29.63. If the wires make an
angle with the vertical when in equilibrium,
determine the magnitude of the magnetic field.

64. A metal rod having a mass per unit length - carries a
current I . The rod hangs from two wires in a uniform
vertical magnetic field, as shown in Figure P29.63. If the
wires make an angle ! with the vertical when in equilib-
rium, determine the magnitude of the magnetic field.

! # 45.0$

I # 5.00 A.

! # *0.
! # I 2V,

The motion of the particle is expected to be a helix, as
described in Section 29.4. Calculate (a) the pitch p and
(b) the radius r of the trajectory.

67. Consider an electron orbiting a proton and maintained
in a fixed circular path of radius by
the Coulomb force. Treating the orbiting charge as a
current loop, calculate the resulting torque when the
system is in a magnetic field of 0.400 T directed perpen-
dicular to the magnetic moment of the electron.

68. A singly charged ion completes five revolutions in a uni-
form magnetic field of magnitude 5.00 ' 10&2 T in 
1.50 ms. Calculate the mass of the ion in kilograms.

69. A proton moving in the plane of the page has a kinetic
energy of 6.00 MeV. It enters a magnetic field of magni-
tude directed into the page, moving at an an-
gle of ! # 45.0° with the straight linear boundary of the
field, as shown in Figure P29.69. (a) Find the distance x
from the point of entry to where the proton leaves the
field. (b) Determine the angle !( between the boundary
and the proton’s velocity vector as it leaves the field.

B # 1.00 T

R # 5.29 ' 10&11 m

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

v

r

x

y

z

85°

B

p

θ

B

I

g
θ

Figure P29.63 Problems 63 and 64.

Figure P29.66

Figure P29.69

TABLE P29.70
%VH("V) B(T)

0 0.00
11 0.10
19 0.20
28 0.30
42 0.40
50 0.50
61 0.60
68 0.70
79 0.80
90 0.90

102 1.00
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ANSWERS TO QUICK QUIZZES

rected out of the page, but this force is canceled by an
oppositely directed force acting on the current as it
moves from 4 m to 2 m.

29.4 Because it is in the region of the stronger magnetic
field, side " experiences a greater force than side !:

Therefore, in addition to the torque resulting
from the two forces, a net force is exerted downward on
the loop.

29.5 (c), (b), (a). Because all loops enclose the same area
and carry the same current, the magnitude of " is the
same for all. For (c), " points upward and is perpendic-
ular to the magnetic field and This is the maxi-
mum torque possible. The next largest cross product of
" and B is for (b), in which " points toward the upper
right (as illustrated in Fig. 29.13b). Finally, " for the
loop in (a) points along the direction of B; thus, the
torque is zero.

29.6 The velocity selector ensures that all three types of parti-
cles have the same speed. We cannot determine individ-
ual masses or charges, but we can rank the particles by
m/q ratio. Equation 29.18 indicates that those particles
traveling through the circle of greatest radius have the
greatest m/q ratio. Thus, the m/q ranking, from greatest
to least value, is c, b, a.

# # "B.

F3 5 F1 .

29.1 Zero. Because the magnetic force exerted by the field
on the charge is always perpendicular to the velocity of
the charge, the field can never do any work on the
charge: Work requires a
component of force along the direction of motion. 

29.2 Unaffected. The magnetic force exerted by a magnetic
field on a charge is proportional to the charge’s velocity
relative to the field. If the charge is stationary, as in this
situation, there is no magnetic force.

29.3 (c), (b), (a), (d). As Example 29.2 shows, we need to be
concerned only with the “effective length” of wire per-
pendicular to the magnetic field or, stated another way,
the length of the “magnetic field shadow” cast by the
wire. For (c), 4 m of wire is perpendicular to the field.
The short vertical pieces experience no magnetic force
because their currents are parallel to the field. When
the wire in (b) is broken into many short vertical and
horizontal segments alternately parallel and perpendicu-
lar to the field, we find a total of 3.5 m of horizontal seg-
ments perpendicular to the field and therefore experi-
encing a force. Next comes (a), with 3 m of wire
effectively perpendicular to the field. Only 2 m of the
wire in (d) experiences a force. The portion carrying
current from 2 m to 4 m does experience a force di-

W # FB $ ds # (FB $ v)dt # 0.

A+

To potentiometer

Blood
flow

Electrodes B–

S

Artery

N
h

+

v

B

Figure P29.71 Figure P29.72

that electrode A is positive, as shown. Does the sign of
the emf depend on whether the mobile ions in the
blood are predominantly positively or negatively
charged? Explain.

72. As illustrated in Figure P29.72, a particle of mass m hav-
ing positive charge q is initially traveling upward with
velocity v j. At the origin of coordinates it enters a re-
gion between and containing a uniform
magnetic field Bk directed perpendicular out of the
page. (a) What is the critical value of v such that the
particle just reaches Describe the path of the
particle under this condition, and predict its final veloc-
ity. (b) Specify the path of the particle and its final ve-
locity if v is less than the critical value. (c) Specify the
path of the particle and its final velocity if v is greater
than the critical value.

y # h ?

y # hy # 0

surements were taken with a current of 0.200 A and the
sample is made from a material having a charge-carrier
density of 1.00 ' 1026/m3, what is the thickness of the
sample?

71. A heart surgeon monitors the flow rate of blood
through an artery using an electromagnetic flowmeter
(Fig. P29.71). Electrodes A and B make contact with
the outer surface of the blood vessel, which has interior
diameter 3.00 mm. (a) For a magnetic field magnitude
of 0.040 0 T, an emf of 160 -V appears between the
electrodes. Calculate the speed of the blood. (b) Verify
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c h a p t e r

Sources of the Magnetic Field

All three of these commonplace items
use magnetism to store information. The
cassette can store more than an hour of
music, the floppy disk can hold the equiv-
alent of hundreds of pages of informa-
tion, and many hours of television pro-
gramming can be recorded on the
videotape. How do these devices work?
(George Semple)

C h a p t e r  O u t l i n e

30.1 The Biot–Savart Law
30.2 The Magnetic Force Between

Two Parallel Conductors
30.3 Ampère’s Law
30.4 The Magnetic Field of a Solenoid
30.5 Magnetic Flux

30.6 Gauss’s Law in Magnetism
30.7 Displacement Current and the

General Form of Ampère’s Law
30.8 (Optional) Magnetism in Matter
30.9 (Optional) The Magnetic Field of

the Earth
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n the preceding chapter, we discussed the magnetic force exerted on a charged
particle moving in a magnetic field. To complete the description of the mag-
netic interaction, this chapter deals with the origin of the magnetic field—mov-

ing charges. We begin by showing how to use the law of Biot and Savart to calcu-
late the magnetic field produced at some point in space by a small current
element. Using this formalism and the principle of superposition, we then calcu-
late the total magnetic field due to various current distributions. Next, we show
how to determine the force between two current-carrying conductors, which leads
to the definition of the ampere. We also introduce Ampère’s law, which is useful in
calculating the magnetic field of a highly symmetric configuration carrying a
steady current.

This chapter is also concerned with the complex processes that occur in mag-
netic materials. All magnetic effects in matter can be explained on the basis of
atomic magnetic moments, which arise both from the orbital motion of the elec-
trons and from an intrinsic property of the electrons known as spin.

THE BIOT – SAVART LAW
Shortly after Oersted’s discovery in 1819 that a compass needle is deflected by a
current-carrying conductor, Jean-Baptiste Biot (1774–1862) and Félix Savart
(1791–1841) performed quantitative experiments on the force exerted by an elec-
tric current on a nearby magnet. From their experimental results, Biot and Savart
arrived at a mathematical expression that gives the magnetic field at some point in
space in terms of the current that produces the field. That expression is based on
the following experimental observations for the magnetic field dB at a point P as-
sociated with a length element ds of a wire carrying a steady current I (Fig. 30.1):

• The vector dB is perpendicular both to ds (which points in the direction of the
current) and to the unit vector directed from ds to P.

• The magnitude of dB is inversely proportional to r 2, where r is the distance
from ds to P.

• The magnitude of dB is proportional to the current and to the magnitude ds of
the length element ds.

• The magnitude of dB is proportional to sin !, where ! is the angle between the
vectors ds and .r̂

r̂

30.1

I

Properties of the magnetic field
created by an electric current

(a)

PdBout

r

θ

ds
P ′

dBin

I

×

r̂

(b)

P

ds

r̂

(c)

ds

P ′r̂

Figure 30.1 (a) The magnetic field dB at point P due to the current I through a length ele-
ment ds is given by the Biot–Savart law. The direction of the field is out of the page at P and into
the page at P". (b) The cross product points out of the page when points toward P. 
(c) The cross product points into the page when points toward P".r̂d s ! r̂

r̂d s ! r̂
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These observations are summarized in the mathematical formula known today as
the Biot–Savart law:

(30.1)

where #0 is a constant called the permeability of free space:

(30.2)

It is important to note that the field d B in Equation 30.1 is the field created by
the current in only a small length element ds of the conductor. To find the total
magnetic field B created at some point by a current of finite size, we must sum up
contributions from all current elements Ids that make up the current. That is, we
must evaluate B by integrating Equation 30.1:

(30.3)

where the integral is taken over the entire current distribution. This expression
must be handled with special care because the integrand is a cross product and
therefore a vector quantity. We shall see one case of such an integration in Exam-
ple 30.1.

Although we developed the Biot–Savart law for a current-carrying wire, it is
also valid for a current consisting of charges flowing through space, such as the
electron beam in a television set. In that case, ds represents the length of a small
segment of space in which the charges flow.

Interesting similarities exist between the Biot–Savart law for magnetism 
and Coulomb’s law for electrostatics. The current element produces a magnetic
field, whereas a point charge produces an electric field. Furthermore, the magni-
tude of the magnetic field varies as the inverse square of the distance from the 
current element, as does the electric field due to a point charge. However, the 
directions of the two fields are quite different. The electric field created by a 
point charge is radial, but the magnetic field created by a current element is per-
pendicular to both the length element ds and the unit vector , as described by
the cross product in Equation 30.1. Hence, if the conductor lies in the plane of
the page, as shown in Figure 30.1, dB points out of the page at P and into the page
at P ".

Another difference between electric and magnetic fields is related to the
source of the field. An electric field is established by an isolated electric charge.
The Biot–Savart law gives the magnetic field of an isolated current element at
some point, but such an isolated current element cannot exist the way an isolated
electric charge can. A current element must be part of an extended current distrib-
ution because we must have a complete circuit in order for charges to flow. Thus,
the Biot–Savart law is only the first step in a calculation of a magnetic field; it must
be followed by an integration over the current distribution.

In the examples that follow, it is important to recognize that the magnetic
field determined in these calculations is the field created by a current-carry-
ing conductor. This field is not to be confused with any additional fields that may
be present outside the conductor due to other sources, such as a bar magnet
placed nearby.

r̂

B $
#0I
4%

 ! ds ! r̂
r 2

#0 $ 4% & 10'7 T (m/A

d B $
#0

4%
 
I ds ! r̂

r 2 Biot–Savart law

Permeability of free space
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Magnetic Field Surrounding a Thin, Straight ConductorEXAMPLE 30.1
an expression in which the only variable is !. We can now ob-
tain the magnitude of the magnetic field at point P by inte-
grating Equation (4) over all elements, subtending angles
ranging from !1 to !2 as defined in Figure 30.2b:

(30.4)

We can use this result to find the magnetic field of any
straight current-carrying wire if we know the geometry and
hence the angles !1 and !2 . Consider the special case of an
infinitely long, straight wire. If we let the wire in Figure 30.2b
become infinitely long, we see that !1 $ 0 and !2 $ % for
length elements ranging between positions x $ ' ) and x $
* ). Because (cos !1 ' cos !2) $ (cos 0 ' cos %) $ 2, Equa-
tion 30.4 becomes

(30.5)

Equations 30.4 and 30.5 both show that the magnitude of

B $
#0I
2%a

B $
#0I
4%a

 !!2

!1

 sin ! d! $
#0I
4%a

 (cos !1 ' cos !2)

Consider a thin, straight wire carrying a constant current I
and placed along the x axis as shown in Figure 30.2. Deter-
mine the magnitude and direction of the magnetic field at
point P due to this current.

Solution From the Biot–Savart law, we expect that the
magnitude of the field is proportional to the current in the
wire and decreases as the distance a from the wire to point P
increases. We start by considering a length element ds lo-
cated a distance r from P. The direction of the magnetic field
at point P due to the current in this element is out of the
page because ds ! is out of the page. In fact, since all of
the current elements I ds lie in the plane of the page, they all
produce a magnetic field directed out of the page at point P.
Thus, we have the direction of the magnetic field at point P,
and we need only find the magnitude.

Taking the origin at O and letting point P be along the
positive y axis, with k being a unit vector pointing out of the
page, we see that

where, from Chapter 3, represents the magnitude of
ds ! Because is a unit vector, the unit of the cross prod-
uct is simply the unit of ds, which is length. Substitution into
Equation 30.1 gives

Because all current elements produce a magnetic field in the
k direction, let us restrict our attention to the magnitude of
the field due to one current element, which is

(1)

To integrate this expression, we must relate the variables !, x,
and r. One approach is to express x and r in terms of !. From
the geometry in Figure 30.2a, we have

(2)

Because tan from the right triangle in Figure
30.2a (the negative sign is necessary because ds is located at a
negative value of x), we have

Taking the derivative of this expression gives 

(3)

Substitution of Equations (2) and (3) into Equation (1) gives

(4) dB $
#0I
4%

 
a csc2 ! sin ! d!

a2 csc2 !
$

#0I
4%a

 sin ! d!

dx $ a csc2 ! d!

x $ 'a cot !

! $ a/('x)

r $
a

sin !
$ a csc !

dB $
#0I
4%

 
dx sin !

r 2

dB $ (dB)k $
#0 I
4%

 
dx sin !

r 2  k

r̂r̂.
"ds ! r̂ "

ds ! r̂ $ k " ds ! r̂ " $ k(dx sin !)

r̂

(a)

O
x

ds
I

θ
r̂

r a

Pds  = dx

x

(b)

θ1

P

θ2θ
θ

y

Figure 30.2 (a) A thin, straight wire carrying a current I. The
magnetic field at point P due to the current in each element ds of
the wire is out of the page, so the net field at point P is also out of
the page. (b) The angles !1 and !2 , used for determining the net
field. When the wire is infinitely long, !1 $ 0 and !2 $ 180°.
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The result of Example 30.1 is important because a current in the form of a
long, straight wire occurs often. Figure 30.3 is a three-dimensional view of the
magnetic field surrounding a long, straight current-carrying wire. Because of the
symmetry of the wire, the magnetic field lines are circles concentric with the wire
and lie in planes perpendicular to the wire. The magnitude of B is constant on any
circle of radius a and is given by Equation 30.5. A convenient rule for determining
the direction of B is to grasp the wire with the right hand, positioning the thumb
along the direction of the current. The four fingers wrap in the direction of the
magnetic field.

the magnetic field is proportional to the current and de-
creases with increasing distance from the wire, as we ex-
pected. Notice that Equation 30.5 has the same mathematical
form as the expression for the magnitude of the electric field
due to a long charged wire (see Eq. 24.7).

Exercise Calculate the magnitude of the magnetic field 
4.0 cm from an infinitely long, straight wire carrying a cur-
rent of 5.0 A.

Answer 2.5 & 10'5 T.

a

I

Figure 30.3 The right-hand rule for determining the di-
rection of the magnetic field surrounding a long, straight
wire carrying a current. Note that the magnetic field lines
form circles around the wire.

Magnetic Field Due to a Curved Wire SegmentEXAMPLE 30.2
Calculate the magnetic field at point O for the current-carry-
ing wire segment shown in Figure 30.4. The wire consists of
two straight portions and a circular arc of radius R , which
subtends an angle !. The arrowheads on the wire indicate the
direction of the current.

Solution The magnetic field at O due to the current in
the straight segments AA" and CC" is zero because ds is paral-
lel to along these paths; this means that ds ! Each
length element ds along path AC is at the same distance R
from O, and the current in each contributes a field element
dB directed into the page at O. Furthermore, at every point
on AC , ds is perpendicular to hence, Using
this information and Equation 30.1, we can find the magni-
tude of the field at O due to the current in an element of
length ds:

dB $
#0 I
4%

 
ds
R2

" ds ! r̂ " $ ds.r̂;

r̂ $ 0.r̂
ds

θO

A

r̂

C

I
C ′

A ′

R

R

Figure 30.4 The magnetic field at O due to the current in the
curved segment AC is into the page. The contribution to the field at
O due to the current in the two straight segments is zero.
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Magnetic Field on the Axis of a Circular Current LoopEXAMPLE 30.3

(at x $ 0) (30.8)

which is consistent with the result of the exercise in Example
30.2.

It is also interesting to determine the behavior of the mag-
netic field far from the loop—that is, when x is much greater
than R . In this case, we can neglect the term R 2 in the de-
nominator of Equation 30.7 and obtain

(for (30.9)

Because the magnitude of the magnetic moment # of the
loop is defined as the product of current and loop area (see
Eq. 29.10)—# $ I(%R 2) for our circular loop—we can ex-
press Equation 30.9 as

(30.10)

This result is similar in form to the expression for the electric
field due to an electric dipole, (see ExampleE $ ke(2qa/y3)

B #
#0

2%
 

#

x3

x W R)B #
#0IR2

2x3

B $
#0I
2R

Consider a circular wire loop of radius R located in the yz
plane and carrying a steady current I, as shown in Figure
30.5. Calculate the magnetic field at an axial point P a dis-
tance x from the center of the loop.

Solution In this situation, note that every length element
ds is perpendicular to the vector at the location of the ele-
ment. Thus, for any element, sin 90° $ ds.
Furthermore, all length elements around the loop are at the
same distance r from P, where Hence, the mag-
nitude of dB due to the current in any length element ds is

The direction of dB is perpendicular to the plane formed by
and ds, as shown in Figure 30.5. We can resolve this vector

into a component dBx along the x axis and a component dBy
perpendicular to the x axis. When the components dBy are
summed over all elements around the loop, the resultant
component is zero. That is, by symmetry the current in any
element on one side of the loop sets up a perpendicular com-
ponent of dB that cancels the perpendicular component set
up by the current through the element diametrically opposite
it. Therefore, the resultant field at P must be along the x axis and
we can find it by integrating the components 
That is, where

and we must take the integral over the entire loop. Because !,
x, and R are constants for all elements of the loop and be-
cause cos we obtain

(30.7)

where we have used the fact that (the circumfer-
ence of the loop).

To find the magnetic field at the center of the loop, we set
x $ 0 in Equation 30.7. At this special point, therefore,

ds $ 2%R$

#0IR2

2(x2 * R2)3/2Bx $
#0IR

4%(x2 * R2)3/2  $ds $

! $ R /(x2 * R2)1/2,

Bx $ $ dB cos ! $
#0I
4%

 $ 
ds cos !
x2 * R2

B $ Bx i,
dBx $ dB cos !.

r̂

dB $
#0I
4%

 
" ds ! r̂ "

r 2 $
#0I
4%

 
ds

(x2 * R2)

r 2 $ x2 * R2.

ds ! r̂ $ (ds)(1)
r̂

Because I and R are constants, we can easily integrate this ex-
pression over the curved path AC :

(30.6)

where we have used the fact that with ! measured ins $ R!

#0I
4%R

 !B $
#0I

4%R2  ! ds $
#0I

4%R2  s $

radians. The direction of B is into the page at O because
is into the page for every length element.

Exercise A circular wire loop of radius R carries a current I.
What is the magnitude of the magnetic field at its center?

Answer #0I/2R .

ds ! r̂

O

R

θ

ds

y

z

I

I

r̂

r

x
θ

P
xdBx

dBy
dB

Figure 30.5 Geometry for calculating the magnetic field at a
point P lying on the axis of a current loop. By symmetry, the total
field B is along this axis.
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(a) (b) (c)

S

N

I
S

N

Figure 30.6 (a) Magnetic field lines surrounding a current loop. (b) Magnetic field lines surrounding a current loop, displayed with iron
filings (Education Development Center, Newton, MA). (c) Magnetic field lines surrounding a bar magnet. Note the similarity between this line
pattern and that of a current loop.

23.6), where is the electric dipole moment as de-
fined in Equation 26.16.

The pattern of the magnetic field lines for a circular cur-
rent loop is shown in Figure 30.6a. For clarity, the lines are

2qa $ p drawn for only one plane—one that contains the axis of the
loop. Note that the field-line pattern is axially symmetric and
looks like the pattern around a bar magnet, shown in Figure
30.6c.

2

1

B2

!

a

I1

I2

F1

a

THE MAGNETIC FORCE BETWEEN TWO
PARALLEL CONDUCTORS

In Chapter 29 we described the magnetic force that acts on a current-carrying con-
ductor placed in an external magnetic field. Because a current in a conductor sets
up its own magnetic field, it is easy to understand that two current-carrying con-
ductors exert magnetic forces on each other. As we shall see, such forces can be
used as the basis for defining the ampere and the coulomb.

Consider two long, straight, parallel wires separated by a distance a and carry-
ing currents I1 and I2 in the same direction, as illustrated in Figure 30.7. We can
determine the force exerted on one wire due to the magnetic field set up by the
other wire. Wire 2, which carries a current I2 , creates a magnetic field B2 at the lo-
cation of wire 1. The direction of B2 is perpendicular to wire 1, as shown in Figure
30.7. According to Equation 29.3, the magnetic force on a length " of wire 1 is

" Because " is perpendicular to B2 in this situation, the magnitude
of F1 is Because the magnitude of B2 is given by Equation 30.5, we see
that

(30.11)

The direction of F1 is toward wire 2 because " ! B2 is in that direction. If the field
set up at wire 2 by wire 1 is calculated, the force F2 acting on wire 2 is found to be
equal in magnitude and opposite in direction to F1 . This is what we expect be-

F1 $ I1!B2 $ I1!% #0I2

2%a & $
#0I1I2

2%a
 !

F1 $ I1!B 2 .
! B2.F1 $ I1

30.2

Figure 30.7 Two parallel wires
that each carry a steady current ex-
ert a force on each other. The field
B2 due to the current in wire 2 ex-
erts a force of magnitude

on wire 1. The force is
attractive if the currents are paral-
lel (as shown) and repulsive if the
currents are antiparallel.

F 1 $ I 1 !B2 



In deriving Equations 30.11 and 30.12, we assumed that both wires are long
compared with their separation distance. In fact, only one wire needs to be long.
The equations accurately describe the forces exerted on each other by a long wire
and a straight parallel wire of limited length .

For and in Figure 30.7, which is true: (a) (b) or 
(c) 

A loose spiral spring is hung from the ceiling, and a large current is sent through it. Do the
coils move closer together or farther apart?

Quick Quiz 30.2

F1 $ F2 ?
F1 $ F2/3,F1 $ 3F2 ,I2 $ 6 AI1 $ 2 A

Quick Quiz 30.1

!
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cause Newton’s third law must be obeyed.1 When the currents are in opposite di-
rections (that is, when one of the currents is reversed in Fig. 30.7), the forces are
reversed and the wires repel each other. Hence, we find that parallel conductors
carrying currents in the same direction attract each other, and parallel con-
ductors carrying currents in opposite directions repel each other.

Because the magnitudes of the forces are the same on both wires, we denote
the magnitude of the magnetic force between the wires as simply FB . We can
rewrite this magnitude in terms of the force per unit length:

(30.12)

The force between two parallel wires is used to define the ampere as follows:

FB

!
$

#0I1I2

2%a

When the magnitude of the force per unit length between two long, parallel
wires that carry identical currents and are separated by 1 m is 2 & 10'7 N/m,
the current in each wire is defined to be 1 A.

The value 2 & 10'7 N/m is obtained from Equation 30.12 with and
m. Because this definition is based on a force, a mechanical measurement

can be used to standardize the ampere. For instance, the National Institute of
Standards and Technology uses an instrument called a current balance for primary
current measurements. The results are then used to standardize other, more con-
ventional instruments, such as ammeters.

The SI unit of charge, the coulomb, is defined in terms of the ampere:

a $ 1
I1 $ I2 $ 1 A

When a conductor carries a steady current of 1 A, the quantity of charge that
flows through a cross-section of the conductor in 1 s is 1 C.

1 Although the total force exerted on wire 1 is equal in magnitude and opposite in direction to the to-
tal force exerted on wire 2, Newton’s third law does not apply when one considers two small elements
of the wires that are not exactly opposite each other. This apparent violation of Newton’s third law and
of the law of conservation of momentum is described in more advanced treatments on electricity and
magnetism.

Definition of the ampere

Definition of the coulomb

web
Visit http://physics.nist.gov/cuu/Units/
ampere.html for more information.
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12.4

AMPÈRE’S LAW
Oersted’s 1819 discovery about deflected compass needles demonstrates that a
current-carrying conductor produces a magnetic field. Figure 30.8a shows how this
effect can be demonstrated in the classroom. Several compass needles are placed
in a horizontal plane near a long vertical wire. When no current is present in the
wire, all the needles point in the same direction (that of the Earth’s magnetic
field), as expected. When the wire carries a strong, steady current, the needles all
deflect in a direction tangent to the circle, as shown in Figure 30.8b. These obser-
vations demonstrate that the direction of the magnetic field produced by the cur-
rent in the wire is consistent with the right-hand rule described in Figure 30.3.
When the current is reversed, the needles in Figure 30.8b also reverse.

Because the compass needles point in the direction of B, we conclude that the
lines of B form circles around the wire, as discussed in the preceding section. By
symmetry, the magnitude of B is the same everywhere on a circular path centered
on the wire and lying in a plane perpendicular to the wire. By varying the current
and distance a from the wire, we find that B is proportional to the current and in-
versely proportional to the distance from the wire, as Equation 30.5 describes.

Now let us evaluate the product B " ds for a small length element ds on the cir-
cular path defined by the compass needles, and sum the products for all elements
over the closed circular path. Along this path, the vectors ds and B are parallel at
each point (see Fig. 30.8b), so B " ds $ B ds. Furthermore, the magnitude of B is
constant on this circle and is given by Equation 30.5. Therefore, the sum of the
products B ds over the closed path, which is equivalent to the line integral of
B " ds, is

where is the circumference of the circular path. Although this result
was calculated for the special case of a circular path surrounding a wire, it holds

$ds $ 2%r

$B " ds $ B $ds $
#0I
2%r

 (2%r) $ #0I

30.3

Andre-Marie Ampère
(1775– 1836) Ampère, a Frenchman,
is credited with the discovery of elec-
tromagnetism — the relationship be-
tween electric currents and magnetic
fields. Ampère’s genius, particularly in
mathematics, became evident by the
time he was 12 years old; his personal
life, however, was filled with tragedy.
His father, a wealthy city official, was
guillotined during the French Revolu-
tion, and his wife died young, in 1803.
Ampère died at the age of 61 of pneu-
monia. His judgment of his life is clear
from the epitaph he chose for his
gravestone: Tandem Felix (Happy at
Last). (AIP Emilio Segre Visual Archive)

(a) (b)

I  =  0

I

ds

B

Figure 30.8 (a) When no current is present in the wire, all compass needles point in the same
direction (toward the Earth’s north pole). (b) When the wire carries a strong current, the com-
pass needles deflect in a direction tangent to the circle, which is the direction of the magnetic
field created by the current. (c) Circular magnetic field lines surrounding a current-carrying con-
ductor, displayed with iron filings.

(c)
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for a closed path of any shape surrounding a current that exists in an unbroken cir-
cuit. The general case, known as Ampère’s law, can be stated as follows:

The line integral of B "ds around any closed path equals #0I, where I is the total
continuous current passing through any surface bounded by the closed path.

(30.13)$B " ds $ #0IAmpère’s law

Ampère’s law describes the creation of magnetic fields by all continuous cur-
rent configurations, but at our mathematical level it is useful only for calculating
the magnetic field of current configurations having a high degree of symmetry. Its
use is similar to that of Gauss’s law in calculating electric fields for highly symmet-
ric charge distributions.

Rank the magnitudes of for the closed paths in Figure 30.9, from least to greatest.$B " ds

Quick Quiz 30.3

Rank the magnitudes of for the closed paths in Figure 30.10, from least to greatest.$B " ds

Quick Quiz 30.4

×

1 A
5 A

b

a

d

c

2 A

a

b

c

d

Figure 30.9 Four closed paths around three current-
carrying wires.

Figure 30.10 Several closed paths near a single 
current-carrying wire.
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The Magnetic Field Created by a Long Current-Carrying WireEXAMPLE 30.4
by circle 2 must equal the ratio of the area %r 2 enclosed by
circle 2 to the cross-sectional area %R 2 of the wire:2

Following the same procedure as for circle 1, we apply Am-
père’s law to circle 2:

(for r + R) (30.15)

This result is similar in form to the expression for the electric
field inside a uniformly charged sphere (see Example 24.5).
The magnitude of the magnetic field versus r for this configu-
ration is plotted in Figure 30.12. Note that inside the wire, 
B : 0 as r : 0. Note also that Equations 30.14 and 30.15 give
the same value of the magnetic field at r $ R , demonstrating
that the magnetic field is continuous at the surface of the
wire.

B $ % #0 I0

2%R 2 &r

$B " ds $ B(2%r) $ #0 I $ #0% r 2

R 2  I0&

 I $
r 2

R 2  I0

I
I0

$
%r 2

%R 2

A long, straight wire of radius R carries a steady current I0
that is uniformly distributed through the cross-section of the
wire (Fig. 30.11). Calculate the magnetic field a distance r
from the center of the wire in the regions and 

Solution For the case, we should get the same result
we obtained in Example 30.1, in which we applied the
Biot–Savart law to the same situation. Let us choose for our
path of integration circle 1 in Figure 30.11. From symmetry,
B must be constant in magnitude and parallel to ds at every
point on this circle. Because the total current passing
through the plane of the circle is I0, Ampère’s law gives

(for r , R) (30.14)

which is identical in form to Equation 30.5. Note how much
easier it is to use Ampère’s law than to use the Biot–Savart
law. This is often the case in highly symmetric situations.

Now consider the interior of the wire, where r + R. Here
the current I passing through the plane of circle 2 is less than
the total current I0 . Because the current is uniform over the
cross-section of the wire, the fraction of the current enclosed

B $
#0 I0

2%r

$B " ds $ B$ds $ B(2%r) $ #0 I0

r , R

r + R.r , R

2 Another way to look at this problem is to see that the current enclosed by circle 2 must equal the
product of the current density and the area %r 2 of this circle.J $ I0/%R 2

2
R

r

1 I0

ds R
r

B ∝ 1/r

B ∝ r

B

Figure 30.11 A long, straight wire of radius R carrying a steady
current I0 uniformly distributed across the cross-section of the wire.
The magnetic field at any point can be calculated from Ampère’s law
using a circular path of radius r, concentric with the wire.

Figure 30.12 Magnitude of the magnetic field versus r for the
wire shown in Figure 30.11. The field is proportional to r inside the
wire and varies as 1/r outside the wire.

The Magnetic Field Created by a ToroidEXAMPLE 30.5
ing N closely spaced turns of wire, calculate the magnetic
field in the region occupied by the torus, a distance r from
the center.

A device called a toroid (Fig. 30.13) is often used to create an
almost uniform magnetic field in some enclosed area. The
device consists of a conducting wire wrapped around a ring
(a torus) made of a nonconducting material. For a toroid hav-
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Magnetic Field Created by an Infinite Current SheetEXAMPLE 30.6
the electric field due to an infinite sheet of charge does not
depend on distance from the sheet. Thus, we might expect a
similar result here for the magnetic field.

To evaluate the line integral in Ampère’s law, let us take a
rectangular path through the sheet, as shown in Figure 30.14.
The rectangle has dimensions ! and w , with the sides of
length ! parallel to the sheet surface. The net current passing
through the plane of the rectangle is Js!. We apply Ampère’s
law over the rectangle and note that the two sides of length w
do not contribute to the line integral because the component
of B along the direction of these paths is zero. By symmetry,
we can argue that the magnetic field is constant over the
sides of length ! because every point on the infinitely large
sheet is equivalent, and hence the field should not vary from
point to point. The only choices of field direction that are
reasonable for the symmetry are perpendicular or parallel to
the sheet, and a perpendicular field would pass through the
current, which is inconsistent with the Biot–Savart law. As-
suming a field that is constant in magnitude and parallel to
the plane of the sheet, we obtain

This result shows that the magnetic field is independent of distance
from the current sheet, as we suspected.

B $ #0 
Js

2

 2B! $ #0 Js ! 

$B " ds $ #0 I $ #0 Js !

So far we have imagined currents through wires of small
cross-section. Let us now consider an example in which a cur-
rent exists in an extended object. A thin, infinitely large sheet
lying in the yz plane carries a current of linear current density
Js . The current is in the y direction, and Js represents the cur-
rent per unit length measured along the z axis. Find the mag-
netic field near the sheet.

Solution This situation brings to mind similar calculations
involving Gauss’s law (see Example 24.8). You may recall that

Solution To calculate this field, we must evaluate 
over the circle of radius r in Figure 30.13. By symmetry, we
see that the magnitude of the field is constant on this circle
and tangent to it, so Furthermore, note thatB " ds $ B ds.

$B " ds the circular closed path surrounds N loops of wire, each of
which carries a current I. Therefore, the right side of Equa-
tion 30.13 is #0NI in this case.

Ampère’s law applied to the circle gives

(30.16)

This result shows that B varies as 1/r and hence is nonuni-
form in the region occupied by the torus. However, if r is very
large compared with the cross-sectional radius of the torus,
then the field is approximately uniform inside the torus.

For an ideal toroid, in which the turns are closely spaced,
the external magnetic field is zero. This can be seen by not-
ing that the net current passing through any circular path ly-
ing outside the toroid (including the region of the “hole in
the doughnut”) is zero. Therefore, from Ampère’s law we
find that in the regions exterior to the torus.B $ 0

B $
#0NI
2%r

$B " ds $ B $ds $ B(2%r) $ #0NI

!

w

x

z

Js(out of page)

B

B

B

r

a

ds

I

I

Figure 30.13 A toroid consisting of many turns of wire. If the
turns are closely spaced, the magnetic field in the interior of the
torus (the gold-shaded region) is tangent to the dashed circle and
varies as 1/r. The field outside the toroid is zero. The dimension a is
the cross-sectional radius of the torus.

Figure 30.14 End view of an infinite current sheet lying in the yz
plane, where the current is in the y direction (out of the page). This
view shows the direction of B on both sides of the sheet.
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Is a net force acting on the current loop in Example 30.7? A net torque?

THE MAGNETIC FIELD OF A SOLENOID
A solenoid is a long wire wound in the form of a helix. With this configuration, a
reasonably uniform magnetic field can be produced in the space surrounded by
the turns of wire—which we shall call the interior of the solenoid—when the sole-
noid carries a current. When the turns are closely spaced, each can be approxi-
mated as a circular loop, and the net magnetic field is the vector sum of the fields
resulting from all the turns.

Figure 30.16 shows the magnetic field lines surrounding a loosely wound sole-
noid. Note that the field lines in the interior are nearly parallel to one another, are
uniformly distributed, and are close together, indicating that the field in this space
is uniform and strong. The field lines between current elements on two adjacent
turns tend to cancel each other because the field vectors from the two elements
are in opposite directions. The field at exterior points such as P is weak because
the field due to current elements on the right-hand portion of a turn tends to can-
cel the field due to current elements on the left-hand portion.

30.4

Quick Quiz 30.5

The Magnetic Force on a Current SegmentEXAMPLE 30.7
consider the force exerted by wire 1 on a small segment ds of
wire 2 by using Equation 29.4. This force is given by

where and B is the magnetic field cre-
ated by the current in wire 1 at the position of ds. From Am-
père’s law, the field at a distance x from wire 1 (see Eq.
30.14) is

where the unit vector ' k is used to indicate that the field 
at ds points into the page. Because wire 2 is along the x axis,
ds $ dx i, and we find that

Integrating over the limits x $ a to x $ a * b gives

The force points in the positive y direction, as indicated by
the unit vector j and as shown in Figure 30.15.

Exercise What are the magnitude and direction of the
force exerted on the bottom wire of length b?

Answer The force has the same magnitude as the force on
wire 2 but is directed downward.

#0 I1I2

2%
 ln%1 *

b
a & jFB $

#0 I1I2

2%
 ln x'

a

a*b
 j $

dFB $
#0 I1I2

2%x
 [ i ! (' k)]dx $

#0 I1I2

2%
 
dx
x

 j

B $
#0 I1

2%x
 (' k)

I $ I2dFB $ I ds ! B,

Wire 1 in Figure 30.15 is oriented along the y axis and carries
a steady current I1 . A rectangular loop located to the right of
the wire and in the xy plane carries a current I2 . Find the
magnetic force exerted by wire 1 on the top wire of length b
in the loop, labeled “Wire 2” in the figure.

Solution You may be tempted to use Equation 30.12 to
obtain the force exerted on a small segment of length dx of
wire 2. However, this equation applies only to two parallel
wires and cannot be used here. The correct approach is to

Wire 1 Wire 2
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Figure 30.15

P

Exterior

Interior

Figure 30.16 The magnetic field
lines for a loosely wound solenoid.
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If the turns are closely spaced and the solenoid is of finite length, the mag-
netic field lines are as shown in Figure 30.17a. This field line distribution is similar
to that surrounding a bar magnet (see Fig. 30.17b). Hence, one end of the sole-
noid behaves like the north pole of a magnet, and the opposite end behaves like
the south pole. As the length of the solenoid increases, the interior field becomes
more uniform and the exterior field becomes weaker. An ideal solenoid is ap-
proached when the turns are closely spaced and the length is much greater than
the radius of the turns. In this case, the external field is zero, and the interior field
is uniform over a great volume.

S

N

Figure 30.17 (a) Magnetic field lines for a tightly wound solenoid of finite length, carrying a
steady current. The field in the interior space is nearly uniform and strong. Note that the field
lines resemble those of a bar magnet, meaning that the solenoid effectively has north and south
poles. (b) The magnetic field pattern of a bar magnet, displayed with small iron filings on a sheet
of paper.

3

2

4

1 !

w

B

×
×
×
×
×
×
×
×
×
×
×

Figure 30.18 Cross-sectional view of an ideal solenoid,
where the interior magnetic field is uniform and the ex-
terior field is zero. Ampère’s law applied to the red
dashed path can be used to calculate the magnitude of
the interior field.

A technician studies the scan of a
patient’s head. The scan was ob-
tained using a medical diagnostic
technique known as magnetic reso-
nance imaging (MRI). This instru-
ment makes use of strong magnetic
fields produced by superconduct-
ing solenoids.

(a) (b)
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We can use Ampère’s law to obtain an expression for the interior magnetic
field in an ideal solenoid. Figure 30.18 shows a longitudinal cross-section of part of
such a solenoid carrying a current I. Because the solenoid is ideal, B in the inte-
rior space is uniform and parallel to the axis, and B in the exterior space is zero.
Consider the rectangular path of length ! and width w shown in Figure 30.18. We
can apply Ampère’s law to this path by evaluating the integral of over each
side of the rectangle. The contribution along side 3 is zero because in this
region. The contributions from sides 2 and 4 are both zero because B is perpen-
dicular to ds along these paths. Side 1 gives a contribution B! to the integral be-
cause along this path B is uniform and parallel to ds. The integral over the closed
rectangular path is therefore

The right side of Ampère’s law involves the total current passing through the
area bounded by the path of integration. In this case, the total current through
the rectangular path equals the current through each turn multiplied by the num-
ber of turns. If N is the number of turns in the length !, the total current through
the rectangle is NI. Therefore, Ampère’s law applied to this path gives

(30.17)

where is the number of turns per unit length.
We also could obtain this result by reconsidering the magnetic field of a toroid

(see Example 30.5). If the radius r of the torus in Figure 30.13 containing N turns
is much greater than the toroid’s cross-sectional radius a, a short section of the
toroid approximates a solenoid for which In this limit, Equation 30.16
agrees with Equation 30.17.

Equation 30.17 is valid only for points near the center (that is, far from the
ends) of a very long solenoid. As you might expect, the field near each end is
smaller than the value given by Equation 30.17. At the very end of a long solenoid,
the magnitude of the field is one-half the magnitude at the center.

MAGNETIC FLUX
The flux associated with a magnetic field is defined in a manner similar to that
used to define electric flux (see Eq. 24.3). Consider an element of area dA on an
arbitrarily shaped surface, as shown in Figure 30.19. If the magnetic field at this el-
ement is B, the magnetic flux through the element is where dA is a vector
that is perpendicular to the surface and has a magnitude equal to the area dA.
Hence, the total magnetic flux -B through the surface is

(30.18)-B ( !B " dA

B " dA,

30.5

n $ N/2%r.

n $ N/!

B $ #0 
N
!

 I $ #0nI

$B " ds $ B! $ #0NI

$B " ds $ !
path 1

B " ds $ B !
path 1

ds $ B!

B $ 0
B " ds

Magnetic field inside a solenoid

Definition of magnetic flux

web
For a more detailed discussion of the
magnetic field along the axis of a solenoid,
visit www.saunderscollege.com/physics/

12.5

QuickLab
Wrap a few turns of wire around a
compass, essentially putting the com-
pass inside a solenoid. Hold the ends
of the wire to the two terminals of a
flashlight battery. What happens to
the compass? Is the effect as strong
when the compass is outside the turns
of wire?
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Consider the special case of a plane of area A in a uniform field B that makes
an angle ! with dA. The magnetic flux through the plane in this case is

(30.19)

If the magnetic field is parallel to the plane, as in Figure 30.20a, then ! $ 90° and
the flux is zero. If the field is perpendicular to the plane, as in Figure 30.20b, then
! $ 0 and the flux is BA (the maximum value).

The unit of flux is the which is defined as a weber (Wb); 1 
1 T (m2.

Wb $T(m2,

-B $ BA cos !

Magnetic Flux Through a Rectangular LoopEXAMPLE 30.8

The factor 1/r indicates that the field varies over the loop,
and Figure 30.21 shows that the field is directed into the
page. Because B is parallel to dA at any point within the loop,
the magnetic flux through an area element dA is

(Because B is not uniform but depends on r, it cannot be re-
moved from the integral.)

To integrate, we first express the area element (the tan re-
gion in Fig. 30.21) as Because r is now the only
variable in the integral, we have

Exercise Apply the series expansion formula for ln(1 * x)
(see Appendix B.5) to this equation to show that it gives a
reasonable result when the loop is far from the wire relative
to the loop dimensions (in other words, when 

Answer -B : 0.

c W a).

#0 Ib
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 ln%1 *
a
c & $

#0 Ib
2%

 ln% a * c
c & $

-B $
#0 Ib
2%

 !a*c

c
 
dr
r

$
#0 Ib
2%

 ln r '
c

a*c

dA $ b dr.

-B $ !B dA $ ! #0 I
2%r

 dA

B $
#0 I
2%r

A rectangular loop of width a and length b is located near a
long wire carrying a current I (Fig. 30.21). The distance be-
tween the wire and the closest side of the loop is c . The wire
is parallel to the long side of the loop. Find the total mag-
netic flux through the loop due to the current in the wire.

Solution From Equation 30.14, we know that the magni-
tude of the magnetic field created by the wire at a distance r
from the wire is

Figure 30.19 The magnetic flux
through an area element dA is

cos !, where dA is a
vector perpendicular to the sur-
face.

B " d A $ BdA

B

d A θ

(a) (b)

B

dA

B

dA

Figure 30.20 Magnetic flux through a plane lying in a magnetic field. (a) The flux through
the plane is zero when the magnetic field is parallel to the plane surface. (b) The flux through
the plane is a maximum when the magnetic field is perpendicular to the plane.

b
rI

c a

dr
× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

Figure 30.21 The magnetic field due to the wire carrying a cur-
rent I is not uniform over the rectangular loop.
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This statement is based on the experimental fact, mentioned in the opening of
Chapter 29, that isolated magnetic poles (monopoles) have never been de-
tected and perhaps do not exist. Nonetheless, scientists continue the search be-

GAUSS’S LAW IN MAGNETISM
In Chapter 24 we found that the electric flux through a closed surface surround-
ing a net charge is proportional to that charge (Gauss’s law). In other words, the
number of electric field lines leaving the surface depends only on the net charge
within it. This property is based on the fact that electric field lines originate and
terminate on electric charges.

The situation is quite different for magnetic fields, which are continuous and
form closed loops. In other words, magnetic field lines do not begin or end at any
point—as illustrated by the magnetic field lines of the bar magnet in Figure 30.22.
Note that for any closed surface, such as the one outlined by the dashed red line
in Figure 30.22, the number of lines entering the surface equals the number leav-
ing the surface; thus, the net magnetic flux is zero. In contrast, for a closed surface
surrounding one charge of an electric dipole (Fig. 30.23), the net electric flux is
not zero.

Gauss’s law in magnetism states that

30.6

the net magnetic flux through any closed surface is always zero:

(30.20)$B " dA $ 0 Gauss’s law for magnetism

12.5

N

S

–

+

Figure 30.22 The magnetic field
lines of a bar magnet form closed
loops. Note that the net magnetic
flux through the closed surface
(dashed red line) surrounding one
of the poles (or any other closed
surface) is zero.

Figure 30.23 The electric field
lines surrounding an electric di-
pole begin on the positive charge
and terminate on the negative
charge. The electric flux through a
closed surface surrounding one of
the charges is not zero.
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cause certain theories that are otherwise successful in explaining fundamental
physical behavior suggest the possible existence of monopoles.

DISPLACEMENT CURRENT AND THE GENERAL
FORM OF AMPÈRE’S LAW

We have seen that charges in motion produce magnetic fields. When a current-
carrying conductor has high symmetry, we can use Ampère’s law to calculate the mag-
netic field it creates. In Equation 30.13, the line integral is over any
closed path through which the conduction current passes, and the conduction cur-
rent is defined by the expression (In this section we use the term conduc-
tion current to refer to the current carried by the wire, to distinguish it from a new type
of current that we shall introduce shortly.) We now show that Ampère’s law in this
form is valid only if any electric fields present are constant in time. Maxwell
recognized this limitation and modified Ampère’s law to include time-varying electric
fields.

We can understand the problem by considering a capacitor that is being
charged as illustrated in Figure 30.24. When a conduction current is present, the
charge on the positive plate changes but no conduction current passes across the gap be-
tween the plates. Now consider the two surfaces S1 and S2 in Figure 30.24, bounded
by the same path P. Ampère’s law states that around this path must equal
#0I, where I is the total current through any surface bounded by the path P.

When the path P is considered as bounding S1 , is #0I because the con-
duction current passes through S1 . When the path is considered as bounding S2 ,
however, because no conduction current passes through S2 . Thus, we ar-
rive at a contradictory situation that arises from the discontinuity of the current! Max-
well solved this problem by postulating an additional term on the right side of Equa-
tion 30.13, which includes a factor called the displacement current Id , defined as3

(30.21)

where .0 is the permittivity of free space (see Section 23.3) and is the
electric flux (see Eq. 24.3).

As the capacitor is being charged (or discharged), the changing electric field
between the plates may be considered equivalent to a current that acts as a contin-
uation of the conduction current in the wire. When the expression for the dis-
placement current given by Equation 30.21 is added to the conduction current on
the right side of Ampère’s law, the difficulty represented in Figure 30.24 is re-
solved. No matter which surface bounded by the path P is chosen, either conduc-
tion current or displacement current passes through it. With this new term Id , 
we can express the general form of Ampère’s law (sometimes called the
Ampère–Maxwell law) as4

(30.22)$B " d s $ #0(I * Id) $ #0I * #0.0 
d-E

dt

-E $ !E " dA

Id ( .0 
d-E

dt

$B " ds $ 0

$B " ds

$B " ds

I $ dq/dt.

$B " ds $ #0I,

30.7

Ampère–Maxwell law

3 Displacement in this context does not have the meaning it does in Chapter 2. Despite the inaccurate
implications, the word is historically entrenched in the language of physics, so we continue to use it.
4 Strictly speaking, this expression is valid only in a vacuum. If a magnetic material is present, one must
change #0 and .0 on the right-hand side of Equation 30.22 to the permeability #m and permittivity .
characteristic of the material. Alternatively, one may include a magnetizing current Im on the righthand
side of Equation 30.22 to make Ampère’s law fully general. On a microscopic scale, Im is as real as I.

Displacement current

12.9

Path P

A

–Q

S1

S2

Q

I

Figure 30.24 Two surfaces S1
and S2 near the plate of a capacitor
are bounded by the same path P.
The conduction current in the 
wire passes only through S1 . 
This leads to a contradiction in
Ampère’s law that is resolved 
only if one postulates a displace-
ment current through S2 .
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We can understand the meaning of this expression by referring to Figure 30.25.
The electric flux through surface S2 is where A is the area of
the capacitor plates and E is the magnitude of the uniform electric field between
the plates. If Q is the charge on the plates at any instant, then (see
Section 26.2). Therefore, the electric flux through S2 is simply

Hence, the displacement current through S2 is

(30.23)

That is, the displacement current through S2 is precisely equal to the conduction
current I through S1 !

By considering surface S2 , we can identify the displacement current as the
source of the magnetic field on the surface boundary. The displacement current
has its physical origin in the time-varying electric field. The central point of this
formalism, then, is that

Id $ .0 
d-E

dt
$

dQ
dt

-E $ EA $
Q
.0

E $ Q /.0A

-E $ !E " dA $ EA,

magnetic fields are produced both by conduction currents and by time-varying
electric fields.

Displacement Current in a CapacitorEXAMPLE 30.9
the capacitor is to find the displacement current:

The displacement current varies sinusoidally with time and
has a maximum value of 4.52 A.

(4.52 A) cos(1.88 & 104t) $

 $ (8.00 & 10'6  F) 
d
dt

 [(30.0 V) sin(1.88 & 104t)]

Id $
dQ
dt

$
d
dt

 (C /V ) $ C 
d
dt

 (/V ) 

Q $ C /VA sinusoidally varying voltage is applied across an 8.00-#F ca-
pacitor. The frequency of the voltage is 3.00 kHz, and the
voltage amplitude is 30.0 V. Find the displacement current
between the plates of the capacitor.

Solution The angular frequency of the source, from Equa-
tion 13.6, is 0 $ 2%f $ 2%(3.00 & 103 Hz) $ 1.88 & 104 s'1.
Hence, the voltage across the capacitor in terms of t is

We can use Equation 30.23 and the fact that the charge on

/V $ /Vmax sin 0t $ (30.0 V) sin(1.88 & 104t)

This result was a remarkable example of theoretical work by Maxwell, and it con-
tributed to major advances in the understanding of electromagnetism.

What is the displacement current for a fully charged 3-#F capacitor?

Quick Quiz 30.6

E–Q

S2
S1

Q

II

Figure 30.25 Because it exists only in the
wires attached to the capacitor plates, the
conduction current passes
through S1 but not through S2 . Only the dis-
placement current passes
through S2 . The two currents must be equal
for continuity.

I d $ .0 d -E /dt

I $ dQ /dt
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Optional Section

MAGNETISM IN MATTER
The magnetic field produced by a current in a coil of wire gives us a hint as to
what causes certain materials to exhibit strong magnetic properties. Earlier we
found that a coil like the one shown in Figure 30.17 has a north pole and a south
pole. In general, any current loop has a magnetic field and thus has a magnetic di-
pole moment, including the atomic-level current loops described in some models
of the atom. Thus, the magnetic moments in a magnetized substance may be de-
scribed as arising from these atomic-level current loops. For the Bohr model of the
atom, these current loops are associated with the movement of electrons around
the nucleus in circular orbits. In addition, a magnetic moment is intrinsic to elec-
trons, protons, neutrons, and other particles; it arises from a property called spin.

The Magnetic Moments of Atoms

It is instructive to begin our discussion with a classical model of the atom in which
electrons move in circular orbits around the much more massive nucleus. In this
model, an orbiting electron constitutes a tiny current loop (because it is a moving
charge), and the magnetic moment of the electron is associated with this orbital mo-
tion. Although this model has many deficiencies, its predictions are in good agree-
ment with the correct theory, which is expressed in terms of quantum physics.

Consider an electron moving with constant speed v in a circular orbit of radius
r about the nucleus, as shown in Figure 30.26. Because the electron travels a dis-
tance of 2%r (the circumference of the circle) in a time T, its orbital speed is

The current I associated with this orbiting electron is its charge e di-
vided by T. Using and we have

The magnetic moment associated with this current loop is where 
is the area enclosed by the orbit. Therefore,

(30.24)

Because the magnitude of the orbital angular momentum of the electron is
(Eq. 11.16 with 1 $ 90°), the magnetic moment can be written as

(30.25)

This result demonstrates that the magnetic moment of the electron is propor-
tional to its orbital angular momentum. Note that because the electron is nega-
tively charged, the vectors # and L point in opposite directions. Both vectors are
perpendicular to the plane of the orbit, as indicated in Figure 30.26.

A fundamental outcome of quantum physics is that orbital angular momen-
tum is quantized and is equal to multiples of where
h is Planck’s constant. The smallest nonzero value of the electron’s magnetic mo-
ment resulting from its orbital motion is

(30.26)

We shall see in Chapter 42 how expressions such as Equation 30.26 arise.
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Orbital magnetic moment

Angular momentum is quantized

r

µ

L

Figure 30.26 An electron mov-
ing in a circular orbit of radius r
has an angular momentum L in
one direction and a magnetic mo-
ment # in the opposite direction.
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Because all substances contain electrons, you may wonder why not all sub-
stances are magnetic. The main reason is that in most substances, the magnetic
moment of one electron in an atom is canceled by that of another electron orbit-
ing in the opposite direction. The net result is that, for most materials, the mag-
netic effect produced by the orbital motion of the electrons is either zero or
very small.

In addition to its orbital magnetic moment, an electron has an intrinsic prop-
erty called spin that also contributes to its magnetic moment. In this regard, the
electron can be viewed as spinning about its axis while it orbits the nucleus, as
shown in Figure 30.27. (Warning: This classical description should not be taken lit-
erally because spin arises from relativistic dynamics that must be incorporated into
a quantum-mechanical analysis.) The magnitude of the angular momentum S as-
sociated with spin is of the same order of magnitude as the angular momentum L
due to the orbital motion. The magnitude of the spin angular momentum pre-
dicted by quantum theory is

The magnetic moment characteristically associated with the spin of an electron has
the value

(30.27)

This combination of constants is called the Bohr magneton:

(30.28)

Thus, atomic magnetic moments can be expressed as multiples of the Bohr mag-
neton. (Note that 1 J/T $ 1 A ( m2.)

In atoms containing many electrons, the electrons usually pair up with their
spins opposite each other; thus, the spin magnetic moments cancel. However,
atoms containing an odd number of electrons must have at least one unpaired
electron and therefore some spin magnetic moment. The total magnetic moment
of an atom is the vector sum of the orbital and spin magnetic moments, and a few
examples are given in Table 30.1. Note that helium and neon have zero moments
because their individual spin and orbital moments cancel.

The nucleus of an atom also has a magnetic moment associated with its con-
stituent protons and neutrons. However, the magnetic moment of a proton or
neutron is much smaller than that of an electron and can usually be neglected. We
can understand this by inspecting Equation 30.28 and replacing the mass of the
electron with the mass of a proton or a neutron. Because the masses of the proton
and neutron are much greater than that of the electron, their magnetic moments
are on the order of 103 times smaller than that of the electron.

Magnetization Vector and Magnetic Field Strength

The magnetic state of a substance is described by a quantity called the magnetiza-
tion vector M. The magnitude of this vector is defined as the magnetic mo-
ment per unit volume of the substance. As you might expect, the total magnetic
field B at a point within a substance depends on both the applied (external) field
B0 and the magnetization of the substance. 

To understand the problems involved in measuring the total magnetic field B
in such situations, consider this: Scientists use small probes that utilize the Hall ef-

#B $
e2

2me
$ 9.27 & 10'24 J/T

# spin $
e2

2me

S $
!3
2

 2
Spin angular momentum

Bohr magneton

TABLE 30.1
Magnetic Moments of Some
Atoms and Ions

Atom Magnetic Moment
or Ion (10$24 J/T)

H 9.27
He 0
Ne 0
Ce3* 19.8
Yb3* 37.1

spinµµ

Figure 30.27 Classical model of
a spinning electron. This model
gives an incorrect magnitude for
the magnetic moment, incorrect
quantum numbers, and too many
degrees of freedom.

Magnetization vector M
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fect (see Section 29.6) to measure magnetic fields. What would such a probe read
if it were positioned inside the solenoid mentioned in the QuickLab on page 951
when you inserted the compass? Because the compass is a magnetic material, the
probe would measure a total magnetic field B that is the sum of the solenoid (ex-
ternal) field B0 and the (magnetization) field Bm due to the compass. This tells us
that we need a way to distinguish between magnetic fields originating from cur-
rents and those originating from magnetic materials. Consider a region in which a
magnetic field B0 is produced by a current-carrying conductor. If we now fill that
region with a magnetic substance, the total magnetic field B in the region is

where Bm is the field produced by the magnetic substance. We can
express this contribution in terms of the magnetization vector of the substance as

hence, the total magnetic field in the region becomes

(30.29)

When analyzing magnetic fields that arise from magnetization, it is convenient
to introduce a field quantity, called the magnetic field strength H within the
substance. The magnetic field strength represents the effect of the conduction
currents in wires on a substance. To emphasize the distinction between the field
strength H and the field B, the latter is often called the magnetic flux density or the
magnetic induction. The magnetic field strength is a vector defined by the relation-
ship Thus, Equation 30.29 can be written

(30.30)

The quantities H and M have the same units. In SI units, because M is magnetic
moment per unit volume, the units are (ampere)(meter)2/(meter)3, or amperes
per meter.

To better understand these expressions, consider the torus region of a toroid
that carries a current I. If this region is a vacuum, M $ 0 (because no magnetic
material is present), the total magnetic field is that arising from the current alone,
and Because in the torus region, where n is the num-
ber of turns per unit length of the toroid, or

(30.31)

In this case, the magnetic field B in the torus region is due only to the current in
the windings of the toroid.

If the torus is now made of some substance and the current I is kept constant, H
in the torus region remains unchanged (because it depends on the current only)
and has magnitude nI. The total field B, however, is different from that when the
torus region was a vacuum. From Equation 30.30, we see that part of B arises from
the term #0H associated with the current in the toroid, and part arises from the
term #0M due to the magnetization of the substance of which the torus is made.

Classification of Magnetic Substances

Substances can be classified as belonging to one of three categories, depending on
their magnetic properties. Paramagnetic and ferromagnetic materials are those
made of atoms that have permanent magnetic moments. Diamagnetic materials
are those made of atoms that do not have permanent magnetic moments.

For paramagnetic and diamagnetic substances, the magnetization vector M is
proportional to the magnetic field strength H. For these substances placed in an
external magnetic field, we can write

(30.32)M $ 3H

H $ nI

H $ B0/#0 $ #0nI/#0 ,
B0 $ #0nIB $ B0 $ #0H.

B $ #0(H * M)

H $ B0/#0 $ (B/#0) ' M.

B $ B0 * #0M

Bm $ #0M;

B $ B0 * Bm ,

Oxygen, a paramagnetic substance,
is attracted to a magnetic field. The
liquid oxygen in this photograph is
suspended between the poles of
the magnet.

Magnetic field strength H
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where 3 (Greek letter chi) is a dimensionless factor called the magnetic suscepti-
bility. For paramagnetic substances, 3 is positive and M is in the same direction 
as H. For diamagnetic substances, 3 is negative and M is opposite H. (It is im-
portant to note that this linear relationship between M and H does not apply to
ferromagnetic substances.) The susceptibilities of some substances are given in
Table 30.2.

Substituting Equation 30.32 for M into Equation 30.30 gives

or

(30.33)

where the constant #m is called the magnetic permeability of the substance and
is related to the susceptibility by

(30.34)

Substances may be classified in terms of how their magnetic permeability #m
compares with #0 (the permeability of free space), as follows:

Because 3 is very small for paramagnetic and diamagnetic substances (see Table
30.2), #m is nearly equal to #0 for these substances. For ferromagnetic substances,
however, #m is typically several thousand times greater than #0 (meaning that 3 is
very great for ferromagnetic substances). 

Although Equation 30.33 provides a simple relationship between B and H, we
must interpret it with care when dealing with ferromagnetic substances. As men-
tioned earlier, M is not a linear function of H for ferromagnetic substances. This is
because the value of #m is not only a characteristic of the ferromagnetic substance
but also depends on the previous state of the substance and on the process it un-
derwent as it moved from its previous state to its present one. We shall investigate
this more deeply after the following example.

 Diamagnetic  #m + #0

Paramagnetic  #m 4 #0

#m $ #0(1 * 3)

B $ #mH

B $ #0(H * M) $ #0(H * 3H) $ #0(1 * 3)H

TABLE 30.2 Magnetic Susceptibilities of Some Paramagnetic and
Diamagnetic Substances at 300 K

Paramagnetic Diamagnetic
Substance % Substance %

Aluminum 2.3 & 10'5 Bismuth ' 1.66 & 10'5

Calcium 1.9 & 10'5 Copper ' 9.8 & 10'6

Chromium 2.7 & 10'4 Diamond ' 2.2 & 10'5

Lithium 2.1 & 10'5 Gold ' 3.6 & 10'5

Magnesium 1.2 & 10'5 Lead ' 1.7 & 10'5

Niobium 2.6 & 10'4 Mercury ' 2.9 & 10'5

Oxygen 2.1 & 10'6 Nitrogen ' 5.0 & 10'9

Platinum 2.9 & 10'4 Silver ' 2.6 & 10'5

Tungsten 6.8 & 10'5 Silicon ' 4.2 & 10'6

Magnetic susceptibility 3

Magnetic permeability #m
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A current in a solenoid having air in the interior creates a magnetic field De-
scribe qualitatively what happens to the magnitude of B as (a) aluminum, (b) copper, and
(c) iron are placed in the interior.

Ferromagnetism

A small number of crystalline substances in which the atoms have permanent mag-
netic moments exhibit strong magnetic effects called ferromagnetism. Some ex-
amples of ferromagnetic substances are iron, cobalt, nickel, gadolinium, and dys-
prosium. These substances contain atomic magnetic moments that tend to align
parallel to each other even in a weak external magnetic field. Once the moments
are aligned, the substance remains magnetized after the external field is removed.
This permanent alignment is due to a strong coupling between neighboring mo-
ments, a coupling that can be understood only in quantum-mechanical terms.

All ferromagnetic materials are made up of microscopic regions called do-
mains, regions within which all magnetic moments are aligned. These domains
have volumes of about 10'12 to 10'8 m3 and contain 1017 to 1021 atoms. The
boundaries between the various domains having different orientations are called
domain walls. In an unmagnetized sample, the domains are randomly oriented
so that the net magnetic moment is zero, as shown in Figure 30.28a. When the
sample is placed in an external magnetic field, the magnetic moments of the
atoms tend to align with the field, which results in a magnetized sample, as in Fig-
ure 30.28b. Observations show that domains initially oriented along the external
field grow larger at the expense of the less favorably oriented domains. When the
external field is removed, the sample may retain a net magnetization in the direc-
tion of the original field. At ordinary temperatures, thermal agitation is not suffi-
cient to disrupt this preferred orientation of magnetic moments.

A typical experimental arrangement that is used to measure the magnetic
properties of a ferromagnetic material consists of a torus made of the material
wound with N turns of wire, as shown in Figure 30.29, where the windings are rep-
resented in black and are referred to as the primary coil . This apparatus is some-
times referred to as a Rowland ring. A secondary coil (the red wires in Fig. 30.29)
connected to a galvanometer is used to measure the total magnetic flux through
the torus. The magnetic field B in the torus is measured by increasing the current
in the toroid from zero to I . As the current changes, the magnetic flux through

B $ #0H.

Quick Quiz 30.7

An Iron-Filled ToroidEXAMPLE 30.10

This value of B is 5 000 times the value in the absence of iron!

Exercise Determine the magnitude of the magnetization
vector inside the iron torus.

Answer .M $ 1.5 & 106 A/m

1.88 T $ 5 000%4% & 10'7 
T (m

A &%300 
A ( turns

m & $

B $ #m H $ 5 000#0H A toroid wound with 60.0 turns/m of wire carries a current of
5.00 A. The torus is iron, which has a magnetic permeability
of #m $ 5 000#0 under the given conditions. Find H and B
inside the iron.

Solution Using Equations 30.31 and 30.33, we obtain

300 
A ( turns

m
H $ nI $ %60.0 

turns
m &(5.00 A) $

(b)
B0

(a)

Figure 30.28 (a) Random orien-
tation of atomic magnetic moments
in an unmagnetized substance. 
(b) When an external field B0 is
applied, the atomic magnetic mo-
ments tend to align with the field,
giving the sample a net magnetiza-
tion vector M.
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the secondary coil changes by an amount BA, where A is the cross-sectional area of
the toroid. As we shall find in Chapter 31, because of this changing flux, an emf
that is proportional to the rate of change in magnetic flux is induced in the sec-
ondary coil. If the galvanometer is properly calibrated, a value for B correspond-
ing to any value of the current in the primary coil can be obtained. The magnetic
field B is measured first in the absence of the torus and then with the torus in
place. The magnetic properties of the torus material are then obtained from a
comparison of the two measurements.

Now consider a torus made of unmagnetized iron. If the current in the pri-
mary coil is increased from zero to some value I, the magnitude of the magnetic
field strength H increases linearly with I according to the expression Fur-
thermore, the magnitude of the total field B also increases with increasing current,
as shown by the curve from point O to point a in Figure 30.30. At point O, the do-
mains in the iron are randomly oriented, corresponding to As the increas-
ing current in the primary coil causes the external field B0 to increase, the do-
mains become more aligned until all of them are nearly aligned at point a. At this
point the iron core is approaching saturation, which is the condition in which all
domains in the iron are aligned.

Next, suppose that the current is reduced to zero, and the external field is
consequently eliminated. The B versus H curve, called a magnetization curve,
now follows the path ab in Figure 30.30. Note that at point b, B is not zero even
though the external field is The reason is that the iron is now magnetized
due to the alignment of a large number of its domains (that is, B $ Bm). At this
point, the iron is said to have a remanent magnetization.

If the current in the primary coil is reversed so that the direction of the exter-
nal magnetic field is reversed, the domains reorient until the sample is again un-
magnetized at point c, where B $ 0. An increase in the reverse current causes the
iron to be magnetized in the opposite direction, approaching saturation at point d
in Figure 30.30. A similar sequence of events occurs as the current is reduced to
zero and then increased in the original (positive) direction. In this case the mag-
netization curve follows the path def. If the current is increased sufficiently, the
magnetization curve returns to point a, where the sample again has its maximum
magnetization.

The effect just described, called magnetic hysteresis, shows that the magneti-
zation of a ferromagnetic substance depends on the history of the substance as
well as on the magnitude of the applied field. (The word hysteresis means “lagging
behind.”) It is often said that a ferromagnetic substance has a “memory” because it
remains magnetized after the external field is removed. The closed loop in Figure
30.30 is referred to as a hysteresis loop. Its shape and size depend on the proper-

B0 $ 0.

Bm $ 0.

H $ nI.

QuickLab
You’ve probably done this experi-
ment before. Magnetize a nail by re-
peatedly dragging it across a bar mag-
net. Test the strength of the nail’s
magnetic field by picking up some pa-
per clips. Now hit the nail several
times with a hammer, and again test
the strength of its magnetism. Ex-
plain what happens in terms of do-
mains in the steel of the nail.

R

G

Sε

B

H

a

b

c

d

e

fO

Figure 30.29 A toroidal winding
arrangement used to measure the
magnetic properties of a material.
The torus is made of the material
under study, and the circuit con-
taining the galvanometer measures
the magnetic flux.

Figure 30.30 Magnetization curve for a ferromagnetic
material.
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ties of the ferromagnetic substance and on the strength of the maximum applied
field. The hysteresis loop for “hard” ferromagnetic materials is characteristically
wide like the one shown in Figure 30.31a, corresponding to a large remanent mag-
netization. Such materials cannot be easily demagnetized by an external field.
“Soft” ferromagnetic materials, such as iron, have a very narrow hysteresis loop
and a small remanent magnetization (Fig. 30.31b.) Such materials are easily mag-
netized and demagnetized. An ideal soft ferromagnet would exhibit no hysteresis
and hence would have no remanent magnetization. A ferromagnetic substance
can be demagnetized by being carried through successive hysteresis loops, due to a
decreasing applied magnetic field, as shown in Figure 30.32.

Which material would make a better permanent magnet, one whose hysteresis loop looks
like Figure 30.31a or one whose loop looks like Figure 30.31b?

The magnetization curve is useful for another reason: The area enclosed by
the magnetization curve represents the work required to take the material
through the hysteresis cycle. The energy acquired by the material in the magne-
tization process originates from the source of the external field—that is, the emf
in the circuit of the toroidal coil. When the magnetization cycle is repeated, dissi-
pative processes within the material due to realignment of the domains result in a
transformation of magnetic energy into internal energy, which is evidenced by an
increase in the temperature of the substance. For this reason, devices subjected to
alternating fields (such as ac adapters for cell phones, power tools, and so on) use
cores made of soft ferromagnetic substances, which have narrow hysteresis loops
and correspondingly little energy loss per cycle.

Magnetic computer disks store information by alternating the direction of B
for portions of a thin layer of ferromagnetic material. Floppy disks have the layer
on a circular sheet of plastic. Hard disks have several rigid platters with magnetic
coatings on each side. Audio tapes and videotapes work the same way as floppy
disks except that the ferromagnetic material is on a very long strip of plastic. Tiny
coils of wire in a recording head are placed close to the magnetic material (which
is moving rapidly past the head). Varying the current through the coils creates a
magnetic field that magnetizes the recording material. To retrieve the informa-
tion, the magnetized material is moved past a playback coil. The changing magnet-
ism of the material induces a current in the coil, as we shall discuss in Chapter 31.
This current is then amplified by audio or video equipment, or it is processed by
computer circuitry.

Quick Quiz 30.8

B

H

(a)

B

H

(b)

B

H

Figure 30.31 Hysteresis loops for (a) a hard ferromagnetic material and (b) a soft ferromag-
netic material.

Figure 30.32 Demagnetizing a
ferromagnetic material by carrying
it through successive hysteresis
loops.
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Paramagnetism

Paramagnetic substances have a small but positive magnetic susceptibility
resulting from the presence of atoms (or ions) that have permanent

magnetic moments. These moments interact only weakly with each other and are
randomly oriented in the absence of an external magnetic field. When a paramag-
netic substance is placed in an external magnetic field, its atomic moments tend to
line up with the field. However, this alignment process must compete with thermal
motion, which tends to randomize the magnetic moment orientations.

Pierre Curie (1859–1906) and others since him have found experimentally
that, under a wide range of conditions, the magnetization of a paramagnetic sub-
stance is proportional to the applied magnetic field and inversely proportional to
the absolute temperature:

(30.35)

This relationship is known as Curie’s law after its discoverer, and the constant C
is called Curie’s constant. The law shows that when B0 $ 0, the magnetization is
zero, corresponding to a random orientation of magnetic moments. As the ratio of
magnetic field to temperature becomes great, the magnetization approaches its
saturation value, corresponding to a complete alignment of its moments, and
Equation 30.35 is no longer valid.

When the temperature of a ferromagnetic substance reaches or exceeds a 
critical temperature called the Curie temperature, the substance loses its resid-
ual magnetization and becomes paramagnetic (Fig. 30.33). Below the Curie tem-
perature, the magnetic moments are aligned and the substance is ferromag-
netic. Above the Curie temperature, the thermal agitation is great enough to 
cause a random orientation of the moments, and the substance becomes para-
magnetic. Curie temperatures for several ferromagnetic substances are given in
Table 30.3.

Diamagnetism

When an external magnetic field is applied to a diamagnetic substance, a weak
magnetic moment is induced in the direction opposite the applied field. This
causes diamagnetic substances to be weakly repelled by a magnet. Although dia-
magnetism is present in all matter, its effects are much smaller than those of para-
magnetism or ferromagnetism, and are evident only when those other effects do
not exist.

We can attain some understanding of diamagnetism by considering a classical
model of two atomic electrons orbiting the nucleus in opposite directions but with
the same speed. The electrons remain in their circular orbits because of the attrac-
tive electrostatic force exerted by the positively charged nucleus. Because the mag-
netic moments of the two electrons are equal in magnitude and opposite in direc-
tion, they cancel each other, and the magnetic moment of the atom is zero. When
an external magnetic field is applied, the electrons experience an additional force

This added force combines with the electrostatic force to increase the or-
bital speed of the electron whose magnetic moment is antiparallel to the field and
to decrease the speed of the electron whose magnetic moment is parallel to the
field. As a result, the two magnetic moments of the electrons no longer cancel,
and the substance acquires a net magnetic moment that is opposite the applied
field.

qv ! B.

M $ C 
B0

T

(0 + 3 V 1)

web
Visit www.exploratorium.edu/snacks/
diamagnetism_www/index.html for an
experiment showing that grapes are
repelled by magnets!

TABLE 30.3
Curie Temperatures for
Several Ferromagnetic
Substances

Substance TCurie (K)

Iron 1 043
Cobalt 1 394
Nickel 631
Gadolinium 317
Fe2O3 893

Paramagnetic

Ferromagnetic

M

T
TCurie

Ms

0

Figure 30.33 Magnetization ver-
sus absolute temperature for a fer-
romagnetic substance. The mag-
netic moments are aligned below
the Curie temperature TCurie ,
where the substance is ferromag-
netic. The substance becomes para-
magnetic (magnetic moments un-
aligned) above TCurie .
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As you recall from Chapter 27, a superconductor is a substance in which the
electrical resistance is zero below some critical temperature. Certain types of su-
perconductors also exhibit perfect diamagnetism in the superconducting state. As
a result, an applied magnetic field is expelled by the superconductor so that the
field is zero in its interior. This phenomenon of flux expulsion is known as the
Meissner effect. If a permanent magnet is brought near a superconductor, 
the two objects repel each other. This is illustrated in Figure 30.34, which shows a
small permanent magnet levitated above a superconductor maintained at 77 K.

Saturation MagnetizationEXAMPLE 30.11
each atom contributes one Bohr magneton (due to one un-
paired spin) to the magnetic moment, we obtain

This is about one-half the experimentally determined satura-
tion magnetization for iron, which indicates that actually two
unpaired electron spins are present per atom.

8.0 & 105 A/m$

Ms $ %8.6 & 1028 
atoms

m3 &%9.27 & 10'24 
A(m2

atom &

Estimate the saturation magnetization in a long cylinder of
iron, assuming one unpaired electron spin per atom.

Solution The saturation magnetization is obtained when
all the magnetic moments in the sample are aligned. If the
sample contains n atoms per unit volume, then the saturation
magnetization Ms has the value

where # is the magnetic moment per atom. Because the mo-
lar mass of iron is 55 g/mol and its density is 7.9 g/cm3, the
value of n for iron is 8.6 & 1028 atoms/m3. Assuming that

Ms $ n#

Optional Section

THE MAGNETIC FIELD OF THE EARTH
When we speak of a compass magnet having a north pole and a south pole, we
should say more properly that it has a “north-seeking” pole and a “south-seeking”
pole. By this we mean that one pole of the magnet seeks, or points to, the north
geographic pole of the Earth. Because the north pole of a magnet is attracted to-
ward the north geographic pole of the Earth, we conclude that the Earth’s south
magnetic pole is located near the north geographic pole, and the Earth’s
north magnetic pole is located near the south geographic pole. In fact, the
configuration of the Earth’s magnetic field, pictured in Figure 30.35, is very much
like the one that would be achieved by burying a gigantic bar magnet deep in the
interior of the Earth.

30.9

web
For a more detailed description of the
unusual properties of superconductors,
visit www.saunderscollege.com/physics/

Figure 30.34 A small permanent mag-
net levitated above a disk of the supercon-
ductor YBa2Cu3O7 cooled to liquid nitro-
gen temperature (77 K).
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If a compass needle is suspended in bearings that allow it to rotate in the verti-
cal plane as well as in the horizontal plane, the needle is horizontal with respect to
the Earth’s surface only near the equator. As the compass is moved northward, the
needle rotates so that it points more and more toward the surface of the Earth. Fi-
nally, at a point near Hudson Bay in Canada, the north pole of the needle points
directly downward. This site, first found in 1832, is considered to be the location
of the south magnetic pole of the Earth. It is approximately 1 300 mi from the
Earth’s geographic North Pole, and its exact position varies slowly with time. Simi-
larly, the north magnetic pole of the Earth is about 1 200 mi away from the Earth’s
geographic South Pole.

Because of this distance between the north geographic and south magnetic
poles, it is only approximately correct to say that a compass needle points north.
The difference between true north, defined as the geographic North Pole, and
north indicated by a compass varies from point to point on the Earth, and the dif-
ference is referred to as magnetic declination. For example, along a line through
Florida and the Great Lakes, a compass indicates true north, whereas in Washing-
ton state, it aligns 25° east of true north.

QuickLab
A gold ring is very weakly repelled by
a magnet. To see this, suspend a 14-
or 18-karat gold ring on a long loop
of thread, as shown in (a). Gently tap
the ring and estimate its period of os-
cillation. Now bring the ring to rest,
letting it hang for a few moments so
that you can verify that it is not mov-
ing. Quickly bring a very strong mag-
net to within a few millimeters of the
ring, taking care not to bump it, as
shown in (b). Now pull the magnet
away. Repeat this action many times,
matching the oscillation period you
estimated earlier. This is just like
pushing a child on a swing. A small
force applied at the resonant fre-
quency results in a large-amplitude
oscillation. If you have a platinum
ring, you will be able to see a similar
effect except that platinum is weakly
attracted to a magnet because it is
paramagnetic.

(a) (b)

North
geographic

pole

South
magnetic

pole

Geographic
equator

South
geographic

pole

North
magnetic

pole

N

S

Magnetic equator

Figure 30.35 The Earth’s magnetic field lines. Note that a south magnetic pole is near the
north geographic pole, and a north magnetic pole is near the south geographic pole.

The north end of a compass needle points
to the south magnetic pole of the Earth.
The “north” compass direction varies from
true geographic north depending on the
magnetic declination at that point on the
Earth’s surface.
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If we wanted to cancel the Earth’s magnetic field by running an enormous current loop
around the equator, which way would the current have to flow: east to west or west to east?

Although the magnetic field pattern of the Earth is similar to the one that
would be set up by a bar magnet deep within the Earth, it is easy to understand
why the source of the Earth’s magnetic field cannot be large masses of perma-
nently magnetized material. The Earth does have large deposits of iron ore deep
beneath its surface, but the high temperatures in the Earth’s core prevent the iron
from retaining any permanent magnetization. Scientists consider it more likely
that the true source of the Earth’s magnetic field is charge-carrying convection
currents in the Earth’s core. Charged ions or electrons circulating in the liquid in-
terior could produce a magnetic field just as a current loop does. There is also
strong evidence that the magnitude of a planet’s magnetic field is related to the
planet’s rate of rotation. For example, Jupiter rotates faster than the Earth, and
space probes indicate that Jupiter’s magnetic field is stronger than ours. Venus, on
the other hand, rotates more slowly than the Earth, and its magnetic field is found
to be weaker. Investigation into the cause of the Earth’s magnetism is ongoing.

There is an interesting sidelight concerning the Earth’s magnetic field. It has
been found that the direction of the field has been reversed several times during
the last million years. Evidence for this is provided by basalt, a type of rock that
contains iron and that forms from material spewed forth by volcanic activity on the
ocean floor. As the lava cools, it solidifies and retains a picture of the Earth’s mag-
netic field direction. The rocks are dated by other means to provide a timeline for
these periodic reversals of the magnetic field.

SUMMARY

The Biot–Savart law says that the magnetic field dB at a point P due to a length
element ds that carries a steady current I is

(30.1)

where is the permeability of free space, r is the dis-
tance from the element to the point P , and r̂ is a unit vector pointing from ds to
point P. We find the total field at P by integrating this expression over the entire
current distribution.

The magnetic field at a distance a from a long, straight wire carrying an elec-
tric current I is

(30.5)

The field lines are circles concentric with the wire.
The magnetic force per unit length between two parallel wires separated by a

distance a and carrying currents I1 and I2 has a magnitude

(30.12)

The force is attractive if the currents are in the same direction and repulsive if
they are in opposite directions.

FB

!
$

#0I1I2

2%a

B $
#0I
2%a

#0 $ 4% & 10'7 T(m/A

dB $
#0

4%
 
I ds ! r̂

r 2

Quick Quiz 30.9
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Ampère’s law says that the line integral of around any closed path
equals #0I, where I is the total steady current passing through any surface
bounded by the closed path:

(30.13)

Using Ampère’s law, one finds that the fields inside a toroid and solenoid are

(30.16)

(30.17)

where N is the total number of turns.
The magnetic flux &B through a surface is defined by the surface integral

(30.18)

Gauss’s law of magnetism states that the net magnetic flux through any
closed surface is zero.

The general form of Ampère’s law, which is also called the Ampère-Maxwell
law, is

(30.22)

This law describes the fact that magnetic fields are produced both by conduction
currents and by changing electric fields.

$B " ds $ #0I * #0.0 
d-E

dt

-B ( !B " dA

B $ #0 
N
!

 I $ #0nI  (solenoid)

B $
#0NI
2%r

  (toroid) 

$B " ds $ #0I

B " ds

QUESTIONS

8. Is the magnetic field inside a toroid uniform? Explain.
9. Describe the similarities between Ampère’s law in mag-

netism and Gauss’s law in electrostatics.
10. A hollow copper tube carries a current along its length.

Why does B = 0 inside the tube? Is B nonzero outside the
tube?

11. Why is B nonzero outside a solenoid? Why does B $ 0
outside a toroid? (Remember that the lines of B must
form closed paths.)

12. Describe the change in the magnetic field in the interior
of a solenoid carrying a steady current I (a) if the length
of the solenoid is doubled but the number of turns re-
mains the same and (b) if the number of turns is doubled
but the length remains the same.

13. A flat conducting loop is positioned in a uniform mag-
netic field directed along the x axis. For what orientation
of the loop is the flux through it a maximum? A mini-
mum?

14. What new concept does Maxwell’s general form of Am-
père’s law include?

15. Many loops of wire are wrapped around a nail and then
connected to a battery. Identify the source of M, of H,
and of B.

1. Is the magnetic field created by a current loop uniform?
Explain.

2. A current in a conductor produces a magnetic field that
can be calculated using the Biot–Savart law. Because cur-
rent is defined as the rate of flow of charge, what can you
conclude about the magnetic field produced by stationary
charges? What about that produced by moving charges?

3. Two parallel wires carry currents in opposite directions.
Describe the nature of the magnetic field created by the
two wires at points (a) between the wires and (b) outside
the wires, in a plane containing them.

4. Explain why two parallel wires carrying currents in oppo-
site directions repel each other.

5. When an electric circuit is being assembled, a common
practice is to twist together two wires carrying equal cur-
rents in opposite directions. Why does this technique re-
duce stray magnetic fields?

6. Is Ampère’s law valid for all closed paths surrounding a
conductor? Why is it not useful for calculating B for all
such paths?

7. Compare Ampère’s law with the Biot–Savart law. Which 
is more generally useful for calculating B for a current-
carrying conductor?
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16. A magnet attracts a piece of iron. The iron can then at-
tract another piece of iron. On the basis of domain align-
ment, explain what happens in each piece of iron.

17. You are stranded on a planet that does not have a mag-
netic field, with no test equipment. You have two bars of
iron in your possession; one is magnetized, and one is
not. How can you determine which is which?

18. Why does hitting a magnet with a hammer cause the mag-
netism to be reduced?

19. Is a nail attracted to either pole of a magnet? Explain
what is happening inside the nail when it is placed near
the magnet.

20. A Hindu ruler once suggested that he be entombed in a
magnetic coffin with the polarity arranged so that he
would be forever suspended between heaven and Earth.
Is such magnetic levitation possible? Discuss.

21. Why does M $ 0 in a vacuum? What is the relationship
between B and H in a vacuum?

22. Explain why some atoms have permanent magnetic mo-
ments and others do not.

23. What factors contribute to the total magnetic moment of
an atom?

24. Why is the magnetic susceptibility of a diamagnetic sub-
stance negative?

25. Why can the effect of diamagnetism be neglected in a
paramagnetic substance?

26. Explain the significance of the Curie temperature for a
ferromagnetic substance.

27. Discuss the differences among ferromagnetic, paramag-
netic, and diamagnetic substances.

28. What is the difference between hard and soft ferromag-
netic materials?

29. Should the surface of a computer disk be made from a
hard or a soft ferromagnetic substance?

30. Explain why it is desirable to use hard ferromagnetic ma-
terials to make permanent magnets.

31. Would you expect the tape from a tape recorder to be at-
tracted to a magnet? (Try it, but not with a recording you
wish to save.)

32. Given only a strong magnet and a screwdriver, how would
you first magnetize and then demagnetize the screwdriver?

33. Figure Q30.33 shows two permanent magnets, each hav-
ing a hole through its center. Note that the upper magnet
is levitated above the lower one. (a) How does this occur?
(b) What purpose does the pencil serve? (c) What can
you say about the poles of the magnets on the basis of this
observation? (d) What do you suppose would happen if
the upper magnet were inverted?

Figure Q30.33 Magnetic levitation using two ceramic mag-
nets.

PROBLEMS

field at the center of the square. (b) If this conductor is
formed into a single circular turn and carries the same
current, what is the value of the magnetic field at the
center?

Section 30.1 The Biot – Savart Law
1. In Niels Bohr’s 1913 model of the hydrogen atom, 

an electron circles the proton at a distance of 
5.29 & 10'11 m with a speed of 2.19 & 106 m/s. Com-
pute the magnitude of the magnetic field that this mo-
tion produces at the location of the proton.

2. A current path shaped as shown in Figure P30.2 pro-
duces a magnetic field at P, the center of the arc. If the
arc subtends an angle of 30.0° and the radius of the arc
is 0.600 m, what are the magnitude and direction of the
field produced at P if the current is 3.00 A?

3. (a) A conductor in the shape of a square of edge length
! $ 0.400 m carries a current I $ 10.0 A (Fig. P30.3).
Calculate the magnitude and direction of the magnetic

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

I

P
30.0°

Figure P30.2
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4. Calculate the magnitude of the magnetic field at a point
100 cm from a long, thin conductor carrying a current
of 1.00 A.

5. Determine the magnetic field at a point P located a dis-
tance x from the corner of an infinitely long wire bent
at a right angle, as shown in Figure P30.5. The wire car-
ries a steady current I.

10. Consider a flat, circular current loop of radius R carry-
ing current I. Choose the x axis to be along the axis 
of the loop, with the origin at the center of the loop.
Graph the ratio of the magnitude of the magnetic 
field at coordinate x to that at the origin, for x $ 0 to 
x $ 5R . It may be helpful to use a programmable calcu-
lator or a computer to solve this problem.

11. Consider the current-carrying loop shown in Figure
P30.11, formed of radial lines and segments of circles
whose centers are at point P. Find the magnitude and
direction of B at P.

WEB

I

!

Figure P30.3

x

P

I

I

6. A wire carrying a current of 5.00 A is to be formed into
a circular loop of one turn. If the required value of the
magnetic field at the center of the loop is 10.0 #T, what
is the required radius?

7. A conductor consists of a circular loop of radius R $
0.100 m and two straight, long sections, as shown in Fig-
ure P30.7. The wire lies in the plane of the paper and
carries a current of I $ 7.00 A. Determine the magni-
tude and direction of the magnetic field at the center of
the loop.

8. A conductor consists of a circular loop of radius R and
two straight, long sections, as shown in Figure P30.7.
The wire lies in the plane of the paper and carries a cur-
rent I. Determine the magnitude and direction of the
magnetic field at the center of the loop.

9. The segment of wire in Figure P30.9 carries a current of
I $ 5.00 A, where the radius of the circular arc is R $
3.00 cm. Determine the magnitude and direction of the
magnetic field at the origin.

12. Determine the magnetic field (in terms of I, a, and d)
at the origin due to the current loop shown in Figure
P30.12.

13. The loop in Figure P30.13 carries a current I. Determine
the magnetic field at point A in terms of I, R, and L .

14. Three long, parallel conductors carry currents of I $
2.00 A. Figure P30.14 is an end view of the conductors,
with each current coming out of the page. If a $
1.00 cm, determine the magnitude and direction of the
magnetic field at points A, B, and C .

15. Two long, parallel conductors carry currents I1 $
3.00 A and I2 $ 3.00 A, both directed into the page in

Figure P30.5

Figure P30.7 Problems 7 and 8.

Figure P30.9

Figure P30.11

I = 7.00 A

I

R

60°

b

a
P

I
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Figure P30.15. Determine the magnitude and direction
of the resultant magnetic field at P.

Section 30.2 The Magnetic Force Between 
Two Parallel Conductors

16. Two long, parallel conductors separated by 10.0 cm
carry currents in the same direction. The first wire car-
ries current I1 $ 5.00 A, and the second carries I2 $
8.00 A. (a) What is the magnitude of the magnetic field
created by I1 and acting on I2 ? (b) What is the force per
unit length exerted on I2 by I1 ? (c) What is the magni-
tude of the magnetic field created by I2 at the location
of I1 ? (d) What is the force per unit length exerted by
I2 on I1 ?

17. In Figure P30.17, the current in the long, straight wire
is I1 $ 5.00 A, and the wire lies in the plane of the rec-
tangular loop, which carries 10.0 A. The dimensions are
c $ 0.100 m, a $ 0.150 m, and ! $ 0.450 m. Find the
magnitude and direction of the net force exerted on
the loop by the magnetic field created by the wire.

18. The unit of magnetic flux is named for Wilhelm Weber.
The practical-size unit of magnetic field is named for
Johann Karl Friedrich Gauss. Both were scientists at
Göttingen, Germany. In addition to their individual ac-
complishments, they built a telegraph together in 1833.
It consisted of a battery and switch that were positioned
at one end of a transmission line 3 km long and oper-
ated an electromagnet at the other end. (Andre 
Ampère suggested electrical signaling in 1821; Samuel
Morse built a telegraph line between Baltimore and
Washington in 1844.) Suppose that Weber and Gauss’s
transmission line was as diagrammed in Figure P30.18.
Two long, parallel wires, each having a mass per unit
length of 40.0 g/m, are supported in a horizontal plane
by strings 6.00 cm long. When both wires carry the same
current I, the wires repel each other so that the angle !

Figure P30.12

Figure P30.13
I1

!

c a

I2

13.0 cm

5.00 cm

12.0 cm

I2

I1

P

×

×

I

I

aa

a

a

a
B

A
C

I

A

I

R

L
2
–
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– a + aO

d

I

I

y

x

Figure P30.14

Figure P30.15

Figure P30.17
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between the supporting strings is 16.0°. (a) Are the cur-
rents in the same direction or in opposite directions?
(b) Find the magnitude of the current.

2.00-A currents in opposite directions. The two wires
are 3.00 mm apart. Find the magnetic field 40.0 cm
away from the middle of the straight cord, in the plane
of the two wires. (c) At what distance is it one-tenth as
large? (d) The center wire in a coaxial cable carries cur-
rent 2.00 A in one direction, and the sheath around it
carries current 2.00 A in the opposite direction. What
magnetic field does the cable create at points outside?

23. The magnetic coils of a tokamak fusion reactor are 
in the shape of a toroid having an inner radius of 
0.700 m and an outer radius of 1.30 m. If the toroid has
900 turns of large-diameter wire, each of which carries a
current of 14.0 kA, find the magnitude of the magnetic
field inside the toroid (a) along the inner radius and
(b) along the outer radius.

24. A cylindrical conductor of radius carries a
current of along its length; this current is
uniformly distributed throughout the cross-section of
the conductor. (a) Calculate the magnetic field midway
along the radius of the wire (that is, at 
(b) Find the distance beyond the surface of the conduc-
tor at which the magnitude of the magnetic field has
the same value as the magnitude of the field at 

25. A packed bundle of 100 long, straight, insulated wires
forms a cylinder of radius R $ 0.500 cm. (a) If each
wire carries 2.00 A, what are the magnitude and direc-
tion of the magnetic force per unit length acting on a
wire located 0.200 cm from the center of the bundle?
(b) Would a wire on the outer edge of the bundle expe-
rience a force greater or less than the value calculated
in part (a)?

26. Niobium metal becomes a superconductor when cooled
below 9 K. If superconductivity is destroyed when the
surface magnetic field exceeds 0.100 T, determine the
maximum current a 2.00-mm-diameter niobium wire
can carry and remain superconducting, in the absence
of any external magnetic field.

27. A long, cylindrical conductor of radius R carries a cur-
rent I, as shown in Figure P30.27. The current density J,
however, is not uniform over the cross-section of the

r $ R/2.

r $ R/2).

I $ 2.50 A
R $ 2.50 cm

WEB

WEB

20. A long, straight wire lies on a horizontal table and car-
ries a current of 1.20 #A. In a vacuum, a proton moves
parallel to the wire (opposite the current) with a con-
stant velocity of 2.30 & 104 m/s at a distance d above
the wire. Determine the value of d. You may ignore the
magnetic field due to the Earth.

21. Figure P30.21 is a cross-sectional view of a coaxial cable.
The center conductor is surrounded by a rubber layer,
which is surrounded by an outer conductor, which is
surrounded by another rubber layer. In a particular ap-
plication, the current in the inner conductor is 1.00 A
out of the page, and the current in the outer conductor
is 3.00 A into the page. Determine the magnitude and
direction of the magnetic field at points a and b.

22. The magnetic field 40.0 cm away from a long, straight
wire carrying current 2.00 A is 1.00 #T. (a) At what dis-
tance is it 0.100 #T? (b) At one instant, the two con-
ductors in a long household extension cord carry equal

Section 30.3 Ampère’s Law
19. Four long, parallel conductors carry equal currents of 

I $ 5.00 A. Figure P30.19 is an end view of the conduc-
tors. The direction of the current is into the page at
points A and B (indicated by the crosses) and out of the
page at C and D (indicated by the dots). Calculate the
magnitude and direction of the magnetic field at point
P, located at the center of the square with an edge
length of 0.200 m.

ba
1.00 A

1 mm 1 mm 1 mm

3.00 A

. .

×
×

×

×
×

×

×

×

0.200 m

0.200 m

A

B

C

P

D

×

××

16.0°

x

6.00 cm

z

y

θ

Figure P30.18

Figure P30.19

Figure P30.21
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conductor but is a function of the radius according to
where b is a constant. Find an expression for the

magnetic field B (a) at a distance and (b) at a
distance measured from the axis.

28. In Figure P30.28, both currents are in the negative x di-
rection. (a) Sketch the magnetic field pattern in the yz
plane. (b) At what distance d along the z axis is the
magnetic field a maximum?

r2 4 R ,
r1 + R

J $ br,

Section 30.5 Magnetic Flux
33. A cube of edge length ! $ 2.50 cm is positioned as

shown in Figure P30.33. A uniform magnetic field given
by exists throughout
the region. (a) Calculate the flux through the shaded
face. (b) What is the total flux through the six faces?

B $ (5.00 i * 4.00 j * 3.00k) T

34. A solenoid 2.50 cm in diameter and 30.0 cm long has
300 turns and carries 12.0 A. (a) Calculate the flux
through the surface of a disk of radius 5.00 cm that is
positioned perpendicular to and centered on the axis of
the solenoid, as in Figure P30.34a. (b) Figure P30.34b
shows an enlarged end view of the same solenoid. Cal-
culate the flux through the blue area, which is defined
by an annulus that has an inner radius of 0.400 cm and
outer radius of 0.800 cm.

Section 30.4 The Magnetic Field of a Solenoid
29. What current is required in the windings of a long sole-

noid that has 1 000 turns uniformly distributed over a
length of 0.400 m, to produce at the center of the sole-
noid a magnetic field of magnitude 1.00 & 10'4 T?

30. A superconducting solenoid is meant to generate a
magnetic field of 10.0 T. (a) If the solenoid winding has
2 000 turns/m, what current is required? (b) What
force per unit length is exerted on the windings by this
magnetic field?

31. A solenoid of radius is made of a long
piece of wire of radius r $ 2.00 mm, length ! $ 10.0 m

and resistivity 5 $ 1.70 & 10'8 6 ( m. Find the
magnetic field at the center of the solenoid if the wire is
connected to a battery having an emf 

32. A single-turn square loop of wire with an edge length of
2.00 cm carries a clockwise current of 0.200 A. The loop
is inside a solenoid, with the plane of the loop perpen-
dicular to the magnetic field of the solenoid. The sole-
noid has 30 turns/cm and carries a clockwise current of
15.0 A. Find the force on each side of the loop and the
torque acting on the loop.

7 $ 20.0 V.

(! W R)

R $ 5.00 cm

R
r1

I

r2

x
y

a

a

I

I

z

Figure P30.27

Figure P30.28

Figure P30.33

Figure P30.34

(b)

1.25 cm

(a)

I

!

B

y

x

z

!
!

WEB



Problems 973

35. Consider the hemispherical closed surface in Figure
P30.35. If the hemisphere is in a uniform magnetic field
that makes an angle ! with the vertical, calculate the
magnetic flux (a) through the flat surface S1 and 
(b) through the hemispherical surface S2 .

quired if there are 470 turns of wire in the winding?
The thickness of the iron ring is small compared to 
10 cm, so the field in the material is nearly uniform.

41. A coil of 500 turns is wound on an iron ring (#m $
750#0) with a 20.0-cm mean radius and an 8.00-cm2

cross-sectional area. Calculate the magnetic flux -B
in this Rowland ring when the current in the coil is
0.500 A.

42. A uniform ring with a radius of 2.00 cm and a total
charge of 6.00 #C rotates with a constant angular speed
of 4.00 rad/s around an axis perpendicular to the plane
of the ring and passing through its center. What is the
magnetic moment of the rotating ring?

43. Calculate the magnetic field strength H of a magnetized
substance in which the magnetization is 880 kA/m and
the magnetic field has a magnitude of 4.40 T.

44. At saturation, the alignment of spins in iron can con-
tribute as much as 2.00 T to the total magnetic field B .
If each electron contributes a magnetic moment of 
9.27 & 10'24 A ( m2 (one Bohr magneton), how many
electrons per atom contribute to the saturated field of
iron? (Hint: Iron contains 8.50 & 1028 atoms/m3.)

45. (a) Show that Curie’s law can be stated in the following
way: The magnetic susceptibility of a paramagnetic sub-
stance is inversely proportional to the absolute tempera-
ture, according to 3 $ C#0/T, where C is Curie’s con-
stant. (b) Evaluate Curie’s constant for chromium. 

(Optional)
Section 30.9 The Magnetic Field of the Earth

46. A circular coil of 5 turns and a diameter of 30.0 cm is
oriented in a vertical plane with its axis perpendicular
to the horizontal component of the Earth’s magnetic
field. A horizontal compass placed at the center of the
coil is made to deflect 45.0° from magnetic north by a
current of 0.600 A in the coil. (a) What is the horizontal
component of the Earth’s magnetic field? (b) The cur-
rent in the coil is switched off. A “dip needle” is a mag-
netic compass mounted so that it can rotate in a vert-
ical north-south plane. At this location a dip needle
makes an angle of 13.0° from the vertical. What is the
total magnitude of the Earth’s magnetic field at this 
location?

47. The magnetic moment of the Earth is approximately
8.00 & 1022 A ( m2. (a) If this were caused by the com-
plete magnetization of a huge iron deposit, how many
unpaired electrons would this correspond to? (b) At
two unpaired electrons per iron atom, how many kilo-
grams of iron would this correspond to? (Iron has a
density of 7 900 kg/m3 and approximately 8.50 & 1028

atoms/m3.)

ADDITIONAL PROBLEMS
48. A lightning bolt may carry a current of 1.00 & 104 A for

a short period of time. What is the resultant magnetic

Section 30.6 Gauss’s Law in Magnetism
Section 30.7 Displacement Current and the 
General Form of Ampère’s Law

36. A 0.200-A current is charging a capacitor that has circu-
lar plates 10.0 cm in radius. If the plate separation is
4.00 mm, (a) what is the time rate of increase of electric
field between the plates? (b) What is the magnetic field
between the plates 5.00 cm from the center?

37. A 0.100-A current is charging a capacitor that has
square plates 5.00 cm on each side. If the plate separa-
tion is 4.00 mm, find (a) the time rate of change of
electric flux between the plates and (b) the displace-
ment current between the plates.

(Optional)
Section 30.8 Magnetism in Matter

38. In Bohr’s 1913 model of the hydrogen atom, the elec-
tron is in a circular orbit of radius 5.29 & 10'11 m, and
its speed is 2.19 & 106 m/s. (a) What is the magnitude
of the magnetic moment due to the electron’s motion?
(b) If the electron orbits counterclockwise in a horizon-
tal circle, what is the direction of this magnetic moment
vector?

39. A toroid with a mean radius of 20.0 cm and 630 turns
(see Fig. 30.29) is filled with powdered steel whose mag-
netic susceptibility 3 is 100. If the current in the wind-
ings is 3.00 A, find B (assumed uniform) inside the
toroid.

40. A magnetic field of 1.30 T is to be set up in an iron-core
toroid. The toroid has a mean radius of 10.0 cm and
magnetic permeability of 5 000#0 . What current is re-

Figure P30.35

S1

R

θ

S2

B
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field 100 m from the bolt? Suppose that the bolt ex-
tends far above and below the point of observation.

49. The magnitude of the Earth’s magnetic field at either
pole is approximately 7.00 & 10'5 T. Suppose that the
field fades away, before its next reversal. Scouts, sailors,
and wire merchants around the world join together in a
program to replace the field. One plan is to use a cur-
rent loop around the equator, without relying on mag-
netization of any materials inside the Earth. Determine
the current that would generate such a field if this plan
were carried out. (Take the radius of the Earth as

50. Two parallel conductors carry current in opposite direc-
tions, as shown in Figure P30.50. One conductor carries a
current of 10.0 A. Point A is at the midpoint between the
wires, and point C is a distance d/2 to the right of the
10.0-A current. If cm and I is adjusted so that
the magnetic field at C is zero, find (a) the value of the
current I and (b) the value of the magnetic field at A.

d $ 18.0

R E $ 6.37 & 106 m.)

in the plane of the strip at a distance b away from the
strip.

54. For a research project, a student needs a solenoid that
produces an interior magnetic field of 0.030 0 T. She
decides to use a current of 1.00 A and a wire 0.500 mm
in diameter. She winds the solenoid in layers on an insu-
lating form 1.00 cm in diameter and 10.0 cm long. De-
termine the number of layers of wire she needs and the
total length of the wire.

55. A nonconducting ring with a radius of 10.0 cm is
uniformly charged with a total positive charge of 
10.0 #C. The ring rotates at a constant angular speed of
20.0 rad/s about an axis through its center, perpendicu-
lar to the plane of the ring. What is the magnitude of
the magnetic field on the axis of the ring, 5.00 cm from
its center?

56. A nonconducting ring of radius R is uniformly charged
with a total positive charge q. The ring rotates at a con-
stant angular speed 0 about an axis through its center,
perpendicular to the plane of the ring. What is the mag-
nitude of the magnetic field on the axis of the ring a
distance R/2 from its center?

57. Two circular coils of radius R are each perpendicular to
a common axis. The coil centers are a distance R apart,
and a steady current I flows in the same direction
around each coil, as shown in Figure P30.57. (a) Show
that the magnetic field on the axis at a distance x from
the center of one coil is

(b) Show that dB/dx and d 2B/dx2 are both zero at a
point midway between the coils. This means that the
magnetic field in the region midway between the coils is
uniform. Coils in this configuration are called
Helmholtz coils.

58. Two identical, flat, circular coils of wire each have 100
turns and a radius of 0.500 m. The coils are arranged as

B $
#0 IR2

2
 ) 1

(R2 * x2)3/2 *
1

(2R2 * x2 ' 2Rx)3/2 '

51. Suppose you install a compass on the center of the
dashboard of a car. Compute an order-of-magnitude es-
timate for the magnetic field that is produced at this lo-
cation by the current when you switch on the head-
lights. How does your estimate compare with the Earth’s
magnetic field? You may suppose the dashboard is made
mostly of plastic.

52. Imagine a long, cylindrical wire of radius R that has a
current density for r 8 R and 
J(r) $ 0 for r 4 R, where r is the distance from the axis
of the wire. (a) Find the resulting magnetic field inside 
(r 8 R) and outside (r 4 R) the wire. (b) Plot the mag-
nitude of the magnetic field as a function of r. (c) Find
the location where the magnitude of the magnetic field
is a maximum, and the value of that maximum field.

53. A very long, thin strip of metal of width w carries a cur-
rent I along its length, as shown in Figure P30.53. Find
the magnetic field at point P in the diagram. Point P is

J(r) $ J0(1 ' r 2/R2)

P
y

w

I

x

z

0

b

I 10.0 A

A C

d

Figure P30.50

Figure P30.53

WEB
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a set of Helmholtz coils (see Fig. P30.57), parallel and
with a separation of 0.500 m. If each coil carries a cur-
rent of 10.0 A, determine the magnitude of the mag-
netic field at a point on the common axis of the coils
and halfway between them.

59. Two circular loops are parallel, coaxial, and almost in
contact, 1.00 mm apart (Fig. P30.59). Each loop is 
10.0 cm in radius. The top loop carries a clockwise cur-
rent of 140 A. The bottom loop carries a counterclock-
wise current of 140 A. (a) Calculate the magnetic force
that the bottom loop exerts on the top loop. (b) The
upper loop has a mass of 0.021 0 kg. Calculate its accel-
eration, assuming that the only forces acting on it are the
force in part (a) and its weight. (Hint: Think about how
one loop looks to a bug perched on the other loop.)

to the side of a proton moving at 2.00 & 107 m/s. 
(c) Find the magnetic force on a second proton at this
point, moving with the same speed in the opposite 
direction. (d) Find the electric force on the second 
proton.

61. Rail guns have been suggested for launching projectiles
into space without chemical rockets, and for ground-to-
air antimissile weapons of war. A tabletop model rail
gun (Fig. P30.61) consists of two long parallel horizon-
tal rails 3.50 cm apart, bridged by a bar BD of mass 
3.00 g. The bar is originally at rest at the midpoint of
the rails and is free to slide without friction. When the
switch is closed, electric current is very quickly estab-
lished in the circuit ABCDEA. The rails and bar have low
electrical resistance, and the current is limited to a con-
stant 24.0 A by the power supply. (a) Find the magni-
tude of the magnetic field 1.75 cm from a single very
long, straight wire carrying current 24.0 A. (b) Find the
vector magnetic field at point C in the diagram, the
midpoint of the bar, immediately after the switch is
closed. (Hint: Consider what conclusions you can draw
from the Biot–Savart law.) (c) At other points along the
bar BD, the field is in the same direction as at point C ,
but greater in magnitude. Assume that the average ef-
fective magnetic field along BD is five times larger than
the field at C . With this assumption, find the vector
force on the bar. (d) Find the vector acceleration with
which the bar starts to move. (e) Does the bar move
with constant acceleration? (f) Find the velocity of the
bar after it has traveled 130 cm to the end of the rails.

62. Two long, parallel conductors carry currents in the
same direction, as shown in Figure P30.62. Conductor A
carries a current of 150 A and is held firmly in position.
Conductor B carries a current IB and is allowed to slide
freely up and down (parallel to A) between a set of non-
conducting guides. If the mass per unit length of con-
ductor B is 0.100 g/cm, what value of current IB will re-
sult in equilibrium when the distance between the two
conductors is 2.50 cm?

63. Charge is sprayed onto a large nonconducting belt
above the left-hand roller in Figure P30.63. The belt
carries the charge, with a uniform surface charge den-
sity 9, as it moves with a speed v between the rollers as
shown. The charge is removed by a wiper at the right-
hand roller. Consider a point just above the surface of
the moving belt. (a) Find an expression for the magni-

60. What objects experience a force in an electric field?
Chapter 23 gives the answer: any electric charge, sta-
tionary or moving, other than the charge that created
the field. What creates an electric field? Any electric
charge, stationary or moving, also as discussed in Chap-
ter 23. What objects experience a force in a magnetic
field? An electric current or a moving electric charge
other than the current or charge that created the field,
as discovered in Chapter 29. What creates a magnetic
field? An electric current, as you found in Section 30.11,
or a moving electric charge, as in this problem. (a) To
display how a moving charge creates a magnetic field,
consider a charge q moving with velocity v. Define the
unit vector to point from the charge to some lo-
cation. Show that the magnetic field at that location is

(b) Find the magnitude of the magnetic field 1.00 mm

B $
#0

4%
 
qv ! r̂

r 2

r̂ $ r/r
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Figure P30.57 Problems 57 and 58.

Figure P30.59

Figure P30.61
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tude of the magnetic field B at this point. (b) If the belt
is positively charged, what is the direction of B? (Note
that the belt may be considered as an infinite sheet.)

64. A particular paramagnetic substance achieves 10.0% of
its saturation magnetization when placed in a magnetic
field of 5.00 T at a temperature of 4.00 K. The density of
magnetic atoms in the sample is 8.00 & 1027 atoms/m3,
and the magnetic moment per atom is 5.00 Bohr magne-
tons. Calculate the Curie constant for this substance.

65. A bar magnet (mass $ 39.4 g, magnetic moment $
7.65 J/T, length $ 10.0 cm) is connected to the ceiling
by a string. A uniform external magnetic field is applied
horizontally, as shown in Figure P30.65. The magnet is
in equilibrium, making an angle ! with the horizontal.
If ! $ 5.00°, determine the magnitude of the applied
magnetic field.

68. Measurements of the magnetic field of a large tornado
were made at the Geophysical Observatory in Tulsa, 
Oklahoma, in 1962. If the tornado’s field was B $
15.0 nT pointing north when the tornado was 9.00 km
east of the observatory, what current was carried up or
down the funnel of the tornado, modeled as a long
straight wire?

67. A wire is bent into the shape shown in Figure P30.67a,
and the magnetic field is measured at P1 when the cur-
rent in the wire is I. The same wire is then formed into
the shape shown in Figure P30.67b, and the magnetic
field is measured at point P2 when the current is again I.
If the total length of wire is the same in each case, what
is the ratio of B1/B2 ?

66. An infinitely long, straight wire carrying a current I1 is
partially surrounded by a loop, as shown in Figure
P30.66. The loop has a length L and a radius R and car-
ries a current I2 . The axis of the loop coincides with the
wire. Calculate the force exerted on the loop.

(b)

P2 !!

(a)

!P1

!!

!

2!

R

L
I 1 I 2

v

+ + ++ + +
+ + ++ + +

+ + ++ + +
+ + ++ + +

+ + ++ + +
+ + ++ + +

N
θ

S
B

IA
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A

B

Figure P30.62

Figure P30.63

Figure P30.65

Figure P30.66

Figure P30.67



Problems 977

74. Review Problem. A sphere of radius R has a constant
volume charge density 5. Determine the magnetic di-

73. Review Problem. A sphere of radius R has a constant
volume charge density 5. Determine the magnetic field
at the center of the sphere when it rotates as a rigid
body with angular velocity 0 about an axis through its
center (Fig. P30.73).

Thus, in this case tan : $ 1, and : $ %/4.
Therefore, the angle between ds and is % ' : $
3%/4. Also,

72. Table P30.72 contains data taken for a ferromagnetic
material. (a) Construct a magnetization curve from the
data. Remember that (b) Determine
the ratio B/B0 for each pair of values of B and B0 , and
construct a graph of B/B0 versus B0 . (The fraction
B/B0 is called the relative permeability and is a measure
of the induced magnetic field.)

B $ B0 * #0M.

ds $
dr

sin %/4
$ !2 dr

r̂
r $ e!,

70. The force on a magnetic dipole # aligned with a
nonuniform magnetic field in the x direction is given
by Suppose that two flat loops of wire
each have radius R and carry current I. (a) If the loops
are arranged coaxially and separated by variable dis-
tance x, which is great compared to R , show that the
magnetic force between them varies as 1/x4. (b) Evalu-
ate the magnitude of this force if 

and x $ 5.00 cm.
71. A wire carrying a current I is bent into the shape of an

exponential spiral from ! $ 0 to ! $ 2%, as in
Figure P30.71. To complete a loop, the ends of the spi-
ral are connected by a straight wire along the x axis.
Find the magnitude and direction of B at the origin.
Hints: Use the Biot–Savart law. The angle : between a
radial line and its tangent line at any point on the curve

is related to the function in the following way:

tan : $
r

dr/d!

r $ f (!)

r $ e!

R $ 0.500 cm,
I $ 10.0 A,

Fx $ " # " dB/dx.

69. A wire is formed into a square of edge length L (Fig.
P30.69). Show that when the current in the loop is I,
the magnetic field at point P, a distance x from the cen-
ter of the square along its axis, is

B $
#0 IL2

2%(x2 * L2/4)!x2 * L2/2

R

0

r = eθ

y

x

r dr

d s

θ

r̂

   =   /4πβ

x

PI

L

L

Figure P30.69

Figure P30.71

Figure P30.73 Problems 73 and 74.

TABLE P30.72
B(T) B0 (T)

0.2 4.8 & 10'5

0.4 7.0 & 10'5

0.6 8.8 & 10'5

0.8 1.2 & 10'4

1.0 1.8 & 10'4

1.2 3.1 & 10'4

1.4 8.7 & 10'4

1.6 3.4 & 10'3

1.8 1.2 & 10'1
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ANSWERS TO QUICK QUIZZES

forces on all four sides of the loop lie in the plane of the
loop, there is no net torque.

30.6 Zero; no charges flow into a fully charged capacitor, so
no change occurs in the amount of charge on the plates,
and the electric field between the plates is constant. It is
only when the electric field is changing that a displace-
ment current exists.

30.7 (a) Increases slightly; (b) decreases slightly; (c) in-
creases greatly. Equations 30.33 and 30.34 indicate 
that, when each metal is in place, the total field is

Table 30.2 indicates that 
is slightly greater than #0H for aluminum and slightly
less for copper. For iron, the field can be made thou-
sands of times stronger, as we saw in Example 30.10.

30.8 One whose loop looks like Figure 30.31a because the re-
manent magnetization at the point corresponding to
point b in Figure 30.30 is greater.

30.9 West to east. The lines of the Earth’s magnetic field en-
ter the planet in Hudson Bay and emerge from Antarc-
tica; thus, the field lines resulting from the current
would have to go in the opposite direction. Compare
Figure 30.6a with Figure 30.35.

#0(1 * 3)HB $ #0(1 * 3)H.

30.1 (c) F1 $ F2 because of Newton’s third law. Another way
to arrive at this answer is to realize that Equation 30.11
gives the same result whether the multiplication of cur-
rents is (2 A)(6 A) or (6 A)(2 A).

30.2 Closer together; the coils act like wires carrying parallel
currents and hence attract one another.

30.3 b, d, a, c. Equation 30.13 indicates that the value of the
line integral depends only on the net current through
each closed path. Path b encloses 1 A, path d encloses 
3 A, path a encloses 4 A, and path c encloses 6 A.

30.4 b, then Paths a, c, and d all give the same
nonzero value #0I because the size and shape of the
paths do not matter. Path b does not enclose the cur-
rent, and hence its line integral is zero.

30.5 Net force, yes; net torque, no. The forces on the top and
bottom of the loop cancel because they are equal in
magnitude but opposite in direction. The current in the
left side of the loop is parallel to I1 , and hence the force
FL exerted by I1 on this side is attractive. The current in
the right side of the loop is antiparallel to I1 , and hence
the force FR exerted by I1 on this side of the loop is re-
pulsive. Because the left side is closer to wire 1, 
and a net force is directed toward wire 1. Because the

FL 4 FR

a $ c $ d.

pole moment of the sphere when it rotates as a rigid
body with angular velocity 0 about an axis through its
center (see Fig. P30.73).

75. A long, cylindrical conductor of radius a has two cylin-
drical cavities of diameter a through its entire length, as
shown in cross-section in Figure P30.75. A current I is
directed out of the page and is uniform through a cross
section of the conductor. Find the magnitude and direc-
tion of the magnetic field in terms of #0 , I, r, and a
(a) at point P1 and (b) at point P2 .

P1

P2

r

r

a

a

Figure P30.75
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Before this vending machine will deliver
its product, it conducts several tests on
the coins being inserted. How can it de-
termine what material the coins are
made of without damaging them and
without making the customer wait a long
time for the results? (George Semple)
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he focus of our studies in electricity and magnetism so far has been the elec-
tric fields produced by stationary charges and the magnetic fields produced by
moving charges. This chapter deals with electric fields produced by changing

magnetic fields.
Experiments conducted by Michael Faraday in England in 1831 and indepen-

dently by Joseph Henry in the United States that same year showed that an emf
can be induced in a circuit by a changing magnetic field. As we shall see, an emf
(and therefore a current as well) can be induced in many ways—for instance, by
moving a closed loop of wire into a region where a magnetic field exists. The re-
sults of these experiments led to a very basic and important law of electromagnet-
ism known as Faraday’s law of induction. This law states that the magnitude of the
emf induced in a circuit equals the time rate of change of the magnetic flux
through the circuit.

With the treatment of Faraday’s law, we complete our introduction to the fun-
damental laws of electromagnetism. These laws can be summarized in a set of four
equations called Maxwell’s equations. Together with the Lorentz force law, which we
discuss briefly, they represent a complete theory for describing the interaction of
charged objects. Maxwell’s equations relate electric and magnetic fields to each
other and to their ultimate source, namely, electric charges.

FARADAY’S LAW OF INDUCTION
To see how an emf can be induced by a changing magnetic field, let us consider a
loop of wire connected to a galvanometer, as illustrated in Figure 31.1. When a
magnet is moved toward the loop, the galvanometer needle deflects in one direc-
tion, arbitrarily shown to the right in Figure 31.1a. When the magnet is moved
away from the loop, the needle deflects in the opposite direction, as shown in Fig-
ure 31.1c. When the magnet is held stationary relative to the loop (Fig. 31.1b), no
deflection is observed. Finally, if the magnet is held stationary and the loop is
moved either toward or away from it, the needle deflects. From these observations,
we conclude that the loop “knows” that the magnet is moving relative to it because
it experiences a change in magnetic field. Thus, it seems that a relationship exists
between current and changing magnetic field.

These results are quite remarkable in view of the fact that a current is set up
even though no batteries are present in the circuit! We call such a current an
induced current and say that it is produced by an induced emf.

Now let us describe an experiment conducted by Faraday1 and illustrated in
Figure 31.2. A primary coil is connected to a switch and a battery. The coil is
wrapped around a ring, and a current in the coil produces a magnetic field when
the switch is closed. A secondary coil also is wrapped around the ring and is con-
nected to a galvanometer. No battery is present in the secondary circuit, and the
secondary coil is not connected to the primary coil. Any current detected in the
secondary circuit must be induced by some external agent.

Initially, you might guess that no current is ever detected in the secondary cir-
cuit. However, something quite amazing happens when the switch in the primary

31.1

T

1 A physicist named J. D. Colladon was the first to perform the moving-magnet experiment. To mini-
mize the effect of the changing magnetic field on his galvanometer, he placed the meter in an adjacent
room. Thus, as he moved the magnet in the loop, he could not see the meter needle deflecting. By the
time he returned next door to read the galvanometer, the needle was back to zero because he had
stopped moving the magnet. Unfortunately for Colladon, there must be relative motion between the
loop and the magnet for an induced emf and a corresponding induced current to be observed. Thus,
physics students learn Faraday’s law of induction rather than “Colladon’s law of induction.”

12.6
&

12.7

A demonstration of electromag-
netic induction. A changing poten-
tial difference is applied to the
lower coil. An emf is induced in the
upper coil as indicated by the illu-
minated lamp. What happens to
the lamp’s intensity as the upper
coil is moved over the vertical tube?
(Courtesy of Central Scientific Company)
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circuit is either suddenly closed or suddenly opened. At the instant the switch is
closed, the galvanometer needle deflects in one direction and then returns to
zero. At the instant the switch is opened, the needle deflects in the opposite direc-
tion and again returns to zero. Finally, the galvanometer reads zero when there is
either a steady current or no current in the primary circuit. The key to under-

0

Galvanometer

(b)

0

Galvanometer

(a)

N S

0

Galvanometer

(c)

N S

N S

Galvanometer

0

Secondary
coil

Primary
coil

Switch

+ –

Battery

Figure 31.1 (a) When a magnet is moved toward a loop of wire connected to a galvanometer,
the galvanometer deflects as shown, indicating that a current is induced in the loop. (b) When
the magnet is held stationary, there is no induced current in the loop, even when the magnet is
inside the loop. (c) When the magnet is moved away from the loop, the galvanometer deflects in
the opposite direction, indicating that the induced current is opposite that shown in part (a).
Changing the direction of the magnet’s motion changes the direction of the current induced by
that motion.

Figure 31.2 Faraday’s experiment. When the switch in the primary circuit is closed, the gal-
vanometer in the secondary circuit deflects momentarily. The emf induced in the secondary cir-
cuit is caused by the changing magnetic field through the secondary coil.

Michael Faraday (1791 – 1867)
Faraday, a British physicist and
chemist, is often regarded as the
greatest experimental scientist of the
1800s. His many contributions to the
study of electricity include the inven-
tion of the electric motor, electric
generator, and transformer, as well as
the discovery of electromagnetic in-
duction and the laws of electrolysis.
Greatly influenced by religion, he re-
fused to work on the development of
poison gas for the British military.
(By kind permission of the President and
Council of the Royal Society)
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standing what happens in this experiment is to first note that when the switch is
closed, the current in the primary circuit produces a magnetic field in the region
of the circuit, and it is this magnetic field that penetrates the secondary circuit.
Furthermore, when the switch is closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time,
and it is this changing field that induces a current in the secondary circuit.

As a result of these observations, Faraday concluded that an electric current
can be induced in a circuit (the secondary circuit in our setup) by a chang-
ing magnetic field. The induced current exists for only a short time while the
magnetic field through the secondary coil is changing. Once the magnetic field
reaches a steady value, the current in the secondary coil disappears. In effect, the
secondary circuit behaves as though a source of emf were connected to it for a
short time. It is customary to say that an induced emf is produced in the sec-
ondary circuit by the changing magnetic field.

The experiments shown in Figures 31.1 and 31.2 have one thing in common:
In each case, an emf is induced in the circuit when the magnetic flux through the
circuit changes with time. In general,

the emf induced in a circuit is directly proportional to the time rate of change
of the magnetic flux through the circuit.

This statement, known as Faraday’s law of induction, can be written

(31.1)

where is the magnetic flux through the circuit (see Section 30.5).
If the circuit is a coil consisting of N loops all of the same area and if !B is the

flux through one loop, an emf is induced in every loop; thus, the total induced
emf in the coil is given by the expression

(31.2)

The negative sign in Equations 31.1 and 31.2 is of important physical significance,
which we shall discuss in Section 31.3.

Suppose that a loop enclosing an area A lies in a uniform magnetic field B, as
shown in Figure 31.3. The magnetic flux through the loop is equal to BA cos ";

# $ %N 
d !B

dt

!B $ !B ! dA

# $ %
d !B

dt
Faraday’s law

B

A  θ

Figure 31.3 A conducting loop that encloses an area
A in the presence of a uniform magnetic field B. The
angle between B and the normal to the loop is ".
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hence, the induced emf can be expressed as

(31.3)

From this expression, we see that an emf can be induced in the circuit in several
ways:

• The magnitude of B can change with time.
• The area enclosed by the loop can change with time.
• The angle " between B and the normal to the loop can change with time.
• Any combination of the above can occur.

Equation 31.3 can be used to calculate the emf induced when the north pole of a magnet is
moved toward a loop of wire, along the axis perpendicular to the plane of the loop passing
through its center. What changes are necessary in the equation when the south pole is
moved toward the loop?

Some Applications of Faraday’s Law

The ground fault interrupter (GFI) is an interesting safety device that protects
users of electrical appliances against electric shock. Its operation makes use of
Faraday’s law. In the GFI shown in Figure 31.4, wire 1 leads from the wall outlet to
the appliance to be protected, and wire 2 leads from the appliance back to the wall
outlet. An iron ring surrounds the two wires, and a sensing coil is wrapped around
part of the ring. Because the currents in the wires are in opposite directions, the
net magnetic flux through the sensing coil due to the currents is zero. However, if
the return current in wire 2 changes, the net magnetic flux through the sensing
coil is no longer zero. (This can happen, for example, if the appliance gets wet,
enabling current to leak to ground.) Because household current is alternating
(meaning that its direction keeps reversing), the magnetic flux through the sens-
ing coil changes with time, inducing an emf in the coil. This induced emf is used
to trigger a circuit breaker, which stops the current before it is able to reach a
harmful level.

Another interesting application of Faraday’s law is the production of sound in
an electric guitar (Fig. 31.5). The coil in this case, called the pickup coil , is placed
near the vibrating guitar string, which is made of a metal that can be magnetized.
A permanent magnet inside the coil magnetizes the portion of the string nearest

Quick Quiz 31.1

# $ %
d
dt

 (BA cos ")

This electric range cooks food on
the basis of the principle of induc-
tion. An oscillating current is
passed through a coil placed below
the cooking surface, which is made
of a special glass. The current pro-
duces an oscillating magnetic field,
which induces a current in the
cooking utensil. Because the cook-
ing utensil has some electrical resis-
tance, the electrical energy associ-
ated with the induced current is
transformed to internal energy,
causing the utensil and its contents
to become hot. (Courtesy of Corning,
Inc.)

Circuit
breaker

Sensing
coil

Alternating
current

Iron
ring

1

2 Figure 31.4 Essential components of a
ground fault interrupter.

QuickLab
A cassette tape is made up of tiny par-
ticles of metal oxide attached to a
long plastic strip. A current in a small
conducting loop magnetizes the par-
ticles in a pattern related to the music
being recorded. During playback, the
tape is moved past a second small
loop (inside the playback head) and
induces a current that is then ampli-
fied. Pull a strip of tape out of a cas-
sette (one that you don’t mind
recording over) and see if it is at-
tracted or repelled by a refrigerator
magnet. If you don’t have a cassette,
try this with an old floppy disk you
are ready to trash.
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the coil. When the string vibrates at some frequency, its magnetized segment pro-
duces a changing magnetic flux through the coil. The changing flux induces an
emf in the coil that is fed to an amplifier. The output of the amplifier is sent to the
loudspeakers, which produce the sound waves we hear.

One Way to Induce an emf in a CoilEXAMPLE 31.1
is, from Equation 31.2,

You should be able to show that 1 T & m2/s $ 1 V.

Exercise What is the magnitude of the induced current in
the coil while the field is changing?

Answer 2.0 A.

4.1 V$$ 4.1 T&m2/s

"# " $
N '!B

't
$

200(0.016 2 T&m2 % 0 T&m2)
0.80 s

A coil consists of 200 turns of wire having a total resistance of
2.0 (. Each turn is a square of side 18 cm, and a uniform
magnetic field directed perpendicular to the plane of the coil
is turned on. If the field changes linearly from 0 to 0.50 T in
0.80 s, what is the magnitude of the induced emf in the coil
while the field is changing?

Solution The area of one turn of the coil is (0.18 m)2 $
0.032 4 m2. The magnetic flux through the coil at t $ 0 is
zero because B $ 0 at that time. At t $ 0.80 s, the magnetic
flux through one turn is !B $ BA $ (0.50 T)(0.032 4 m2) $
0.016 2 T & m2. Therefore, the magnitude of the induced emf

An Exponentially Decaying B FieldEXAMPLE 31.2
tially (Fig. 31.6). Find the induced emf in the loop as a func-
tion of time.

Solution Because B is perpendicular to the plane of the
loop, the magnetic flux through the loop at time t ) 0 is

A loop of wire enclosing an area A is placed in a region where
the magnetic field is perpendicular to the plane of the loop.
The magnitude of B varies in time according to the expres-
sion B $ Bmaxe%at, where a is some constant. That is, at t $ 0
the field is Bmax , and for t ) 0, the field decreases exponen-

Pickup
coil Magnet

Magnetized
portion of

string

Guitar string

To amplifier

N S
N S

(a)

Figure 31.5 (a) In an electric guitar, a vibrating string induces an emf in a pickup coil. 
(b) The circles beneath the metallic strings of this electric guitar detect the notes being played
and send this information through an amplifier and into speakers. (A switch on the guitar allows
the musician to select which set of six is used.) How does a guitar “pickup” sense what music is
being played? (b, Charles D. Winters)

(b)
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MOTIONAL EMF
In Examples 31.1 and 31.2, we considered cases in which an emf is induced in a
stationary circuit placed in a magnetic field when the field changes with time. In
this section we describe what is called motional emf, which is the emf induced in
a conductor moving through a constant magnetic field.

The straight conductor of length ! shown in Figure 31.8 is moving through a
uniform magnetic field directed into the page. For simplicity, we assume that the
conductor is moving in a direction perpendicular to the field with constant veloc-

31.2

What Is Connected to What?CONCEPTUAL EXAMPLE 31.3
now the only resistance in the loop. As a result, the current in
bulb 1 is greater than when bulb 2 was also in the loop.

Once the switch is closed, bulb 2 is in the loop consisting
of the wires attached to it and those connected to the switch.
There is no changing magnetic flux through this loop and
hence no induced emf.

Exercise What would happen if the switch were in a wire lo-
cated to the left of bulb 1?

Answer Bulb 1 would go out, and bulb 2 would glow
brighter.

Two bulbs are connected to opposite sides of a loop of wire,
as shown in Figure 31.7. A decreasing magnetic field (con-
fined to the circular area shown in the figure) induces an
emf in the loop that causes the two bulbs to light. What hap-
pens to the brightness of the bulbs when the switch is closed?

Solution Bulb 1 glows brighter, and bulb 2 goes out. Once
the switch is closed, bulb 1 is in the large loop consisting of
the wire to which it is attached and the wire connected to the
switch. Because the changing magnetic flux is completely en-
closed within this loop, a current exists in bulb 1. Bulb 1 now
glows brighter than before the switch was closed because it is

t

B

Bmax
Because ABmax and a are constants, the induced emf calcu-
lated from Equation 31.1 is

This expression indicates that the induced emf decays expo-
nentially in time. Note that the maximum emf occurs at t $
0, where The plot of versus t is similar to
the B-versus-t curve shown in Figure 31.6.

##max $ aABmax .

aABmaxe%at# $ %
d!B

dt
$ %ABmax 

d
dt

 e%at $

!B $ BA cos 0 $ ABmaxe%at

Figure 31.6 Exponential decrease in the magnitude of the mag-
netic field with time. The induced emf and induced current vary with
time in the same way.

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

×
×
×
×
×

×
×

×
×
×
×
× Switch

Bulb 2

Bulb 1

Figure 31.7
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ity under the influence of some external agent. The electrons in the conductor ex-
perience a force that is directed along the length !, perpendicular to
both v and B (Eq. 29.1). Under the influence of this force, the electrons move to
the lower end of the conductor and accumulate there, leaving a net positive
charge at the upper end. As a result of this charge separation, an electric field is
produced inside the conductor. The charges accumulate at both ends until the
downward magnetic force qvB is balanced by the upward electric force q E. At this
point, electrons stop moving. The condition for equilibrium requires that

The electric field produced in the conductor (once the electrons stop moving and
E is constant) is related to the potential difference across the ends of the conduc-
tor according to the relationship (Eq. 25.6). Thus,

(31.4)

where the upper end is at a higher electric potential than the lower end. Thus, a
potential difference is maintained between the ends of the conductor as
long as the conductor continues to move through the uniform magnetic
field. If the direction of the motion is reversed, the polarity of the potential differ-
ence also is reversed.

A more interesting situation occurs when the moving conductor is part of a
closed conducting path. This situation is particularly useful for illustrating how a
changing magnetic flux causes an induced current in a closed circuit. Consider a
circuit consisting of a conducting bar of length ! sliding along two fixed parallel
conducting rails, as shown in Figure 31.9a.

For simplicity, we assume that the bar has zero resistance and that the station-
ary part of the circuit has a resistance R . A uniform and constant magnetic field B
is applied perpendicular to the plane of the circuit. As the bar is pulled to the
right with a velocity v, under the influence of an applied force Fapp , free charges
in the bar experience a magnetic force directed along the length of the bar. This
force sets up an induced current because the charges are free to move in the
closed conducting path. In this case, the rate of change of magnetic flux through
the loop and the corresponding induced motional emf across the moving bar are
proportional to the change in area of the loop. As we shall see, if the bar is pulled
to the right with a constant velocity, the work done by the applied force appears as
internal energy in the resistor R (see Section 27.6).

Because the area enclosed by the circuit at any instant is !x , where x is the
width of the circuit at any instant, the magnetic flux through that area is

Using Faraday’s law, and noting that x changes with time at a rate we
find that the induced motional emf is

(31.5)

Because the resistance of the circuit is R , the magnitude of the induced current is

(31.6)

The equivalent circuit diagram for this example is shown in Figure 31.9b.

I $
"# "
R

$
B!v
R

# $ %B!v

# $ %
d !B

dt
$ %

d
dt

 (B!x) $ %B! 
dx
dt

dx/dt $ v,

!B $ B!x

'V $ E! $ B!v

'V $ E!

q E $ q vB  or  E $ vB

FB $ q v " B

Motional emf

v

Bin
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

!

+
+

−
−

–
×

×

×

×

FB

Figure 31.8 A straight electrical
conductor of length ! moving with
a velocity v through a uniform
magnetic field B directed perpen-
dicular to v. A potential difference
'V $ B!v is maintained between
the ends of the conductor.
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Let us examine the system using energy considerations. Because no battery is
in the circuit, we might wonder about the origin of the induced current and the
electrical energy in the system. We can understand the source of this current and
energy by noting that the applied force does work on the conducting bar, thereby
moving charges through a magnetic field. Their movement through the field
causes the charges to move along the bar with some average drift velocity, and
hence a current is established. Because energy must be conserved, the work done
by the applied force on the bar during some time interval must equal the electrical
energy supplied by the induced emf during that same interval. Furthermore, if the
bar moves with constant speed, the work done on it must equal the energy deliv-
ered to the resistor during this time interval.

As it moves through the uniform magnetic field B, the bar experiences a mag-
netic force FB of magnitude I !B (see Section 29.2). The direction of this force is
opposite the motion of the bar, to the left in Figure 31.9a. Because the bar moves
with constant velocity, the applied force must be equal in magnitude and opposite
in direction to the magnetic force, or to the right in Figure 31.9a. (If FB acted in
the direction of motion, it would cause the bar to accelerate. Such a situation
would violate the principle of conservation of energy.) Using Equation 31.6 and
the fact that we find that the power delivered by the applied force is

(31.7)

From Equation 27.23, we see that this power is equal to the rate at which energy is
delivered to the resistor I 2R, as we would expect. It is also equal to the power 
supplied by the motional emf. This example is a clear demonstration of the con-
version of mechanical energy first to electrical energy and finally to internal en-
ergy in the resistor.

As an airplane flies from Los Angeles to Seattle, it passes through the Earth’s magnetic
field. As a result, a motional emf is developed between the wingtips. Which wingtip is posi-
tively charged?

Quick Quiz 31.2

I#

" $ Fappv $ (I!B)v $
B 2!2v2

R
$

#2

R

Fapp $ I!B,

Motional emf Induced in a Rotating BarEXAMPLE 31.4
A conducting bar of length ! rotates with a constant angular
speed * about a pivot at one end. A uniform magnetic field B
is directed perpendicular to the plane of rotation, as shown
in Figure 31.10. Find the motional emf induced between the
ends of the bar.

Solution Consider a segment of the bar of length dr hav-
ing a velocity v. According to Equation 31.5, the magnitude
of the emf induced in this segment is

Because every segment of the bar is moving perpendicular 
to B, an emf of the same form is generated across 
each. Summing the emfs induced across all segments, which
are in series, gives the total emf between the ends of 

d#

d# $ Bv dr

  

(b)

R

!B vε =

I

R FB

(a)

x

Fapp

v

Bin

!

× × ×

× × ×

× × ×

× × ×

× × ×

×
I

×

×

×

×

×

×

Figure 31.9 (a) A conducting
bar sliding with a velocity v along
two conducting rails under the ac-
tion of an applied force Fapp . The
magnetic force FB opposes the mo-
tion, and a counterclockwise cur-
rent I is induced in the loop. 
(b) The equivalent circuit diagram
for the setup shown in part (a).
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Figure 31.10 A conducting bar rotating around a pivot at one
end in a uniform magnetic field that is perpendicular to the plane of
rotation. A motional emf is induced across the ends of the bar.
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LENZ’S LAW
Faraday’s law (Eq. 31.1) indicates that the induced emf and the change in flux
have opposite algebraic signs. This has a very real physical interpretation that has
come to be known as Lenz’s law2:

31.3

the bar:

To integrate this expression, we must note that the linear
speed of an element is related to the angular speed *

# $ !Bv dr

through the relationship Therefore, because B and *
are constants, we find that

1
2B*!2# $ B !v dr $ B* !!

0
r dr $

v $ r*.

Magnetic Force Acting on a Sliding BarEXAMPLE 31.5
that the velocity can be expressed in the exponential form

This expression indicates that the velocity of the bar de-
creases exponentially with time under the action of the mag-
netic retarding force.

Exercise Find expressions for the induced current and the
magnitude of the induced emf as functions of time for the
bar in this example.

Answer (They both de-

crease exponentially with time.)

# $ B!vi e%t /+.I $
B!vi

R
 e%t /+ ;

v $ vie%t /+

The conducting bar illustrated in Figure 31.11, of mass m and
length !, moves on two frictionless parallel rails in the pres-
ence of a uniform magnetic field directed into the page. The
bar is given an initial velocity vi to the right and is released at
t $ 0. Find the velocity of the bar as a function of time.

Solution The induced current is counterclockwise, and
the magnetic force is where the negative sign de-
notes that the force is to the left and retards the motion. This
is the only horizontal force acting on the bar, and hence New-
ton’s second law applied to motion in the horizontal direc-
tion gives

From Equation 31.6, we know that and so we can
write this expression as

Integrating this equation using the initial condition that
at t $ 0, we find that

where the constant From this result, we see+ $ mR/B2!2.

 ln# v
vi
$ $ %# B2!2

mR $ t $ %
t
+

!v

vi

dv
v

$
%B2!2

mR
 !t

0
dt 

v $ vi

 
dv
v

$ %# B2!2

mR $dt

m 
dv
dt

$ %
B2!2

R
 v 

I $ B!v/R ,

Fx $ ma $ m 
dv
dt

$ %I!B

FB $ %I!B,
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Figure 31.11 A conducting bar of length ! sliding on two fixed
conducting rails is given an initial velocity vi to the right.

2 Developed by the German physicist Heinrich Lenz (1804–1865).

12.7
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That is, the induced current tends to keep the original magnetic flux through the
circuit from changing. As we shall see, this law is a consequence of the law of con-
servation of energy.

To understand Lenz’s law, let us return to the example of a bar moving to the
right on two parallel rails in the presence of a uniform magnetic field that we shall
refer to as the external magnetic field (Fig. 31.12a). As the bar moves to the right,
the magnetic flux through the area enclosed by the circuit increases with time be-
cause the area increases. Lenz’s law states that the induced current must be di-
rected so that the magnetic flux it produces opposes the change in the external
magnetic flux. Because the external magnetic flux is increasing into the page, the
induced current, if it is to oppose this change, must produce a flux directed out of
the page. Hence, the induced current must be directed counterclockwise when
the bar moves to the right. (Use the right-hand rule to verify this direction.) If the
bar is moving to the left, as shown in Figure 31.12b, the external magnetic flux
through the area enclosed by the loop decreases with time. Because the flux is di-
rected into the page, the direction of the induced current must be clockwise if it is
to produce a flux that also is directed into the page. In either case, the induced
current tends to maintain the original flux through the area enclosed by the cur-
rent loop.

Let us examine this situation from the viewpoint of energy considerations.
Suppose that the bar is given a slight push to the right. In the preceding analysis,
we found that this motion sets up a counterclockwise current in the loop. Let us
see what happens if we assume that the current is clockwise, such that the direc-
tion of the magnetic force exerted on the bar is to the right. This force would ac-
celerate the rod and increase its velocity. This, in turn, would cause the area en-
closed by the loop to increase more rapidly; this would result in an increase in the
induced current, which would cause an increase in the force, which would pro-
duce an increase in the current, and so on. In effect, the system would acquire en-
ergy with no additional input of energy. This is clearly inconsistent with all experi-
ence and with the law of conservation of energy. Thus, we are forced to conclude
that the current must be counterclockwise.

Let us consider another situation, one in which a bar magnet moves toward a
stationary metal loop, as shown in Figure 31.13a. As the magnet moves to the right
toward the loop, the external magnetic flux through the loop increases with time.
To counteract this increase in flux to the right, the induced current produces a
flux to the left, as illustrated in Figure 31.13b; hence, the induced current is in the
direction shown. Note that the magnetic field lines associated with the induced
current oppose the motion of the magnet. Knowing that like magnetic poles repel
each other, we conclude that the left face of the current loop is in essence a north
pole and that the right face is a south pole.

If the magnet moves to the left, as shown in Figure 31.13c, its flux through the
area enclosed by the loop, which is directed to the right, decreases in time. Now
the induced current in the loop is in the direction shown in Figure 31.13d because
this current direction produces a magnetic flux in the same direction as the exter-
nal flux. In this case, the left face of the loop is a south pole and the right face is a
north pole.

The polarity of the induced emf is such that it tends to produce a current that
creates a magnetic flux to oppose the change in magnetic flux through the area
enclosed by the current loop.
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Figure 31.12 (a) As the conduct-
ing bar slides on the two fixed con-
ducting rails, the magnetic flux
through the area enclosed by the
loop increases in time. By Lenz’s law,
the induced current must be coun-
terclockwise so as to produce a coun-
teracting magnetic flux directed out
of the page. (b) When the bar
moves to the left, the induced cur-
rent must be clockwise. Why?

QuickLab
This experiment takes steady hands, a
dime, and a strong magnet. After ver-
ifying that a dime is not attracted to
the magnet, carefully balance the
coin on its edge. (This won’t work
with other coins because they require
too much force to topple them.)
Hold one pole of the magnet within a
millimeter of the face of the dime,
but don’t bump it. Now very rapidly
pull the magnet straight back away
from the coin. Which way does the
dime tip? Does the coin fall the same
way most of the time? Explain what is
going on in terms of Lenz’s law. You
may want to refer to Figure 31.13.
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Figure 31.14 shows a magnet being moved in the vicinity of a solenoid connected to a gal-
vanometer. The south pole of the magnet is the pole nearest the solenoid, and the gal-

Quick Quiz 31.3

Figure 31.13 (a) When the magnet is moved toward the stationary conducting loop, a current
is induced in the direction shown. (b) This induced current produces its own magnetic flux that
is directed to the left and so counteracts the increasing external flux to the right. (c) When the
magnet is moved away from the stationary conducting loop, a current is induced in the direction
shown. (d) This induced current produces a magnetic flux that is directed to the right and so
counteracts the decreasing external flux to the right.

Ex
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(b)
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v
S N
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Figure 31.14 When a magnet is moved
toward or away from a solenoid attached to
a galvanometer, an electric current is in-
duced, indicated by the momentary deflec-
tion of the galvanometer needle. (Richard
Megna/Fundamental Photographs)
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vanometer indicates a clockwise (viewed from above) current in the solenoid. Is the person
inserting the magnet or pulling it out?

Application of Lenz’s LawCONCEPTUAL EXAMPLE 31.6
rection produces a magnetic field that is directed right to left
and so counteracts the decrease in the field produced by the
solenoid.

A metal ring is placed near a solenoid, as shown in Figure
31.15a. Find the direction of the induced current in the ring
(a) at the instant the switch in the circuit containing the sole-
noid is thrown closed, (b) after the switch has been closed
for several seconds, and (c) at the instant the switch is thrown
open.

Solution (a) At the instant the switch is thrown closed, the
situation changes from one in which no magnetic flux passes
through the ring to one in which flux passes through in the
direction shown in Figure 31.15b. To counteract this change
in the flux, the current induced in the ring must set up a
magnetic field directed from left to right in Figure 31.15b.
This requires a current directed as shown.

(b) After the switch has been closed for several seconds,
no change in the magnetic flux through the loop occurs;
hence, the induced current in the ring is zero.

(c) Opening the switch changes the situation from one in
which magnetic flux passes through the ring to one in which
there is no magnetic flux. The direction of the induced cur-
rent is as shown in Figure 31.15c because current in this di-

ε
(c)

(a) (b)
ε εSwitch

Figure 31.15

A Loop Moving Through a Magnetic FieldCONCEPTUAL EXAMPLE 31.7
netic force experienced by charges in the right side of the
loop. When the loop is entirely in the field, the change in
magnetic flux is zero, and hence the motional emf vanishes.
This happens because, once the left side of the loop enters
the field, the motional emf induced in it cancels the motional
emf present in the right side of the loop. As the right side of
the loop leaves the field, the flux inward begins to decrease, a
clockwise current is induced, and the induced emf is B!v. As
soon as the left side leaves the field, the emf decreases to
zero.

(c) The external force that must be applied to the loop to
maintain this motion is plotted in Figure 31.16d. Before the
loop enters the field, no magnetic force acts on it; hence, the
applied force must be zero if v is constant. When the right
side of the loop enters the field, the applied force necessary
to maintain constant speed must be equal in magnitude and
opposite in direction to the magnetic force exerted on that
side: When the loop is entirely in
the field, the flux through the loop is not changing with
time. Hence, the net emf induced in the loop is zero, and the
current also is zero. Therefore, no external force is needed to
maintain the motion. Finally, as the right side leaves the field,
the applied force must be equal in magnitude and opposite

FB $ %I!B $ %B2!2v/R .

A rectangular metallic loop of dimensions ! and w and resis-
tance R moves with constant speed v to the right, as shown in
Figure 31.16a, passing through a uniform magnetic field B
directed into the page and extending a distance 3w along the
x axis. Defining x as the position of the right side of the loop
along the x axis, plot as functions of x (a) the magnetic flux
through the area enclosed by the loop, (b) the induced mo-
tional emf, and (c) the external applied force necessary to
counter the magnetic force and keep v constant.

Solution (a) Figure 31.16b shows the flux through the
area enclosed by the loop as a function x . Before the loop en-
ters the field, the flux is zero. As the loop enters the field, the
flux increases linearly with position until the left edge of the
loop is just inside the field. Finally, the flux through the loop
decreases linearly to zero as the loop leaves the field.

(b) Before the loop enters the field, no motional emf is
induced in it because no field is present (Fig. 31.16c). As 
the right side of the loop enters the field, the magnetic 
flux directed into the page increases. Hence, according to
Lenz’s law, the induced current is counterclockwise because
it must produce a magnetic field directed out of the page.
The motional emf %B!v (from Eq. 31.5) arises from the mag-
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INDUCED EMF AND ELECTRIC FIELDS
We have seen that a changing magnetic flux induces an emf and a current in a
conducting loop. Therefore, we must conclude that an electric field is created
in the conductor as a result of the changing magnetic flux. However, this in-
duced electric field has two important properties that distinguish it from the elec-
trostatic field produced by stationary charges: The induced field is nonconserva-
tive and can vary in time.

We can illustrate this point by considering a conducting loop of radius r situ-
ated in a uniform magnetic field that is perpendicular to the plane of the loop, as
shown in Figure 31.17. If the magnetic field changes with time, then, according to
Faraday’s law (Eq. 31.1), an emf is induced in the loop. The induc-
tion of a current in the loop implies the presence of an induced electric field E,
which must be tangent to the loop because all points on the loop are equivalent.
The work done in moving a test charge q once around the loop is equal to Be-
cause the electric force acting on the charge is the work done by this force in
moving the charge once around the loop is where 2,r is the circumfer-
ence of the loop. These two expressions for the work must be equal; therefore, we
see that

Using this result, along with Equation 31.1 and the fact that for a!B $ BA $ ,r 2B

 E $
#

2,r
 

q# $ qE(2,r)

qE(2,r),
q E,

q#.

# $ %d!B/dt

31.4

12.8

Figure 31.16 (a) A conducting rectangular loop of width
w and length # moving with a velocity v through a uniform
magnetic field extending a distance 3w. (b) Magnetic flux
through the area enclosed by the loop as a function of loop
position. (c) Induced emf as a function of loop position. 
(d) Applied force required for constant velocity as a function
of loop position.
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in direction to the magnetic force acting on the left side of
the loop.

From this analysis, we conclude that power is supplied
only when the loop is either entering or leaving the field.

Furthermore, this example shows that the motional emf in-
duced in the loop can be zero even when there is motion
through the field! A motional emf is induced only when the
magnetic flux through the loop changes in time.
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Figure 31.17 A conducting loop
of radius r in a uniform magnetic
field perpendicular to the plane of
the loop. If B changes in time, an
electric field is induced in a direc-
tion tangent to the circumference
of the loop.



31.4 Induced EMF and Electric Fields 993

circular loop, we find that the induced electric field can be expressed as

(31.8)

If the time variation of the magnetic field is specified, we can easily calculate the
induced electric field from Equation 31.8. The negative sign indicates that the in-
duced electric field opposes the change in the magnetic field.

The emf for any closed path can be expressed as the line integral of over 
that path: In more general cases, E may not be constant, and the path
may not be a circle. Hence, Faraday’s law of induction, can be writ-
ten in the general form

(31.9)

It is important to recognize that the induced electric field E in Equation
31.9 is a nonconservative field that is generated by a changing magnetic
field. The field E that satisfies Equation 31.9 cannot possibly be an electrostatic
field for the following reason: If the field were electrostatic, and hence conserva-
tive, the line integral of over a closed loop would be zero; this would be in
contradiction to Equation 31.9.

E ! ds

%E ! ds $ %
d!B

dt

# $ %d!B /dt,
# $ %E ! ds.

E ! ds

E $ %
1

2,r
 
d!B

dt
$ %

r
2

 
dB
dt

Electric Field Induced by a Changing Magnetic Field in a SolenoidEXAMPLE 31.8
metry we see that the magnitude of E is constant on this path
and that E is tangent to it. The magnetic flux through the
area enclosed by this path is hence, Equation
31.9 gives

(1)

The magnetic field inside a long solenoid is given by Equa-
tion 30.17, When we substitute cos *t into
this equation and then substitute the result into Equation (1),
we find that

(2) (for r ) R)

Hence, the electric field varies sinusoidally with time and its
amplitude falls off as 1/r outside the solenoid.

(b) What is the magnitude of the induced electric field in-
side the solenoid, a distance r from its axis?

Solution For an interior point (r - R), the flux threading
an integration loop is given by B,r 2. Using the same proce-

E $
.0nImax*R 2

2r
 sin *t

E(2,r) $ %,R 2.0nImax 
d
dt

(cos *t) $ ,R 2.0nImax* sin *t

I $ ImaxB $ .0nI.

%E ! ds $ E(2,r) $ %,R2 
dB
dt

 

%E ! ds $ %
d
dt

 (B,R2) $ %,R2 
dB
dt

BA $ B,R2;

A long solenoid of radius R has n turns of wire per unit
length and carries a time-varying current that varies si-
nusoidally as cos *t, where Imax is the maximum cur-
rent and * is the angular frequency of the alternating current
source (Fig. 31.18). (a) Determine the magnitude of the in-
duced electric field outside the solenoid, a distance r ) R
from its long central axis.

Solution First let us consider an external point and take
the path for our line integral to be a circle of radius r cen-
tered on the solenoid, as illustrated in Figure 31.18. By sym-

I $ Imax

Faraday’s law in general form

Path of
integration

R

r

Imax cos    tω

Figure 31.18 A long solenoid carrying a time-varying current
given by cos *t. An electric field is induced both inside and
outside the solenoid.

I $ I0
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Optional Section

GENERATORS AND MOTORS
Electric generators are used to produce electrical energy. To understand how they
work, let us consider the alternating current (ac) generator, a device that con-
verts mechanical energy to electrical energy. In its simplest form, it consists of a
loop of wire rotated by some external means in a magnetic field (Fig. 31.19a).

In commercial power plants, the energy required to rotate the loop can be de-
rived from a variety of sources. For example, in a hydroelectric plant, falling water
directed against the blades of a turbine produces the rotary motion; in a coal-fired
plant, the energy released by burning coal is used to convert water to steam, and
this steam is directed against the turbine blades. As a loop rotates in a magnetic
field, the magnetic flux through the area enclosed by the loop changes with time;
this induces an emf and a current in the loop according to Faraday’s law. The ends
of the loop are connected to slip rings that rotate with the loop. Connections from
these slip rings, which act as output terminals of the generator, to the external cir-
cuit are made by stationary brushes in contact with the slip rings.

31.5

dure as in part (a), we find that

(3) (for r - R)

This shows that the amplitude of the electric field induced in-
side the solenoid by the changing magnetic flux through the
solenoid increases linearly with r and varies sinusoidally with
time.

E $
.0nImax*

2
 r sin *t

E(2,r) $ %,r 2 
dB
dt

$ ,r 2.0nImax* sin *t

Exercise Show that Equations (2) and (3) for the exterior
and interior regions of the solenoid match at the boundary, 
r $ R .

Exercise Would the electric field be different if the sole-
noid had an iron core?

Answer Yes, it could be much stronger because the maxi-
mum magnetic field (and thus the change in flux) through
the solenoid could be thousands of times larger. (See Exam-
ple 30.10.)

Figure 31.19 (a) Schematic diagram of an ac generator. An emf is induced in a loop that ro-
tates in a magnetic field. (b) The alternating emf induced in the loop plotted as a function of
time.

Turbines turn generators at a hy-
droelectric power plant. (Luis Cas-
taneda/The Image Bank)
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Suppose that, instead of a single turn, the loop has N turns (a more practical
situation), all of the same area A, and rotates in a magnetic field with a constant
angular speed *. If " is the angle between the magnetic field and the normal to
the plane of the loop, as shown in Figure 31.20, then the magnetic flux through
the loop at any time t is

where we have used the relationship " $ *t between angular displacement and an-
gular speed (see Eq. 10.3). (We have set the clock so that t $ 0 when " $ 0.)
Hence, the induced emf in the coil is

(31.10)

This result shows that the emf varies sinusoidally with time, as was plotted in Fig-
ure 31.19b. From Equation 31.10 we see that the maximum emf has the value

(31.11)

which occurs when *t $ 90° or 270°. In other words, when the mag-
netic field is in the plane of the coil and the time rate of change of flux is a 
maximum. Furthermore, the emf is zero when *t $ 0 or 180°, that is, when B
is perpendicular to the plane of the coil and the time rate of change of flux is
zero.

The frequency for commercial generators in the United States and Canada is
60 Hz, whereas in some European countries it is 50 Hz. (Recall that * $ 2,f,
where f is the frequency in hertz.)

# $ #max

#max $ NAB*

# $ %N 
d!B

dt
$ %NAB 

d
dt

 (cos *t) $ NAB* sin *t

!B $ BA cos " $ BA cos *t

emf Induced in a GeneratorEXAMPLE 31.9
Solution From Equation 27.8 and the results to part (a),
we have

Exercise Determine how the induced emf and induced cur-
rent vary with time.

Answer
377t.*t $ (11.3 A)sinImax sinI $

# $ #max sin *t $ (136 V)sin 377t ;

11.3 AImax $
#max

R
$

136 V
12.0 (

$

An ac generator consists of 8 turns of wire, each of area A $
0.090 0 m2, and the total resistance of the wire is 12.0 (. The
loop rotates in a 0.500-T magnetic field at a constant fre-
quency of 60.0 Hz. (a) Find the maximum induced emf.

Solution First, we note that 
Thus, Equation 31.11 gives

(b) What is the maximum induced current when the out-
put terminals are connected to a low-resistance conductor?

136 V#max $ NAB* $ 8(0.090 0 m2)(0.500 T)(377 s%1) $

377 s%1.
* $ 2,f $ 2,(60.0 Hz) $

Normal

θ

B

Figure 31.20 A loop enclosing
an area A and containing N turns,
rotating with constant angular
speed * in a magnetic field. The
emf induced in the loop varies si-
nusoidally in time.

The direct current (dc) generator is illustrated in Figure 31.21a. Such gener-
ators are used, for instance, in older cars to charge the storage batteries used. The
components are essentially the same as those of the ac generator except that the
contacts to the rotating loop are made using a split ring called a commutator.

In this configuration, the output voltage always has the same polarity and pul-
sates with time, as shown in Figure 31.21b. We can understand the reason for this
by noting that the contacts to the split ring reverse their roles every half cycle. At
the same time, the polarity of the induced emf reverses; hence, the polarity of the
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split ring (which is the same as the polarity of the output voltage) remains the
same.

A pulsating dc current is not suitable for most applications. To obtain a more
steady dc current, commercial dc generators use many coils and commutators dis-
tributed so that the sinusoidal pulses from the various coils are out of phase. When
these pulses are superimposed, the dc output is almost free of fluctuations.

Motors are devices that convert electrical energy to mechanical energy. Essen-
tially, a motor is a generator operating in reverse. Instead of generating a current
by rotating a loop, a current is supplied to the loop by a battery, and the torque
acting on the current-carrying loop causes it to rotate.

Useful mechanical work can be done by attaching the rotating armature to
some external device. However, as the loop rotates in a magnetic field, the chang-
ing magnetic flux induces an emf in the loop; this induced emf always acts to re-
duce the current in the loop. If this were not the case, Lenz’s law would be vio-
lated. The back emf increases in magnitude as the rotational speed of the
armature increases. (The phrase back emf is used to indicate an emf that tends to
reduce the supplied current.) Because the voltage available to supply current
equals the difference between the supply voltage and the back emf, the current in
the rotating coil is limited by the back emf.

When a motor is turned on, there is initially no back emf; thus, the current is
very large because it is limited only by the resistance of the coils. As the coils begin
to rotate, the induced back emf opposes the applied voltage, and the current in
the coils is reduced. If the mechanical load increases, the motor slows down; this
causes the back emf to decrease. This reduction in the back emf increases the cur-
rent in the coils and therefore also increases the power needed from the external
voltage source. For this reason, the power requirements for starting a motor and
for running it are greater for heavy loads than for light ones. If the motor is al-
lowed to run under no mechanical load, the back emf reduces the current to a
value just large enough to overcome energy losses due to internal energy and fric-
tion. If a very heavy load jams the motor so that it cannot rotate, the lack of a back
emf can lead to dangerously high current in the motor’s wire. If the problem is
not corrected, a fire could result.

t

ε

(b)

Commutator

(a)

Brush N

S

Armature

Figure 31.21 (a) Schematic diagram of a dc generator. (b) The magnitude of the emf varies in
time but the polarity never changes.
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Optional Section

EDDY CURRENTS
As we have seen, an emf and a current are induced in a circuit by a changing mag-
netic flux. In the same manner, circulating currents called eddy currents are in-
duced in bulk pieces of metal moving through a magnetic field. This can easily be
demonstrated by allowing a flat copper or aluminum plate attached at the end of a
rigid bar to swing back and forth through a magnetic field (Fig. 31.22). As the
plate enters the field, the changing magnetic flux induces an emf in the plate,
which in turn causes the free electrons in the plate to move, producing the
swirling eddy currents. According to Lenz’s law, the direction of the eddy currents
must oppose the change that causes them. For this reason, the eddy currents must
produce effective magnetic poles on the plate, which are repelled by the poles of
the magnet; this gives rise to a repulsive force that opposes the motion of the
plate. (If the opposite were true, the plate would accelerate and its energy would

31.6

Figure 31.22 Formation of eddy currents in a conducting
plate moving through a magnetic field. As the plate enters or
leaves the field, the changing magnetic flux induces an emf,
which causes eddy currents in the plate.

The Induced Current in a MotorEXAMPLE 31.10
(b) At the maximum speed, the back emf has its maxi-

mum value. Thus, the effective supply voltage is that of the
external source minus the back emf. Hence, the current is re-
duced to

Exercise If the current in the motor is 8.0 A at some in-
stant, what is the back emf at this time?

Answer 40 V.

5.0 AI $
#%#back

R
$

120 V % 70 V
10 (

$
50 V
10 (

$

Assume that a motor in which the coils have a total resistance
of 10 ( is supplied by a voltage of 120 V. When the motor is
running at its maximum speed, the back emf is 70 V. Find the
current in the coils (a) when the motor is turned on and 
(b) when it has reached maximum speed.

Solution (a) When the motor is turned on, the back emf
is zero (because the coils are motionless). Thus, the current
in the coils is a maximum and equal to

12 AI $
#
R

$
120 V
10 (

$

v

Pivot

S

N

QuickLab
Hang a strong magnet from two
strings so that it swings back and
forth in a plane. Start it oscillating
and determine approximately how
much time passes before it stops
swinging. Start it oscillating again and
quickly bring the flat surface of an
aluminum cooking sheet up to within
a millimeter of the plane of oscilla-
tion, taking care not to touch the
magnet. How long does it take the os-
cillating magnet to stop now?
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increase after each swing, in violation of the law of conservation of energy.) As you
may have noticed while carrying out the QuickLab on page 997, you can “feel” the
retarding force by pulling a copper or aluminum sheet through the field of a
strong magnet.

As indicated in Figure 31.23, with B directed into the page, the induced eddy
current is counterclockwise as the swinging plate enters the field at position 1.
This is because the external magnetic flux into the page through the plate is in-
creasing, and hence by Lenz’s law the induced current must provide a magnetic
flux out of the page. The opposite is true as the plate leaves the field at position 2,
where the current is clockwise. Because the induced eddy current always produces
a magnetic retarding force FB when the plate enters or leaves the field, the swing-
ing plate eventually comes to rest.

If slots are cut in the plate, as shown in Figure 31.24, the eddy currents and the
corresponding retarding force are greatly reduced. We can understand this by real-
izing that the cuts in the plate prevent the formation of any large current loops.

The braking systems on many subway and rapid-transit cars make use of elec-
tromagnetic induction and eddy currents. An electromagnet attached to the train
is positioned near the steel rails. (An electromagnet is essentially a solenoid with
an iron core.) The braking action occurs when a large current is passed through
the electromagnet. The relative motion of the magnet and rails induces eddy cur-
rents in the rails, and the direction of these currents produces a drag force on the
moving train. The loss in mechanical energy of the train is transformed to internal
energy in the rails and wheels. Because the eddy currents decrease steadily in mag-
nitude as the train slows down, the braking effect is quite smooth. Eddy-
current brakes are also used in some mechanical balances and in various ma-
chines. Some power tools use eddy currents to stop rapidly spinning blades once
the device is turned off.

Figure 31.23 As the conducting
plate enters the field (position 1),
the eddy currents are counterclock-
wise. As the plate leaves the field
(position 2), the currents are clock-
wise. In either case, the force on
the plate is opposite the velocity,
and eventually the plate comes to
rest.

Pivot

×

×

× ×

×

×

×

×

×× ×
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Coin
insert
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Reject
path

Magnets
Speed
sensors

Gate B

Figure 31.24 When slots are cut
in the conducting plate, the eddy
currents are reduced and the plate
swings more freely through the
magnetic field.

Figure 31.25 As the coin enters the vending machine, a potential difference is applied across
the coin at A, and its resistance is measured. If the resistance is acceptable, the holder drops
down, releasing the coin and allowing it to roll along the inlet track. Two magnets induce eddy
currents in the coin, and magnetic forces control its speed. If the speed sensors indicate that the
coin has the correct speed, gate B swings up to allow the coin to be accepted. If the coin is not
moving at the correct speed, gate C opens to allow the coin to follow the reject path.
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Eddy currents are often undesirable because they represent a transformation
of mechanical energy to internal energy. To reduce this energy loss, moving con-
ducting parts are often laminated—that is, they are built up in thin layers sepa-
rated by a nonconducting material such as lacquer or a metal oxide. This layered
structure increases the resistance of the possible paths of the eddy currents and ef-
fectively confines the currents to individual layers. Such a laminated structure is
used in transformer cores and motors to minimize eddy currents and thereby in-
crease the efficiency of these devices.

Even a task as simple as buying a candy bar from a vending machine involves
eddy currents, as shown in Figure 31.25. After entering the slot, a coin is stopped
momentarily while its electrical resistance is checked. If its resistance falls within
an acceptable range, the coin is allowed to continue down a ramp and through a
magnetic field. As it moves through the field, eddy currents are produced in the
coin, and magnetic forces slow it down slightly. How much it is slowed down de-
pends on its metallic composition. Sensors measure the coin’s speed after it moves
past the magnets, and this speed is compared with expected values. If the coin is
legal and passes these tests, a gate is opened and the coin is accepted; otherwise, a
second gate moves it into the reject path.

MAXWELL’S WONDERFUL EQUATIONS
We conclude this chapter by presenting four equations that are regarded as the ba-
sis of all electrical and magnetic phenomena. These equations, developed by
James Clerk Maxwell, are as fundamental to electromagnetic phenomena as New-
ton’s laws are to mechanical phenomena. In fact, the theory that Maxwell devel-
oped was more far-reaching than even he imagined because it turned out to be in
agreement with the special theory of relativity, as Einstein showed in 1905.

Maxwell’s equations represent the laws of electricity and magnetism that we
have already discussed, but they have additional important consequences. In
Chapter 34 we shall show that these equations predict the existence of electromag-
netic waves (traveling patterns of electric and magnetic fields), which travel with a
speed the speed of light. Furthermore, the theory
shows that such waves are radiated by accelerating charges.

For simplicity, we present Maxwell’s equations as applied to free space, that
is, in the absence of any dielectric or magnetic material. The four equations are

(31.12)

(31.13)

(31.14)

(31.15)%B ! ds $ .0I / 00.0 
d!E

dt

%E ! ds $ %
d!B

dt

%
S

B ! dA $ 0

%
S

E ! dA $
Q
00

c $ 1/!.000 $ 3.00 1 108 m/s,

31.7

12.10

Gauss’s law

Gauss’s law in magnetism

Faraday’s law

Ampère–Maxwell law
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Equation 31.12 is Gauss’s law: The total electric flux through any closed
surface equals the net charge inside that surface divided by #0 . This law re-
lates an electric field to the charge distribution that creates it.

Equation 31.13, which can be considered Gauss’s law in magnetism, states that
the net magnetic flux through a closed surface is zero. That is, the number of
magnetic field lines that enter a closed volume must equal the number that leave
that volume. This implies that magnetic field lines cannot begin or end at any
point. If they did, it would mean that isolated magnetic monopoles existed at
those points. The fact that isolated magnetic monopoles have not been observed
in nature can be taken as a confirmation of Equation 31.13.

Equation 31.14 is Faraday’s law of induction, which describes the creation of
an electric field by a changing magnetic flux. This law states that the emf, which
is the line integral of the electric field around any closed path, equals the
rate of change of magnetic flux through any surface area bounded by that
path. One consequence of Faraday’s law is the current induced in a conducting
loop placed in a time-varying magnetic field.

Equation 31.15, usually called the Ampère–Maxwell law, is the generalized
form of Ampère’s law, which describes the creation of a magnetic field by an elec-
tric field and electric currents: The line integral of the magnetic field around
any closed path is the sum of $0 times the net current through that path
and #0$0 times the rate of change of electric flux through any surface
bounded by that path.

Once the electric and magnetic fields are known at some point in space, the
force acting on a particle of charge q can be calculated from the expression

(31.16)

This relationship is called the Lorentz force law. (We saw this relationship earlier
as Equation 29.16.) Maxwell’s equations, together with this force law, completely
describe all classical electromagnetic interactions.

It is interesting to note the symmetry of Maxwell’s equations. Equations 31.12
and 31.13 are symmetric, apart from the absence of the term for magnetic mono-
poles in Equation 31.13. Furthermore, Equations 31.14 and 31.15 are symmetric in
that the line integrals of E and B around a closed path are related to the rate of
change of magnetic flux and electric flux, respectively. “Maxwell’s wonderful equa-
tions,” as they were called by John R. Pierce,3 are of fundamental importance not
only to electromagnetism but to all of science. Heinrich Hertz once wrote, “One
cannot escape the feeling that these mathematical formulas have an independent
existence and an intelligence of their own, that they are wiser than we are, wiser
even than their discoverers, that we get more out of them than we put into them.”

SUMMARY

Faraday’s law of induction states that the emf induced in a circuit is directly pro-
portional to the time rate of change of magnetic flux through the circuit:

(31.1)

where is the magnetic flux.!B $ !B ! dA

# $ %
d!B

dt

F $ q E / q v " BLorentz force law

3 John R. Pierce, Electrons and Waves, New York, Doubleday Science Study Series, 1964. Chapter 6 of this
interesting book is recommended as supplemental reading.
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When a conducting bar of length ! moves at a velocity v through a magnetic
field B, where B is perpendicular to the bar and to v, the motional emf induced
in the bar is

(31.5)

Lenz’s law states that the induced current and induced emf in a conductor
are in such a direction as to oppose the change that produced them.

A general form of Faraday’s law of induction is

(31.9)

where E is the nonconservative electric field that is produced by the changing
magnetic flux.

When used with the Lorentz force law, Maxwell’s equa-
tions describe all electromagnetic phenomena:

(31.12)

(31.13)

(31.14)

(31.15)

The Ampère–Maxwell law (Eq. 31.15) describes how a magnetic field can be pro-
duced by both a conduction current and a changing electric flux.

%B ! ds $ .0I / 00.0 
d!E

dt

%E ! ds $ %
d!B

dt

%
S

B ! dA $ 0

%
S

E ! dA $
Q
00

F $ qE / q v " B,

# $ %E ! ds $ %
d!B

dt

# $ %B!v

QUESTIONS

the magnet remains horizontal as it falls, describe the emf
induced in the loop. How is the situation altered if the
axis of the magnet remains vertical as it falls?

1. A loop of wire is placed in a uniform magnetic field. For
what orientation of the loop is the magnetic flux a maxi-
mum? For what orientation is the flux zero? Draw pic-
tures of these two situations.

2. As the conducting bar shown in Figure Q31.2 moves to
the right, an electric field directed downward is set up in
the bar. Explain why the electric field would be upward if
the bar were to move to the left.

3. As the bar shown in Figure Q31.2 moves in a direction
perpendicular to the field, is an applied force required to
keep it moving with constant speed? Explain.

4. The bar shown in Figure Q31.4 moves on rails to the
right with a velocity v, and the uniform, constant mag-
netic field is directed out of the page. Why is the induced
current clockwise? If the bar were moving to the left, what
would be the direction of the induced current?

5. Explain why an applied force is necessary to keep the bar
shown in Figure Q31.4 moving with a constant speed.

6. A large circular loop of wire lies in the horizontal plane.
A bar magnet is dropped through the loop. If the axis of

E
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Figure Q31.2 (Questions 2 and 3).
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PROBLEMS

3. A 25-turn circular coil of wire has a diameter of 1.00 m.
It is placed with its axis along the direction of the
Earth’s magnetic field of 50.0 .T, and then in 0.200 s it
is flipped 180°. An average emf of what magnitude is
generated in the coil?

4. A rectangular loop of area A is placed in a region where
the magnetic field is perpendicular to the plane of the
loop. The magnitude of the field is allowed to vary in
time according to the expression where
Bmax and + are constants. The field has the constant
value Bmax for t - 0. (a) Use Faraday’s law to show that
the emf induced in the loop is given by

(b) Obtain a numerical value for at t $ 4.00 s when #
# $ (ABmax/+)e%t/+

B $ Bmaxe%t/+,

Section 31.1 Faraday’s Law of Induction
Section 31.2 Motional emf
Section 31.3 Lenz’s Law

1. A 50-turn rectangular coil of dimensions 5.00 cm 1
10.0 cm is allowed to fall from a position where B $ 0 to
a new position where B $ 0.500 T and is directed per-
pendicular to the plane of the coil. Calculate the magni-
tude of the average emf induced in the coil if the dis-
placement occurs in 0.250 s.

2. A flat loop of wire consisting of a single turn of cross-
sectional area 8.00 cm2 is perpendicular to a magnetic
field that increases uniformly in magnitude from 
0.500 T to 2.50 T in 1.00 s. What is the resulting in-
duced current if the loop has a resistance of 2.00 (?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Figure Q31.4 (Questions 4 and 5).

Figure Q31.13 (Questions 13 and 14). (Photo courtesy of Central Scien-
tific Company)

v

Bout

7. When a small magnet is moved toward a solenoid, an emf
is induced in the coil. However, if the magnet is moved
around inside a toroid, no emf is induced. Explain.

8. Will dropping a magnet down a long copper tube pro-
duce a current in the walls of the tube? Explain.

9. How is electrical energy produced in dams (that is, how is
the energy of motion of the water converted to alternat-
ing current electricity)?

10. In a beam–balance scale, an aluminum plate is some-
times used to slow the oscillations of the beam near equi-
librium. The plate is mounted at the end of the beam and
moves between the poles of a small horseshoe magnet at-
tached to the frame. Why are the oscillations strongly
damped near equilibrium?

11. What happens when the rotational speed of a generator
coil is increased?

12. Could a current be induced in a coil by the rotation of a
magnet inside the coil? If so, how?

13. When the switch shown in Figure Q31.13a is closed, a cur-

14. Assume that the battery shown in Figure Q31.13a is re-
placed by an alternating current source and that the
switch is held closed. If held down, the metal ring on top
of the solenoid becomes hot. Why?

15. Do Maxwell’s equations allow for the existence of mag-
netic monopoles? Explain.

rent is set up in the coil, and the metal ring springs up-
ward (Fig. Q31.13b). Explain this behavior.

(a)

Iron core
Metal ring

S

(b)
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A $ 0.160 m2, Bmax $ 0.350 T, and + $ 2.00 s. (c) For
the values of A, Bmax , and + given in part (b), what is
the maximum value of 

5. A strong electromagnet produces a uniform field of
1.60 T over a cross-sectional area of 0.200 m2. A coil hav-
ing 200 turns and a total resistance of 20.0 ( is placed
around the electromagnet. The current in the electro-
magnet is then smoothly decreased until it reaches zero
in 20.0 ms. What is the current induced in the coil?

6. A magnetic field of 0.200 T exists within a solenoid of
500 turns and a diameter of 10.0 cm. How rapidly (that
is, within what period of time) must the field be re-
duced to zero if the average induced emf within the coil
during this time interval is to be 10.0 kV?

7. An aluminum ring with a radius of 5.00 cm and a resis-
tance of 3.00 1 10%4 ( is placed on top of a long air-
core solenoid with 1 000 turns per meter and a radius
of 3.00 cm, as shown in Figure P31.7. Assume that the
axial component of the field produced by the solenoid
over the area of the end of the solenoid is one-half as
strong as at the center of the solenoid. Assume that the
solenoid produces negligible field outside its cross-
sectional area. (a) If the current in the solenoid is in-
creasing at a rate of 270 A/s, what is the induced cur-
rent in the ring? (b) At the center of the ring, what is
the magnetic field produced by the induced current in
the ring? (c) What is the direction of this field?

8. An aluminum ring of radius r 1 and resistance R is
placed on top of a long air-core solenoid with n turns
per meter and smaller radius r2 , as shown in Figure
P31.7. Assume that the axial component of the field
produced by the solenoid over the area of the end of
the solenoid is one-half as strong as at the center of the
solenoid. Assume that the solenoid produces negligible
field outside its cross-sectional area. (a) If the current in
the solenoid is increasing at a rate of 'I/'t , what is the
induced current in the ring? (b) At the center of the
ring, what is the magnetic field produced by the in-
duced current in the ring? (c) What is the direction of
this field?

9. A loop of wire in the shape of a rectangle of width w
and length L and a long, straight wire carrying a cur-
rent I lie on a tabletop as shown in Figure P31.9. 
(a) Determine the magnetic flux through the loop due
to the current I. (b) Suppose that the current is chang-
ing with time according to where a and b
are constants. Determine the induced emf in the loop if 
b $ 10.0 A/s, h $ 1.00 cm, and L $
100 cm. What is the direction of the induced current in
the rectangle?

10. A coil of 15 turns and radius 10.0 cm surrounds a long
solenoid of radius 2.00 cm and 1.00 1 103 turns per me-
ter (Fig. P31.10). If the current in the solenoid changes
as I $ (5.00 A) sin(120t), find the induced emf in the
15-turn coil as a function of time.

w $ 10.0 cm,

I $ a / bt ,

#?

11. Find the current through section PQ of length a $
65.0 cm shown in Figure P31.11. The circuit is located
in a magnetic field whose magnitude varies with time
according to the expression B $ (1.00 1 10%3 T/s)t . 
Assume that the resistance per length of the wire is
0.100 (/m.

WEB

WEB

I

15-turn coil

4.00 Ω

R

I

w

h

L

5.00 cm

3.00 cm

I

I

Figure P31.7 Problems 7 and 8.

Figure P31.9 Problems 9 and 73.

Figure P31.10
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12. A 30-turn circular coil of radius 4.00 cm and resistance
1.00 ( is placed in a magnetic field directed perpendic-
ular to the plane of the coil. The magnitude of the mag-
netic field varies in time according to the expression 
B $ 0.010 0t / 0.040 0t2, where t is in seconds and B is
in tesla. Calculate the induced emf in the coil at 
t $ 5.00 s.

13. A long solenoid has 400 turns per meter and carries a
current I $ (30.0 A)(1 % e%1.60t). Inside the solenoid
and coaxial with it is a coil that has a radius of 6.00 cm
and consists of a total of 250 turns of fine wire (Fig.
P31.13). What emf is induced in the coil by the chang-
ing current?

14. A long solenoid has n turns per meter and carries a cur-
rent Inside the solenoid and coaxial
with it is a coil that has a radius R and consists of a total
of N turns of fine wire (see Fig. P31.13). What emf is in-
duced in the coil by the changing current?

I $ Imax(1 % e%2t).

17. A toroid having a rectangular cross-section (a $
2.00 cm by b $ 3.00 cm) and inner radius R $ 4.00 cm
consists of 500 turns of wire that carries a current

sin *t, with Imax $ 50.0 A and a frequency
60.0 Hz. A coil that consists of 20 turns of

wire links with the toroid, as shown in Figure P31.17.
Determine the emf induced in the coil as a function of
time.

f $ */2, $
I $ Imax

19. A circular coil enclosing an area of 100 cm2 is made of
200 turns of copper wire, as shown in Figure P31.19. Ini-

18. A single-turn, circular loop of radius R is coaxial with a
long solenoid of radius r and length ! and having N
turns (Fig. P31.18). The variable resistor is changed so
that the solenoid current decreases linearly from I1 to I2
in an interval 't. Find the induced emf in the loop.

15. A coil formed by wrapping 50 turns of wire in the shape
of a square is positioned in a magnetic field so that the
normal to the plane of the coil makes an angle of 30.0°
with the direction of the field. When the magnetic field
is increased uniformly from 200 .T to 600 .T in 
0.400 s, an emf of magnitude 80.0 mV is induced in the
coil. What is the total length of the wire?

16. A closed loop of wire is given the shape of a circle with a
radius of 0.500 m. It lies in a plane perpendicular to a
uniform magnetic field of magnitude 0.400 T. If in
0.100 s the wire loop is reshaped into a square but re-
mains in the same plane, what is the magnitude of the
average induced emf in the wire during this time?

Bi = 1.10 T (upward)

R

R
I
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Figure P31.11

Figure P31.13 Problems 13 and 14.

Figure P31.17

Figure P31.18

Figure P31.19
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tially, a 1.10-T uniform magnetic field points in a per-
pendicular direction upward through the plane of the
coil. The direction of the field then reverses. During the
time the field is changing its direction, how much
charge flows through the coil if R $ 5.00 (?

20. Consider the arrangement shown in Figure P31.20. 
Assume that R $ 6.00 (, ! $ 1.20 m, and a uniform
2.50-T magnetic field is directed into the page. At what
speed should the bar be moved to produce a current of
0.500 A in the resistor?

0.100-T magnetic field directed perpendicular into the
plane of the paper. The loop, which is hinged at each
corner, is pulled as shown until the separation between
points A and B is 3.00 m. If this process takes 0.100 s,
what is the average current generated in the loop? What
is the direction of the current?

25. A helicopter has blades with a length of 3.00 m extending
outward from a central hub and rotating at 2.00 rev/s. If
the vertical component of the Earth’s magnetic field is
50.0 .T, what is the emf induced between the blade tip
and the center hub?

26. Use Lenz’s law to answer the following questions con-
cerning the direction of induced currents: (a) What is
the direction of the induced current in resistor R shown
in Figure P31.26a when the bar magnet is moved to the
left? (b) What is the direction of the current induced in
the resistor R right after the switch S in Figure P31.26b
is closed? (c) What is the direction of the induced cur-
rent in R when the current I in Figure P31.26c decreases
rapidly to zero? (d) A copper bar is moved to the right
while its axis is maintained in a direction perpendicular
to a magnetic field, as shown in Figure P31.26d. If the
top of the bar becomes positive relative to the bottom,
what is the direction of the magnetic field?

27. A rectangular coil with resistance R has N turns, each of
length ! and width w as shown in Figure P31.27. The coil
moves into a uniform magnetic field B with a velocity v.
What are the magnitude and direction of the resultant
force on the coil (a) as it enters the magnetic field, (b) as
it moves within the field, and (c) as it leaves the field?

21. Figure P31.20 shows a top view of a bar that can slide
without friction. The resistor is 6.00 ( and a 2.50-T
magnetic field is directed perpendicularly downward,
into the paper. Let ! $ 1.20 m. (a) Calculate the ap-
plied force required to move the bar to the right at a
constant speed of 2.00 m/s. (b) At what rate is energy
delivered to the resistor?

22. A conducting rod of length ! moves on two horizontal,
frictionless rails, as shown in Figure P31.20. If a constant
force of 1.00 N moves the bar at 2.00 m/s through a mag-
netic field B that is directed into the page, (a) what is the
current through an 8.00-( resistor R ? (b) What is the
rate at which energy is delivered to the resistor? (c) What
is the mechanical power delivered by the force Fapp?

23. A Boeing-747 jet with a wing span of 60.0 m is flying
horizontally at a speed of 300 m/s over Phoenix, Ari-
zona, at a location where the Earth’s magnetic field is
50.0 .T at 58.0° below the horizontal. What voltage is
generated between the wingtips?

24. The square loop in Figure P31.24 is made of wires with
total series resistance 10.0 (. It is placed in a uniform

v

R

S N

R

S

(a) (b)

I

(c)

R

(d)

v

+
+

–
–

ε

3.00 m

3.00 m

3.00 m

3.00 m

A

B

Fapp
!R

Figure P31.20 Problems 20, 21, and 22.

Figure P31.24

Figure P31.26
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28. In 1832 Faraday proposed that the apparatus shown in
Figure P31.28 could be used to generate electric cur-
rent from the water flowing in the Thames River.4 Two
conducting plates of lengths a and widths b are placed
facing each other on opposite sides of the river, a dis-
tance w apart, and are immersed entirely. The flow ve-
locity of the river is v and the vertical component of the
Earth’s magnetic field is B. (a) Show that the current in
the load resistor R is

where 3 is the electrical resistivity of the water. (b) Cal-
culate the short-circuit current (R $ 0) if a $ 100 m, 
b $ 5.00 m, v $ 3.00 m/s, B $ 50.0 .T, and 3 $
100 ( & m.

I $
abvB

3 / abR/w

31. Two parallel rails with negligible resistance are 10.0 cm
apart and are connected by a 5.00-( resistor. The circuit
also contains two metal rods having resistances of 
10.0 ( and 15.0 ( sliding along the rails (Fig. P31.31).
The rods are pulled away from the resistor at constant
speeds 4.00 m/s and 2.00 m/s, respectively. A uniform
magnetic field of magnitude 0.010 0 T is applied per-
pendicular to the plane of the rails. Determine the cur-
rent in the 5.00-( resistor.

Section 31.4 Induced emf and Electric Fields
32. For the situation described in Figure P31.32, the mag-

netic field changes with time according to the expres-
sion B $ (2.00t 3 % 4.00t 2 / 0.800) T, and r 2 $ 2R $
5.00 cm. (a) Calculate the magnitude and direction of29. In Figure P31.29, the bar magnet is moved toward the

loop. Is positive, negative, or zero? Explain.
30. A metal bar spins at a constant rate in the magnetic

field of the Earth as in Figure 31.10. The rotation oc-
curs in a region where the component of the Earth’s
magnetic field perpendicular to the plane of rotation is
3.30 1 10%5 T. If the bar is 1.00 m in length and its an-
gular speed is 5.00 , rad/s, what potential difference is
developed between its ends?

Va % Vb

Bin

× × × × × × × ×

× × × × × × ×

× × × × × × ×

× × × × × ×

× × × × ×

× × × × × ×

× × × × ×
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Figure P31.27

Figure P31.28

Figure P31.29

Figure P31.31

Figure P31.32 Problems 32 and 33.

4 The idea for this problem and Figure P31.28 is from Oleg D. Jefi-
menko, Electricity and Magnetism: An Introduction to the Theory of Electric
and Magnetic Fields. Star City, WV, Electret Scientific Co., 1989.
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the force exerted on an electron located at point P2
when t $ 2.00 s. (b) At what time is this force equal to
zero?

33. A magnetic field directed into the page changes with
time according to B $ (0.030 0t 2 / 1.40) T, where t is
in seconds. The field has a circular cross-section of ra-
dius R $ 2.50 cm (see Fig. P31.32). What are the mag-
nitude and direction of the electric field at point P1
when t $ 3.00 s and r 1 $ 0.020 0 m?

34. A solenoid has a radius of 2.00 cm and 1 000 turns per
meter. Over a certain time interval the current varies
with time according to the expression I $ 3e0.2t, where I
is in amperes and t is in seconds. Calculate the electric
field 5.00 cm from the axis of the solenoid at t $ 10.0 s.

35. A long solenoid with 1 000 turns per meter and 
radius 2.00 cm carries an oscillating current I $
(5.00 A) sin(100,t). (a) What is the electric field induced
at a radius r $ 1.00 cm from the axis of the solenoid?
(b) What is the direction of this electric field when the
current is increasing counterclockwise in the coil?

(Optional)
Section 31.5 Generators and Motors

36. In a 250-turn automobile alternator, the magnetic flux
in each turn is !B $ (2.50 1 10%4 T & m2) cos(*t),
where * is the angular speed of the alternator. The al-
ternator is geared to rotate three times for each engine
revolution. When the engine is running at an angular
speed of 1 000 rev/min, determine (a) the induced emf
in the alternator as a function of time and (b) the maxi-
mum emf in the alternator.

37. A coil of area 0.100 m2 is rotating at 60.0 rev/s with the
axis of rotation perpendicular to a 0.200-T magnetic
field. (a) If there are 1 000 turns on the coil, what is the
maximum voltage induced in it? (b) What is the orien-
tation of the coil with respect to the magnetic field
when the maximum induced voltage occurs?

38. A square coil (20.0 cm 1 20.0 cm) that consists of 
100 turns of wire rotates about a vertical axis at 
1 500 rev/min, as indicated in Figure P31.38. The hori-
zontal component of the Earth’s magnetic field at the
location of the coil is 2.00 1 10%5 T. Calculate the maxi-
mum emf induced in the coil by this field.

39. A long solenoid, with its axis along the x axis, consists 
of 200 turns per meter of wire that carries a steady cur-
rent of 15.0 A. A coil is formed by wrapping 30 turns of
thin wire around a circular frame that has a radius of
8.00 cm. The coil is placed inside the solenoid and
mounted on an axis that is a diameter of the coil and
coincides with the y axis. The coil is then rotated with
an angular speed of 4.00, rad/s. (The plane of the coil
is in the yz plane at t $ 0.) Determine the emf devel-
oped in the coil as a function of time.

40. A bar magnet is spun at constant angular speed *
around an axis, as shown in Figure P31.40. A flat rectan-
gular conducting loop surrounds the magnet, and at 
t $ 0, the magnet is oriented as shown. Make a qualita-
tive graph of the induced current in the loop as a func-
tion of time, plotting counterclockwise currents as posi-
tive and clockwise currents as negative.

41. (a) What is the maximum torque delivered by an elec-
tric motor if it has 80 turns of wire wrapped on a rectan-
gular coil of dimensions 2.50 cm by 4.00 cm? Assume
that the motor uses 10.0 A of current and that a uni-
form 0.800-T magnetic field exists within the motor. 
(b) If the motor rotates at 3 600 rev/min, what is the
peak power produced by the motor?

42. A semicircular conductor of radius R $ 0.250 m is
rotated about the axis AC at a constant rate of 
120 rev/min (Fig. P31.42). A uniform magnetic field in
all of the lower half of the figure is directed out of the
plane of rotation and has a magnitude of 1.30 T. 
(a) Calculate the maximum value of the emf induced in
the conductor. (b) What is the value of the average in-
duced emf for each complete rotation? (c) How would
the answers to parts (a) and (b) change if B were al-
lowed to extend a distance R above the axis of rotation?
Sketch the emf versus time (d) when the field is as
drawn in Figure P31.42 and (e) when the field is ex-
tended as described in part (c).

S

N

ω

20.0 cm

20.0 cm

*
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Figure P31.38

Figure P31.40
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43. The rotating loop in an ac generator is a square 10.0 cm
on a side. It is rotated at 60.0 Hz in a uniform field of
0.800 T. Calculate (a) the flux through the loop as a
function of time, (b) the emf induced in the loop, 
(c) the current induced in the loop for a loop resis-
tance of 1.00 (, (d) the power in the resistance of the
loop, and (e) the torque that must be exerted to rotate
the loop.

(Optional)
Section 31.6 Eddy Currents

44. A 0.150-kg wire in the shape of a closed rectangle 
1.00 m wide and 1.50 m long has a total resistance of
0.750 (. The rectangle is allowed to fall through a mag-
netic field directed perpendicular to the direction of
motion of the rectangle (Fig. P31.44). The rectangle ac-
celerates downward as it approaches a terminal speed of
2.00 m/s, with its top not yet in the region of the field.
Calculate the magnitude of B.

nal speed vt . (a) Show that

(b) Why is vt proportional to R ? (c) Why is it inversely
proportional to B2?

46. Figure P31.46 represents an electromagnetic brake that
utilizes eddy currents. An electromagnet hangs from a
railroad car near one rail. To stop the car, a large steady
current is sent through the coils of the electromagnet.
The moving electromagnet induces eddy currents in
the rails, whose fields oppose the change in the field of
the electromagnet. The magnetic fields of the eddy cur-
rents exert force on the current in the electromagnet,
thereby slowing the car. The direction of the car’s mo-
tion and the direction of the current in the electromag-
net are shown correctly in the picture. Determine which
of the eddy currents shown on the rails is correct. Ex-
plain your answer.

vt $
MgR
B2w2

Section 31.7 Maxwell’s Wonderful Equations
47. A proton moves through a uniform electric field 

E $ 50.0 j V/m and a uniform magnetic field B $
(0.200i / 0.300 j / 0.400k) T. Determine the accelera-
tion of the proton when it has a velocity v $ 200 i m/s.

48. An electron moves through a uniform electric field E $
(2.50 i / 5.00 j) V/m and a uniform magnetic field B $
0.400k T. Determine the acceleration of the electron
when it has a velocity v $ 10.0 i m/s.

ADDITIONAL PROBLEMS
49. A steel guitar string vibrates (see Fig. 31.5). The compo-

nent of the magnetic field perpendicular to the area of

45. A conducting rectangular loop of mass M , resistance R ,
and dimensions w by ! falls from rest into a magnetic
field B as in Figure P31.44. The loop approaches termi-

I

N

S
v

N

S

v

!

Bout

w

A R

Bout

C

Figure P31.42

Figure P31.44 Problems 44 and 45.

Figure P31.46
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a pickup coil nearby is given by

The circular pickup coil has 30 turns and radius 
2.70 mm. Find the emf induced in the coil as a function
of time.

50. Figure P31.50 is a graph of the induced emf versus time
for a coil of N turns rotating with angular velocity * in a
uniform magnetic field directed perpendicular to the
axis of rotation of the coil. Copy this graph (on a larger
scale), and on the same set of axes show the graph of
emf versus t (a) if the number of turns in the coil is
doubled, (b) if instead the angular velocity is doubled,
and (c) if the angular velocity is doubled while the
number of turns in the coil is halved.

B $ 50.0 mT / (3.20 mT) sin (2,523 t/s)

tude of B inside each is the same and is increasing at
the rate of 100 T/s. What is the current in each resistor?

53. A conducting rod of length ! $ 35.0 cm is free to slide
on two parallel conducting bars, as shown in Figure
P31.53. Two resistors R1 $ 2.00 ( and R2 $ 5.00 ( are
connected across the ends of the bars to form a loop. A
constant magnetic field B $ 2.50 T is directed perpen-
dicular into the page. An external agent pulls the rod to
the left with a constant speed of v $ 8.00 m/s. Find 
(a) the currents in both resistors, (b) the total power
delivered to the resistance of the circuit, and (c) the
magnitude of the applied force that is needed to move
the rod with this constant velocity.

54. Suppose you wrap wire onto the core from a roll of cel-
lophane tape to make a coil. Describe how you can use
a bar magnet to produce an induced voltage in the coil.
What is the order of magnitude of the emf you gener-
ate? State the quantities you take as data and their val-
ues.

55. A bar of mass m , length d , and resistance R slides with-
out friction on parallel rails, as shown in Figure P31.55.
A battery that maintains a constant emf is connected
between the rails, and a constant magnetic field B is di-
rected perpendicular to the plane of the page. If the
bar starts from rest, show that at time t it moves with a
speed

v $
#
Bd

 (1 % e%B 2d 2t /mR)

#

56. An automobile has a vertical radio antenna 1.20 m long.
The automobile travels at 65.0 km/h on a horizontal
road where the Earth’s magnetic field is 50.0 .T di-
rected toward the north and downward at an angle of
65.0° below the horizontal. (a) Specify the direction
that the automobile should move to generate the maxi-

51. A technician wearing a brass bracelet enclosing an area
of 0.005 00 m2 places her hand in a solenoid whose
magnetic field is 5.00 T directed perpendicular to the
plane of the bracelet. The electrical resistance around
the circumference of the bracelet is 0.020 0 (. An unex-
pected power failure causes the field to drop to 1.50 T
in a time of 20.0 ms. Find (a) the current induced in
the bracelet and (b) the power delivered to the resis-
tance of the bracelet. (Note: As this problem implies,
you should not wear any metallic objects when working
in regions of strong magnetic fields.)

52. Two infinitely long solenoids (seen in cross-section)
thread a circuit as shown in Figure P31.52. The magni-
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mum motional emf in the antenna, with the top of the
antenna positive relative to the bottom. (b) Calculate
the magnitude of this induced emf.

57. The plane of a square loop of wire with edge length 
a $ 0.200 m is perpendicular to the Earth’s magnetic
field at a point where B $ 15.0 .T, as shown in Figure
P31.57. The total resistance of the loop and the wires
connecting it to the galvanometer is 0.500 (. If the loop
is suddenly collapsed by horizontal forces as shown,
what total charge passes through the galvanometer?

axle rolling at constant speed? (c) Which end of the re-
sistor, a or b, is at the higher electric potential? (d) After
the axle rolls past the resistor, does the current in R re-
verse direction? Explain your answer.

60. A conducting rod moves with a constant velocity v per-
pendicular to a long, straight wire carrying a current I
as shown in Figure P31.60. Show that the magnitude of
the emf generated between the ends of the rod is

In this case, note that the emf decreases with increasing
r, as you might expect.

"# " $
.0vI
2,r

 !

61. A circular loop of wire of radius r is in a uniform mag-
netic field, with the plane of the loop perpendicular to
the direction of the field (Fig. P31.61). The magnetic
field varies with time according to where
a and b are constants. (a) Calculate the magnetic flux
through the loop at t $ 0. (b) Calculate the emf in-
duced in the loop. (c) If the resistance of the loop is R ,
what is the induced current? (d) At what rate is electri-
cal energy being delivered to the resistance of the loop?

62. In Figure P31.62, a uniform magnetic field decreases at
a constant rate where K is a positive con-
stant. A circular loop of wire of radius a containing a re-

dB/dt $ %K,

B(t) $ a / bt ,

58. Magnetic field values are often determined by using a
device known as a search coil. This technique depends on
the measurement of the total charge passing through a
coil in a time interval during which the magnetic flux
linking the windings changes either because of the mo-
tion of the coil or because of a change in the value of B.
(a) Show that as the flux through the coil changes from
!1 to !2 , the charge transferred through the coil will
be given by (!2 % !1)/R , where R is the resis-
tance of the coil and associated circuitry (galvanome-
ter) and N is the number of turns. (b) As a specific ex-
ample, calculate B when a 100-turn coil of resistance
200 ( and cross-sectional area 40.0 cm2 produces the
following results. A total charge of 5.00 1 10%4 C passes
through the coil when it is rotated in a uniform field
from a position where the plane of the coil is perpen-
dicular to the field to a position where the coil’s plane is
parallel to the field.

59. In Figure P31.59, the rolling axle, 1.50 m long, is
pushed along horizontal rails at a constant speed 
v $ 3.00 m/s. A resistor R $ 0.400 ( is connected to
the rails at points a and b, directly opposite each other.
(The wheels make good electrical contact with the rails,
and so the axle, rails, and R form a closed-loop circuit.
The only significant resistance in the circuit is R.) There
is a uniform magnetic field B $ 0.080 0 T vertically
downward. (a) Find the induced current I in the resis-
tor. (b) What horizontal force F is required to keep the

Q $ N

r

I

!
v

B

v

R

a

b

G
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F F

a

Figure P31.57

Figure P31.59

Figure P31.60
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67. A rectangular loop of dimensions ! and w moves with a
constant velocity v away from a long wire that carries a
current I in the plane of the loop (Fig. P31.67). The to-

emf in the washer from the time it is released to the mo-
ment it hits the tabletop? Assume that the magnetic
field is nearly constant over the area of the washer and
equal to the magnetic field at the center of the washer.
(b) What is the direction of the induced current in the
washer?

65. To monitor the breathing of a hospital patient, a thin
belt is wrapped around the patient’s chest. The belt is a
200-turn coil. When the patient inhales, the area encir-
cled by the coil increases by 39.0 cm2. The magnitude
of the Earth’s magnetic field is 50.0 .T and makes an
angle of 28.0° with the plane of the coil. If a patient
takes 1.80 s to inhale, find the average induced emf in
the coil during this time.

66. A conducting rod of length ! moves with velocity v par-
allel to a long wire carrying a steady current I. The axis
of the rod is maintained perpendicular to the wire with
the near end a distance r away, as shown in Figure
P31.66. Show that the magnitude of the emf induced in
the rod is

"# " $
.0I
2,

 v ln#1 /
!

r $

vI
R

r w

!

r

v

I

!

h

I

R C

Bin

× × × ×

× × × ×

× × × ×

× × × ×

sistance R and a capacitance C is placed with its plane
normal to the field. (a) Find the charge Q on the capac-
itor when it is fully charged. (b) Which plate is at the
higher potential? (c) Discuss the force that causes the
separation of charges.

63. A rectangular coil of 60 turns, dimensions 0.100 m by
0.200 m and total resistance 10.0 (, rotates with angu-
lar speed 30.0 rad/s about the y axis in a region where a
1.00-T magnetic field is directed along the x axis. The
rotation is initiated so that the plane of the coil is per-
pendicular to the direction of B at t $ 0. Calculate 
(a) the maximum induced emf in the coil, (b) the max-
imum rate of change of magnetic flux through the coil,
(c) the induced emf at t $ 0.050 0 s, and (d) the torque
exerted on the coil by the magnetic field at the instant
when the emf is a maximum.

64. A small circular washer of radius 0.500 cm is held di-
rectly below a long, straight wire carrying a current of
10.0 A. The washer is located 0.500 m above the top of
the table (Fig. P31.64). (a) If the washer is dropped
from rest, what is the magnitude of the average induced

B

Figure P31.61

Figure P31.62

Figure P31.64

Figure P31.66

Figure P31.67
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tal resistance of the loop is R . Derive an expression that
gives the current in the loop at the instant the near side
is a distance r from the wire.

68. A horizontal wire is free to slide on the vertical rails of a
conducting frame, as shown in Figure P31.68. The wire
has mass m and length !, and the resistance of the cir-
cuit is R . If a uniform magnetic field is directed perpen-
dicular to the frame, what is the terminal speed of the
wire as it falls under the force of gravity?

tal speed of the bar as a function of time, assuming that
the suspended mass is released with the bar at rest at 
t $ 0. Assume no friction between rails and bar.

71. A solenoid wound with 2 000 turns/m is supplied 
with current that varies in time according to I $
4 sin(120,t), where I is in A and t is in s. A small coax-
ial circular coil of 40 turns and radius r $ 5.00 cm is lo-
cated inside the solenoid near its center. (a) Derive an
expression that describes the manner in which the emf
in the small coil varies in time. (b) At what average rate
is energy transformed into internal energy in the small
coil if the windings have a total resistance of 8.00 (?

72. A wire 30.0 cm long is held parallel to and 80.0 cm
above a long wire carrying 200 A and resting on the
floor (Fig. P31.72). The 30.0-cm wire is released and
falls, remaining parallel with the current-carrying wire
as it falls. Assume that the falling wire accelerates at 
9.80 m/s2 and derive an equation for the emf induced
in it. Express your result as a function of the time t after
the wire is dropped. What is the induced emf 0.300 s af-
ter the wire is released?

73. A long, straight wire carries a current sin(*t /
4) and lies in the plane of a rectangular coil of N turns
of wire, as shown in Figure P31.9. The quantities Imax ,
*, and 4 are all constants. Determine the emf induced
in the coil by the magnetic field created by the current
in the straight wire. Assume Imax $ 50.0 A, * $
200, s%1, N $ 100, h $ w $ 5.00 cm, and L $ 20.0 cm.

74. A dime is suspended from a thread and hung between
the poles of a strong horseshoe magnet as shown in Fig-
ure P31.74. The dime rotates at constant angular speed
* about a vertical axis. Letting " represent the angle be-
tween the direction of B and the normal to the face of
the dime, sketch a graph of the torque due to induced
currents as a function of " for 0 - " - 2,.

75. The wire shown in Figure P31.75 is bent in the shape of
a tent, with " $ 60.0° and L $ 1.50 m, and is placed in
a uniform magnetic field of magnitude 0.300 T perpen-
dicular to the tabletop. The wire is rigid but hinged at
points a and b. If the “tent” is flattened out on the table
in 0.100 s, what is the average induced emf in the wire
during this time?

I $ Imax

69. The magnetic flux threading a metal ring varies with
time t according to !B $ 3(at3 % bt2) T & m2, with 
a $ 2.00 s%3 and b $ 6.00 s%2. The resistance of the
ring is 3.00 (. Determine the maximum current in-
duced in the ring during the interval from t $ 0 to 
t $ 2.00 s.

70. Review Problem. The bar of mass m shown in Figure
P31.70 is pulled horizontally across parallel rails by a
massless string that passes over an ideal pulley and is at-
tached to a suspended mass M. The uniform magnetic
field has a magnitude B, and the distance between the
rails is !. The rails are connected at one end by a load
resistor R . Derive an expression that gives the horizon-

30.0 cm

80.0 cm

I = 200 A

R
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m

B
!

Bout
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Figure P31.68

Figure P31.70

Figure P31.72
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ANSWERS TO QUICK QUIZZES

31.3 Inserting. Because the south pole of the magnet is near-
est the solenoid, the field lines created by the magnet
point upward in Figure 31.14. Because the current in-
duced in the solenoid is clockwise when viewed from
above, the magnetic field lines produced by this current
point downward in Figure 31.14. If the magnet were be-
ing withdrawn, it would create a decreasing upward flux.
The induced current would counteract this decrease by
producing its own upward flux. This would require a
counterclockwise current in the solenoid, contrary to
what is observed.

31.1 Because the magnetic field now points in the opposite
direction, you must replace " with " / ,. Because 
cos(" / ,) $ % cos ", the sign of the induced emf is 
reversed.

31.2 The one on the west side of the plane. As we saw in Sec-
tion 30.9, the Earth’s magnetic field has a downward
component in the northern hemisphere. As the plane
flies north, the right-hand rule illustrated in Figure 29.4
indicates that positive charge experiences a force di-
rected toward the west. Thus, the left wingtip becomes
positively charged and the right wingtip negatively
charged.

B

B

L

L
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b
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N

S

Figure P31.74

Figure P31.75
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Inductance

P U Z Z L E R

The marks in the pavement are part of a
sensor that controls the traffic lights at
this intersection. What are these marks,
and how do they detect when a car is
waiting at the light? (© David R. Frazier)

C h a p t e r  O u t l i n e

32.1 Self-Inductance
32.2 RL Circuits
32.3 Energy in a Magnetic Field

32.4 Mutual Inductance
32.5 Oscillations in an LC Circuit
32.6 (Optional) The RLC Circuit
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32.1 Self-Inductance 1015

n Chapter 31, we saw that emfs and currents are induced in a circuit when the
magnetic flux through the area enclosed by the circuit changes with time. This
electromagnetic induction has some practical consequences, which we describe

in this chapter. First, we describe an effect known as self-induction, in which a time-
varying current in a circuit produces in the circuit an induced emf that opposes
the emf that initially set up the time-varying current. Self-induction is the basis of
the inductor, an electrical element that has an important role in circuits that use
time-varying currents. We discuss the energy stored in the magnetic field of an in-
ductor and the energy density associated with the magnetic field.

Next, we study how an emf is induced in a circuit as a result of a changing
magnetic flux produced by a second circuit; this is the basic principle of mutual in-
duction. Finally, we examine the characteristics of circuits that contain inductors,
resistors, and capacitors in various combinations.

SELF-INDUCTANCE
In this chapter, we need to distinguish carefully between emfs and currents that
are caused by batteries or other sources and those that are induced by changing
magnetic fields. We use the adjective source (as in the terms source emf and source
current) to describe the parameters associated with a physical source, and we use
the adjective induced to describe those emfs and currents caused by a changing
magnetic field.

Consider a circuit consisting of a switch, a resistor, and a source of emf, as
shown in Figure 32.1. When the switch is thrown to its closed position, the source
current does not immediately jump from zero to its maximum value Fara-
day’s law of electromagnetic induction (Eq. 31.1) can be used to describe this ef-
fect as follows: As the source current increases with time, the magnetic flux
through the circuit loop due to this current also increases with time. This increas-
ing flux creates an induced emf in the circuit. The direction of the induced emf is
such that it would cause an induced current in the loop (if a current were not al-
ready flowing in the loop), which would establish a magnetic field that would op-
pose the change in the source magnetic field. Thus, the direction of the induced
emf is opposite the direction of the source emf; this results in a gradual rather
than instantaneous increase in the source current to its final equilibrium value.
This effect is called self-induction because the changing flux through the circuit and
the resultant induced emf arise from the circuit itself. The emf set up in this
case is called a self-induced emf. It is also often called a back emf.

As a second example of self-induction, consider Figure 32.2, which shows a
coil wound on a cylindrical iron core. (A practical device would have several hun-

!L

!/R.

32.1

I

Figure 32.1 After the switch is
thrown closed, the current pro-
duces a magnetic flux through the
area enclosed by the loop. As the
current increases toward its equilib-
rium value, this magnetic flux
changes in time and induces an
emf in the loop. The battery sym-
bol drawn with dashed lines repre-
sents the self-induced emf.

Figure 32.2 (a) A current in the coil produces a magnetic field directed to the left. (b) If the
current increases, the increasing magnetic flux creates an induced emf having the polarity shown
by the dashed battery. (c) The polarity of the induced emf reverses if the current decreases.

B

ε
R

S
I

I

Lε

Lenz’s law emf Lenz’s law emf
– + –+

B

(a) (b) (c)I increasing I decreasing

Joseph Henry (1797–1878)
Henry, an American physicist, be-
came the first director of the Smith-
sonian Institution and first president
of the Academy of Natural Science.
He improved the design of the elec-
tromagnet and constructed one of the
first motors. He also discovered the
phenomenon of self-induction but
failed to publish his findings. The unit
of inductance, the henry, is named in
his honor. (North Wind Picture
Archives)
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Self-induced emf

Inductance of an N-turn coil

Inductance

dred turns.) Assume that the source current in the coil either increases or de-
creases with time. When the source current is in the direction shown, a magnetic
field directed from right to left is set up inside the coil, as seen in Figure 32.2a. As
the source current changes with time, the magnetic flux through the coil also
changes and induces an emf in the coil. From Lenz’s law, the polarity of this in-
duced emf must be such that it opposes the change in the magnetic field from the
source current. If the source current is increasing, the polarity of the induced emf
is as pictured in Figure 32.2b, and if the source current is decreasing, the polarity
of the induced emf is as shown in Figure 32.2c.

To obtain a quantitative description of self-induction, we recall from Faraday’s
law that the induced emf is equal to the negative time rate of change of the mag-
netic flux. The magnetic flux is proportional to the magnetic field due to the
source current, which in turn is proportional to the source current in the circuit.
Therefore, a self-induced emf is always proportional to the time rate of
change of the source current. For a closely spaced coil of N turns (a toroid or an
ideal solenoid) carrying a source current I, we find that

(32.1)

where L is a proportionality constant—called the inductance of the coil—that
depends on the geometry of the circuit and other physical characteristics. From
this expression, we see that the inductance of a coil containing N turns is

(32.2)

where it is assumed that the same flux passes through each turn. Later, we shall
use this equation to calculate the inductance of some special circuit geometries.

From Equation 32.1, we can also write the inductance as the ratio

(32.3)

Just as resistance is a measure of the opposition to current induc-
tance is a measure of the opposition to a change in current.

The SI unit of inductance is the henry (H), which, as we can see from Equa-
tion 32.3, is 1 volt-second per ampere:

That the inductance of a device depends on its geometry is analogous to the
capacitance of a capacitor depending on the geometry of its plates, as we found in
Chapter 26. Inductance calculations can be quite difficult to perform for compli-
cated geometries; however, the following examples involve simple situations for
which inductances are easily evaluated.

1 H " 1 
V#s
A

(R " $V/I ),

L " %
!L

dI/dt

L "
N&B

I

!L " %N 
d&B

dt
" %L 

dI
dt

!L

Inductance of a SolenoidEXAMPLE 32.1
Solution We can assume that the interior magnetic field
due to the source current is uniform and given by Equation
30.17:

Find the inductance of a uniformly wound solenoid having N
turns and length !. Assume that ! is much longer than the ra-
dius of the windings and that the core of the solenoid is air.



32.2 RL Circuits 1017

RL CIRCUITS
If a circuit contains a coil, such as a solenoid, the self-inductance of the coil pre-
vents the current in the circuit from increasing or decreasing instantaneously. A
circuit element that has a large self-inductance is called an inductor and has the
circuit symbol . We always assume that the self-inductance of the re-
mainder of a circuit is negligible compared with that of the inductor. Keep in
mind, however, that even a circuit without a coil has some self-inductance that can
affect the behavior of the circuit.

Because the inductance of the inductor results in a back emf, an inductor in
a circuit opposes changes in the current through that circuit. If the battery
voltage in the circuit is increased so that the current rises, the inductor opposes

32.2

13.6

where n " N/! is the number of turns per unit length. The
magnetic flux through each turn is

where A is the cross-sectional area of the solenoid. Using this
expression and Equation 32.2, we find that

(32.4)

This result shows that L depends on geometry and is propor-
tional to the square of the number of turns. Because 
we can also express the result in the form

(32.5)

where is the volume of the solenoid.V " A!

L " '0 
(n!)2

!
 A " '0n2A! " '0n2V

N " n!,

'0N 2A
!

L "
N&B

I
"

&B " BA " '0 
NA
!

 I

B " '0nI " '0 
N
!

 I Exercise What would happen to the inductance if a ferro-
magnetic material were placed inside the solenoid?

Answer The inductance would increase. For a given cur-
rent, the magnetic flux is now much greater because of the
increase in the field originating from the magnetization of
the ferromagnetic material. For example, if the material has a
magnetic permeability of 500'0 , the inductance would in-
crease by a factor of 500.

The fact that various materials in the vicinity of a coil can
substantially alter the coil’s inductance is used to great advan-
tage by traffic engineers. A flat, horizontal coil made of nu-
merous loops of wire is placed in a shallow groove cut into
the pavement of the lane approaching an intersection. (See
the photograph at the beginning of this chapter.) These
loops are attached to circuitry that measures inductance.
When an automobile passes over the loops, the change in in-
ductance caused by the large amount of iron passing over the
loops is used to control the lights at the intersection.

Calculating Inductance and emfEXAMPLE 32.2
(b) Calculate the self-induced emf in the solenoid if the

current through it is decreasing at the rate of 50.0 A/s.

Solution Using Equation 32.1 and given that 
we obtain

9.05 mV"

!L " %L 
dI
dt

" %(1.81 ( 10%4 H)(%50.0 A/s)

%50.0 A/s,
dI/dt "

(a) Calculate the inductance of an air-core solenoid contain-
ing 300 turns if the length of the solenoid is 25.0 cm and its
cross-sectional area is 4.00 cm2.

Solution Using Equation 32.4, we obtain

0.181 mH " 1.81 ( 10%4 T#m2/A "

 " (4) ( 10%7 T#m/A) 
(300)2(4.00 ( 10%4 m2)

25.0 ( 10%2 m

L "
'0N 2A

!
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this change, and the rise is not instantaneous. If the battery voltage is decreased,
the presence of the inductor results in a slow drop in the current rather than an
immediate drop. Thus, the inductor causes the circuit to be “sluggish” as it reacts
to changes in the voltage.

A switch controls the current in a circuit that has a large inductance. Is a spark more likely
to be produced at the switch when the switch is being closed or when it is being opened, or
doesn’t it matter?

Consider the circuit shown in Figure 32.3, in which the battery has negligible 
internal resistance. This is an RL circuit because the elements connected to the 
battery are a resistor and an inductor. Suppose that the switch S is thrown closed at

The current in the circuit begins to increase, and a back emf that opposes the
increasing current is induced in the inductor. The back emf is, from Equation 32.1,

Because the current is increasing, dI/dt is positive; thus, is negative. This nega-
tive value reflects the decrease in electric potential that occurs in going from a to b
across the inductor, as indicated by the positive and negative signs in Figure 32.3.

With this in mind, we can apply Kirchhoff’s loop rule to this circuit, traversing
the circuit in the clockwise direction:

(32.6)

where IR is the voltage drop across the resistor. (We developed Kirchhoff’s rules
for circuits with steady currents, but we can apply them to a circuit in which the
current is changing if we imagine them to represent the circuit at one instant of
time.) We must now look for a solution to this differential equation, which is simi-
lar to that for the RC circuit (see Section 28.4).

A mathematical solution of Equation 32.6 represents the current in the circuit
as a function of time. To find this solution, we change variables for convenience, 

letting , so that With these substitutions, we can write Equa-

tion 32.6 as

Integrating this last expression, we have

where we take the integrating constant to be % ln x0 and x0 is the value of x at
time t " 0. Taking the antilogarithm of this result, we obtain

x " x0e%Rt /L

ln 
x
x0

" %
R
L

 t

 
dx
x

" %
R
L

 dt

x *
L
R

 
dx
dt

" 0 

dx " %dI.x "
!
R

% I

! % IR % L 
dI
dt

" 0

!L

!L " %L 
dI
dt

t " 0.

Quick Quiz 32.1
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b

ε

a

I

R

S

L
+

−

+
–

Figure 32.3 A series RL circuit.
As the current increases toward its
maximum value, an emf that op-
poses the increasing current is in-
duced in the inductor.
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Because at we note from the definition of x that Hence,
this last expression is equivalent to

This expression shows the effect of the inductor. The current does not in-
crease instantly to its final equilibrium value when the switch is closed but instead
increases according to an exponential function. If we remove the inductance in
the circuit, which we can do by letting L approach zero, the exponential term be-
comes zero and we see that there is no time dependence of the current in this
case—the current increases instantaneously to its final equilibrium value in the
absence of the inductance.

We can also write this expression as

(32.7)

where the constant + is the time constant of the RL circuit:

(32.8)

Physically, + is the time it takes the current in the circuit to reach 
of its final value The time constant is a useful parameter for comparing the
time responses of various circuits.

Figure 32.4 shows a graph of the current versus time in the RL circuit. Note
that the equilibrium value of the current, which occurs as t approaches infinity, is

We can see this by setting dI/dt equal to zero in Equation 32.6 and solving for
the current I. (At equilibrium, the change in the current is zero.) Thus, we see
that the current initially increases very rapidly and then gradually approaches the
equilibrium value as t approaches infinity.

Let us also investigate the time rate of change of the current in the circuit.
Taking the first time derivative of Equation 32.7, we have

(32.9)

From this result, we see that the time rate of change of the current is a maximum
(equal to at and falls off exponentially to zero as t approaches infinity
(Fig. 32.5).

Now let us consider the RL circuit shown in Figure 32.6. The circuit contains
two switches that operate such that when one is closed, the other is opened. Sup-
pose that S1 has been closed for a length of time sufficient to allow the current to
reach its equilibrium value In this situation, the circuit is described com-
pletely by the outer loop in Figure 32.6. If S2 is closed at the instant at which S1 is
opened, the circuit changes so that it is described completely by just the upper
loop in Figure 32.6. The lower loop no longer influences the behavior of the cir-
cuit. Thus, we have a circuit with no battery If we apply Kirchhoff’s loop
rule to the upper loop at the instant the switches are thrown, we obtain

IR * L 
dI
dt

" 0

(! " 0).

!/R .

t " 0!/L)

dI
dt

"
!
L

 e%t /+

!/R

!/R.

!/R .
(1 % e%1) " 0.63

+ " L/R

I "
!
R

 (1 % e%t /+)

 I "
!
R

 (1 % e%Rt /L)

!
R

% I "
!
R

 e%Rt /L 

x0 " !/R.t " 0,I " 0
I

tτ

τ   L/R =R0.63

/R

τ

ε

ε

Figure 32.4 Plot of the current
versus time for the RL circuit
shown in Figure 32.3. The switch is
thrown closed at and the
current increases toward its maxi-
mum value The time con-
stant + is the time it takes I to reach
63% of its maximum value.

!/R.

t " 0,

dI
dt

/L

t

ε

Figure 32.5 Plot of dI/dt versus
time for the RL circuit shown in
Figure 32.3. The time rate of
change of current is a maximum at

which is the instant at which
the switch is thrown closed. The
rate decreases exponentially with
time as I increases toward its maxi-
mum value.

t " 0,

Time constant of an RL circuit
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It is left as a problem (Problem 18) to show that the solution of this differential
equation is

(32.10)

where is the emf of the battery and is the current at the instant
at which S2 is closed as S1 is opened. 

If no inductor were present in the circuit, the current would immediately de-
crease to zero if the battery were removed. When the inductor is present, it acts to
oppose the decrease in the current and to maintain the current. A graph of the
current in the circuit versus time (Fig. 32.7) shows that the current is continuously
decreasing with time. Note that the slope dI/dt is always negative and has its maxi-
mum value at The negative slope signifies that is now posi-
tive; that is, point a in Figure 32.6 is at a lower electric potential than point b.

Two circuits like the one shown in Figure 32.6 are identical except for the value of L . In cir-
cuit A the inductance of the inductor is LA , and in circuit B it is LB . Switch S1 is thrown
closed at while switch S2 remains open. At switch S1 is opened and switch S2
is closed. The resulting time rates of change for the two currents are as graphed in Figure
32.8. If we assume that the time constant of each circuit is much less than 10 s, which of the
following is true? (a) LA , LB ; (b) LA - LB ; (c) not enough information to tell.

t " 10 s,t " 0,

Quick Quiz 32.2

!L " %L (dI/dt)t " 0.

t " 0,I0 " !/R!

I "
!
R

 e%t /+ " I0e%t /+

R a L b

S2

S1

+−

ε

Figure 32.6 An RL circuit con-
taining two switches. When S1 is
closed and S2 open as shown, the
battery is in the circuit. At the in-
stant S2 is closed, S1 is opened, and
the battery is no longer part of the
circuit.

I

t

/Rε

Figure 32.7 Current versus time
for the upper loop of the circuit
shown in Figure 32.6. For 
t - 0, S1 is closed and S2 is open.
At S2 is closed as S1 is
opened, and the current has its
maximum value !/R.

t " 0,

0

I

5 10 15

A

B

t(s)
Figure 32.8
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ENERGY IN A MAGNETIC FIELD
Because the emf induced in an inductor prevents a battery from establishing an in-
stantaneous current, the battery must do work against the inductor to create a cur-
rent. Part of the energy supplied by the battery appears as internal energy in the
resistor, while the remaining energy is stored in the magnetic field of the inductor.
If we multiply each term in Equation 32.6 by I and rearrange the expression, we
have

(32.11)I! " I 2R * LI 
dI
dt

32.3

Time Constant of an RL CircuitEXAMPLE 32.3
A plot of Equation 32.7 for this circuit is given in Figure

32.9b.

(c) Compare the potential difference across the resistor
with that across the inductor.

Solution At the instant the switch is closed, there is no
current and thus no potential difference across the resistor.
At this instant, the battery voltage appears entirely across the
inductor in the form of a back emf of 12.0 V as the inductor
tries to maintain the zero-current condition. (The left end of
the inductor is at a higher electric potential than the right
end.) As time passes, the emf across the inductor decreases
and the current through the resistor (and hence the poten-
tial difference across it) increases. The sum of the two poten-
tial differences at all times is 12.0 V, as shown in Figure 32.10.

Exercise Calculate the current in the circuit and the volt-
age across the resistor after a time interval equal to one time
constant has elapsed.

Answer 1.26 A, 7.56 V.

The switch in Figure 32.9a is thrown closed at (a) Find
the time constant of the circuit.

Solution The time constant is given by Equation 32.8:

(b) Calculate the current in the circuit at 

Solution Using Equation 32.7 for the current as a func-
tion of time (with t and + in milliseconds), we find that at

0.659 AI "
!
R

 (1 % e%t /+ ) "
12.0 V
6.00 .

 (1 % e%0.400) "

t " 2.00 ms

t " 2.00 ms.

5.00 ms+ "
L
R

"
30.0 ( 10%3 H

6.00 .
"

t " 0.

t(ms)2 4 6 8 10
0

1

2

I(A)

(b)

(a)

30.0 mH

12.0 V 6.00 Ω

S

2 4 6 8
0

2

4

6

8

10

12

∆VL

∆VR

∆V(V)

t(ms)
10

Figure 32.9 (a) The switch in this RL circuit is thrown closed at
(b) A graph of the current versus time for the circuit in part (a).t " 0.

Figure 32.10 The sum of the potential differences across the re-
sistor and inductor in Figure 32.9a is 12.0 V (the battery emf) at all
times.

13.6



1022 C H A P T E R  3 2 Inductance

This expression indicates that the rate at which energy is supplied by the battery
equals the sum of the rate at which energy is delivered to the resistor, ,

and the rate at which energy is stored in the inductor, Thus, Equation
32.11 is simply an expression of energy conservation. If we let U denote the energy
stored in the inductor at any time, then we can write the rate dU/dt at which en-
ergy is stored as

To find the total energy stored in the inductor, we can rewrite this expression as
and integrate:

(32.12)

where L is constant and has been removed from the integral. This expression rep-
resents the energy stored in the magnetic field of the inductor when the current is
I. Note that this equation is similar in form to Equation 26.11 for the energy stored
in the electric field of a capacitor, In either case, we see that energy is
required to establish a field.

We can also determine the energy density of a magnetic field. For simplicity,
consider a solenoid whose inductance is given by Equation 32.5:

The magnetic field of a solenoid is given by Equation 30.17:

Substituting the expression for L and into Equation 32.12 gives

(32.13)

Because A! is the volume of the solenoid, the energy stored per unit volume in the
magnetic field surrounding the inductor is

(32.14)

Although this expression was derived for the special case of a solenoid, it is
valid for any region of space in which a magnetic field exists. Note that Equation
32.14 is similar in form to Equation 26.13 for the energy per unit volume stored in
an electric field, . In both cases, the energy density is proportional to
the square of the magnitude of the field.

uE " 1
2/0E 2

uB "
U

A!
"

B2

2'0

U " 1
2 LI 2 " 1

2'0n2A!! B
'0n "

2
"

B2

2'0
 A!

I " B/'0n

B " '0nI

L " '0n2A!

U " Q2/2C .

U " 1
2LI 2

U " #dU " #I

0
LI dI " L #I

0
I dI

dU " LI dI

dU
dt

" LI 
dI
dt

LI(dI /dt).
I 2R(I!)

What Happens to the Energy in the Inductor?EXAMPLE 32.4
where is the initial current in the circuit and + "
L/R is the time constant. Show that all the energy initially
stored in the magnetic field of the inductor appears as inter-
nal energy in the resistor as the current decays to zero.

I0 " !/RConsider once again the RL circuit shown in Figure 32.6, in
which switch S2 is closed at the instant S1 is opened (at

Recall that the current in the upper loop decays expo-
nentially with time according to the expression I " I0e%t /+,
t " 0).

Energy stored in an inductor

Magnetic energy density
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The Coaxial CableEXAMPLE 32.5
père’s law (see Section 30.3) tells us that the magnetic field in
the region between the shells is where r is mea-
sured from the common center of the shells. The magnetic
field is zero outside the outer shell (r , b) because the net
current through the area enclosed by a circular path sur-
rounding the cable is zero, and hence from Ampère’s law,

. The magnetic field is zero inside the inner shell
because the shell is hollow and no current is present within a
radius r - a.

The magnetic field is perpendicular to the light blue rec-
tangle of length ! and width the cross-section of inter-
est. Because the magnetic field varies with radial position
across this rectangle, we must use calculus to find the total
magnetic flux. Dividing this rectangle into strips of width dr,
such as the dark blue strip in Figure 32.11, we see that the
area of each strip is !dr and that the flux through each strip is

Hence, we find the total flux through the en-
tire cross-section by integrating:

Using this result, we find that the self-inductance of the cable
is

(b) Calculate the total energy stored in the magnetic field
of the cable.

Solution Using Equation 32.12 and the results to part (a)
gives

'0!I 2

4)
 ln! b

a "U " 1
2 LI 2 "

'0!

2)
 ln ! b

a "L "
&B

I
"

&B " #B dA " #b

a

'0I
2)r

 ! dr "
'0I!

2)
 #b

a

dr
r

"
'0I!

2)
 ln! b

a "

B dA " B! dr.

b % a,

$B ! ds " 0

B " '0I/2)r,
Coaxial cables are often used to connect electrical devices,
such as your stereo system and a loudspeaker. Model a long
coaxial cable as consisting of two thin concentric cylindrical
conducting shells of radii a and b and length !, as shown in
Figure 32.11. The conducting shells carry the same current I
in opposite directions. Imagine that the inner conductor car-
ries current to a device and that the outer one acts as a return
path carrying the current back to the source. (a) Calculate
the self-inductance L of this cable.

Solution To obtain L , we must know the magnetic flux
through any cross-section in the region between the two
shells, such as the light blue rectangle in Figure 32.11. Am-

I

!

bdr

B

rI

a

Figure 32.11 Section of a long coaxial cable. The inner and outer
conductors carry equal currents in opposite directions.

Solution The rate dU/dt at which energy is delivered to
the resistor (which is the power) is equal to where I is
the instantaneous current:

To find the total energy delivered to the resistor, we solve for
dU and integrate this expression over the limits to 
t : 0 (the upper limit is infinity because it takes an infinite
amount of time for the current to reach zero):

(1) U " #0

0
I0 

2Re%2Rt /Ldt " I0 

2R #0

0
e%2Rt /Ldt

t " 0

dU
dt

" I 2R " (I0e%Rt /L)2R " I0 

2Re%2Rt /L

I 2R,
The value of the definite integral is L/2R (this is left for the
student to show in the exercise at the end of this example),
and so U becomes

Note that this is equal to the initial energy stored in the mag-
netic field of the inductor, given by Equation 32.13, as we set
out to prove.

Exercise Show that the integral on the right-hand side of
Equation (1) has the value L/2R .

U " I0 

2R ! L
2R " "

1
2

 LI0 

2



1024 C H A P T E R  3 2 Inductance

Definition of mutual inductance

MUTUAL INDUCTANCE
Very often, the magnetic flux through the area enclosed by a circuit varies with
time because of time-varying currents in nearby circuits. This condition induces an
emf through a process known as mutual induction, so called because it depends on
the interaction of two circuits.

Consider the two closely wound coils of wire shown in cross-sectional view in
Figure 32.12. The current I1 in coil 1, which has N1 turns, creates magnetic field
lines, some of which pass through coil 2, which has N2 turns. The magnetic flux
caused by the current in coil 1 and passing through coil 2 is represented by &1 2 .
In analogy to Equation 32.2, we define the mutual inductance M12 of coil 2 with
respect to coil 1:

(32.15)

Referring to Figure 32.12, tell what happens to M12 (a) if coil 1 is brought closer to coil 2
and (b) if coil 1 is rotated so that it lies in the plane of the page.

Quick Quiz 32.3 demonstrates that mutual inductance depends on the geometry
of both circuits and on their orientation with respect to each other. As the circuit
separation distance increases, the mutual inductance decreases because the flux
linking the circuits decreases.

If the current I1 varies with time, we see from Faraday’s law and Equation
32.15 that the emf induced by coil 1 in coil 2 is

(32.16)

In the preceding discussion, we assumed that the source current is in coil 1.
We can also imagine a source current I2 in coil 2. The preceding discussion can be
repeated to show that there is a mutual inductance M21 . If the current I2 varies
with time, the emf induced by coil 2 in coil 1 is

(32.17)

In mutual induction, the emf induced in one coil is always proportional
to the rate at which the current in the other coil is changing. Although the

!1 " %M21 
dI2

dt

!2 " %N 2 
d&12

dt
" %N 2 

d
dt

 ! M12I1

N 2
" " %M12 

dI1

dt

Quick Quiz 32.3

M12 %
N2&12

I1

32.4

Coil 1 Coil 2

N1 I1

N2 I2

Figure 32.12 A cross-sectional view of two adjacent
coils. A current in coil 1 sets up a magnetic flux, part of
which passes through coil 2.
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proportionality constants M12 and M21 appear to have different values, it can be
shown that they are equal. Thus, with Equations 32.16 and 32.17
become

and

These two equations are similar in form to Equation 32.1 for the self-induced
emf The unit of mutual inductance is the henry.

(a) Can you have mutual inductance without self-inductance? (b) How about self-induc-
tance without mutual inductance?

Quick Quiz 32.4

! " %L(dI/dt).

!1 " %M 
dI2

dt
!2 " %M 

dI1

dt

M12 " M21 " M,

“Wireless” Battery ChargerEXAMPLE 32.6
Solution Because the base solenoid carries a source cur-
rent I, the magnetic field in its interior is

Because the magnetic flux &BH through the handle’s coil
caused by the magnetic field of the base coil is BA, the mu-
tual inductance is

Exercise Calculate the mutual inductance of two solenoids
with turns, m2, m, and

turns.

Answer 7.5 mH.

NH " 800
! " 0.02A " 1.0 ( 10%4NB " 1 500

'0 
N HN BA

!
M "

NH&BH

I
"

NHBA
I

"

B "
'0NBI

!

An electric toothbrush has a base designed to hold the tooth-
brush handle when not in use. As shown in Figure 32.13a, the
handle has a cylindrical hole that fits loosely over a matching
cylinder on the base. When the handle is placed on the base,
a changing current in a solenoid inside the base cylinder in-
duces a current in a coil inside the handle. This induced cur-
rent charges the battery in the handle.

We can model the base as a solenoid of length ! with NB
turns (Fig. 32.13b), carrying a source current I, and having a
cross-sectional area A. The handle coil contains NH turns.
Find the mutual inductance of the system.

QuickLab
Tune in a relatively weak station on a
radio. Now slowly rotate the radio
about a vertical axis through its cen-
ter. What happens to the reception?
Can you explain this in terms of the
mutual induction of the station’s
broadcast antenna and your radio’s
antenna?

(b)

NB

NH

Coil 1(base)

Coil 2(handle)

!

Figure 32.13 (a) This electric toothbrush uses the mutual induction of solenoids as part of its battery-charging
system. (b) A coil of NH turns wrapped around the center of a solenoid of NB turns.

(a)
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OSCILLATIONS IN AN LC CIRCUIT
When a capacitor is connected to an inductor as illustrated in Figure 32.14, the
combination is an LC circuit. If the capacitor is initially charged and the switch is
then closed, both the current in the circuit and the charge on the capacitor oscil-
late between maximum positive and negative values. If the resistance of the circuit
is zero, no energy is transformed to internal energy. In the following analysis, we
neglect the resistance in the circuit. We also assume an idealized situation in which
energy is not radiated away from the circuit. We shall discuss this radiation in
Chapter 34, but we neglect it for now. With these idealizations—zero resistance
and no radiation—the oscillations in the circuit persist indefinitely.

Assume that the capacitor has an initial charge Q max (the maximum charge)
and that the switch is thrown closed at Let us look at what happens from an
energy viewpoint.

When the capacitor is fully charged, the energy U in the circuit is stored in the
electric field of the capacitor and is equal to (Eq. 26.11). At this time,
the current in the circuit is zero, and thus no energy is stored in the inductor. Af-
ter the switch is thrown closed, the rate at which charges leave or enter the capaci-
tor plates (which is also the rate at which the charge on the capacitor changes) is
equal to the current in the circuit. As the capacitor begins to discharge after the
switch is closed, the energy stored in its electric field decreases. The discharge of
the capacitor represents a current in the circuit, and hence some energy is now
stored in the magnetic field of the inductor. Thus, energy is transferred from the
electric field of the capacitor to the magnetic field of the inductor. When the ca-
pacitor is fully discharged, it stores no energy. At this time, the current reaches its
maximum value, and all of the energy is stored in the inductor. The current con-
tinues in the same direction, decreasing in magnitude, with the capacitor eventu-
ally becoming fully charged again but with the polarity of its plates now opposite
the initial polarity. This is followed by another discharge until the circuit returns to
its original state of maximum charge Q max and the plate polarity shown in Figure
32.14. The energy continues to oscillate between inductor and capacitor.

The oscillations of the LC circuit are an electromagnetic analog to the me-
chanical oscillations of a block–spring system, which we studied in Chapter 13.
Much of what we discussed is applicable to LC oscillations. For example, we investi-
gated the effect of driving a mechanical oscillator with an external force, which
leads to the phenomenon of resonance. We observe the same phenomenon in the
LC circuit. For example, a radio tuner has an LC circuit with a natural frequency,
which we determine as follows: When the circuit is driven by the electromagnetic
oscillations of a radio signal detected by the antenna, the tuner circuit responds
with a large amplitude of electrical oscillation only for the station frequency that
matches the natural frequency. Thus, only the signal from one station is passed on
to the amplifier, even though signals from all stations are driving the circuit at the
same time. When you turn the knob on the radio tuner to change the station, you
are changing the natural frequency of the circuit so that it will exhibit a resonance
response to a different driving frequency.

A graphical description of the energy transfer between the inductor and the
capacitor in an LC circuit is shown in Figure 32.15. The right side of the figure
shows the analogous energy transfer in the oscillating block–spring system studied
in Chapter 13. In each case, the situation is shown at intervals of one-fourth the
period of oscillation T. The potential energy stored in a stretched spring is
analogous to the electric potential energy stored in the capacitor. The
kinetic energy of the moving block is analogous to the magnetic energy 12 LI 21

2 mv2
Q 2

max/2C

1
2 kx2

Q 2
max/2C

t " 0.

32.5

13.7

S

L
C

Q max

+
–

Figure 32.14 A simple LC cir-
cuit. The capacitor has an initial
charge Q max , and the switch is
thrown closed at t " 0.
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m

m

m

m

Q = 0

I = 0

t = 0

t = T
2

+Q max

–Q max

E

C

L

C

LQ = 0

I =Imax

I = 0
–Q max

+Q max

B

C

L

t = T
4

C

L

I =Imax

t = 3
4 T

I = 0
+Q max

–Q max

E

C

t =T
L

(a)

k

x = 0

x = 0

v = 0

A

(b)
x = 0

vmax

(c)
x = 0

v = 0

A

(e)
x = 0

m

v = 0

A

x = 0

(d)
x = 0

vmax

– – – –

+ + + +

– – – –

– – – –

B

+ + + +

+ + + +

S

E

Figure 32.15 Energy transfer in a resistanceless, non-radiating LC circuit. The capacitor has a
charge Q max at the instant at which the switch is thrown closed. The mechanical analog of
this circuit is a block–spring system.

t " 0,
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stored in the inductor, which requires the presence of moving charges. In Figure
32.15a, all of the energy is stored as electric potential energy in the capacitor at

In Figure 32.15b, which is one fourth of a period later, all of the energy is
stored as magnetic energy in the inductor, where Imax is the maximum cur-
rent in the circuit. In Figure 32.15c, the energy in the LC circuit is stored com-
pletely in the capacitor, with the polarity of the plates now opposite what it was in
Figure 32.15a. In parts d and e the system returns to the initial configuration over
the second half of the cycle. At times other than those shown in the figure, part of
the energy is stored in the electric field of the capacitor and part is stored in the
magnetic field of the inductor. In the analogous mechanical oscillation, part of the
energy is potential energy in the spring and part is kinetic energy of the block.

Let us consider some arbitrary time t after the switch is closed, so that the ca-
pacitor has a charge and the current is At this time, both ele-
ments store energy, but the sum of the two energies must equal the total initial en-
ergy U stored in the fully charged capacitor at 

(32.18)

Because we have assumed the circuit resistance to be zero, no energy is trans-
formed to internal energy, and hence the total energy must remain constant in time.
This means that Therefore, by differentiating Equation 32.18 with re-
spect to time while noting that Q and I vary with time, we obtain

(32.19)

We can reduce this to a differential equation in one variable by remembering that
the current in the circuit is equal to the rate at which the charge on the capacitor
changes: From this, it follows that Substitution of
these relationships into Equation 32.19 gives

(32.20)

We can solve for Q by noting that this expression is of the same form as the analo-
gous Equations 13.16 and 13.17 for a block–spring system:

where k is the spring constant, m is the mass of the block, and The solu-
tion of this equation has the general form

where 1 is the angular frequency of the simple harmonic motion, A is the ampli-
tude of motion (the maximum value of x), and 2 is the phase constant; the values
of A and 2 depend on the initial conditions. Because it is of the same form as the
differential equation of the simple harmonic oscillator, we see that Equation 32.20
has the solution

(32.21)Q " Q max cos(1t * 2)

x " A cos(1t * 2)

1 " !k/m.

d2x
dt2 " %

k
m

 x " %12x

 
d2Q
dt2 " %

1
LC

 Q

Q
C

* L 
d 2Q
dt2 " 0 

dI/dt " d 2Q /dt2.I " dQ /dt .

dU
dt

"
d
dt

 ! Q2

2C
*

1
2

LI 2" "
Q
C

 
dQ
dt

* LI 
dI
dt

" 0

dU/dt " 0.

U " UC * UL "
Q2

2C
*

1
2

LI 2

t " 0:

I - Imax .Q - Q max

1
2 LI max

2
t " 0.

Total energy stored in an LC
circuit

The total energy in an ideal LC
circuit remains constant;
dU/dt " 0

Charge versus time for an ideal LC
circuit
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where Q max is the maximum charge of the capacitor and the angular frequency 1
is

(32.22)

Note that the angular frequency of the oscillations depends solely on the induc-
tance and capacitance of the circuit. This is the natural frequency of oscillation of
the LC circuit.

Because Q varies sinusoidally, the current in the circuit also varies sinusoidally.
We can easily show this by differentiating Equation 32.21 with respect to time:

(32.23)

To determine the value of the phase angle 2, we examine the initial condi-
tions, which in our situation require that at and Setting

at in Equation 32.23, we have

which shows that This value for 2 also is consistent with Equation 32.21 and
with the condition that at Therefore, in our case, the expressions
for Q and I are

(32.24)

(32.25)

Graphs of Q versus t and I versus t are shown in Figure 32.16. Note that the
charge on the capacitor oscillates between the extreme values Q max and %Q max ,
and that the current oscillates between Imax and %Imax . Furthermore, the current
is 90° out of phase with the charge. That is, when the charge is a maximum, the
current is zero, and when the charge is zero, the current has its maximum value.

What is the relationship between the amplitudes of the two curves in Figure 32.16?

Let us return to the energy discussion of the LC circuit. Substituting Equations
32.24 and 32.25 in Equation 32.18, we find that the total energy is

(32.26)

This expression contains all of the features described qualitatively at the beginning
of this section. It shows that the energy of the LC circuit continuously oscillates be-
tween energy stored in the electric field of the capacitor and energy stored in the
magnetic field of the inductor. When the energy stored in the capacitor has its
maximum value the energy stored in the inductor is zero. When the en-
ergy stored in the inductor has its maximum value the energy stored in
the capacitor is zero.

Plots of the time variations of UC and UL are shown in Figure 32.17. The sum
is a constant and equal to the total energy or . Analyti-

cal verification of this is straightforward. The amplitudes of the two graphs in Fig-
ure 32.17 must be equal because the maximum energy stored in the capacitor

LI 2
max/2Q 2

max/2CUC * UL

1
2 LI 2

max ,
Q 2

max/2C ,

U " UC * UL "
Q 2

max

2C
 cos2 1t *

LI 2
max

2
 sin2 1t

Quick Quiz 32.5

I " %1Q max sin 1t " %Imax sin 1t

Q " Q max cos 1t 

t " 0.Q " Q max

2 " 0.

0 " % 1Q max sin 2

t " 0I " 0
Q " Q max .I " 0t " 0,

(1t * 2)I "
dQ
dt

" %1Q max sin 

1 "
1

!LC

Q

Q max

I max

I

t

t

0 T 2TT
2

3T
2

Figure 32.16 Graphs of charge
versus time and current versus time
for a resistanceless, nonradiating
LC circuit. Note that Q and I are
90° out of phase with each other.

Figure 32.17 Plots of UC versus t
and UL versus t for a resistanceless,
nonradiating LC circuit. The sum
of the two curves is a constant and
equal to the total energy stored in
the circuit.

Angular frequency of oscillation

Current versus time for an ideal
LC current

t

Q 2
max

2C

t
0 T

4
T
2

3T
4

T

UL

UC

LI 2
max
2
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(when must equal the maximum energy stored in the inductor (when
This is mathematically expressed as

Using this expression in Equation 32.26 for the total energy gives

(32.27)

because cos2 1t * sin2 1t " 1.
In our idealized situation, the oscillations in the circuit persist indefinitely;

however, we remember that the total energy U of the circuit remains constant only
if energy transfers and transformations are neglected. In actual circuits, there is 
always some resistance, and hence energy is transformed to internal energy. 
We mentioned at the beginning of this section that we are also ignoring radiation
from the circuit. In reality, radiation is inevitable in this type of circuit, and the to-
tal energy in the circuit continuously decreases as a result of this process.

U "
Q 2

max

2C
 (cos2 1t * sin2 1t) "

Q 2
max

2C

Q 2
max

2C
"

LI 2
max

2

Q " 0).
I " 0)

An Oscillatory LC CircuitEXAMPLE 32.7
(b) What are the maximum values of charge on the capac-

itor and current in the circuit?

Solution The initial charge on the capacitor equals the
maximum charge, and because we have

From Equation 32.25, we can see how the maximum current
is related to the maximum charge:

(c) Determine the charge and current as functions of
time.

Solution Equations 32.24 and 32.25 give the following ex-
pressions for the time variation of Q and I :

Exercise What is the total energy stored in the circuit?

Answer 6.48 ( 10%10 J.

(%6.79 ( 10%4 A) sin[(2) ( 106 rad/s)t ]"

I " %Imax sin 1t

(1.08 ( 10%10 C) cos[(2) ( 106 rad/s)t]"

Q " Q max cos 1t

6.79 ( 10%4 A "

 " (2) ( 106 s%1)(1.08 ( 10%10 C)

Imax " 1Q max " 2)fQ max 

1.08 ( 10%10 CQ max " C! " (9.00 ( 10%12 F)(12.0 V) "

C " Q /!,

In Figure 32.18, the capacitor is initially charged when switch
S1 is open and S2 is closed. Switch S1 is then thrown closed at
the same instant that S2 is opened, so that the capacitor is
connected directly across the inductor. (a) Find the fre-
quency of oscillation of the circuit.

Solution Using Equation 32.22 gives for the frequency

1.00 ( 106 Hz"

 "
1

2)[(2.81 ( 10%3 H)(9.00 ( 10%12 F)]1/2

f "
1

2)
"

1

2)!LC

9.00 pF

2.81 mH

S2

S1

   = 12.0 Vε

Figure 32.18 First the capacitor is fully charged with the switch S1
open and S2 closed. Then, S1 is thrown closed at the same time that
S2 is thrown open.
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Optional Section

THE RLC CIRCUIT
We now turn our attention to a more realistic circuit consisting of an inductor, a
capacitor, and a resistor connected in series, as shown in Figure 32.19. We let the
resistance of the resistor represent all of the resistance in the circuit. We assume
that the capacitor has an initial charge Q max before the switch is closed. Once the
switch is thrown closed and a current is established, the total energy stored in the
capacitor and inductor at any time is given, as before, by Equation 32.18. However,
the total energy is no longer constant, as it was in the LC circuit, because the resis-
tor causes transformation to internal energy. Because the rate of energy transfor-
mation to internal energy within a resistor is I 2R, we have

where the negative sign signifies that the energy U of the circuit is decreasing in
time. Substituting this result into Equation 32.19 gives

(32.28)

To convert this equation into a form that allows us to compare the electrical oscil-
lations with their mechanical analog, we first use the fact that and move
all terms to the left-hand side to obtain

Now we divide through by I :

(32.29)

The RLC circuit is analogous to the damped harmonic oscillator discussed in
Section 13.6 and illustrated in Figure 32.20. The equation of motion for this me-
chanical system is, from Equation 13.32,

(32.30)

Comparing Equations 32.29 and 32.30, we see that Q corresponds to the position x
of the block at any instant, L to the mass m of the block, R to the damping coeffi-
cient b, and C to 1/k, where k is the force constant of the spring. These and other
relationships are listed in Table 32.1.

Because the analytical solution of Equation 32.29 is cumbersome, we give only
a qualitative description of the circuit behavior. In the simplest case, when 
Equation 32.29 reduces to that of a simple LC circuit, as expected, and the charge
and the current oscillate sinusoidally in time. This is equivalent to removal of all
damping in the mechanical oscillator.

When R is small, a situation analogous to light damping in the mechanical os-
cillator, the solution of Equation 32.29 is

(32.31)Q " Q maxe%Rt /2L cos 1d t

R " 0,

m 
d2x
dt2 * b 

dx
dt

* kx " 0

L 
d2Q
dt2 * R 

dQ
dt

*
Q
C

" 0

L  
d 2Q
dt2 *

Q
C

  * IR " 0

LI  
d 2Q
dt2 *

Q
C

  I * I 2R " 0

I " dQ /dt

LI 
dI
dt

*
Q
C

 
dQ
dt

" %I 2R

dU
dt

" %I 2R

32.6

C+
– L

R

S

Q max

Figure 32.19 A series RLC cir-
cuit. The capacitor has a charge
Q max at the instant at which
the switch is thrown closed.

t " 0,

m

13.7

Figure 32.20 A block–spring sys-
tem moving in a viscous medium
with damped harmonic motion is
analogous to an RLC circuit.
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where

(32.32)

is the angular frequency at which the circuit oscillates. That is, the value of the
charge on the capacitor undergoes a damped harmonic oscillation in analogy with
a mass–spring system moving in a viscous medium. From Equation 32.32, we see
that, when (so that the second term in the brackets is much smaller
than the first), the frequency 1d of the damped oscillator is close to that of the un-
damped oscillator, Because it follows that the current also un-
dergoes damped harmonic oscillation. A plot of the charge versus time for the
damped oscillator is shown in Figure 32.21a. Note that the maximum value of Q
decreases after each oscillation, just as the amplitude of a damped block–spring
system decreases in time.

Figure 32.21a has two dashed blue lines that form an “envelope” around the curve. What is
the equation for the upper dashed line?

When we consider larger values of R , we find that the oscillations damp out
more rapidly ; in fact, there exists a critical resistance value above
which no oscillations occur. A system with is said to be critically damped.
When R exceeds Rc , the system is said to be overdamped (Fig. 32.22).

R " R c

R c " !4L/C

Quick Quiz 32.6

I " dQ /dt,1/!LC .

R V !4L/C

1d " & 1
LC

% ! R
2L "2'1/2

TABLE 32.1 Analogies Between Electrical and Mechanical Systems

One-Dimensional 
Electric Circuit Mechanical System

Charge Displacement
Current Velocity
Potential difference Force
Resistance Viscous damping

coefficient
Capacitance (k " spring

constant)
Inductance Mass

Energy in inductor

Energy in capacitor

RLC circuit Damped mass on a springL 
d 2Q
dt2 * R 

dQ
dt

*
Q
C

" 0 4 m 
d 2x
dt2 * b 

dx
dt

* kx " 0

Rate of energy loss due to friction
I 2R 4 bv2Rate of energy loss due to resistance

Potential energy stored in a springUC " 1
2 

Q2

C
4 U " 1

2 kx2

Kinetic energy of moving mass
UL " 1

2 LI 2 4 K " 1
2 mv2

Acceleration " second time derivative of position

dI
dt

"
d 2Q
dt2 4 ax "

dvx

dt
"

d 2x
dt2

Rate of change of current " second time derivative of charge

Velocity " time derivative of position
I "

dQ
dt

4 vx "
dx
dt

Current " time derivative of charge

L 4 m

C 4 1/k

R 4 b
 $V 4 Fx 

I 4 vx

Q 4 x
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SUMMARY

When the current in a coil changes with time, an emf is induced in the coil accord-
ing to Faraday’s law. The self-induced emf is

(32.1)

where L is the inductance of the coil. Inductance is a measure of how much oppo-
sition an electrical device offers to a change in current passing through the device.
Inductance has the SI unit of henry (H), where 1 H " 1 V # s/A.

The inductance of any coil is

(32.2)

where &B is the magnetic flux through the coil and N is the total number of turns.
The inductance of a device depends on its geometry. For example, the inductance
of an air-core solenoid is

(32.4)

where A is the cross-sectional area, and ! is the length of the solenoid.
If a resistor and inductor are connected in series to a battery of emf and if a

switch in the circuit is thrown closed at then the current in the circuit varies
in time according to the expression

(32.7)

where is the time constant of the RL circuit. That is, the current in-
creases to an equilibrium value of after a time that is long compared with +. If
the battery in the circuit is replaced by a resistanceless wire, the current decays ex-
ponentially with time according to the expression

(32.10)

where is the initial current in the circuit.!/R

I "
!
R

 e%t /+

!/R
+ " L/R

I "
!
R

 (1 % e%t /+)

t " 0,
!,

L "
'0N 2A

!

L "
N &B

I

!L " %L 
dI
dt

Q max

Q

0 t

Figure 32.21 (a) Charge versus time for a damped RLC circuit. The charge 
decays in this way when The Q -versus-t curve represents a plot
of Equation 32.31. (b) Oscilloscope pattern showing the decay in the oscilla-
tions of an RLC circuit. The parameters used were ., mH,
and 'F.C " 0.19

L " 10R " 75

R V  !4L/C  .

Q

t

R >   4L/CQ max

(a) (b) Figure 32.22 Plot of Q versus t
for an overdamped RLC circuit,
which occurs for values of
R , !4L/C  .
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The energy stored in the magnetic field of an inductor carrying a current I is

(32.12)

This energy is the magnetic counterpart to the energy stored in the electric field
of a charged capacitor.

The energy density at a point where the magnetic field is B is

(32.14)

The mutual inductance of a system of two coils is given by

(32.15)

This mutual inductance allows us to relate the induced emf in a coil to the chang-
ing source current in a nearby coil using the relationships

and (32.16, 32.17)

In an LC circuit that has zero resistance and does not radiate electromagneti-
cally (an idealization), the values of the charge on the capacitor and the current in
the circuit vary in time according to the expressions

(32.21)

(32.23)

where Q max is the maximum charge on the capacitor, 2 is a phase constant, and 1
is the angular frequency of oscillation:

(32.22)

The energy in an LC circuit continuously transfers between energy stored in the
capacitor and energy stored in the inductor. The total energy of the LC circuit at
any time t is

(32.26)

At all of the energy is stored in the electric field of the capacitor
. Eventually, all of this energy is transferred to the inductor

. However, the total energy remains constant because energy trans-
formations are neglected in the ideal LC circuit.
(U " LI 2

max/2)
(U " Q max

2 /2C )
t " 0,

U " UC * UL "
Q 2

max

2C
 cos2 1t *

LI 2
max

2
 sin2 1t

1 "
1

!LC

(1t * 2)I "
dQ
dt

" %1Q max sin

(1t * 2)Q " Q max cos 

!1 " %M21 
dI2

dt
!2 " %M12 

dI1

dt

M12 "
N 2&12

I1
" M21 "

N1&21

I2
" M

uB "
B2

2'0

U " 1
2 LI 2

QUESTIONS

4. How can a long piece of wire be wound on a spool so that
the wire has a negligible self-inductance?

5. A long, fine wire is wound as a solenoid with a self-
inductance L . If it is connected across the terminals of a
battery, how does the maximum current depend on L ?

6. For the series RL circuit shown in Figure Q32.6, can the
back emf ever be greater than the battery emf? Explain.

1. Why is the induced emf that appears in an inductor
called a “counter” or “back” emf?

2. The current in a circuit containing a coil, resistor, and
battery reaches a constant value. Does the coil have an in-
ductance? Does the coil affect the value of the current?

3. What parameters affect the inductance of a coil? Does the
inductance of a coil depend on the current in the coil?
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PROBLEMS

7. A 10.0-mH inductor carries a current 
with and Hz. What is the
back emf as a function of time?

8. An emf of 24.0 mV is induced in a 500-turn coil at an in-
stant when the current is 4.00 A and is changing at the
rate of 10.0 A/s. What is the magnetic flux through
each turn of the coil?

9. An inductor in the form of a solenoid contains 420
turns, is 16.0 cm in length, and has a cross-sectional
area of 3.00 cm2. What uniform rate of decrease of 
current through the inductor induces an emf of 
175 'V?

10. An inductor in the form of a solenoid contains N turns,
has length !, and has cross-sectional area A. What uni-
form rate of decrease of current through the inductor
induces an emf ?

11. The current in a 90.0-mH inductor changes with time as
(in SI units). Find the magnitude of the

induced emf at (a) and (b) (c) At
what time is the emf zero?

12. A 40.0-mA current is carried by a uniformly wound air-
core solenoid with 450 turns, a 15.0-mm diameter, and
12.0-cm length. Compute (a) the magnetic field inside
the solenoid, (b) the magnetic flux through each turn,

t " 4.00 s.t " 1.00 s
I " t 2 % 6.00t

!

1/2) " 60.0Imax " 5.00 A
I " Imax sin 1t,Section 32.1 Self-Inductance

1. A coil has an inductance of 3.00 mH, and the current
through it changes from 0.200 A to 1.50 A in a time of
0.200 s. Find the magnitude of the average induced emf
in the coil during this time.

2. A coiled telephone cord forms a spiral with 70 turns, a
diameter of 1.30 cm, and an unstretched length of 
60.0 cm. Determine the self-inductance of one conduc-
tor in the unstretched cord.

3. A 2.00-H inductor carries a steady current of 0.500 A.
When the switch in the circuit is thrown open, the cur-
rent is effectively zero in 10.0 ms. What is the average
induced emf in the inductor during this time?

4. A small air-core solenoid has a length of 4.00 cm and
a radius of 0.250 cm. If the inductance is to be 
0.060 0 mH, how many turns per centimeter are
required?

5. Calculate the magnetic flux through the area enclosed
by a 300-turn, 7.20-mH coil when the current in the coil
is 10.0 mA.

6. The current in a solenoid is increasing at a rate of 
10.0 A/s. The cross-sectional area of the solenoid is 
) cm2, and there are 300 turns on its 15.0-cm length.
What is the induced emf opposing the increasing
current?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

ε

R

L

Switch

7. Consider this thesis: “Joseph Henry, America’s first pro-
fessional physicist, changed the view of the Universe dur-
ing a school vacation at the Albany Academy in 1830. Be-
fore that time, one could think of the Universe as
consisting of just one thing: matter. In Henry’s experi-
ment, after a battery is removed from a coil, the energy
that keeps the current flowing for a while does not be-
long to any piece of matter. This energy belongs to the
magnetic field surrounding the coil. With Henry’s discov-
ery of self-induction, Nature forced us to admit that the
Universe consists of fields as well as matter.” What in your
view constitutes the Universe? Argue for your answer.

8. Discuss the similarities and differences between the en-
ergy stored in the electric field of a charged capacitor and
the energy stored in the magnetic field of a current-
carrying coil.

9. What is the inductance of two inductors connected in se-
ries? Does it matter if they are solenoids or toroids?

10. The centers of two circular loops are separated by a fixed
distance. For what relative orientation of the loops is their
mutual inductance a maximum? a minimum? Explain.

11. Two solenoids are connected in series so that each carries
the same current at any instant. Is mutual induction pres-
ent? Explain.

12. In the LC circuit shown in Figure 32.15, the charge on
the capacitor is sometimes zero, even though current is in
the circuit. How is this possible?

13. If the resistance of the wires in an LC circuit were not
zero, would the oscillations persist? Explain.

14. How can you tell whether an RLC circuit is overdamped
or underdamped?

15. What is the significance of critical damping in an RLC
circuit?

16. Can an object exert a force on itself? When a coil induces
an emf in itself, does it exert a force on itself?

Figure Q32.6
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and (c) the inductance of the solenoid. (d) Which of
these quantities depends on the current?

13. A solenoid has 120 turns uniformly wrapped around a
wooden core, which has a diameter of 10.0 mm and a
length of 9.00 cm. (a) Calculate the inductance of the
solenoid. (b) The wooden core is replaced with a soft
iron rod that has the same dimensions but a magnetic
permeability What is the new inductance?

14. A toroid has a major radius R and a minor radius r, and
it is tightly wound with N turns of wire, as shown in Fig-
ure P32.14. If the magnetic field within the re-
gion of the torus, of cross-sectional area is es-
sentially that of a long solenoid that has been bent into
a large circle of radius R. Using the uniform field of a
long solenoid, show that the self-inductance of such a
toroid is approximately

(An exact expression for the inductance of a toroid with
a rectangular cross-section is derived in Problem 64.)

L ( '0N 2A/2)R

A " )r 2,
R W r,

'm " 800'0 .

the inductive time constant of the circuit? (b) Calculate
the current in the circuit 250 's after the switch is
closed. (c) What is the value of the final steady-state cur-
rent? (d) How long does it take the current to reach
80.0% of its maximum value?

WEB

26. A series RL circuit with H and a series RC cir-
cuit with 'F have equal time constants. If the
two circuits contain the same resistance R, (a) what is
the value of R and (b) what is the time constant?

C " 3.00
L " 3.00

20. In the circuit shown in Figure P32.19, let 
., and What is the self-induced

emf 0.200 s after the switch is closed?
21. For the RL circuit shown in Figure P32.19, let 

H, ., and (a) Calculate
the ratio of the potential difference across the resistor
to that across the inductor when A. (b) Calcu-
late the voltage across the inductor when A.

22. A 12.0-V battery is connected in series with a resistor
and an inductor. The circuit has a time constant of 
500 's, and the maximum current is 200 mA. What is
the value of the inductance?

23. An inductor that has an inductance of 15.0 H and a
resistance of 30.0 . is connected across a 100-V 
battery. What is the rate of increase of the current 
(a) at and (b) at 

24. When the switch in Figure P32.19 is thrown closed, the
current takes 3.00 ms to reach 98.0% of its final value. If

., what is the inductance?
25. The switch in Figure P32.25 is closed at time Find

the current in the inductor and the current through the
switch as functions of time thereafter.

t " 0.
R " 10.0

t " 1.50 s?t " 0

I " 4.50
I " 2.00

! " 36.0 V.R " 8.00L " 3.00

! " 120 V.R " 9.00
L " 7.00 H,

15. An emf self-induced in a solenoid of inductance L
changes in time as Find the total charge
that passes through the solenoid, if the charge is finite.

Section 32.2 RL Circuits
16. Calculate the resistance in an RL circuit in which

H and the current increases to 90.0% of its fi-
nal value in 3.00 s.

17. A 12.0-V battery is connected into a series circuit con-
taining a 10.0-. resistor and a 2.00-H inductor. How
long will it take the current to reach (a) 50.0% and 
(b) 90.0% of its final value?

18. Show that is a solution of the differential
equation

where and I0 is the current at 
19. Consider the circuit in Figure P32.19, taking

and .. (a) What isR " 4.00L " 8.00 mH,! " 6.00 V,

t " 0.+ " L/R

IR * L 
dI
dt

" 0

I " I0e%t /+

L " 2.50

! " !0e%kt.

R Area
A

r

1.00 H4.00 Ω

4.00 Ω 8.00 Ω

10.0 V

S

L

R

S

ε

Figure P32.14

Figure P32.19 Problems 19, 20, 21, and 24.

Figure P32.25
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27. A current pulse is fed to the partial circuit shown in Fig-
ure P32.27. The current begins at zero, then becomes
10.0 A between and 's, and then is zero
once again. Determine the current in the inductor as a
function of time.

t " 200t " 0

single ideal inductor having 
(c) Now consider two inductors L1 and L2 that have
nonzero internal resistances R1 and R2 , respectively. As-
sume that they are still far apart so that their magnetic
fields do not influence each other. If these inductors
are connected in series, show that they are equivalent to
a single inductor having and 

(d) If these same inductors are now con-
nected in parallel, is it necessarily true that they are
equivalent to a single ideal inductor having 

and Explain 
your answer.

Section 32.3 Energy in a Magnetic Field
31. Calculate the energy associated with the magnetic field

of a 200-turn solenoid in which a current of 1.75 A pro-
duces a flux of 3.70 ( 10%4 T# m2 in each turn.

32. The magnetic field inside a superconducting solenoid is
4.50 T. The solenoid has an inner diameter of 6.20 cm
and a length of 26.0 cm. Determine (a) the magnetic
energy density in the field and (b) the energy stored in
the magnetic field within the solenoid.

33. An air-core solenoid with 68 turns is 8.00 cm long and
has a diameter of 1.20 cm. How much energy is stored
in its magnetic field when it carries a current of 0.770 A?

34. At an emf of 500 V is applied to a coil that has an
inductance of 0.800 H and a resistance of 30.0 .. 
(a) Find the energy stored in the magnetic field when
the current reaches half its maximum value. (b) After
the emf is connected, how long does it take the current
to reach this value?

35. On a clear day there is a 100-V/m vertical electric field
near the Earth’s surface. At the same place, the Earth’s
magnetic field has a magnitude of 0.500 ( 10%4 T.
Compute the energy densities of the two fields.

36. An RL circuit in which H and . is
connected to a 22.0-V battery at (a) What energy
is stored in the inductor when the current is 0.500 A?
(b) At what rate is energy being stored in the inductor
when A? (c) What power is being delivered to
the circuit by the battery when A?

37. A 10.0-V battery, a 5.00-. resistor, and a 10.0-H inductor
are connected in series. After the current in the circuit

I " 0.500
I " 1.00

t " 0.
R " 5.00L " 4.00

t " 0,

1/R eq " 1/R 1 * 1/R 2 ?1/L1 * 1/L 2

1/L eq "

R 1 * R 2 .
R eq "Leq " L1 * L2

1/Leq " 1/L1 * 1/L2 .

WEB 29. A 140-mH inductor and a 4.90-. resistor are connected
with a switch to a 6.00-V battery, as shown in Figure
P32.29. (a) If the switch is thrown to the left (connect-
ing the battery), how much time elapses before the cur-
rent reaches 220 mA? (b) What is the current in the in-
ductor 10.0 s after the switch is closed? (c) Now the
switch is quickly thrown from A to B. How much time
elapses before the current falls to 160 mA?

30. Consider two ideal inductors, L1 and L2 , that have zero
internal resistance and are far apart, so that their mag-
netic fields do not influence each other. (a) If these in-
ductors are connected in series, show that they are
equivalent to a single ideal inductor having

(b) If these same two inductors are
connected in parallel, show that they are equivalent to a
Leq " L1 * L2 .

28. One application of an RL circuit is the generation of
time-varying high voltage from a low-voltage source, as
shown in Figure P32.28. (a) What is the current in the
circuit a long time after the switch has been in position
A? (b) Now the switch is thrown quickly from A to B.
Compute the initial voltage across each resistor and the
inductor. (c) How much time elapses before the voltage
across the inductor drops to 12.0 V?

10.0 mH100 Ω

10.0 A

I(t )

I(t )

200    sµ

A

ε

B

L

R

S

12.0 V
1 200 Ω

12.0 Ω

2.00 H

B

SA

Figure P32.27

Figure P32.28

Figure P32.29

WEB
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has reached its maximum value, calculate (a) the power
being supplied by the battery, (b) the power being de-
livered to the resistor, (c) the power being delivered to
the inductor, and (d) the energy stored in the magnetic
field of the inductor.

38. A uniform electric field with a magnitude of 680 kV/m
throughout a cylindrical volume results in a total energy
of 3.40 'J. What magnetic field over this same region
stores the same total energy?

39. Assume that the magnitude of the magnetic field out-
side a sphere of radius R is where B0 is a
constant. Determine the total energy stored in the mag-
netic field outside the sphere and evaluate your result
for and values
appropriate for the Earth’s magnetic field.

Section 32.4 Mutual Inductance
40. Two coils are close to each other. The first coil carries a

time-varying current given by
At the

voltage measured across the second coil is % 3.20 V.
What is the mutual inductance of the coils?

41. Two coils, held in fixed positions, have a mutual induc-
tance of 100 'H. What is the peak voltage in one when
a sinusoidal current given by

flows in the other?
42. An emf of 96.0 mV is induced in the windings of a coil

when the current in a nearby coil is increasing at the
rate of 1.20 A/s. What is the mutual inductance of the
two coils?

43. Two solenoids A and B, spaced close to each other and
sharing the same cylindrical axis, have 400 and 
700 turns, respectively. A current of 3.50 A in coil A pro-
duces an average flux of 300 'T # m2 through each turn
of A and a flux of 90.0 'T # m2 through each turn of B.
(a) Calculate the mutual inductance of the two sole-
noids. (b) What is the self-inductance of A? (c) What
emf is induced in B when the current in A increases at
the rate of 0.500 A/s?

44. A 70-turn solenoid is 5.00 cm long and 1.00 cm in diam-
eter and carries a 2.00-A current. A single loop of wire,
3.00 cm in diameter, is held so that the plane of the
loop is perpendicular to the long axis of the solenoid,
as illustrated in Figure P31.18 (page 1004). What is the
mutual inductance of the two if the plane of the loop
passes through the solenoid 2.50 cm from one end?

45. Two single-turn circular loops of wire have radii R and 
r, with The loops lie in the same plane and 
are concentric. (a) Show that the mutual inductance 
of the pair is (Hint: Assume that the
larger loop carries a current I and compute the result-
ing flux through the smaller loop.) (b) Evaluate M for

cm and cm.
46. On a printed circuit board, a relatively long straight

conductor and a conducting rectangular loop lie in the
same plane, as shown in Figure P31.9 (page 1003). If

R " 20.0r " 2.00

M " '0)r 2/2R .

R W r.

I(t) " (10.0 A) sin(1 000t)

t " 0.800 s,I(t) " (5.00 A) e%0.025 0t sin(377t).

R " 6.00 ( 106 m,B0 " 5.00 ( 10%5 T

B " B0(R/r)2,

mm, mm, and mm, what
is their mutual inductance?

47. Two inductors having self-inductances L1 and L2 are
connected in parallel, as shown in Figure P32.47a. The
mutual inductance between the two inductors is M. De-
termine the equivalent self-inductance Leq for the sys-
tem (Fig. P32.47b).

L " 2.70w " 1.30h " 0.400

51. A fixed inductance 'H is used in series with a
variable capacitor in the tuning section of a radio. What
capacitance tunes the circuit to the signal from a station
broadcasting at 6.30 MHz?

52. Calculate the inductance of an LC circuit that oscillates
at 120 Hz when the capacitance is 8.00 'F.

53. An LC circuit like the one shown in Figure 32.14 con-
tains an 82.0-mH inductor and a 17.0-'F capacitor that
initially carries a 180-'C charge. The switch is thrown
closed at (a) Find the frequency (in hertz) of the
resulting oscillations. At ms, find (b) the charge
on the capacitor and (c) the current in the circuit.

t " 1.00
t " 0.

L " 1.05

Section 32.5 Oscillations in an LC Circuit
48. A 1.00-'F capacitor is charged by a 40.0-V power supply.

The fully-charged capacitor is then discharged through
a 10.0-mH inductor. Find the maximum current in the
resulting oscillations.

49. An LC circuit consists of a 20.0-mH inductor and a
0.500-'F capacitor. If the maximum instantaneous cur-
rent is 0.100 A, what is the greatest potential difference
across the capacitor?

50. In the circuit shown in Figure P32.50, 
., and 'F. The switch S is closed for

a long time, and no voltage is measured across the ca-
pacitor. After the switch is opened, the voltage across
the capacitor reaches a maximum value of 150 V. What
is the inductance L?

C " 0.500R " 250
! " 50.0 V,

R

ε L C

S

L1

I(t )

LeqL2M

(a) (b)

I(t )

Figure P32.47

Figure P32.50
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54. The switch in Figure P32.54 is connected to point a for
a long time. After the switch is thrown to point b, what
are (a) the frequency of oscillation of the LC circuit,
(b) the maximum charge that appears on the capacitor,
(c) the maximum current in the inductor, and (d) the
total energy the circuit possesses at s?t " 3.00

The capacitor initially has no charge. Determine (a) the
voltage across the inductor as a function of time, 
(b) the voltage across the capacitor as a function of
time, and (c) the time when the energy stored in the
capacitor first exceeds that in the inductor.

62. An inductor having inductance L and a capacitor hav-
ing capacitance C are connected in series. The current
in the circuit increases linearly in time as described by

The capacitor is initially uncharged. Determine
(a) the voltage across the inductor as a function of time,
(b) the voltage across the capacitor as a function of
time, and (c) the time when the energy stored in the ca-
pacitor first exceeds that in the inductor.

63. A capacitor in a series LC circuit has an initial charge Q
and is being discharged. Find, in terms of L and C , the
flux through each of the N turns in the coil, when the
charge on the capacitor is Q /2.

64. The toroid in Figure P32.64 consists of N turns and has
a rectangular cross-section. Its inner and outer radii are
a and b, respectively. (a) Show that

(b) Using this result, compute the self-inductance of a
500-turn toroid for which cm, cm,
and cm. (c) In Problem 14, an approximate
formula for the inductance of a toroid with was
derived. To get a feel for the accuracy of that result, use
the expression in Problem 14 to compute the approxi-
mate inductance of the toroid described in part (b).
Compare the result with the answer to part (b).

R W r
h " 1.00

b " 12.0a " 10.0

L "
'0N 2h

2)
 ln 

b
a

I " Kt .

65. (a) A flat circular coil does not really produce a uniform
magnetic field in the area it encloses, but estimate the
self-inductance of a flat circular coil, with radius R and N
turns, by supposing that the field at its center is uniform
over its area. (b) A circuit on a laboratory table consists
of a 1.5-V battery, a 270-. resistor, a switch, and three 30-
cm-long cords connecting them. Suppose that the circuit
is arranged to be circular. Think of it as a flat coil with
one turn. Compute the order of magnitude of its self-
inductance and (c) of the time constant describing how
fast the current increases when you close the switch.

66. A soft iron rod is used as the core of a
solenoid. The rod has a diameter of 24.0 mm and is

('m " 800 '0)

55. An LC circuit like that illustrated in Figure 32.14 con-
sists of a 3.30-H inductor and an 840-pF capacitor, ini-
tially carrying a 105-'C charge. At the switch is
thrown closed. Compute the following quantities at

ms: (a) the energy stored in the capacitor; 
(b) the energy stored in the inductor; (c) the total en-
ergy in the circuit.

(Optional)
Section 32.6 The RLC Circuit

56. In Figure 32.19, let ., mH, and
'F. (a) Calculate the frequency of the damped

oscillation of the circuit. (b) What is the critical resis-
tance?

57. Consider an LC circuit in which mH and
'F. (a) What is the resonant frequency 10 ?

(b) If a resistance of 1.00 k. is introduced into this cir-
cuit, what is the frequency of the (damped) oscillations?
(c) What is the percent difference between the two fre-
quencies?

58. Show that Equation 32.29 in the text is Kirchhoff’s loop
rule as applied to Figure 32.19.

59. Electrical oscillations are initiated in a series circuit con-
taining a capacitance C , inductance L , and resistance R .
(a) If (weak damping), how much time
elapses before the amplitude of the current oscillation
falls off to 50.0% of its initial value? (b) How long does
it take the energy to decrease to 50.0% of its initial
value?

ADDITIONAL PROBLEMS
60. Initially, the capacitor in a series LC circuit is charged. A

switch is closed, allowing the capacitor to discharge, and
after time t the energy stored in the capacitor is one-
fourth its initial value. Determine L if C is known.

61. A 1.00-mH inductor and a 1.00-'F capacitor are con-
nected in series. The current in the circuit is described
by where t is in seconds and I is in amperes.I " 20.0t,

R V !4L/C

C " 0.100
L " 500

C " 1.80
L " 2.20R " 7.60

t " 2.00

t " 0

h

a

b

1.00 µF

10.0 Ω

S

ba

µ

0.100 H

12.0 V

Figure P32.54

Figure P32.64

WEB
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10.0 cm long. A 10.0-m piece of 22-gauge copper wire
(diameter " 0.644 mm) is wrapped around the rod in a
single uniform layer, except for a 10.0-cm length at each
end, which is to be used for connections. (a) How many
turns of this wire can wrap around the rod? (Hint: The
diameter of the wire adds to the diameter of the rod in
determining the circumference of each turn. Also, the
wire spirals diagonally along the surface of the rod.) 
(b) What is the resistance of this inductor? (c) What is
its inductance?

67. A wire of nonmagnetic material with radius R carries
current uniformly distributed over its cross-section. If
the total current carried by the wire is I, show that the
magnetic energy per unit length inside the wire is

.
68. An 820-turn wire coil of resistance 24.0 . is placed

around a 12 500-turn solenoid, 7.00 cm long, as shown
in Figure P32.68. Both coil and solenoid have cross-
sectional areas of 1.00 ( 10%4 m2. (a) How long does it
take the solenoid current to reach 63.2 percent of its
maximum value? Determine (b) the average back emf
caused by the self-inductance of the solenoid during
this interval, (c) the average rate of change in magnetic
flux through the coil during this interval, and (d) the
magnitude of the average induced current in the coil.

'0I 2/16)

72. The switch in Figure P32.72 is thrown closed at 
Before the switch is closed, the capacitor is uncharged,
and all currents are zero. Determine the currents in L ,
C , and R and the potential differences across L , C , and
R (a) the instant after the switch is closed and (b) long
after it is closed.

t " 0.

closed for a long time, the current in the inductor
drops to 0.250 A in 0.150 s. What is the inductance of
the inductor?

71. In Figure P32.71, the switch is closed for and
steady-state conditions are established. The switch is
thrown open at (a) Find the initial voltage 
across L just after Which end of the coil is at the
higher potential: a or b? (b) Make freehand graphs of
the currents in R1 and in R2 as a function of time, treat-
ing the steady-state directions as positive. Show values
before and after (c) How long after does
the current in R2 have the value 2.00 mA?

t " 0t " 0.

t " 0.
!0t " 0.

t - 0,

69. At the switch in Figure P32.69 is thrown closed.
Using Kirchhoff’s laws for the instantaneous currents
and voltages in this two-loop circuit, show that the cur-
rent in the inductor is

where 
70. In Figure P32.69, take V, ., and

.. The inductor has negligible resistance.
When the switch is thrown open after having been
R 2 " 1.00

R 1 " 5.00! " 6.00
R3 " R 1R 2/(R 1 * R 2).

I(t) "
!
R 1

 [1 % e%(R3/L)t]

t " 0,
L

R

C

S 0ε

S

6.00 kΩ ε 0.400 HL18.0 V

2.00 kΩ

R1

R2

a

b

R1

S

R2 Lε

12500
 turns

14.0 Ω

60.0 V

S

+
–

24.0 Ω
820 turns

Figure P32.68

Figure P32.69 Problems 69 and 70.

Figure P32.71

Figure P32.72
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of this type of lead-in is

where a is the radius of the wires and w is their center-
to-center separation.

Note: Problems 76 through 79 require the application of ideas
from this chapter and earlier chapters to some properties of
superconductors, which were introduced in Section 27.5.

76. Review Problem. The resistance of a superconductor. In an
experiment carried out by S. C. Collins between 1955
and 1958, a current was maintained in a superconduct-
ing lead ring for 2.50 yr with no observed loss. If the in-
ductance of the ring was 3.14 ( 10%8 H and the sensitiv-
ity of the experiment was 1 part in 109, what was the
maximum resistance of the ring? (Hint: Treat this as a
decaying current in an RL circuit, and recall that

for small x.)
77. Review Problem. A novel method of storing electrical

energy has been proposed. A huge underground super-
conducting coil, 1.00 km in diameter, would be fabri-
cated. It would carry a maximum current of 50.0 kA
through each winding of a 150-turn Nb3Sn solenoid. 
(a) If the inductance of this huge coil were 50.0 H, what
would be the total energy stored? (b) What would be
the compressive force per meter length acting between
two adjacent windings 0.250 m apart?

78. Review Problem. Superconducting Power Transmission.
The use of superconductors has been proposed for the
manufacture of power transmission lines. A single coax-
ial cable (Fig. P32.78) could carry 1.00 ( 103 MW (the
output of a large power plant) at 200 kV, dc, over a dis-
tance of 1 000 km without loss. An inner wire with a ra-
dius of 2.00 cm, made from the superconductor Nb3Sn,
carries the current I in one direction. A surrounding su-
perconducting cylinder, of radius 5.00 cm, would carry
the return current I. In such a system, what is the mag-
netic field (a) at the surface of the inner conductor and
(b) at the inner surface of the outer conductor? (c) How
much energy would be stored in the space between the
conductors in a 1 000-km superconducting line? 
(d) What is the pressure exerted on the outer conductor?

e%x ( 1 % x

L "
'0x
)

 ln! w % a
a "

74. An air-core solenoid 0.500 m in length contains 1 000
turns and has a cross-sectional area of 1.00 cm2. (a) If
end effects are neglected, what is the self-inductance?
(b) A secondary winding wrapped around the center of
the solenoid has 100 turns. What is the mutual induc-
tance? (c) The secondary winding carries a constant
current of 1.00 A, and the solenoid is connected to a
load of 1.00 k.. The constant current is suddenly
stopped. How much charge flows through the load re-
sistor?

75. The lead-in wires from a television antenna are often
constructed in the form of two parallel wires (Fig.
P32.75). (a) Why does this configuration of conductors
have an inductance? (b) What constitutes the flux loop
for this configuration? (c) Neglecting any magnetic flux
inside the wires, show that the inductance of a length x

TV set
I

I

TV antenna

7.50 Ω

450 mH

10.0 V
12.0 V

Armature

R

Figure P32.73

Figure P32.75 Figure P32.78

I

a = 2.00 cm

b = 5.00 cm
a

I

b

73. To prevent damage from arcing in an electric motor, a
discharge resistor is sometimes placed in parallel with
the armature. If the motor is suddenly unplugged while
running, this resistor limits the voltage that appears
across the armature coils. Consider a 12.0-V dc motor
with an armature that has a resistance of 7.50 . and an
inductance of 450 mH. Assume that the back emf in the
armature coils is 10.0 V when the motor is running at
normal speed. (The equivalent circuit for the armature
is shown in Fig. P32.73.) Calculate the maximum resis-
tance R that limits the voltage across the armature to
80.0 V when the motor is unplugged.
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ANSWERS TO QUICK QUIZZES

32.3 (a) M12 increases because the magnetic flux through
coil 2 increases. (b) M12 decreases because rotation of
coil 1 decreases its flux through coil 2.

32.4 (a) No. Mutual inductance requires a system of coils,
and each coil has self-inductance. (b) Yes. A single coil
has self-inductance but no mutual inductance because it
does not interact with any other coils.

32.5 From Equation 32.25, Thus, the ampli-
tude of the graph is 1 times the amplitude of the 

graph.
32.6 Equation 32.31 without the cosine factor. The dashed

lines represent the positive and negative amplitudes
(maximum values) for each oscillation period, and it is
the part of Equation 32.31 that gives
the value of the ever-decreasing amplitude.

Q " Q maxe%Rt /2L

Q - t
I - t

Imax " 1Q max .

32.1 When it is being opened. When the switch is initially
open, there is no current in the circuit; when the switch
is then closed, the inductor tends to maintain the no-
current condition, and as a result there is very little
chance of sparking. When the switch is initially closed,
there is current in the circuit; when the switch is then
opened, the current decreases. An induced emf is set up
across the inductor, and this emf tends to maintain the
original current. Sparking can occur as the current
bridges the air gap between the poles of the switch.

32.2 (b). Figure 32.8 shows that circuit B has the greater time
constant because in this circuit it takes longer for the
current to reach its maximum value and then longer 
for this current to decrease to zero after switch S2 is
closed. Equation 32.8 indicates that, for equal resis-
tances RA and RB , the condition means that
LA - LB .

+B , +A 

P32.79c. (d) The field of the solenoid exerts a force on
the current in the superconductor. Identify the direc-
tion of the force on the bar. (e) Calculate the magni-
tude of the force by multiplying the energy density of
the solenoid field by the area of the bottom end of the
superconducting bar.

(a) (b) (c)

B0

Btot

I

Figure P32.79

79. Review Problem. The Meissner Effect. Compare this
problem with Problem 63 in Chapter 26 on the force at-
tracting a perfect dielectric into a strong electric field.
A fundamental property of a Type I superconducting
material is perfect diamagnetism, or demonstration of the
Meissner effect, illustrated in the photograph on page 855
and again in Figure 30.34, and described as follows: The
superconducting material has everywhere inside
it. If a sample of the material is placed into an exter-
nally produced magnetic field, or if it is cooled to be-
come superconducting while it is in a magnetic field,
electric currents appear on the surface of the sample.
The currents have precisely the strength and orienta-
tion required to make the total magnetic field zero
throughout the interior of the sample. The following
problem will help you to understand the magnetic force
that can then act on the superconducting sample.

Consider a vertical solenoid with a length of 120 cm
and a diameter of 2.50 cm consisting of 1 400 turns of
copper wire carrying a counterclockwise current of 
2.00 A, as shown in Figure P32.79a. (a) Find the mag-
netic field in the vacuum inside the solenoid. (b) Find
the energy density of the magnetic field, and note that
the units J/m3 of energy density are the same as the
units of pressure. (c) A superconducting
bar 2.20 cm in diameter is inserted partway into the so-
lenoid. Its upper end is far outside the solenoid, where
the magnetic field is small. The lower end of the bar is
deep inside the solenoid. Identify the direction re-
quired for the current on the curved surface of the bar
so that the total magnetic field is zero within the bar.
The field created by the supercurrents is sketched in
Figure P32.79b, and the total field is sketched in Figure

N/m2("Pa)

B " 0
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Small “black boxes” like this one are
commonly used to supply power to elec-
tronic devices such as CD players and
tape players. Whereas these devices
need only about 12 V to operate, wall
outlets provide an output of 120 V. What
do the black boxes do, and how do they
work? (George Semple)
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n this chapter we describe alternating-current (ac) circuits. Every time we turn
on a television set, a stereo, or any of a multitude of other electrical appliances,
we are calling on alternating currents to provide the power to operate them. We

begin our study by investigating the characteristics of simple series circuits that con-
tain resistors, inductors, and capacitors and that are driven by a sinusoidal voltage.
We shall find that the maximum alternating current in each element is proportional
to the maximum alternating voltage across the element. We shall also find that when
the applied voltage is sinusoidal, the current in each element is sinusoidal, too, but
not necessarily in phase with the applied voltage. We conclude the chapter with two
sections concerning transformers, power transmission, and RC filters.

AC SOURCES AND PHASORS
An ac circuit consists of circuit elements and a generator that provides the alter-
nating current. As you recall from Section 31.5, the basic principle of the ac gener-
ator is a direct consequence of Faraday’s law of induction. When a conducting
loop is rotated in a magnetic field at constant angular frequency !, a sinusoidal
voltage (emf) is induced in the loop. This instantaneous voltage "v is

where "Vmax is the maximum output voltage of the ac generator, or the voltage
amplitude. From Equation 13.6, the angular frequency is

where f is the frequency of the generator (the voltage source) and T is the period.
The generator determines the frequency of the current in any circuit connected to
the generator. Because the output voltage of an ac generator varies sinusoidally
with time, the voltage is positive during one half of the cycle and negative during
the other half. Likewise, the current in any circuit driven by an ac generator is an
alternating current that also varies sinusoidally with time. Commercial electric-
power plants in the United States use a frequency of 60 Hz, which corresponds to
an angular frequency of 377 rad/s.

The primary aim of this chapter can be summarized as follows: If an ac genera-
tor is connected to a series circuit containing resistors, inductors, and capacitors,
we want to know the amplitude and time characteristics of the alternating current.
To simplify our analysis of circuits containing two or more elements, we use graph-
ical constructions called phasor diagrams. In these constructions, alternating (sinus-
oidal) quantities, such as current and voltage, are represented by rotating vectors
called phasors. The length of the phasor represents the amplitude (maximum
value) of the quantity, and the projection of the phasor onto the vertical axis rep-
resents the instantaneous value of the quantity. As we shall see, a phasor diagram
greatly simplifies matters when we must combine several sinusoidally varying cur-
rents or voltages that have different phases.

RESISTORS IN AN AC CIRCUIT

Consider a simple ac circuit consisting of a resistor and an ac generator ,
as shown in Figure 33.1. At any instant, the algebraic sum of the voltages around a

33.2

! # 2$f #
2$

T

"v # "Vmax sin !t

33.1

I
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closed loop in a circuit must be zero (Kirchhoff’s loop rule). Therefore,
or1

(33.1)

where "vR is the instantaneous voltage across the resistor. Therefore, the in-
stantaneous current in the resistor is

(33.2)

where Imax is the maximum current:

From Equations 33.1 and 33.2, we see that the instantaneous voltage across the re-
sistor is

(33.3)

Let us discuss the current-versus-time curve shown in Figure 33.2a. At point a,
the current has a maximum value in one direction, arbitrarily called the positive
direction. Between points a and b, the current is decreasing in magnitude but is
still in the positive direction. At b, the current is momentarily zero; it then begins
to increase in the negative direction between points b and c. At c, the current has
reached its maximum value in the negative direction.

The current and voltage are in step with each other because they vary identi-
cally with time. Because iR and "vR both vary as sin!t and reach their maximum
values at the same time, as shown in Figure 33.2a, they are said to be in phase.
Thus we can say that, for a sinusoidal applied voltage, the current in a resistor is al-
ways in phase with the voltage across the resistor.

A phasor diagram is used to represent current–voltage phase relationships. The
lengths of the arrows correspond to "Vmax and Imax . The projections of the phasor
arrows onto the vertical axis give "vR and iR values. As we showed in Section 13.5,
if the phasor arrow is imagined to rotate steadily with angular speed !, its vertical-
axis component oscillates sinusoidally in time. In the case of the single-loop resis-
tive circuit of Figure 33.1, the current and voltage phasors lie along the same line,
as in Figure 33.2b, because iR and "vR are in phase.

Note that the average value of the current over one cycle is zero. That is,
the current is maintained in the positive direction for the same amount of time
and at the same magnitude as it is maintained in the negative direction. However,
the direction of the current has no effect on the behavior of the resistor. We can
understand this by realizing that collisions between electrons and the fixed atoms
of the resistor result in an increase in the temperature of the resistor. Although
this temperature increase depends on the magnitude of the current, it is indepen-
dent of the direction of the current.

We can make this discussion quantitative by recalling that the rate at which
electrical energy is converted to internal energy in a resistor is the power 
where i is the instantaneous current in the resistor. Because this rate is propor-
tional to the square of the current, it makes no difference whether the current is
direct or alternating—that is, whether the sign associated with the current is posi-
tive or negative. However, the temperature increase produced by an alternating

! # i 2R,

"vR # ImaxR sin !t

Imax #
"Vmax

R

iR #
"vR

R
#

"Vmax

R
 sin !t # Imax sin !t

"v # "vR # "Vmax sin !t

"v % "vR # 0,

1 The lowercase symbols v and i are used to indicate the instantaneous values of the voltage and the
current.

Maximum current in a resistor

The current in a resistor is in
phase with the voltage 

Figure 33.1 A circuit consisting
of a resistor of resistance R con-
nected to an ac generator, 
designated by the symbol

.

R

∆vR

∆v = ∆Vmax sin    tω
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current having a maximum value Imax is not the same as that produced by a direct
current equal to Imax . This is because the alternating current is at this maximum
value for only an instant during each cycle (Fig. 33.3a). What is of importance in
an ac circuit is an average value of current, referred to as the rms current. As we
learned in Section 21.1, the notation rms stands for root mean square, which in this
case means the square root of the mean (average) value of the square of the cur-
rent: Because i 2 varies as sin2!t and because the average value of i 2 is

(see Fig. 33.3b), the rms current is2

(33.4)

This equation states that an alternating current whose maximum value is 2.00 A
delivers to a resistor the same power as a direct current that has a value of (0.707)
(2.00 A) # 1.41 A. Thus, we can say that the average power delivered to a resistor
that carries an alternating current is

!av # I 2
rmsR

I rms #
Imax

√2
# 0.707Imax

1
2 I 2

max

I rms # √i 2.

2 That the square root of the average value of i2 is equal to can be shown as follows: The cur-
rent in the circuit varies with time according to the expression sin!t, so 

sin2!t. Therefore, we can find the average value of i2 by calculating the average value of sin2!t. A
graph of cos2!t versus time is identical to a graph of sin2!t versus time, except that the points are
shifted on the time axis. Thus, the time average of sin2!t is equal to the time average of cos2!t when
taken over one or more complete cycles. That is,

(sin2!t)av # (cos2!t)av

Using this fact and the trigonometric identity sin2 & ' cos2 & # 1, we obtain

When we substitute this result in the expression we obtain 
or The factor is valid only for sinusoidally varying currents. Other wave-

forms, such as sawtooth variations, have different factors.
1/√2I rms # Imax/√2.I 2

max/2,
(i 2 )av # i 2 # I 2

rms #i 2 # I 2
max sin2 !t,

(sin2 !t)av # 1
2 

(sin2 !t)av ' (cos2 !t)av # 2(sin2 !t)av # 1

I 2
max

i 2 #i # Imax

Imax/√2

rms current

Average power delivered to a
resistor

a

b

c

iR , ∆vR

iR

∆vR

t

Imax

∆Vmax

T

(a) (b)

iR

iR
∆vR

Imax

∆Vmax

tω

, ∆vR

Figure 33.2 (a) Plots of the instantaneous current iR and instantaneous voltage "vR across a re-
sistor as functions of time. The current is in phase with the voltage, which means that the current
is zero when the voltage is zero, maximum when the voltage is maximum, and minimum when
the voltage is minimum. At time t # T, one cycle of the time-varying voltage and current has been
completed. (b) Phasor diagram for the resistive circuit showing that the current is in phase with
the voltage.
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Alternating voltage also is best discussed in terms of rms voltage, and the rela-
tionship is identical to that for current:

(33.5)

When we speak of measuring a 120-V alternating voltage from an electrical
outlet, we are referring to an rms voltage of 120 V. A quick calculation using Equa-
tion 33.5 shows that such an alternating voltage has a maximum value of about 
170 V. One reason we use rms values when discussing alternating currents and
voltages in this chapter is that ac ammeters and voltmeters are designed to read
rms values. Furthermore, with rms values, many of the equations we use have the
same form as their direct-current counterparts.

Which of the following statements might be true for a resistor connected to an ac genera-
tor? (a) and (b) and (c) and (d) 
and i av ( 0.

!av ( 0iav # 0;!av ( 0i av ( 0;!av # 0iav # 0;!av # 0

Quick Quiz 33.1

"Vrms #
"Vmax

√2
# 0.707 "Vmax

What Is the rms Current?EXAMPLE 33.1
Therefore,

Exercise Find the maximum current in the circuit.

Answer 2.00 A.

1.41 AI rms #
"Vrms

R
#

141 V
100 )

#

The voltage output of a generator is given by 
Find the rms current in the circuit when this

generator is connected to a 100-) resistor.

Solution Comparing this expression for voltage output
with the general form we see that

Thus, the rms voltage is

"Vrms #
"Vmax

√2
#

200 V

√2
# 141 V

"Vmax # 200 V.
"v # "Vmax sin !t,

(200 V)sin !t.
"v #

rms voltage

Imax

I 2

i2

I 21
2

t

t

(a)

(b)

i

=i2

max

max

Figure 33.3 (a) Graph of the current in a resistor as a function of time. (b) Graph of the cur-
rent squared in a resistor as a function of time. Notice that the gray shaded regions under the
curve and above the dashed line for have the same area as the gray shaded regions above
the curve and below the dashed line for Thus, the average value of i 2 is I 2

max/2.I 2
max/2.

I 2
max/2
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INDUCTORS IN AN AC CIRCUIT
Now consider an ac circuit consisting only of an inductor connected to the termi-
nals of an ac generator, as shown in Figure 33.4. If "vL#*L # %L(di/dt) is the
self-induced instantaneous voltage across the inductor (see Eq. 32.1), then Kirch-
hoff’s loop rule applied to this circuit gives or

When we substitute for "v and rearrange, we obtain

(33.6)

Solving this equation for di, we find that

Integrating this expression3 gives the instantaneous current in the inductor as a
function of time:

(33.7)

When we use the trigonometric identity cos we can express
Equation 33.7 as

(33.8)

Comparing this result with Equation 33.6, we see that the instantaneous current iL
in the inductor and the instantaneous voltage "vL across the inductor are out of
phase by ($/2) rad # 90°.

In general, inductors in an ac circuit produce a current that is out of phase
with the ac voltage. A plot of voltage and current versus time is provided in Figure
33.5a. At point a, the current begins to increase in the positive direction. At this in-
stant the rate of change of current is at a maximum, and thus the voltage across
the inductor is also at a maximum. As the current increases between points a and
b, di/dt (the slope of the current curve) gradually decreases until it reaches zero at
point b. As a result, the voltage across the inductor is decreasing during this same
time interval, as the curve segment between c and d indicates. Immediately after
point b, the current begins to decrease, although it still has the same direction it
had during the previous quarter cycle (from a to b). As the current decreases to
zero (from b to e), a voltage is again induced in the inductor (d to f ), but the po-
larity of this voltage is opposite that of the voltage induced between c and d (be-
cause back emfs are always directed to oppose the change in the current). Note
that the voltage reaches its maximum value one quarter of a period before the cur-
rent reaches its maximum value. Thus, we see that

iL #
"Vmax

!L
 sin!!t %

$

2 "

!t # %sin(!t % $/2),

iL #
"Vmax

L
 #sin !t dt # %

"Vmax

!L
 cos !t

di #
"Vmax

L
 sin !t dt

L 
di
dt

# "Vmax sin !t

"Vmax sin !t

"v % L 
di
dt

# 0

"v ' "vL # 0,

33.3

3 We neglect the constant of integration here because it depends on the initial conditions, which are
not important for this situation.

L

∆vL

∆v = ∆Vmax sin    tω

(a)

b

c

d
t

Imax

∆Vmax

a

f

∆vL

iL

∆vL , iL

e

(b)

iL

∆vL

Imax

∆Vmax
tω

T

Figure 33.4 A circuit consisting
of an inductor of inductance L
connected to an ac generator.

Figure 33.5 (a) Plots of the in-
stantaneous current iL and instanta-
neous voltage "vL across an induc-
tor as functions of time. The cur-
rent lags behind the voltage by 90°.
(b) Phasor diagram for the induc-
tive circuit, showing that the cur-
rent lags behind the voltage by 90°.

for a sinusoidal applied voltage, the current in an inductor always lags behind
the voltage across the inductor by 90° (one-quarter cycle in time).

The current in an inductor lags
the voltage by 90°
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The phasor diagram for the inductive circuit of Figure 33.4 is shown in Figure 33.5b.
From Equation 33.7 we see that the current in an inductive circuit reaches its

maximum value when cos !t # %1:

(33.9)

where the quantity XL , called the inductive reactance, is

(33.10)

Equation 33.9 indicates that, for a given applied voltage, the maximum current de-
creases as the inductive reactance increases. The expression for the rms current in
an inductor is similar to Equation 33.9, with Imax replaced by I rms and "Vmax re-
placed by "Vrms .

Inductive reactance, like resistance, has units of ohms. However, unlike resis-
tance, reactance depends on frequency as well as on the characteristics of the in-
ductor. Note that the reactance of an inductor in an ac circuit increases as the fre-
quency of the current increases. This is because at higher frequencies, the
instantaneous current must change more rapidly than it does at the lower frequen-
cies; this causes an increase in the maximum induced emf associated with a given
maximum current.

Using Equations 33.6 and 33.9, we find that the instantaneous voltage across
the inductor is

(33.11)"vL # %L 
di
dt

# %"Vmax sin !t # %ImaxXL sin !t

XL # !L

Imax #
"Vmax

!L
#

"Vmax

XL

CONCEPTUAL EXAMPLE 33.2
voltage across it, the lightbulb glows more dimly. In theatrical
productions of the early 20th century, this method was used
to dim the lights in the theater gradually.

Figure 33.6 shows a circuit consisting of a series combination
of an alternating voltage source, a switch, an inductor, and a
lightbulb. The switch is thrown closed, and the circuit is al-
lowed to come to equilibrium so that the lightbulb glows
steadily. An iron rod is then inserted into the interior of the
inductor. What happens to the brightness of the lightbulb,
and why?

Solution The bulb gets dimmer. As the rod is inserted, the
inductance increases because the magnetic field inside the
inductor increases. According to Equation 33.10, this in-
crease in L means that the inductive reactance of the induc-
tor also increases. The voltage across the inductor increases
while the voltage across the lightbulb decreases. With less

Switch

Iron
R

L

Figure 33.6

A Purely Inductive ac CircuitEXAMPLE 33.3

From a modified version of Equation 33.9, the rms current is

15.9 AI rms #
"VL,rms

XL
#

150 V
9.42 )

#

9.42 )XL # !L # 2$fL # 2$(60.0 Hz)(25.0 + 10%3 H) #In a purely inductive ac circuit (see Fig. 33.4), L # 25.0 mH
and the rms voltage is 150 V. Calculate the inductive reac-
tance and rms current in the circuit if the frequency is 
60.0 Hz.

Solution Equation 33.10 gives

Maximum current in an inductor

Inductive reactance



1050 C H A P T E R  3 3 Alternating-Current Circuits

CAPACITORS IN AN AC CIRCUIT
Figure 33.7 shows an ac circuit consisting of a capacitor connected across the ter-
minals of an ac generator. Kirchhoff’s loop rule applied to this circuit gives

or

(33.12)

where "vC is the instantaneous voltage across the capacitor. We know from the def-
inition of capacitance that hence, Equation 33.12 gives

(33.13)

where q is the instantaneous charge on the capacitor. Because differen-
tiating Equation 33.13 gives the instantaneous current in the circuit:

(33.14)

Using the trigonometric identity

we can express Equation 33.14 in the alternative form

(33.15)

Comparing this expression with Equation 33.12, we see that the current is $/2 
rad # 90° out of phase with the voltage across the capacitor. A plot of current and
voltage versus time (Fig. 33.8a) shows that the current reaches its maximum value
one quarter of a cycle sooner than the voltage reaches its maximum value.

Looking more closely, we see that the segment of the current curve from a to b
indicates that the current starts out at a relatively high value. We can understand
this by recognizing that there is no charge on the capacitor at as a conse-
quence, nothing in the circuit except the resistance of the wires can hinder the
flow of charge at this instant. However, the current decreases as the voltage across
the capacitor increases (from c to d on the voltage curve), and the capacitor is
charging. When the voltage is at point d , the current reverses and begins to in-
crease in the opposite direction (from b to e on the current curve). During this
time, the voltage across the capacitor decreases from d to f because the plates are
now losing the charge they accumulated earlier. During the second half of the cy-
cle, the current is initially at its maximum value in the opposite direction (point e)
and then decreases as the voltage across the capacitor builds up. The phasor dia-
gram in Figure 33.8b also shows that

t # 0;

iC # !C "Vmax sin!!t '
$

2 "

cos !t # sin!!t '
$

2 "

iC #
dq
dt

# !C "Vmax cos !t

i # dq/dt ,

q # C "Vmax sin !t

C # q/"vC ;

"v # "vC # "Vmax sin !t

"v % "vC # 0,

33.4

Exercise Calculate the inductive reactance and rms current
in the circuit if the frequency is 6.00 kHz.

Answer 942 ), 0.159 A.

Exercise Show that inductive reactance has SI units of
ohms.

for a sinusoidally applied voltage, the current in a capacitor always leads the
voltage across the capacitor by 90°.

C

∆vC

∆v = ∆Vmax sin    tω

Figure 33.7 A circuit consisting
of a capacitor of capacitance C con-
nected to an ac generator.

(a)

a

d

f
bc

e

iC

t

∆vC , iC

Imax

∆Vmax ∆vC

T

(b)

∆vC

∆Vmax

iCImax

ωtω

Figure 33.8 (a) Plots of the in-
stantaneous current iC and instan-
taneous voltage "vC across a capac-
itor as functions of time. The
voltage lags behind the current by
90°. (b) Phasor diagram for the ca-
pacitive circuit, showing that the
current leads the voltage by 90°.
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From Equation 33.14, we see that the current in the circuit reaches its maxi-
mum value when cos 

(33.16)

where XC is called the capacitive reactance:

(33.17)

Note that capacitive reactance also has units of ohms.
The rms current is given by an expression similar to Equation 33.16, with Imax

replaced by I rms and replaced by "Vrms .
Combining Equations 33.12 and 33.16, we can express the instantaneous volt-

age across the capacitor as

(33.18)

Equations 33.16 and 33.17 indicate that as the frequency of the voltage source in-
creases, the capacitive reactance decreases and therefore the maximum current in-
creases. Again, note that the frequency of the current is determined by the fre-
quency of the voltage source driving the circuit. As the frequency approaches zero,
the capacitive reactance approaches infinity, and hence the current approaches
zero. This makes sense because the circuit approaches direct-current conditions as
! approaches 0.

"vC # "Vmax sin !t # ImaxXC sin !t

"Vmax

XC #
1

!C

Imax # !C "Vmax #
"Vmax

XC

!t # 1:

Capacitive reactance

A Purely Capacitive ac CircuitEXAMPLE 33.4
Hence, from a modified Equation 33.16, the rms current is

Exercise If the frequency is doubled, what happens to the
capacitive reactance and the current?

Answer XC is halved, and Imax is doubled.

0.452 AI rms #
"Vrms

XC
#

150 V
332 )

#

An 8.00-,F capacitor is connected to the terminals of a 
60.0-Hz ac generator whose rms voltage is 150 V. Find the ca-
pacitive reactance and the rms current in the circuit.

Solution Using Equation 33.17 and the fact that 
s%1 gives

332 )XC #
1

!C
#

1
(377 s%1)(8.00 + 10%6 F)

#

2$f # 377
! #

THE RLC SERIES CIRCUIT
Figure 33.9a shows a circuit that contains a resistor, an inductor, and a capacitor
connected in series across an alternating-voltage source. As before, we assume that
the applied voltage varies sinusoidally with time. It is convenient to assume that
the instantaneous applied voltage is given by

while the current varies as

where - is the phase angle between the current and the applied voltage. Our aim

i # Imax sin(!t % - )

"v # "Vmax sin !t

33.5

13.7

Phase angle -
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is to determine - and Imax . Figure 33.9b shows the voltage versus time across each
element in the circuit and their phase relationships.

To solve this problem, we must analyze the phasor diagram for this circuit.
First, we note that because the elements are in series, the current everywhere in
the circuit must be the same at any instant. That is, the current at all points in a
series ac circuit has the same amplitude and phase. Therefore, as we found in
the preceding sections, the voltage across each element has a different amplitude
and phase, as summarized in Figure 33.10. In particular, the voltage across the re-
sistor is in phase with the current, the voltage across the inductor leads the current
by 90°, and the voltage across the capacitor lags behind the current by 90°. Using
these phase relationships, we can express the instantaneous voltages across the
three elements as

(33.19)

(33.20)

(33.21)

where "VR , "VL , and "VC are the maximum voltage values across the elements:

At this point, we could proceed by noting that the instantaneous voltage "v
across the three elements equals the sum

For the circuit of Figure 33.9a, is the voltage of the ac source equal to (a) the sum of the
maximum voltages across the elements, (b) the sum of the instantaneous voltages across
the elements, or (c) the sum of the rms voltages across the elements?

Although this analytical approach is correct, it is simpler to obtain the sum by ex-
amining the phasor diagram. Because the current at any instant is the same in all

Quick Quiz 33.2

"v # "vR ' "vL ' "vC

"VR # ImaxR  "VL # Imax XL  "VC # ImaxXC

"vC # Imax XC  sin!!t %
$

2 " # %"VC cos !t 

 "vL # Imax XL sin!!t '
$

2 " # "VL cos !t 

"vR # ImaxR sin !t # "VR sin !t 

(b)

∆vR

∆vL

∆vC

t

t

t

∆vR

R L C

∆vL ∆vC

(a)

90°

90°

ωωω

∆VR Imax Imax Imax

∆VL

∆VC

(a) Resistor (b) Inductor (c) Capacitor

Figure 33.9 (a) A series circuit
consisting of a resistor, an inductor,
and a capacitor connected to an ac
generator. (b) Phase relationships
for instantaneous voltages in the se-
ries RLC circuit.

Figure 33.10 Phase relationships between the voltage and current phasors for (a) a resistor,
(b) an inductor, and (c) a capacitor connected in series.
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elements, we can obtain a phasor diagram for the circuit. We combine the three
phasor pairs shown in Figure 33.10 to obtain Figure 33.11a, in which a single pha-
sor Imax is used to represent the current in each element. To obtain the vector sum
of the three voltage phasors in Figure 33.11a, we redraw the phasor diagram as in
Figure 33.11b. From this diagram, we see that the vector sum of the voltage ampli-
tudes "VR , "VL , and "VC equals a phasor whose length is the maximum applied
voltage where the phasor makes an angle - with the current phasor
Imax . Note that the voltage phasors "VL and "VC are in opposite directions along
the same line, and hence we can construct the difference phasor 
which is perpendicular to the phasor "VR . From either one of the right triangles
in Figure 33.11b, we see that

(33.22)

Therefore, we can express the maximum current as

The impedance Z of the circuit is defined as

(33.23)

where impedance also has units of ohms. Therefore, we can write Equation 33.22
in the form

(33.24)

We can regard Equation 33.24 as the ac equivalent of Equation 27.8, which de-
fined resistance in a dc circuit as the ratio of the voltage across a conductor to the
current in that conductor. Note that the impedance and therefore the current in
an ac circuit depend upon the resistance, the inductance, the capacitance, and the
frequency (because the reactances are frequency-dependent).

By removing the common factor Imax from each phasor in Figure 33.11a, we
can construct the impedance triangle shown in Figure 33.12. From this phasor dia-
gram we find that the phase angle - between the current and the voltage is

(33.25)

Also, from Figure 33.12, we see that . When (which occurs
at high frequencies), the phase angle is positive, signifying that the current lags
behind the applied voltage, as in Figure 33.11a. When the phase angle
is negative, signifying that the current leads the applied voltage. When 
the phase angle is zero. In this case, the impedance equals the resistance and 
the current has its maximum value, given by The frequency at which
this occurs is called the resonance frequency; it is described further in 
Section 33.7.

Table 33.1 gives impedance values and phase angles for various series circuits
containing different combinations of elements.

"Vmax /R.

XL # XC ,
XL . XC ,

XL ( XCcos - # R /Z

- # tan%1! XL % XC

R "

"Vmax # ImaxZ

Z $ √R2 ' (XL % XC)2

Imax #
"Vmax

√R2 ' (XL % XC)2

"Vmax # Imax √R2 ' (XL % XC)2

"Vmax # √"VR 

2 ' ("VL % "VC)2 # √(ImaxR)2 ' (ImaxXL % ImaxXC)2

"VL % "VC ,

"Vmax"Vmax ,

(a)

ω
∆VRImax

φ

∆VL

∆VC

∆Vmax

(b)

∆Vmax

φ

∆VL – ∆VC

∆VR

Figure 33.11 (a) Phasor diagram
for the series RLC circuit shown in
Figure 33.9a. The phasor "VR is in
phase with the current phasor Imax ,
the phasor "VL leads Imax by 90°,
and the phasor "VC lags Imax by
90°. The total voltage makes
an angle - with Imax . (b) Simpli-
fied version of the phasor diagram
shown in (a).

"Vmax

φ

XL – XC

Z

R

Figure 33.12 An impedance tri-
angle for a series RLC circuit gives
the relationship 
Z # √R 2 ' (XL % XC )2.



1054 C H A P T E R  3 3 Alternating-Current Circuits

Label each part of Figure 33.13 as being or XL . XC .XL # XC ,XL ( XC ,

Quick Quiz 33.3

Finding L from a Phasor DiagramEXAMPLE 33.5
circuit contains an inductor whose inductance can be varied,
a 200-) resistor, and a 4.00-,F capacitor. What value of L

In a series RLC circuit, the applied voltage has a maximum
value of 120 V and oscillates at a frequency of 60.0 Hz. The

TABLE 33.1 Impedance Values and Phase Angles for Various
Circuit-Element Combinationsa

Circuit Elements Impedance Z Phase Angle !

R 0°

XC % 90°

XL ' 90°

Negative, between % 90° and 0°

Positive, between 0° and 90°

Negative if 
Positive if 

a In each case, an ac voltage (not shown) is applied across the elements.

XC . XL

XC ( XL√R2 ' (XL % XC)2

√R2 ' XL 

2

√R2 ' XC 

2

(a)

∆v, i

t

(b)

∆v, i

t

(c)

∆v, i

t

Imax

∆Vmax

Imax

Imax

∆Vmax

∆Vmax

Figure 33.13

R

C

L

CR

R

R CL

L
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Analyzing a Series RLC CircuitEXAMPLE 33.6
(d) Find both the maximum voltage and the instanta-

neous voltage across each element.

Solution The maximum voltages are

Using Equations 33.19, 33.20, and 33.21, we find that we can
write the instantaneous voltages across the three elements as

Comments The sum of the maximum voltages across the
elements is Note that this sum is
much greater than the maximum voltage of the generator,
150 V. As we saw in Quick Quiz 33.2, the sum of the maxi-
mum voltages is a meaningless quantity because when sinu-
soidally varying quantities are added, both their amplitudes and
their phases must be taken into account. We know that the

"VR ' "VL ' "VC # 483 V.

(%221 V) cos 377t"vC #

(138 V) cos 377t"vL #

(124 V) sin 377t"vR #

221 V"VC # ImaxXC # (0.292 A)(758 )) #

138 V"VL # ImaxXL # (0.292 A)(471 )) #

124 V"VR # ImaxR # (0.292 A)(425 )) #

A series RLC ac circuit has ), H, 
,F, s%1, and V. (a) Determine the

inductive reactance, the capacitive reactance, and the imped-
ance of the circuit.

Solution The reactances are and 

The impedance is

(b) Find the maximum current in the circuit.

Solution

(c) Find the phase angle between the current and voltage.

Solution

Because the circuit is more capacitive than inductive, - is
negative and the current leads the applied voltage.

%34.0/#

- # tan%1! XL % XC

R " # tan%1! 471 ) % 758 )
425 ) "

0.292 AImax #
Vmax

Z
#

150 V
513 )

#

513 ) # √(425 ))2 ' (471 ) % 758 ))2 #

Z # √R2 ' (XL % XC)2 

758 ).XC # 1/!C #

471 )XL # !L #

"Vmax #  150! # 3773.50
C #L # 1.25R # 425

should an engineer analyzing the circuit choose such that the
voltage across the capacitor lags the applied voltage by 30.0°?

Solution The phase relationships for the drops in voltage
across the elements are shown in Figure 33.14. From the fig-
ure we see that the phase angle is This is because
the phasors representing Imax and "VR are in the same direc-
tion (they are in phase). From Equation 33.25, we find that

Substituting Equations 33.10 and 33.17 (with ! # 2$f ) into
this expression gives

Substituting the given values into the equation gives L #

0.84 H.

 L #
1

2$f % 1
2$fC

' R tan -&

2$fL #
1

2$fC
' R tan - 

XL # XC ' R tan -

- # %60.0/.

30.0°

φ

∆VL

∆VR

∆Vmax

∆VC

Figure 33.14
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POWER IN AN AC CIRCUIT
No power losses are associated with pure capacitors and pure inductors in
an ac circuit. To see why this is true, let us first analyze the power in an ac circuit
containing only a generator and a capacitor.

When the current begins to increase in one direction in an ac circuit, charge
begins to accumulate on the capacitor, and a voltage drop appears across it. When
this voltage drop reaches its maximum value, the energy stored in the capacitor is

However, this energy storage is only momentary. The capacitor is
charged and discharged twice during each cycle: Charge is delivered to the capacitor
during two quarters of the cycle and is returned to the voltage source during the re-
maining two quarters. Therefore, the average power supplied by the source is
zero. In other words, no power losses occur in a capacitor in an ac circuit.

Similarly, the voltage source must do work against the back emf of the induc-
tor. When the current reaches its maximum value, the energy stored in the induc-
tor is a maximum and is given by When the current begins to decrease in
the circuit, this stored energy is returned to the source as the inductor attempts to
maintain the current in the circuit.

In Example 28.1 we found that the power delivered by a battery to a dc circuit
is equal to the product of the current and the emf of the battery. Likewise, the in-
stantaneous power delivered by an ac generator to a circuit is the product of the
generator current and the applied voltage. For the RLC circuit shown in Figure
33.9a, we can express the instantaneous power as

(33.26)

Clearly, this result is a complicated function of time and therefore is not very use-
ful from a practical viewpoint. What is generally of interest is the average power
over one or more cycles. Such an average can be computed by first using the
trigonometric identity sin(!t % -) # sin !t cos - % cos !t sin -. Substituting this
into Equation 33.26 gives

(33.27)

We now take the time average of over one or more cycles, noting that Imax ,
"Vmax , -, and ! are all constants. The time average of the first term on the right
in Equation 33.27 involves the average value of sin2 !t, which is (as shown in
footnote 2). The time average of the second term on the right is identically zero
because sin !t cos !t sin 2!t , and the average value of sin 2!t is zero. There-
fore, we can express the average power as

(33.28)

It is convenient to express the average power in terms of the rms current and
rms voltage defined by Equations 33.4 and 33.5:

(33.29)!av # I rms "Vrms cos -

!av # 1
2 Imax "Vmax cos -

!av

# 1
2

1
2

!

! # Imax "Vmax sin2 !t cos - % Imax "Vmax sin !t cos !t sin -

 # Imax "Vmax sin !t sin(!t % -)

! # i "v # Imax sin(!t % -)"Vmax sin !t

!

1
2 LI 2

max .

1
2 C("Vmax)2.

33.6

maximum voltages across the various elements occur at dif-
ferent times. That is, the voltages must be added in a way that
takes account of the different phases. When this is done,
Equation 33.22 is satisfied. You should verify this result.

Exercise Construct a phasor diagram to scale, showing the
voltages across the elements and the applied voltage. From
your diagram, verify that the phase angle is % 34.0°.
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where the quantity cos - is called the power factor. By inspecting Figure 33.11b,
we see that the maximum voltage drop across the resistor is given by 

Using Equation 33.5 and the fact that cos
we find that we can express as

After making the substitution from Equation 33.4, we have

(33.30)

In words, the average power delivered by the generator is converted to inter-
nal energy in the resistor, just as in the case of a dc circuit. No power loss oc-
curs in an ideal inductor or capacitor. When the load is purely resistive, then 
- # 0, cos - # 1, and from Equation 33.29 we see that

Equation 33.29 shows that the power delivered by an ac source to any circuit
depends on the phase, and this result has many interesting applications. For exam-
ple, a factory that uses large motors in machines, generators, or transformers has a
large inductive load (because of all the windings). To deliver greater power to
such devices in the factory without using excessively high voltages, technicians in-
troduce capacitance in the circuits to shift the phase.

!av # I rms "Vrms

!av # I 2
rmsR

Imax # √2I rms

!av # I rms "Vrms cos - # I rms! "Vmax

√2
" 

ImaxR

"Vmax

# I rms 
ImaxR

√2

!av

- # ImaxR /"Vmax ,"Vmax cos - # ImaxR .
"VR #

Average Power in an RLC Series CircuitEXAMPLE 33.7
Because the power factor, cos -, is 0.829; hence,
the average power delivered is

We can obtain the same result using Equation 33.30.

18.1 W#

!av # I rms "Vrms cos - # (0.206 A)(106 V)(0.829)

- # %34.0/,Calculate the average power delivered to the series RLC cir-
cuit described in Example 33.6.

Solution First, let us calculate the rms voltage and rms cur-
rent, using the values of "Vmax and Imax from Example 33.6:

 I rms #
Imax

√2
#

0.292 A

√2
# 0.206 A

"Vrms #
"Vmax

√2
#

150 V

√2
# 106 V 

RESONANCE IN A SERIES RLC CIRCUIT
A series RLC circuit is said to be in resonance when the current has its maximum
value. In general, the rms current can be written

(33.31)

where Z is the impedance. Substituting the expression for Z from Equation 33.23
into 33.31 gives

(33.32)I rms #
"Vrms

√R2 ' (XL % XC)2

I rms #
"Vrms

Z

33.7

Average power delivered to an
RLC circuit

13.7
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Because the impedance depends on the frequency of the source, the current in
the RLC circuit also depends on the frequency. The frequency !0 at which

is called the resonance frequency of the circuit. To find !0 , we use
the condition from which we obtain , or

(33.33)

Note that this frequency also corresponds to the natural frequency of oscillation of
an LC circuit (see Section 32.5). Therefore, the current in a series RLC circuit
reaches its maximum value when the frequency of the applied voltage matches the
natural oscillator frequency—which depends only on L and C. Furthermore, at
this frequency the current is in phase with the applied voltage.

What is the impedance of a series RLC circuit at resonance? What is the current in the cir-
cuit at resonance?

A plot of rms current versus frequency for a series RLC circuit is shown in Fig-
ure 33.15a. The data assume a constant that ,H, and
that The three curves correspond to three values of R . Note that in
each case the current reaches its maximum value at the resonance frequency !0 .
Furthermore, the curves become narrower and taller as the resistance decreases.

By inspecting Equation 33.32, we must conclude that, when the current
becomes infinite at resonance. Although the equation predicts this, real circuits al-
ways have some resistance, which limits the value of the current.

R # 0,

C # 2.0 nF.
L # 5.0"Vrms # 5.0 mV,

Quick Quiz 33.4

!0 #
1

√LC

!0L # 1/!0CXL # XC ,
XL % XC # 0

Resonance frequency

1.4

1.2

1.0

0.8

0.6

0.4

0.2

9 10 11 12

7

6

5

4

3

2

1

9 10 11 128

R = 3.5 Ω

R = 5 Ω

R = 10 Ω

R = 3.5 Ω

R = 10 Ω

L      = 5.0   H
C      = 2.0 nF
∆Vrms = 5.0 mV
  0    =  1.0 × 107 rad/s

L      = 5.0 µH
C      = 2.0 nF
∆Vrms = 5.0 mV
ω 0    =  1.0 × 107 rad/s

 (Mrad/s)

I rms (mA) µ µ

ω

av (µW)µ!

∆ω

0ω

(Mrad/s)ω

ω

ω

ω0

(a) (b)

Figure 33.15 (a) The rms current versus frequency for a series RLC circuit, for three values of
R . The current reaches its maximum value at the resonance frequency !0 . (b) Average power
versus frequency for the series RLC circuit, for two values of R .
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It is also interesting to calculate the average power as a function of frequency
for a series RLC circuit. Using Equations 33.30, 33.31, and 33.23, we find that

(33.34)

Because and we can express the term
as

Using this result in Equation 33.34 gives

(33.35)

This expression shows that at resonance, when the average power is a
maximum and has the value ("Vrms)2/R . Figure 33.15b is a plot of average power
versus frequency for two values of R in a series RLC circuit. As the resistance is
made smaller, the curve becomes sharper in the vicinity of the resonance fre-
quency. This curve sharpness is usually described by a dimensionless parameter
known as the quality factor, denoted by Q:4

Q

where "! is the width of the curve measured between the two values of ! for
which has half its maximum value, called the half-power points (see Fig. 33.15b.)
It is left as a problem (Problem 70) to show that the width at the half-power points
has the value so

Q (33.36)

The curves plotted in Figure 33.16 show that a high-Q circuit responds to only
a very narrow range of frequencies, whereas a low-Q circuit can detect a much
broader range of frequencies. Typical values of Q in electronic circuits range from
10 to 100.

The receiving circuit of a radio is an important application of a resonant cir-
cuit. One tunes the radio to a particular station (which transmits a specific electro-
magnetic wave or signal) by varying a capacitor, which changes the resonant fre-
quency of the receiving circuit. When the resonance frequency of the circuit
matches that of the incoming electromagnetic wave, the current in the receiving
circuit increases. This signal caused by the incoming wave is then amplified and
fed to a speaker. Because many signals are often present over a range of frequen-
cies, it is important to design a high-Q circuit to eliminate unwanted signals. In
this manner, stations whose frequencies are near but not equal to the resonance
frequency give signals at the receiver that are negligibly small relative to the signal
that matches the resonance frequency.

#
!0L
R

"! # R/L ,

!av

#
!0

"!

! # !0 ,

!av #
("Vrms)2 R!2

R2!2 ' L2(!2 % !0 

2)2

(XL % XC)2 # !!L %
1

!C "2
#

L2

!2  (!2 % !0 

2)2

(XL % XC)2
!0 

2 # 1/LC,XC # 1/!C,XL # !L,

!av # I 2
rmsR #

("Vrms)2

Z 2  R #
("Vrms)2R

R2 ' (XL % XC)2

4 The quality factor is also defined as the ratio where E is the energy stored in the oscillating
system and "E is the energy lost per cycle of oscillation. The quality factor for a mechanical system can
also be defined, as noted in Section 13.7.

2$E/"E,

Average power as a function of
frequency in an RLC circuit

Quality factor

QuickLab
Tune a radio to your favorite station.
Can you determine what the product
of LC must be for the radio’s tuning
circuitry?

Small R,
high Q

Large R,
low Q

∆ωω

ω0ω
ω

!av

∆ωω

Figure 33.16 Average power ver-
sus frequency for a series RLC cir-
cuit. The width "! of each curve is
measured between the two points
where the power is half its maxi-
mum value. The power is a maxi-
mum at the resonance frequency
!0 .
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An airport metal detector (Fig. 33.17) is essentially a resonant circuit. The portal you step
through is an inductor (a large loop of conducting wire) that is part of the circuit. The fre-
quency of the circuit is tuned to the resonant frequency of the circuit when there is no
metal in the inductor. Any metal on your body increases the effective inductance of the
loop and changes the current in it. If you want the detector to be able to detect a small
metallic object, should the circuit have a high quality factor or a low one?

Quick Quiz 33.5

A Resonating Series RLC CircuitEXAMPLE 33.8

Exercise Calculate the maximum value of the rms current
in the circuit as the frequency is varied.

Answer 0.133 A.

2.00 ,F#

 C #
1

!0 

2L
#

1
(25.0 + 106 s%2)(20.0 + 10%3 H)

Consider a series RLC circuit for which ), 
mH, , and s%1. Determine the

value of the capacitance for which the current is a maximum.

Solution The current has its maximum value at the reso-
nance frequency !0 , which should be made to match the
“driving” frequency of 5 000 s%1:

!0 # 5.00 + 103 s%1 #
1

√LC
 

! # 5 000"Vrms # 20.0 V20.0
L #R # 150

Signal

C

Circuit
A

Circuit
B

Figure 33.17 When you pass through a
metal detector, you become part of a reso-
nant circuit. As you step through the detec-
tor, the inductance of the circuit changes,
and thus the current in the circuit changes.
(Terry Qing/FPG International)

THE TRANSFORMER AND POWER TRANSMISSION
When electric power is transmitted over great distances, it is economical to use a
high voltage and a low current to minimize the I 2R loss in the transmission lines.

33.8
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Consequently, 350-kV lines are common, and in many areas even higher-voltage
(765-kV) lines are under construction. At the receiving end of such lines, the con-
sumer requires power at a low voltage (for safety and for efficiency in design).
Therefore, a device is required that can change the alternating voltage and cur-
rent without causing appreciable changes in the power delivered. The ac trans-
former is that device.

In its simplest form, the ac transformer consists of two coils of wire wound
around a core of iron, as illustrated in Figure 33.18. The coil on the left, which is
connected to the input alternating voltage source and has N1 turns, is called the
primary winding (or the primary). The coil on the right, consisting of N 2 turns and
connected to a load resistor R , is called the secondary winding (or the secondary).
The purpose of the iron core is to increase the magnetic flux through the coil
and to provide a medium in which nearly all the flux through one coil passes
through the other coil. Eddy current losses are reduced by using a laminated
core. Iron is used as the core material because it is a soft ferromagnetic substance
and hence reduces hysteresis losses. Transformation of energy to internal energy
in the finite resistance of the coil wires is usually quite small. Typical transformers
have power efficiencies from 90% to 99%. In the discussion that follows, we as-
sume an ideal transformer, one in which the energy losses in the windings and core
are zero.

First, let us consider what happens in the primary circuit when the switch in
the secondary circuit is open. If we assume that the resistance of the primary is
negligible relative to its inductive reactance, then the primary circuit is equivalent
to a simple circuit consisting of an inductor connected to an ac generator. Because
the current is 90° out of phase with the voltage, the power factor cos - is zero, and
hence the average power delivered from the generator to the primary circuit is
zero. Faraday’s law states that the voltage "V1 across the primary is

(33.37)

where 0B is the magnetic flux through each turn. If we assume that all magnetic
field lines remain within the iron core, the flux through each turn of the primary
equals the flux through each turn of the secondary. Hence, the voltage across the
secondary is

(33.38)

Solving Equation 33.37 for d0B /dt and substituting the result into Equation 33.38,
we find that

(33.39)

When the output voltage "V2 exceeds the input voltage "V1 . This setup
is referred to as a step-up transformer. When the output voltage is less than
the input voltage, and we have a step-down transformer.

When the switch in the secondary circuit is thrown closed, a current I2 is in-
duced in the secondary. If the load in the secondary circuit is a pure resistance,
the induced current is in phase with the induced voltage. The power supplied to
the secondary circuit must be provided by the ac generator connected to the pri-
mary circuit, as shown in Figure 33.19. In an ideal transformer, where there are no
losses, the power I1 "V1 supplied by the generator is equal to the power I2 "V2 in

N 2 . N 1 ,
N 2 ( N 1 ,

"V2 #
N 2

N 1
 "V1

"V2 # %N 2 
d0B

dt

"V1 # %N 1 
d0B

dt

Soft iron
S

R

Z2
Secondary
(output)

Primary
(input)

∆V1

Z1

N1 N2

Figure 33.18 An ideal trans-
former consists of two coils wound
on the same iron core. An alternat-
ing voltage "V1 is applied to the
primary coil, and the output volt-
age "V2 is across the resistor of re-
sistance R .

N1 N2

∆V1

I1 I2

RL ∆V2

Figure 33.19 Circuit diagram for
a transformer.
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the secondary circuit. That is,

(33.40)

The value of the load resistance RL determines the value of the secondary current
because Furthermore, the current in the primary is 
where

(33.41)

is the equivalent resistance of the load resistance when viewed from the primary
side. From this analysis we see that a transformer may be used to match resistances
between the primary circuit and the load. In this manner, maximum power trans-
fer can be achieved between a given power source and the load resistance. For ex-
ample, a transformer connected between the 1-k) output of an audio amplifier
and an 8-) speaker ensures that as much of the audio signal as possible is trans-
ferred into the speaker. In stereo terminology, this is called impedance matching.

We can now also understand why transformers are useful for transmitting
power over long distances. Because the generator voltage is stepped up, the cur-
rent in the transmission line is reduced, and hence I 2R losses are reduced. In
practice, the voltage is stepped up to around 230 000 V at the generating station,
stepped down to around 20 000 V at a distributing station, then to 4 000 V for de-
livery to residential areas, and finally to 120–240 V at the customer’s site. The
power is supplied by a three-wire cable. In the United States, two of these wires are
“hot,” with voltages of 120 V with respect to a common ground wire. Home appli-
ances operating on 120 V are connected in parallel between one of the hot wires
and ground. Larger appliances, such as electric stoves and clothes dryers, require
240 V. This is obtained across the two hot wires, which are 180° out of phase so
that the voltage difference between them is 240 V.

There is a practical upper limit to the voltages that can be used in transmis-
sion lines. Excessive voltages could ionize the air surrounding the transmission
lines, which could result in a conducting path to ground or to other objects in the
vicinity. This, of course, would present a serious hazard to any living creatures. For
this reason, a long string of insulators is used to keep high-voltage wires away from
their supporting metal towers. Other insulators are used to maintain separation
between wires.

R eq # ! N 1

N 2
"2

R L

I1 # "V1/R eq ,I2 # "V2/R L .

I1 "V1 # I2 "V2

This cylindrical step-down trans-
former drops the voltage from 
4 000 V to 220 V for delivery to a
group of residences. (George Semple)

Figure 33.20 The primary winding in
this transformer is directly attached to the
prongs of the plug. The secondary winding
is connected to the wire on the right, which
runs to an electronic device. Many of these
power-supply transformers also convert al-
ternating current to direct current. (George
Semple)

Nikola Tesla (1856 – 1943) Tesla
was born in Croatia but spent most of
his professional life as an inventor in
the United States. He was a key figure
in the development of alternating-
current electricity, high-voltage trans-
formers, and the transport of electric
power via ac transmission lines.
Tesla’s viewpoint was at odds with
the ideas of Thomas Edison, who
committed himself to the use of direct
current in power transmission. Tesla’s
ac approach won out. (UPI/Bettmann)
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Many common household electronic devices require low voltages to operate
properly. A small transformer that plugs directly into the wall, like the one illus-
trated in the photograph at the beginning of this chapter, can provide the proper
voltage. Figure 33.20 shows the two windings wrapped around a common iron
core that is found inside all these little “black boxes.” This particular transformer
converts the 120-V ac in the wall socket to 12.5-V ac. (Can you determine the ratio
of the numbers of turns in the two coils?) Some black boxes also make use of
diodes to convert the alternating current to direct current (see Section 33.9).

web
For information on how small transformers
and hundreds of other everyday devices
operate, visit
http://www.howstuffworks.com

The Economics of ac PowerEXAMPLE 33.9
(b) Repeat the calculation for the situation in which the

power plant delivers the electricity at its original voltage of 
22 kV.

Solution

The tremendous savings that are possible through the use of
transformers and high-voltage transmission lines, along with
the efficiency of using alternating current to operate motors,
led to the universal adoption of alternating current instead of
direct current for commercial power grids.

$4 100#

Cost per day # (1.7 + 103 kW)(24 h)($0.10/kWh)

! # I 2R # (910 A)2(2.0 )) # 1.7 + 103 kW

 I #
!

"V
#

20 + 106 W
22 + 103 V

# 910 A 

An electricity-generating station needs to deliver 20 MW of
power to a city 1.0 km away. (a) If the resistance of the wires
is 2.0 ) and the electricity costs about 10¢/kWh, estimate
what it costs the utility company to send the power to the city
for one day. A common voltage for commercial power gener-
ators is 22 kV, but a step-up transformer is used to boost the
voltage to 230 kV before transmission.

Solution The power losses in the transmission line are the
result of the resistance of the line. We can determine the loss
from Equation 27.23, Because this is an estimate,
we can use dc equations and calculate I from Equation 27.22:

Therefore,

Over the course of a day, the energy loss due to the resistance 

of the wires is (15 kW)(24 h) # 360 kWh, at a cost of $36.

! # I 2R # (87 A)2(2.0 )) # 15 kW

I #
!

"V
#

20 + 106 W
230 + 103 V

# 87 A

! # I 2R .

Optional Section

RECTIFIERS AND FILTERS
Portable electronic devices such as radios and compact disc (CD) players are often
powered by direct current supplied by batteries. Many devices come with ac–dc
converters that provide a readily available direct-current source if the batteries 
are low. Such a converter contains a transformer that steps the voltage down from
120 V to typically 9 V and a circuit that converts alternating current to direct cur-
rent. The process of converting alternating current to direct current is called rec-
tification, and the converting device is called a rectifier.

The most important element in a rectifier circuit is a diode, a circuit element
that conducts current in one direction but not the other. Most diodes used in
modern electronics are semiconductor devices. The circuit symbol for a diode is

, where the arrow indicates the direction of the current through the
diode. A diode has low resistance to current in one direction (the direction of the
arrow) and high resistance to current in the opposite direction. We can under-
stand how a diode rectifies a current by considering Figure 33.21a, which shows a

33.9
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diode and a resistor connected to the secondary of a transformer. The transformer
reduces the voltage from 120-V ac to the lower voltage that is needed for the de-
vice having a resistance R (the load resistance). Because current can pass through
the diode in only one direction, the alternating current in the load resistor is re-
duced to the form shown by the solid curve in Figure 33.21b. The diode conducts
current only when the side of the symbol containing the arrowhead has a positive
potential relative to the other side. In this situation, the diode acts as a half-wave
rectifier because current is present in the circuit during only half of each cycle.

When a capacitor is added to the circuit, as shown by the dashed lines and the
capacitor symbol in Figure 33.21a, the circuit is a simple dc power supply. The
time variation in the current in the load resistor (the dashed curve in Fig. 33.21b)
is close to being zero, as determined by the RC time constant of the circuit.

The RC circuit in Figure 33.21a is one example of a filter circuit, which is
used to smooth out or eliminate a time-varying signal. For example, radios are usu-
ally powered by a 60-Hz alternating voltage. After rectification, the voltage still
contains a small ac component at 60 Hz (sometimes called ripple), which must be
filtered. By “filtered,” we mean that the 60-Hz ripple must be reduced to a value
much less than that of the audio signal to be amplified, because without filtering,
the resulting audio signal includes an annoying hum at 60 Hz.

To understand how a filter works, let us consider the simple series RC circuit
shown in Figure 33.22a. The input voltage is across the two elements and is repre-
sented by Because we are interested only in maximum values, we can
use Equation 33.24, taking and substituting This shows that
the maximum input voltage is related to the maximum current by

"Vin # ImaxZ # Imax √R2 ' ! 1
!C "2

XC # 1/!C.XL # 0
"Vmax sin !t.

(b)

i

t

(a)

Primary
(input)

Diode

C R

Figure 33.21 (a) A half-wave rectifier with an optional filter capacitor. (b) Current versus time
in the resistor. The solid curve represents the current with no filter capacitor, and the dashed
curve is the current when the circuit includes the capacitor.
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If the voltage across the resistor is considered to be the output voltage, then the
maximum output voltage is

Therefore, the ratio of the output voltage to the input voltage is

(33.42)

A plot of this ratio as a function of angular frequency (see Fig. 33.22b) shows
that at low frequencies "Vout is much smaller than "Vin , whereas at high frequen-
cies the two voltages are equal. Because the circuit preferentially passes signals of
higher frequency while blocking low-frequency signals, the circuit is called an RC
high-pass filter. Physically, a high-pass filter works because a capacitor “blocks out”
direct current and ac current at low frequencies.

Now let us consider the circuit shown in Figure 33.23a, where the output volt-
age is taken across the capacitor. In this case, the maximum voltage equals the volt-
age across the capacitor. Because the impedance across the capacitor is

we have

"Vout # ImaxXC #
Imax

!C

XC # 1/!C,

"Vout

"Vin
#

R

√R2 ' ! 1
!C "2

"Vout # ImaxR

High-pass filter

(a) (b)

∆Vout/∆Vin

ω

1
C

R ∆Vout∆Vin

Figure 33.22 (a) A simple RC high-pass filter. (b) Ratio of output voltage to input voltage for
an RC high-pass filter as a function of the angular frequency of the circuit.

(a) (b)

∆Vout/∆Vin

ω

1
R

C ∆Vout∆Vin

Figure 33.23 (a) A simple RC low-pass filter. (b) Ratio of output voltage to input voltage for an
RC low-pass filter as a function of the angular frequency of the circuit.
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Therefore, the ratio of the output voltage to the input voltage is

(33.43)

This ratio, plotted as a function of ! in Figure 33.23b, shows that in this case the
circuit preferentially passes signals of low frequency. Hence, the circuit is called an
RC low-pass filter.

You may be familiar with crossover networks, which are an important part of
the speaker systems for high-fidelity audio systems. These networks utilize low-pass
filters to direct low frequencies to a special type of speaker, the “woofer,” which is
designed to reproduce the low notes accurately. The high frequencies are sent to
the “tweeter” speaker.

Suppose you are designing a high-fidelity system containing both large loudspeakers
(woofers) and small loudspeakers (tweeters). (a) What circuit element would you place in
series with a woofer, which passes low-frequency signals? (b) What circuit element would
you place in series with a tweeter, which passes high-frequency signals?

SUMMARY

If an ac circuit consists of a generator and a resistor, the current is in phase with
the voltage. That is, the current and voltage reach their maximum values at the
same time.

The rms current and rms voltage in an ac circuit in which the voltages and
current vary sinusoidally are given by the expressions

(33.4)

(33.5)

where Imax and "Vmax are the maximum values.
If an ac circuit consists of a generator and an inductor, the current lags behind

the voltage by 90°. That is, the voltage reaches its maximum value one quarter of a
period before the current reaches its maximum value.

If an ac circuit consists of a generator and a capacitor, the current leads the
voltage by 90°. That is, the current reaches its maximum value one quarter of a pe-
riod before the voltage reaches its maximum value.

In ac circuits that contain inductors and capacitors, it is useful to define the
inductive reactance XL and the capacitive reactance XC as

(33.10)

(33.17)

where ! is the angular frequency of the ac generator. The SI unit of reactance is
the ohm.

XC #
1

!C

XL # !L

"Vrms #
"Vmax

√2
# 0.707"Vmax

I rms #
Imax

√2
# 0.707Imax 

Quick Quiz 33.6

"Vout

"Vin
#

1/!C

√R2 ' ! 1
!C "2Low-pass filter
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The impedance Z of an RLC series ac circuit, which also has the ohm as its
unit, is

(33.23)

This expression illustrates that we cannot simply add the resistance and reactances
in a circuit. We must account for the fact that the applied voltage and current are
out of phase, with the phase angle - between the current and voltage being

(33.25)

The sign of - can be positive or negative, depending on whether XL is greater or
less than XC . The phase angle is zero when 

The average power delivered by the generator in an RLC ac circuit is

(33.29)

An equivalent expression for the average power is

(33.30)

The average power delivered by the generator results in increasing internal energy
in the resistor. No power loss occurs in an ideal inductor or capacitor.

The rms current in a series RLC circuit is

(33.32)

A series RLC circuit is in resonance when the inductive reactance equals the
capacitive reactance. When this condition is met, the current given by Equation
33.32 reaches its maximum value. When in a circuit, the resonance fre-
quency !0 of the circuit is

(33.33)

The current in a series RLC circuit reaches its maximum value when the frequency
of the generator equals !0 —that is, when the “driving” frequency matches the res-
onance frequency.

Transformers allow for easy changes in alternating voltage. Because energy
(and therefore power) are conserved, we can write

(33.40)

to relate the currents and voltages in the primary and secondary windings of a
transformer.

I1 "V1 # I2 "V2

!0 #
1

√LC

XL # XC

I rms #
"Vrms

√R2 ' (XL % XC)2

!av # I 2
rmsR

!av # I rms "Vrms cos -

XL # XC .

- # tan%1! XL % XC

R "

Z $ √R2 ' (XL % XC)2

QUESTIONS

4. Why is the sum of the maximum voltages across the ele-
ments in a series RLC circuit usually greater than the
maximum applied voltage? Doesn’t this violate Kirch-
hoff’s second rule?

5. Does the phase angle depend on frequency? What is the
phase angle when the inductive reactance equals the ca-
pacitive reactance?

6. Energy is delivered to a series RLC circuit by a generator.
This energy appears as internal energy in the resistor.
What is the source of this energy?

1. Fluorescent lights flicker on and off 120 times every sec-
ond. Explain what causes this. Why can’t you see it hap-
pening?

2. Why does a capacitor act as a short circuit at high fre-
quencies? Why does it act as an open circuit at low fre-
quencies?

3. Explain how the acronyms in the mnemonic “ELI the ICE
man” can be used to recall whether current leads voltage
or voltage leads current in RLC circuits. (Note that “E”
represents voltage.)
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7. Explain why the average power delivered to an RLC cir-
cuit by the generator depends on the phase between the
current and the applied voltage.

8. A particular experiment requires a beam of light of very
stable intensity. Why would an ac voltage be unsuitable
for powering the light source?

9. Consider a series RLC circuit in which R is an incandes-
cent lamp, C is some fixed capacitor, and L is a variable
inductance. The source is 120-V ac. Explain why the lamp
glows brightly for some values of L and does not glow at
all for other values.

10. What determines the maximum voltage that can be used
on a transmission line?

11. Will a transformer operate if a battery is used for the in-
put voltage across the primary? Explain.

12. How can the average value of a current be zero and yet the
square root of the average squared current not be zero?

13. What is the time average of the “square-wave” voltage
shown in Figure Q33.13? What is its rms voltage?

14. Explain how the quality factor is related to the response
characteristics of a radio receiver. Which variable most
strongly determines the quality factor?

PROBLEMS

Note that an ideal ammeter has zero resistance and that
an ideal voltmeter has infinite resistance.

Note: Assume that all ac voltages and currents are sinusoidal
unless stated otherwise.

Section 33.1 ac Sources and Phasors

Section 33.2 Resistors in an ac Circuit
1. The rms output voltage of an ac generator is 200 V, and

the operating frequency is 100 Hz. Write the equation
giving the output voltage as a function of time.

2. (a) What is the resistance of a lightbulb that uses an av-
erage power of 75.0 W when connected to a 60.0-Hz
power source having a maximum voltage of 170 V? 
(b) What is the resistance of a 100-W bulb?

3. An ac power supply produces a maximum voltage
This power supply is connected to a

24.0-) resistor, and the current and resistor voltage are
measured with an ideal ac ammeter and voltmeter, as
shown in Figure P33.3. What does each meter read?

"Vmax # 100 V.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

0

Vmax

t

∆V

∆

Signal

C
Circuit

A
Circuit

B

Signal

C

Circuit
A

Circuit
B

Figure Q33.13

Figure Q33.16

Figure Q33.17

15. Why are the primary and secondary windings of a trans-
former wrapped on an iron core that passes through both
coils?

16. With reference to Figure Q33.16, explain why the capaci-
tor prevents a dc signal from passing between circuits A
and B, yet allows an ac signal to pass from circuit A to cir-
cuit B. (The circuits are said to be capacitively coupled.)

17. With reference to Figure Q33.17, if C is made sufficiently
large, an ac signal passes from circuit A to ground rather
than from circuit A to circuit B. Hence, the capacitor acts
as a filter. Explain.

A

V

R = 24.0 Ω

∆Vmax = 100 V

Figure P33.3
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4. In the simple ac circuit shown in Figure 33.1, )
and (a) If for the
first time at what is the angular frequency
of the generator? (b) What is the next value of t for
which 

5. The current in the circuit shown in Figure 33.1 equals
60.0% of the peak current at ms. What is the
smallest frequency of the generator that gives this cur-
rent?

6. Figure P33.6 shows three lamps connected to a 120-V ac
(rms) household supply voltage. Lamps 1 and 2 have
150-W bulbs; lamp 3 has a 100-W bulb. Find the rms
current and the resistance of each bulb.

t # 7.00

"vR # 0.250"Vmax?

t # 0.010 0 s,
"vR # 0.250 "Vmax"v # "Vmax sin !t.

R # 70.0 11. For the circuit shown in Figure 33.4, 
! # 65.0$ rad/s, and mH. Calculate the cur-
rent in the inductor at ms.

12. A 20.0-mH inductor is connected to a standard outlet
Determine the energy

stored in the inductor at s, assuming that
this energy is zero at 

13. Review Problem. Determine the maximum magnetic
flux through an inductor connected to a standard out-
let Hz).

Section 33.4 Capacitors in an ac Circuit
14. (a) For what frequencies does a 22.0-,F capacitor have

a reactance below 175 )? (b) Over this same frequency
range, what is the reactance of a 44.0-,F capacitor?

15. What maximum current is delivered by a 2.20-,F capac-
itor when it is connected across (a) a North American
outlet having and Hz? (b) a Eu-
ropean outlet having and Hz?

16. A capacitor C is connected to a power supply that oper-
ates at a frequency f and produces an rms voltage "V.
What is the maximum charge that appears on either of
the capacitor plates?

17. What maximum current is delivered by an ac generator
with and Hz when it is con-
nected across a 3.70-,F capacitor?

18. A 1.00-mF capacitor is connected to a standard outlet
Hz). Determine the current

in the capacitor at s, assuming that at 
the energy stored in the capacitor is zero.

Section 33.5 The RLC Series Circuit
19. An inductor mH), a capacitor ,F),

and a resistor )) are connected in series. 
A 50.0-Hz ac generator produces a peak current of 
250 mA in the circuit. (a) Calculate the required peak
voltage (b) Determine the phase angle by which
the current leads or lags the applied voltage.

20. At what frequency does the inductive reactance of a
57.0-,H inductor equal the capacitive reactance of a
57.0-,F capacitor?

21. A series ac circuit contains the following components:
), mH, ,F, and a generator

with operating at 50.0 Hz. Calculate the
(a) inductive reactance, (b) capacitive reactance, 
(c) impedance, (d) maximum current, and (e) phase
angle between current and generator voltage.

22. A sinusoidal voltage sin(100t) is
applied to a series RLC circuit with mH,

,F, and ). (a) What is the imped-
ance of the circuit? (b) What is the maximum current?
(c) Determine the numerical values for Imax , !, and -
in the equation sin(!t % -).

23. An RLC circuit consists of a 150-) resistor, a 21.0-,F ca-
pacitor, and a 460-mH inductor, connected in series
with a 120-V, 60.0-Hz power supply. (a) What is the

i(t) # Imax

R # 68.0C # 99.0
L # 160

"v(t) # (40.0 V)

"Vmax # 210 V
C # 2.00L # 250R # 150

"Vmax .

(R # 500
(C # 4.43(L # 400

t # 0t # (1/180)
f # 60.0("Vrms # 120 V,

f # 90.0"Vmax # 48.0 V

f # 50.0"Vrms # 240 V
f # 60.0"Vrms # 120 V

f # 60.0("Vrms # 120 V,

t # 0.
t # (1/180)

f # 60.0 Hz).("Vrms # 120 V,

t # 15.5
L # 70.0

"Vmax #  80.0 V,

WEB

WEB

120 V

Lamp
1

Lamp
2

Lamp
3

Speaker

R

Figure P33.6

Figure P33.7

7. An audio amplifier, represented by the ac source and
resistor in Figure P33.7, delivers to the speaker alternat-
ing voltage at audio frequencies. If the source voltage
has an amplitude of 15.0 V, ), and the
speaker is equivalent to a resistance of 10.4 ), what
time-averaged power is transferred to it?

R # 8.20

Section 33.3 Inductors in an ac Circuit
8. An inductor is connected to a 20.0-Hz power supply

that produces a 50.0-V rms voltage. What inductance is
needed to keep the instantaneous current in the circuit
below 80.0 mA?

9. In a purely inductive ac circuit, such as that shown in
Figure 33.4, (a) If the maximum cur-
rent is 7.50 A at 50.0 Hz, what is the inductance L? 
(b) At what angular frequency ! is the maximum cur-
rent 2.50 A?

10. An inductor has a 54.0-) reactance at 60.0 Hz. What is
the maximum current when this inductor is connected
to a 50.0-Hz source that produces a 100-V rms voltage?

"Vmax # 100 V.
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phase angle between the current and the applied volt-
age? (b) Which reaches its maximum earlier, the cur-
rent or the voltage?

24. A person is working near the secondary of a trans-
former, as shown in Figure P33.24. The primary voltage
is 120 V at 60.0 Hz. The capacitance Cs , which is the
stray capacitance between the person’s hand and the
secondary winding, is 20.0 pF. Assuming that the person
has a body resistance to ground k), deter-
mine the rms voltage across the body. (Hint: Redraw the
circuit with the secondary of the transformer as a simple
ac source.)

R b # 50.0

29. An ac voltage of the form sin(1 000t) 
is applied to a series RLC circuit. If ), 

,F, and H, what is the average
power delivered to the circuit?

30. A series RLC circuit has a resistance of 45.0 ) and an
impedance of 75.0 ). What average power is delivered
to this circuit when 

31. In a certain series RLC circuit, 
and the current leads the voltage by

37.0°. (a) What is the total resistance of the circuit? 
(b) What is the reactance of the circuit 

32. Suppose you manage a factory that uses many electric
motors. The motors create a large inductive load to the
electric power line, as well as a resistive load. The elec-
tric company builds an extra-heavy distribution line to
supply you with a component of current that is 90° out
of phase with the voltage, as well as with current in
phase with the voltage. The electric company charges
you an extra fee for “reactive volt-amps” in addition to
the amount you pay for the energy you use. You can
avoid the extra fee by installing a capacitor between the
power line and your factory. The following problem
models this solution.

In an LR circuit, a 120-V (rms), 60.0-Hz source is in
series with a 25.0-mH inductor and a 20.0-) resistor.
What are (a) the rms current and (b) the power factor?
(c) What capacitor must be added in series to make the
power factor 1? (d) To what value can the supply volt-
age be reduced if the power supplied is to be the same
as that provided before installation of the capacitor?

33. Review Problem. Over a distance of 100 km, power of
100 MW is to be transmitted at 50.0 kV with only 
1.00% loss. Copper wire of what diameter should be
used for each of the two conductors of the transmission
line? Assume that the current density in the conductors
is uniform.

34. Review Problem. Suppose power is to be transmitted
over a distance d at a voltage "V, with only 1.00% loss.
Copper wire of what diameter should be used for each of
the two conductors of the transmission line? Assume that
the current density in the conductors is uniform.

35. A diode is a device that allows current to pass in only
one direction (the direction indicated by the arrowhead
in its circuit-diagram symbol). Find, in terms of "V and

!

(XL % XC)?

"Vrms # 180 V,
I rms # 9.00 A,

"Vrms # 210 V?

L # 0.500C # 5.00
R # 400

"v # (100 V)WEB

Figure P33.24

Figure P33.25 Problems 25 and 64.

26. Draw to scale a phasor diagram showing Z , XL , XC , and
- for an ac series circuit for which ), 
11.0 ,F, H, and Hz.

27. A coil of resistance 35.0 ) and inductance 20.5 H is 
in series with a capacitor and a 200-V (rms), 100-Hz
source. The rms current in the circuit is 4.00 A. 
(a) Calculate the capacitance in the circuit. (b) What is

across the coil?

Section 33.6 Power in an ac Circuit
28. The voltage source in Figure P33.28 has an output

at ! # 1 000 rad/s. Determine (a) the
current in the circuit and (b) the power supplied by the
source. (c) Show that the power delivered to the resis-
tor is equal to the power supplied by the source.

"Vrms # 100 V

"Vrms

f # (500/$)L # 0.200
C #R # 300

25. An ac source with and is
connected between points a and d in Figure P33.25.
Calculate the maximum voltages between points 
(a) a and b, (b) b and c, (c) c and d , and (d) b and d.

f # 50.0 Hz"Vmax # 150 V

Rb

Cs

5 000 V

50.0 mH

∆V 40.0 Ω

50.0 µFµ

 µ

a dcb

40.0 Ω 185 mH 65.0    F

Figure P33.28
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Section 33.7 Resonance in a Series RLC Circuit
36. The tuning circuit of an AM radio contains an LC com-

bination. The inductance is 0.200 mH, and the capaci-
tor is variable, so the circuit can resonate at any fre-
quency between 550 kHz and 1 650 kHz. Find the range
of values required for C .

37. An RLC circuit is used in a radio to tune in to an FM
station broadcasting at 99.7 MHz. The resistance in the
circuit is 12.0 ), and the inductance is 1.40 ,H. What
capacitance should be used?

38. A series RLC circuit has the following values: 
20.0 mH, nF, ), and 
with Find (a) the resonant frequency,
(b) the amplitude of the current at the resonant fre-
quency, (c) the Q of the circuit, and (d) the amplitude of
the voltage across the inductor at resonance.

39. A 10.0-) resistor, a 10.0-mH inductor, and a 100-,F ca-
pacitor are connected in series to a 50.0-V (rms) source
having variable frequency. What is the energy delivered
to the circuit during one period if the operating fre-
quency is twice the resonance frequency?

40. A resistor R , an inductor L , and a capacitor C are con-
nected in series to an ac source of rms voltage "V and
variable frequency. What is the energy delivered to the
circuit during one period if the operating frequency is
twice the resonance frequency?

41. Compute the quality factor for the circuits described in
Problems 22 and 23. Which circuit has the sharper reso-
nance?

Section 33.8 The Transformer and Power Transmission
42. A step-down transformer is used for recharging the bat-

teries of portable devices such as tape players. The turns
ratio inside the transformer is 13 :1, and it is used with
120-V (rms) household service. If a particular ideal
transformer draws 0.350 A from the house outlet, what
(a) voltage and (b) current are supplied to a tape
player from the transformer? (c) How much power is
delivered?

"v # "Vmax sin !t.
"Vmax # 100 V,R # 20.0C # 100

L #

43. A transformer has turns and 
turns. If the input voltage is cos !t,
what rms voltage is developed across the secondary coil?

44. A step-up transformer is designed to have an output
voltage of 2 200 V (rms) when the primary is connected
across a 110-V (rms) source. (a) If there are 80 turns on
the primary winding, how many turns are required on
the secondary? (b) If a load resistor across the sec-
ondary draws a current of 1.50 A, what is the current in
the primary under ideal conditions? (c) If the trans-
former actually has an efficiency of 95.0%, what is the
current in the primary when the secondary current is
1.20 A?

45. In the transformer shown in Figure P33.45, the load re-
sistor is 50.0 ). The turns ratio is 5 :2, and the
source voltage is 80.0 V (rms). If a voltmeter across the
load measures 25.0 V (rms), what is the source resis-
tance Rs ?

N 1 :N 2

"v(t) # (170 V)
N 2 # 2 000N 1 # 350

WEB

46. The secondary voltage of an ignition transformer in a
furnace is 10.0 kV. When the primary operates at an rms
voltage of 120 V, the primary impedance is 24.0 ) and
the transformer is 90.0% efficient. (a) What turns ratio
is required? What are (b) the current in the secondary
and (c) the impedance in the secondary?

47. A transmission line that has a resistance per unit length
of 4.50 + 10%4 )/m is to be used to transmit 5.00 MW
over 400 mi (6.44 + 105 m). The output voltage of the
generator is 4.50 kV. (a) What is the power loss if a
transformer is used to step up the voltage to 500 kV?
(b) What fraction of the input power is lost to the line
under these circumstances? (c) What difficulties would
be encountered on attempting to transmit the 5.00 MW
at the generator voltage of 4.50 kV?

(Optional)
Section 33.9 Rectifiers and Filters

48. The RC low-pass filter shown in Figure 33.23 has a resis-
tance ) and a capacitance nF. Calcu-
late the gain ( for input frequencies of 
(a) 600 Hz and (b) 600 kHz.

49. The RC high-pass filter shown in Figure 33.22 has a re-
sistance ). (a) What capacitance gives an
output signal that has one-half the amplitude of a 300-
Hz input signal? (b) What is the gain for
a 600-Hz signal?

("Vout /"Vin)

R # 0.500

"Vout /"Vin)
C # 8.00R # 90.0

R , the average power delivered to the diode circuit
shown in Figure P33.35.

N2N1 RL∆Vs

Rs

R

R R

2R

∆V

Diode

Diode

Figure P33.35

Figure P33.45
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50. The circuit in Figure P33.50 represents a high-pass filter
in which the inductor has internal resistance. What is
the source frequency if the output voltage is one-
half the input voltage?

"V2

58. In the circuit shown in Figure P33.58, assume that all
parameters except C are given. (a) Find the current as a
function of time. (b) Find the power delivered to the
circuit. (c) Find the current as a function of time after
only switch 1 is opened. (d) After switch 2 is also
opened, the current and voltage are in phase. Find the
capacitance C . (e) Find the impedance of the circuit
when both switches are open. (f) Find the maximum

55. A series RLC circuit consists of an 8.00-) resistor, a 
5.00-,F capacitor, and a 50.0-mH inductor. A variable
frequency source applies an emf of 400 V (rms) across
the combination. Determine the power delivered to the
circuit when the frequency is equal to one-half the reso-
nance frequency.

56. To determine the inductance of a coil used in a re-
search project, a student first connects the coil to a 
12.0-V battery and measures a current of 0.630 A. 
The student then connects the coil to a 24.0-V (rms),
60.0-Hz generator and measures an rms current of
0.570 A. What is the inductance?

57. In Figure P33.57, find the current delivered by the 
45.0-V (rms) power supply (a) when the frequency is
very large and (b) when the frequency is very small.

52. Show that two successive high-pass filters having the
same values of R and C give a combined gain

53. Consider a low-pass filter followed by a high-pass filter,
as shown in Figure P33.53. If ) and

,F, determine for a 2.00-kHz
input frequency.

ADDITIONAL PROBLEMS
54. Show that the rms value for the sawtooth voltage shown

in Figure P33.54 is "Vmax/√3.

"Vout /"VinC # 0.050 0
R # 1 000

"Vout

"Vin
#

1
1 ' (1/!RC)2

51. The resistor in Figure P33.51 represents the midrange
speaker in a three-speaker system. Assume that its resis-
tance is constant at 8.00 ). The source represents an
audio amplifier producing signals of uniform amplitude

at all audio frequencies. The inductor
and capacitor are to function as a bandpass filter with

at 200 Hz and at 4 000 Hz. (a) Deter-
mine the required values of L and C . (b) Find the maxi-
mum value of the gain ratio (c) Find the
frequency f0 at which the gain ratio has its maximum
value. (d) Find the phase shift between and 
at 200 Hz, at f0 , and at 4 000 Hz. (e) Find the average
power transferred to the speaker at 200 Hz, at f0 , and at
4 000 Hz. (f) Treating the filter as a resonant circuit,
find its quality factor.

"Vout"Vin

"Vout /"Vin .

"Vout /"Vin # 1
2

"Vin # 10.0 V

3.00 mH100 Ω

200 Ω

45.0 V(rms)

200   Fµ

Vmax

–

t

∆V

∆+

Vmax∆

RC∆Vin ∆Vout

R C

R∆Vin

L C

∆Vout

5.00 Ω

20.0 Ω

250 mH

∆V2∆V1

Figure P33.50

Figure P33.51

Figure P33.53

Figure P33.54

Figure P33.57

WEB



Problems 1073

energy stored in the capacitor during oscillations. 
(g) Find the maximum energy stored in the inductor
during oscillations. (h) Now the frequency of the volt-
age source is doubled. Find the phase difference be-
tween the current and the voltage. (i) Find the fre-
quency that makes the inductive reactance one-half the
capacitive reactance.

circuit, following the procedure used for the RC filters
in Section 33.9.

60. An 80.0-) resistor and a 200-mH inductor are connected
in parallel across a 100-V (rms), 60.0-Hz source. (a) What
is the rms current in the resistor? (b) By what angle does
the total current lead or lag behind the voltage?

61. Make an order-of-magnitude estimate of the electric
current that the electric company delivers to a town
from a remote generating station. State the data that
you measure or estimate. If you wish, you may consider
a suburban bedroom community of 20 000 people.

62. A voltage sin !t (in SI units) is applied
across a series combination of a 2.00-H inductor, a 
10.0-,F capacitor, and a 10.0-) resistor. (a) Determine
the angular frequency !0 at which the power delivered
to the resistor is a maximum. (b) Calculate the power at
that frequency. (c) Determine the two angular frequen-
cies !1 and !2 at which the power delivered is one-half
the maximum value. [The Q of the circuit is approxi-
mately !0/(!2 % !1).]

63. Consider a series RLC circuit having the following cir-
cuit parameters: ), mH, and 

,F. The applied voltage has an amplitude of 50.0 V
and a frequency of 60.0 Hz. Find the following: (a) the
current Imax, including its phase constant - relative to
the applied voltage "v ; (b) the voltage "VR across the
resistor and its phase relative to the current; (c) the
voltage "VC across the capacitor and its phase relative
to the current; and (d) the voltage "VL across the in-
ductor and its phase relative to the current.

64. A power supply with "Vrms # 120 V is connected be-
tween points a and d in Figure P33.25. At what fre-
quency will it deliver a power of 250 W?

65. Example 28.2 showed that maximum power is trans-
ferred when the internal resistance of a dc source is
equal to the resistance of the load. A transformer may be
used to provide maximum power transfer between two ac
circuits that have different impedances. (a) Show that
the ratio of turns N1/N2 needed to meet this condition is

(b) Suppose you want to use a transformer as an imped-
ance-matching device between an audio amplifier that
has an output impedance of 8.00 k) and a speaker that
has an input impedance of 8.00 ). What should your
N1/N2 ratio be?

66. Figure P33.66a shows a parallel RLC circuit, and the
corresponding phasor diagram is provided in Figure
P33.66b. The instantaneous voltages and rms voltages
across the three circuit elements are the same, and each
is in phase with the current through the resistor. The
currents in C and L lead or lag behind the current in
the resistor, as shown in Figure P33.66b. (a) Show that
the rms current delivered by the source is

I rms # "Vrms% 1
R2 ' !!C %

1
!L "2&1/2

N 1

N 2
# √ Z 1

Z 2

26.5
C #L # 663R # 200

"v # (100 V)

59. As an alternative to the RC filters described in Section
33.9, LC filters are used as both high- and low-pass fil-
ters. However, all real inductors have resistance, as indi-
cated in Figure P33.59, and this resistance must be
taken into account. (a) Determine which circuit in Fig-
ure P33.59 is the high-pass filter and which is the low-
pass filter. (b) Derive the output/input ratio for each

(a)

∆Vin ∆Vout

RL

C

(b)

∆Vin ∆Vout

RLL

C

L

R

L

S1

C S2

∆V(t ) = ∆Vmax cos    tω

Figure P33.58

Figure P33.59
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ANSWERS TO QUICK QUIZZES

33.5 High. The higher the quality factor, the more sensitive 
the detector. As you can see from Figure 33.15a, when 
Q # !0/"! is high, as it is in the R # 3.5 ) case, a slight
change in the resonance frequency (as might happen
when a small piece of metal passes through the portal)
causes a large change in current that can be detected
easily.

33.6 (a) An inductor. The current in an inductive circuit de-
creases with increasing frequency (see Eq. 33.9). Thus,
an inductor connected in series with a woofer blocks
high-frequency signals and passes low-frequency signals.
(b) A capacitor. The current in a capacitive circuit de-
creases with decreasing frequency (see Eq. 33.16). When
a capacitor is connected in series with a tweeter, the ca-
pacitor blocks low-frequency signals and passes high-
frequency signals.

33.1 (c) and The average power is propor-
tional to the rms current—which, as Figure 33.3 shows,
is nonzero even though the average current is zero. 
Condition (a) is valid only for an open circuit, and con-
ditions (b) and (d) can never be true because 
for ac circuits even though .

33.2 (b) Sum of instantaneous voltages across elements.
Choices (a) and (c) are incorrect because the unaligned
sine curves in Figure 33.9b mean that the voltages are
out of phase, so we cannot simply add the maximum (or
rms) voltages across the elements. (In other words,

even though it is true that

33.3 (a) (b) (c) 
33.4 Equation 33.23 indicates that at resonance (when

the impedance is due strictly to the resistor,
At resonance, the current is given by the expres-

sion I rms # "V rms/R .
Z # R .
XL # XC)

XL ( XC .XL # XC .XL . XC .
"v # "vR ' "vL ' "vC .)
"V 1 "VR ' "VL ' "VC

i rms ( 0
iav # 0

iav # 0.!av ( 0

69. A series RLC circuit is operating at 2 000 Hz. At this fre-
quency, ). The resistance of the cir-
cuit is 40.0 ). (a) Prepare a table showing the values of
XL , XC , and Z for 600, 800, 1 000, 1 500, 2 000,
3 000, 4 000, 6 000, and 10 000 Hz. (b) Plot on the
same set of axes XL , XC , and Z as functions of ln f .

70. A series RLC circuit in which ), mH,
and nF is connected to an ac generator deliv-
ering 1.00 V (rms). Make a precise graph of the power
delivered to the circuit as a function of the frequency,
and verify that the full width of the resonance peak at
half-maximum is R/2$L.

71. Suppose the high-pass filter shown in Figure 33.22 has
) and ,F. (a) At what frequency

does (b) Plot log10 ver-
sus log10( f ) over the frequency range from 1 Hz to 
1 MHz. (This log– log plot of gain versus frequency is
known as a Bode plot.)

("Vout /"Vin)"Vout /"Vin # 1
2 ?

C # 0.050 0R # 1 000

C # 1.00
L # 1.00R # 1.00

f # 300,

XL # XC # 1 884 

rms current is delivered by the source? (d) Is the cur-
rent leading or lagging behind the voltage? By what
angle?

68. Consider the phase-shifter circuit shown in Figure
P33.68. The input voltage is described by the expression

200t (in SI units). Assuming that
mH, find (a) the value of R such that the out-

put voltage lags behind the input voltage by 30.0° and
(b) the amplitude of the output voltage.

L # 500
"v # (10.0 V) sin

(b) Show that the phase angle - between and
is

tan - # R ! 1
XC

%
1

XL
"

I rms

"Vrms

∆Vin ∆VoutR

L

R L C

(a)

(b)

IC
IR

IL

∆V

∆V

Figure P33.66

Figure P33.68

67. An 80.0-) resistor, a 200-mH inductor, and a 0.150-,F
capacitor are connected in parallel across a 120-V (rms)
source operating at 374 rad/s. (a) What is the resonant
frequency of the circuit? (b) Calculate the rms current
in the resistor, the inductor, and the capacitor. (c) What
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This person is exposed to very bright
sunlight at the beach. If he is wearing the
wrong kind of sunglasses, he may be
causing more permanent harm to his vi-
sion than he would be if he took the
glasses off and squinted. What deter-
mines whether certain types of sun-
glasses are good for your eyes?
(Ron Chapple/FPG International)
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34.1 Maxwell’s Equations and Hertz’s
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34.3 Energy Carried by
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34.5 (Optional) Radiation from an
Infinite Current Sheet

34.6 (Optional) Production of
Electromagnetic Waves by an
Antenna

34.7 The Spectrum of Electromagnetic
Waves
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he waves described in Chapters 16, 17, and 18 are mechanical waves. By defi-
nition, the propagation of mechanical disturbances—such as sound waves, wa-
ter waves, and waves on a string—requires the presence of a medium. This

chapter is concerned with the properties of electromagnetic waves, which (unlike
mechanical waves) can propagate through empty space.

In Section 31.7 we gave a brief description of Maxwell’s equations, which form
the theoretical basis of all electromagnetic phenomena. The consequences of
Maxwell’s equations are far-reaching and dramatic. The Ampère–Maxwell law pre-
dicts that a time-varying electric field produces a magnetic field, just as Faraday’s
law tells us that a time-varying magnetic field produces an electric field. Maxwell’s
introduction of the concept of displacement current as a new source of a magnetic
field provided the final important link between electric and magnetic fields in clas-
sical physics.

Astonishingly, Maxwell’s equations also predict the existence of electromag-
netic waves that propagate through space at the speed of light c . This chapter be-
gins with a discussion of how Heinrich Hertz confirmed Maxwell’s prediction
when he generated and detected electromagnetic waves in 1887. That discovery
has led to many practical communication systems, including radio, television, and
radar. On a conceptual level, Maxwell unified the subjects of light and electromag-
netism by developing the idea that light is a form of electromagnetic radiation.

Next, we learn how electromagnetic waves are generated by oscillating electric
charges. The waves consist of oscillating electric and magnetic fields that are at right
angles to each other and to the direction of wave propagation. Thus, electromag-
netic waves are transverse waves. Maxwell’s prediction of electromagnetic radiation
shows that the amplitudes of the electric and magnetic fields in an electromagnetic
wave are related by the expression The waves radiated from the oscillating
charges can be detected at great distances. Furthermore, electromagnetic waves
carry energy and momentum and hence can exert pressure on a surface.

The chapter concludes with a look at the wide range of frequencies covered by
electromagnetic waves. For example, radio waves (frequencies of about 107 Hz)
are electromagnetic waves produced by oscillating currents in a radio tower’s
transmitting antenna. Light waves are a high-frequency form of electromagnetic
radiation (about 1014 Hz) produced by oscillating electrons in atoms.

MAXWELL’S EQUATIONS AND
HERTZ’S DISCOVERIES

In his unified theory of electromagnetism, Maxwell showed that electromagnetic
waves are a natural consequence of the fundamental laws expressed in the follow-
ing four equations (see Section 31.7):

(34.1)

(34.2)

(34.3)

(34.4)!B ! ds ! " 0I # "0$0 
d%E

dt

!E ! ds ! &
d%B

dt
 

!
S

B ! dA ! 0 

!
S

E ! dA !
Q
$0 

34.1

E ! cB .

T

James Clerk Maxwell Scottish
theoretical physicist (1831 – 1879)
Maxwell developed the electromag-
netic theory of light and the kinetic
theory of gases, and he explained the
nature of color vision and of Saturn’s
rings. His successful interpretation of
the electromagnetic field produced
the field equations that bear his
name. Formidable mathematical abil-
ity combined with great insight en-
abled Maxwell to lead the way in the
study of electromagnetism and kinetic
theory. He died of cancer before he
was 50. (North Wind Picture Archives)
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As we shall see in the next section, Equations 34.3 and 34.4 can be combined to
obtain a wave equation for both the electric field and the magnetic field. In empty
space the solution to these two equations shows that the speed at
which electromagnetic waves travel equals the measured speed of light. This result
led Maxwell to predict that light waves are a form of electromagnetic radiation.

The experimental apparatus that Hertz used to generate and detect electro-
magnetic waves is shown schematically in Figure 34.1. An induction coil is con-
nected to a transmitter made up of two spherical electrodes separated by a narrow
gap. The coil provides short voltage surges to the electrodes, making one positive
and the other negative. A spark is generated between the spheres when the elec-
tric field near either electrode surpasses the dielectric strength for air (3 '
106 V/m; see Table 26.1). In a strong electric field, the acceleration of free elec-
trons provides them with enough energy to ionize any molecules they strike. This
ionization provides more electrons, which can accelerate and cause further ioniza-
tions. As the air in the gap is ionized, it becomes a much better conductor, and the
discharge between the electrodes exhibits an oscillatory behavior at a very high
frequency. From an electric-circuit viewpoint, this is equivalent to an LC circuit in
which the inductance is that of the coil and the capacitance is due to the spherical
electrodes.

Because L and C are quite small in Hertz’s apparatus, the frequency of oscilla-
tion is very high, " 100 MHz. (Recall from Eq. 32.22 that for an LC
circuit.) Electromagnetic waves are radiated at this frequency as a result of the os-
cillation (and hence acceleration) of free charges in the transmitter circuit. Hertz
was able to detect these waves by using a single loop of wire with its own spark gap
(the receiver). Such a receiver loop, placed several meters from the transmitter,
has its own effective inductance, capacitance, and natural frequency of oscillation.
In Hertz’s experiment, sparks were induced across the gap of the receiving elec-
trodes when the frequency of the receiver was adjusted to match that of the trans-
mitter. Thus, Hertz demonstrated that the oscillating current induced in the re-
ceiver was produced by electromagnetic waves radiated by the transmitter. His
experiment is analogous to the mechanical phenomenon in which a tuning fork
responds to acoustic vibrations from an identical tuning fork that is oscillating.

( ! 1/√LC

(Q ! 0, I ! 0),

Heinrich Rudolf Hertz Ger-
man physicist (1857 – 1894) Hertz
made his most important discovery —
radio waves — in 1887. After finding
that the speed of a radio wave was
the same as that of light, he showed
that radio waves, like light waves,
could be reflected, refracted, and dif-
fracted. Hertz died of blood poisoning
at age 36. He made many contribu-
tions to science during his short life.
The hertz, equal to one complete vi-
bration or cycle per second, is named
after him. (The Bettmann Archive)

Input

Transmitter

Receiver

Induction
coil

q –q

+ –

Figure 34.1 Schematic diagram of Hertz’s apparatus
for generating and detecting electromagnetic waves. The
transmitter consists of two spherical electrodes connected
to an induction coil, which provides short voltage surges
to the spheres, setting up oscillations in the discharge be-
tween the electrodes (suggested by the red dots). The re-
ceiver is a nearby loop of wire containing a second spark
gap.
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Additionally, Hertz showed in a series of experiments that the radiation gener-
ated by his spark-gap device exhibited the wave properties of interference, diffrac-
tion, reflection, refraction, and polarization, all of which are properties exhibited
by light. Thus, it became evident that the radio-frequency waves Hertz was generat-
ing had properties similar to those of light waves and differed only in frequency
and wavelength. Perhaps his most convincing experiment was the measurement of
the speed of this radiation. Radio-frequency waves of known frequency were re-
flected from a metal sheet and created a standing-wave interference pattern whose
nodal points could be detected. The measured distance between the nodal points
enabled determination of the wavelength ). Using the relationship (Eq.
16.14), Hertz found that v was close to 3 ' 108 m/s, the known speed c of visible
light.

PLANE ELECTROMAGNETIC WAVES
The properties of electromagnetic waves can be deduced from Maxwell’s equa-
tions. One approach to deriving these properties is to solve the second-order dif-
ferential equation obtained from Maxwell’s third and fourth equations. A rigorous
mathematical treatment of that sort is beyond the scope of this text. To circumvent
this problem, we assume that the vectors for the electric field and magnetic field
in an electromagnetic wave have a specific space–time behavior that is simple but
consistent with Maxwell’s equations.

To understand the prediction of electromagnetic waves more fully, let us focus
our attention on an electromagnetic wave that travels in the x direction (the direc-
tion of propagation). In this wave, the electric field E is in the y direction, and the
magnetic field B is in the z direction, as shown in Figure 34.2. Waves such as this
one, in which the electric and magnetic fields are restricted to being parallel to a
pair of perpendicular axes, are said to be linearly polarized waves.1 Further-
more, we assume that at any point P, the magnitudes E and B of the fields depend

34.2

v ! )f

1 Waves having other particular patterns of vibration of the electric and magnetic fields include circu-
larly polarized waves. The most general polarization pattern is elliptical.

QuickLab
Some electric motors use commuta-
tors that make and break electrical
contact, creating sparks reminiscent
of Hertz’s method for generating
electromagnetic waves. Try running
an electric shaver or kitchen mixer
near an AM radio. What happens to
the reception?

A large oscillator (bottom) and circular, octagonal, and square receivers used by Heinrich Hertz.

y

E
E

c

Bz
c

x
B

Figure 34.2 An electromagnetic
wave traveling at velocity c in the
positive x direction. The electric
field is along the y direction, and
the magnetic field is along the z di-
rection. These fields depend only
on x and t .
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upon x and t only, and not upon the y or z coordinate. A collection of such waves
from individual sources is called a plane wave. A surface connecting points of
equal phase on all waves, which we call a wave front, would be a geometric plane.
In comparison, a point source of radiation sends waves out in all directions. A sur-
face connecting points of equal phase is a sphere for this situation, so we call this a
spherical wave.

We can relate E and B to each other with Equations 34.3 and 34.4. In empty
space, where and Equation 34.3 remains unchanged and Equation
34.4 becomes

(34.5)

Using Equations 34.3 and 34.5 and the plane-wave assumption, we obtain the fol-
lowing differential equations relating E and B. (We shall derive these equations
formally later in this section.) For simplicity, we drop the subscripts on the compo-
nents Ey and Bz :

(34.6)

(34.7)

Note that the derivatives here are partial derivatives. For example, when we evalu-
ate we assume that t is constant. Likewise, when we evaluate x is
held constant. Taking the derivative of Equation 34.6 with respect to x and com-
bining the result with Equation 34.7, we obtain

(34.8)

In the same manner, taking the derivative of Equation 34.7 with respect to x and
combining it with Equation 34.6, we obtain

(34.9)

Equations 34.8 and 34.9 both have the form of the general wave equation2 with
the wave speed v replaced by c , where

(34.10)

Taking and in Equation
34.10, we find that Because this speed is precisely the
same as the speed of light in empty space, we are led to believe (correctly) that
light is an electromagnetic wave.

c ! 2.997 92 ' 108 m/s.
$0 ! 8.854 19 ' 10&12 C2/N*m2"0 ! 4+ ' 10&7 T *m/A

c !
1

√"0$0

,2B
,x2 ! "0$0 

,2B
,t2

,2E
,x2 ! "0$0 

,2E
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 # ,B
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 # ,B
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!B ! ds ! "0$0 
d%E

dt

I ! 0,Q ! 0

2 The general wave equation is of the form where v is the speed of the
wave and y is the wave function. The general wave equation was introduced as Equation 16.26, and it
would be useful for you to review Section 16.9.

(,2y/,x2 ) ! (1/v2 )(,2y/,t2 ),

Speed of electromagnetic waves
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The simplest solution to Equations 34.8 and 34.9 is a sinusoidal wave, for
which the field magnitudes E and B vary with x and t according to the expressions

(34.11)

(34.12)

where Emax and Bmax are the maximum values of the fields. The angular wave num-
ber is the constant where ) is the wavelength. The angular frequency is

where f is the wave frequency. The ratio
(/k equals the speed c :

We have used Equation 16.14, which relates the speed, frequency, and
wavelength of any continuous wave. Figure 34.3a is a pictorial representation, at
one instant, of a sinusoidal, linearly polarized plane wave moving in the positive x
direction. Figure 34.3b shows how the electric and magnetic field vectors at a fixed
location vary with time.

What is the phase difference between B and E in Figure 34.3?

Taking partial derivatives of Equations 34.11 (with respect to x) and 34.12

Quick Quiz 34.1

v ! c ! )f,

(

k
!

2+f
2+/)

! )f ! c

( ! 2+f,
k ! 2+/),

B ! Bmax cos(kx & (t)

E ! E max cos(kx & (t)

(b)

y

z

y

z

y

z
B

E

y

z

y

z

y

z

y

z

y

z

y

z

y

z

y

z

y

z

E

B

c

y

x

z

(a)

Figure 34.3 Representation of a sinusoidal, linearly polarized plane electromagnetic wave mov-
ing in the positive x direction with velocity c. (a) The wave at some instant. Note the sinusoidal
variations of E and B with x . (b) A time sequence illustrating the electric and magnetic field vec-
tors present in the yz plane, as seen by an observer looking in the negative x direction. Note the
sinusoidal variations of E and B with t .

Sinusoidal electric and magnetic
fields



34.2 Plane Electromagnetic Waves 1081

(with respect to t), we find that

Substituting these results into Equation 34.6, we find that at any instant

Using these results together with Equations 34.11 and 34.12, we see that

(34.13)

That is, at every instant the ratio of the magnitude of the electric field to the
magnitude of the magnetic field in an electromagnetic wave equals the
speed of light.

Finally, note that electromagnetic waves obey the superposition principle
(which we discussed in Section 16.4 with respect to mechanical waves) because the
differential equations involving E and B are linear equations. For example, we can
add two waves with the same frequency simply by adding the magnitudes of the
two electric fields algebraically.

E max

Bmax
!

E
B

! c

Emax

Bmax
!

(

k
! c

kEmax ! (Bmax

,B
,t

! (Bmaxsin(kx & (t)

,E
,x

! &kE maxsin(kx & (t)

• The solutions of Maxwell’s third and fourth equations are wave-like, with
both E and B satisfying a wave equation.

• Electromagnetic waves travel through empty space at the speed of light 

• The components of the electric and magnetic fields of plane electromagnetic
waves are perpendicular to each other and perpendicular to the direction of
wave propagation. We can summarize the latter property by saying that elec-
tromagnetic waves are transverse waves.

• The magnitudes of E and B in empty space are related by the expression

• Electromagnetic waves obey the principle of superposition.
E/B ! c .

c ! 1/√" 0$0 .

An Electromagnetic WaveEXAMPLE 34.1
(b) At some point and at some instant, the electric field

has its maximum value of 750 N/C and is along the y axis.
Calculate the magnitude and direction of the magnetic field
at this position and time.

Solution From Equation 34.13 we see that

Because E and B must be perpendicular to each other and
perpendicular to the direction of wave propagation (x in this
case), we conclude that B is in the z direction.

2.50 ' 10&6 TBmax !
E max

c
!

750 N/C
3.00 ' 108 m/s

!

A sinusoidal electromagnetic wave of frequency 40.0 MHz
travels in free space in the x direction, as shown in Figure
34.4. (a) Determine the wavelength and period of the wave.

Solution Using Equation 16.14 for light waves, ,
and given that MHz ! 4.00 ' 107 s&1, we have

The period T of the wave is the inverse of the frequency:

2.50 ' 10&8 sT !
1
f

!
1

4.00 ' 107 s&1 !

7.50 m) !
c
f

!
3.00 ' 108 m/s
4.00 ' 107 s&1 !

f ! 40.0
c ! )f

Properties of electromagnetic
waves
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Let us summarize the properties of electromagnetic waves as we have de-
scribed them:

Optional Section

Derivation of Equations 34.6 and 34.7

To derive Equation 34.6, we start with Faraday’s law, Equation 34.3:

Let us again assume that the electromagnetic wave is traveling in the x direction,
with the electric field E in the positive y direction and the magnetic field B in the
positive z direction.

Consider a rectangle of width dx and height ! lying in the xy plane, as shown
in Figure 34.5. To apply Equation 34.3, we must first evaluate the line integral of

around this rectangle. The contributions from the top and bottom of the
rectangle are zero because E is perpendicular to ds for these paths. We can ex-
press the electric field on the right side of the rectangle as

while the field on the left side is simply .3 Therefore, the line integral over
this rectangle is approximately

(34.14)

Because the magnetic field is in the z direction, the magnetic flux through the rec-
tangle of area ! dx is approximately (This assumes that dx is very
small compared with the wavelength of the wave.) Taking the time derivative of

%B ! B! dx .

!E ! ds ! E(x # dx , t) * ! & E(x , t) * ! " (,E/,x) dx * !

E(x , t)

E(x # dx , t) " E(x , t) #
dE
dx %t constant

 dx ! E(x , t) #
,E
,x

 dx

E ! ds

!E ! ds ! &
d%B

dt

3 Because dE/dx in this equation is expressed as the change in E with x at a given instant t , dE/dx is
equivalent to the partial derivative Likewise, dB/dt means the change in B with time at a particu-
lar position x , so in Equation 34.15 we can replace dB/dt with ,B/,t .

,E/,x .

B c x

y

E = 750j  N/C

z

Figure 34.4 At some instant, a plane electromagnetic wave mov-
ing in the x direction has a maximum electric field of 750 N/C in the
positive y direction. The corresponding magnetic field at that point
has a magnitude E /c and is in the z direction.

(c) Write expressions for the space-time variation of the
components of the electric and magnetic fields for this wave.

Solution We can apply Equations 34.11 and 34.12 directly:

where

k !
2+

)
!

2+

7.50 m
! 0.838 rad/m 

( ! 2+f ! 2+(4.00 ' 107 s&1) ! 2.51 ' 108 rad/s

B ! Bmax cos(kx & (t) ! (2.50 ' 10&6 T ) cos(kx & (t)

E ! E max cos(kx & (t) ! (750 N/C) cos(kx & (t) 

E + dE
E

dx

!

y

xz
B

Figure 34.5 As a plane wave
passes through a rectangular path
of width dx lying in the xy plane,
the electric field in the y direction
varies from E to E # d E. This spa-
tial variation in E gives rise to a
time-varying magnetic field along
the z direction, according to Equa-
tion 34.6.
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the magnetic flux gives

(34.15)

Substituting Equations 34.14 and 34.15 into Equation 34.3, we obtain

This expression is Equation 34.6.
In a similar manner, we can verify Equation 34.7 by starting with Maxwell’s

fourth equation in empty space (Eq. 34.5). In this case, we evaluate the line inte-
gral of around a rectangle lying in the xz plane and having width dx and
length !, as shown in Figure 34.6. Noting that the magnitude of the magnetic field
changes from to over the width dx , we find the line integral
over this rectangle to be approximately

(34.16)

The electric flux through the rectangle is which, when differentiated
with respect to time, gives

(34.17)

Substituting Equations 34.16 and 34.17 into Equation 34.5 gives

which is Equation 34.7.

ENERGY CARRIED BY ELECTROMAGNETIC WAVES
Electromagnetic waves carry energy, and as they propagate through space they can
transfer energy to objects placed in their path. The rate of flow of energy in an
electromagnetic wave is described by a vector S, called the Poynting vector,
which is defined by the expression

(34.18)

The magnitude of the Poynting vector represents the rate at which energy flows
through a unit surface area perpendicular to the direction of wave propagation.
Thus, the magnitude of the Poynting vector represents power per unit area. The di-
rection of the vector is along the direction of wave propagation (Fig. 34.7). The SI
units of the Poynting vector are J/s *m2 ! W/m2.

S &
1

"0
 E " B

34.3

 
,B
,x

! &"0$0 
,E
,t

 

&(,B/,x) dx * ! ! "0$0! dx(,E/,t)

,%E

,t
! ! dx 

,E
,t

%E ! E! dx ,

!B ! ds ! B(x , t)* ! & B(x # dx , t) * ! " &(,B/,x) dx * !

B(x # dx , t)B(x , t)

B ! ds

 
,E
,x

! &
,B
,t

 

# ,E
,x $ dx * ! ! & ! dx 

,B
,t

d%B

dt
! ! dx 

dB
dt %x constant

! ! dx 
,B
,t

B

E

B + dB

dx

z

y

x

!

Figure 34.6 As a plane wave
passes through a rectangular path
of width dx lying in the xz plane,
the magnetic field in the z direc-
tion varies from B to B # d B. This
spatial variation in B gives rise to a
time-varying electric field along the
y direction, according to Equation
34.7.

Poynting vector

Magnitude of the Poynting vector
for a plane wave
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As an example, let us evaluate the magnitude of S for a plane electromagnetic
wave where In this case,

(34.19)

Because we can also express this as

These equations for S apply at any instant of time and represent the instantaneous
rate at which energy is passing through a unit area.

What is of greater interest for a sinusoidal plane electromagnetic wave is the
time average of S over one or more cycles, which is called the wave intensity I. (We
discussed the intensity of sound waves in Chapter 17.) When this average is taken,
we obtain an expression involving the time average of cos2 which equals

Hence, the average value of S (in other words, the intensity of the wave) is

(34.20)

Recall that the energy per unit volume, which is the instantaneous energy den-
sity uE associated with an electric field, is given by Equation 26.13,

and that the instantaneous energy density uB associated with a magnetic field is
given by Equation 32.14:

Because E and B vary with time for an electromagnetic wave, the energy densities
also vary with time. When we use the relationships and 
Equation 32.14 becomes

Comparing this result with the expression for uE , we see that

That is, for an electromagnetic wave, the instantaneous energy density asso-
ciated with the magnetic field equals the instantaneous energy density asso-
ciated with the electric field. Hence, in a given volume the energy is equally
shared by the two fields.

The total instantaneous energy density u is equal to the sum of the energy
densities associated with the electric and magnetic fields:

When this total instantaneous energy density is averaged over one or more cycles
of an electromagnetic wave, we again obtain a factor of Hence, for any electro-
magnetic wave, the total average energy per unit volume is

1
2 .

u ! uE # uB ! $0E 2 !
B2

"0

uB ! uE ! 1
2 $0E 2 !

B2

2"0

uB !
(E /c)2

2"0
!

"0$0

2"0
 E 2 ! 1

2 $0E 2

c ! 1/√"0$0 ,B ! E /c

uB !
B2

2"0

uE ! 1
2 $0E 2

I ! Sav !
E maxBmax

2"0
!

E 2
max

2"0c
!

c
2"0

 B2
max

1
2 .

(kx & (t),

S !
E 2

"0c
!

c
"0

 B2

B ! E /c,

S !
EB
"0

' E " B ' ! EB.

Wave intensity

Total instantaneous energy density

Average energy density of an
electromagnetic wave

y

E

c
Bz x

S

Figure 34.7 The Poynting vector
S for a plane electromagnetic wave
is along the direction of wave prop-
agation.
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(34.21)uav ! $0(E 2)av ! 1
2 $0E 2

max !
B2

max

2"0

Fields on the PageEXAMPLE 34.2

From Equation 34.13,

This value is two orders of magnitude smaller than the
Earth’s magnetic field, which, unlike the magnetic field in
the light wave from your desk lamp, is not oscillating.

Exercise Estimate the energy density of the light wave just
before it strikes this page.

Answer 9.0 ' 10&9 J/m3.

1.5 ' 10&7 TBmax !
E max

c
!

45 V/m
3.00 ' 108 m/s

!

45 V/m !

 ! √ (4+ ' 10&7 T *m/A)(3.00 ' 108 m/s)(3.0 W)
2+(0.30 m)2

E max ! √ " 0c "av

2+r 2 

Estimate the maximum magnitudes of the electric and mag-
netic fields of the light that is incident on this page because of
the visible light coming from your desk lamp. Treat the bulb
as a point source of electromagnetic radiation that is about
5% efficient at converting electrical energy to visible light.

Solution Recall from Equation 17.8 that the wave intensity
I a distance r from a point source is where 
is the average power output of the source and 4+r 2 is the
area of a sphere of radius r centered on the source. Because
the intensity of an electromagnetic wave is also given by Equa-
tion 34.20, we have

We must now make some assumptions about numbers to en-
ter in this equation. If we have a 60-W lightbulb, its output at
5% efficiency is approximately 3.0 W in the form of visible
light. (The remaining energy transfers out of the bulb by
conduction and invisible radiation.) A reasonable distance
from the bulb to the page might be 0.30 m. Thus, we have

I !
"av

4+r 2 !
E 2

max

2"0c

"avI ! "av/4+r 2,

Comparing this result with Equation 34.20 for the average value of S , we see that

(34.22)

In other words, the intensity of an electromagnetic wave equals the average
energy density multiplied by the speed of light.

MOMENTUM AND RADIATION PRESSURE
Electromagnetic waves transport linear momentum as well as energy. It follows
that, as this momentum is absorbed by some surface, pressure is exerted on the
surface. We shall assume in this discussion that the electromagnetic wave strikes
the surface at normal incidence and transports a total energy U to the surface in a
time t . Maxwell showed that, if the surface absorbs all the incident energy U in this
time (as does a black body, introduced in Chapter 20), the total momentum p
transported to the surface has a magnitude

(complete absorption) (34.23)

The pressure exerted on the surface is defined as force per unit area F/A. Let us
combine this with Newton’s second law:

p !
U
c

34.4

I ! Sav ! cuav

Momentum transported to a
perfectly absorbing surface
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If we now replace p, the momentum transported to the surface by light, from
Equation 34.23, we have

We recognize (dU/dt)/A as the rate at which energy is arriving at the surface per
unit area, which is the magnitude of the Poynting vector. Thus, the radiation pres-
sure P exerted on the perfectly absorbing surface is

(34.24)

Note that Equation 34.24 is an expression for uppercase P, the pressure, while
Equation 34.23 is an expression for lowercase p, linear momentum.

If the surface is a perfect reflector (such as a mirror) and incidence is normal,
then the momentum transported to the surface in a time t is twice that given by
Equation 34.23. That is, the momentum transferred to the surface by the incom-
ing light is p ! U/c, and that transferred by the reflected light also is p ! U/c.
Therefore,

(complete reflection) (34.25)

The momentum delivered to a surface having a reflectivity somewhere between
these two extremes has a value between U/c and 2U/c, depending on the proper-
ties of the surface. Finally, the radiation pressure exerted on a perfectly reflecting
surface for normal incidence of the wave is4

(34.26)

Although radiation pressures are very small (about 5 ' 10&6 N/m2 for direct
sunlight), they have been measured with torsion balances such as the one shown
in Figure 34.8. A mirror (a perfect reflector) and a black disk (a perfect absorber)
are connected by a horizontal rod suspended from a fine fiber. Normal-incidence
light striking the black disk is completely absorbed, so all of the momentum of the

P !
2S
c

p !
2U
c

P !
S
c

P !
1
A

 
dp
dt

!
1
A

 
d
dt # U

c $ !
1
c

 
(dU/dt)

A

P !
F
A

!
1
A

 
dp
dt

4 For oblique incidence on a perfectly reflecting surface, the momentum transferred is (2U cos -)/c
and the pressure is where - is the angle between the normal to the surface and the
direction of wave propagation.

P ! (2S cos2 -)/c,

Radiation pressure exerted on a
perfectly absorbing surface

web
Visit http://pds.jpl.nasa.gov for more
information about missions to the planets.
You may also want to read Arthur C.
Clarke’s 1963 science fiction story The
Wind from the Sun about a solar yacht
race.

Radiation pressure exerted on a
perfectly reflecting surface

QuickLab
Using Example 34.2 as a starting
point, estimate the total force exerted
on this page by the light from your
desk lamp. Does it make a difference
if the page contains large, dark pho-
tographs instead of mostly white
space?

Light

Black
disk

Mirror

Figure 34.8 An apparatus for
measuring the pressure exerted by
light. In practice, the system is con-
tained in a high vacuum.

Figure 34.9 Mariner 10 used its solar
panels to “sail on sunlight.”
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light is transferred to the disk. Normal-incidence light striking the mirror is totally
reflected, and hence the momentum transferred to the mirror is twice as great as
that transferred to the disk. The radiation pressure is determined by measuring
the angle through which the horizontal connecting rod rotates. The apparatus

Sweeping the Solar SystemCONCEPTUAL EXAMPLE 34.3
cube of the radius of a spherical dust particle because it is
proportional to the mass and therefore to the volume 4+r3/3
of the particle. The radiation pressure is proportional to the
square of the radius because it depends on the planar cross-
section of the particle. For large particles, the gravitational
force is greater than the force from radiation pressure. For
particles having radii less than about 0.2 "m, the radiation-
pressure force is greater than the gravitational force, and as a
result these particles are swept out of the Solar System.

A great amount of dust exists in interplanetary space. Al-
though in theory these dust particles can vary in size from
molecular size to much larger, very little of the dust in our so-
lar system is smaller than about 0.2 "m. Why?

Solution The dust particles are subject to two significant
forces—the gravitational force that draws them toward the
Sun and the radiation-pressure force that pushes them away
from the Sun. The gravitational force is proportional to the

Pressure from a Laser PointerEXAMPLE 34.4
flected beam would apply a pressure of We can
model the actual reflection as follows: Imagine that the sur-
face absorbs the beam, resulting in pressure Then
the surface emits the beam, resulting in additional pressure

If the surface emits only a fraction f of the beam (so
that f is the amount of the incident beam reflected), then the
pressure due to the emitted beam is Thus, the total
pressure on the surface due to absorption and re-emission
(reflection) is

Notice that if which represents complete reflection,
this equation reduces to Equation 34.26. For a beam that is
70% reflected, the pressure is

This is an extremely small value, as expected. (Recall from
Section 15.2 that atmospheric pressure is approximately 
105 N/m2.)

5.4 ' 10&6 N/m2P ! (1 # 0.70) 
955 W/m2

3.0 ' 108 m/s
!

f ! 1,

P !
S
c

# f  
S
c

! (1 # f ) 
S
c

P ! f S/c.

P ! S /c.

P ! S/c.

P ! 2S/c.Many people giving presentations use a laser pointer to direct
the attention of the audience. If a 3.0-mW pointer creates a
spot that is 2.0 mm in diameter, determine the radiation pres-
sure on a screen that reflects 70% of the light that strikes it.
The power 3.0 mW is a time-averaged value.

Solution We certainly do not expect the pressure to be
very large. Before we can calculate it, we must determine the
Poynting vector of the beam by dividing the time-averaged
power delivered via the electromagnetic wave by the cross-
sectional area of the beam:

This is about the same as the intensity of sunlight at the
Earth’s surface. (Thus, it is not safe to shine the beam of a
laser pointer into a person’s eyes; that may be more danger-
ous than looking directly at the Sun.)

Now we can determine the radiation pressure from the
laser beam. Equation 34.26 indicates that a completely re-

S !
"

A
!

"

+ r 2
!

3.0 ' 10&3 W

+# 2.0 ' 10&3 m
2 $2

! 955 W/m2

Solar EnergyEXAMPLE 34.5
represents the power per unit area, or the light intensity. As-
suming that the radiation is incident normal to the roof, we
obtain

1.60 ' 105 W!

" ! SA ! (1 000 W/m2)(8.00 ' 20.0 m2)

As noted in the preceding example, the Sun delivers about 
1 000 W/m2 of energy to the Earth’s surface via electromag-
netic radiation. (a) Calculate the total power that is incident
on a roof of dimensions 8.00 m ' 20.0 m.

Solution The magnitude of the Poynting vector for solar
radiation at the surface of the Earth is S ! 1 000 W/m2; this
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5 Note that the solution could also be written in the form cos which is equivalent to
cos That is, cos - is an even function, which means that cos(& -) ! cos -.(kx & (t).

((t & kx),

Radiated magnetic field

If all of this power could be converted to electrical energy, it
would provide more than enough power for the average
home. However, solar energy is not easily harnessed, and the
prospects for large-scale conversion are not as bright as may
appear from this calculation. For example, the efficiency of
conversion from solar to electrical energy is typically 10% for
photovoltaic cells. Roof systems for converting solar energy to
internal energy are approximately 50% efficient; however, so-
lar energy is associated with other practical problems, such as
overcast days, geographic location, and methods of energy
storage.

(b) Determine the radiation pressure and the radiation
force exerted on the roof, assuming that the roof covering is
a perfect absorber.

Solution Using Equation 34.24 with we
find that the radiation pressure is

Because pressure equals force per unit area, this corresponds
to a radiation force of

Exercise How much solar energy is incident on the roof in
1 h?

Answer 5.76 ' 108 J.

5.33 ' 10&4 NF ! PA ! (3.33 ' 10&6 N/m2)(160 m2) !

3.33 ' 10&6 N/m2P !
S
c

!
1 000 W/m2

3.00 ' 108 m/s
!

S ! 1 000 W/m2,

must be placed in a high vacuum to eliminate the effects of air currents.
NASA is exploring the possibility of solar sailing as a low-cost means of sending

spacecraft to the planets. Large reflective sheets would be used in much the way
canvas sheets are used on earthbound sailboats. In 1973 NASA engineers took ad-
vantage of the momentum of the sunlight striking the solar panels of Mariner 10
(Fig. 34.9) to make small course corrections when the spacecraft’s fuel supply was
running low. (This procedure was carried out when the spacecraft was in the vicin-
ity of the planet Mercury. Would it have worked as well near Pluto?)

Optional Section

RADIATION FROM AN INFINITE CURRENT SHEET
In this section, we describe the electric and magnetic fields radiated by a flat con-
ductor carrying a time-varying current. In the symmetric plane geometry em-
ployed here, the mathematics is less complex than that required in lower-symme-
try situations.

Consider an infinite conducting sheet lying in the yz plane and carrying a sur-
face current in the y direction, as shown in Figure 34.10. The current is distributed
across the z direction such that the current per unit length is Js . Let us assume 
that Js varies sinusoidally with time as

where Jmax is the amplitude of the current variation and ( is the angular frequency
of the variation. A similar problem concerning the case of a steady current was
treated in Example 30.6, in which we found that the magnetic field outside the
sheet is everywhere parallel to the sheet and lies along the z axis. The magnetic
field was found to have a magnitude

Bz ! "0 
J s

2

J s ! Jmax cos (t

34.5

z x

y

Js

Figure 34.10 A portion of an in-
finite current sheet lying in the yz
plane. The current density is sinu-
soidal and is given by the expres-
sion Js ! Jmax cos (t. The magnetic
field is everywhere parallel to the
sheet and lies along z .
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In the present situation, where Js varies with time, this equation for Bz is valid only
for distances close to the sheet. Substituting the expression for Js , we have

(for small values of x)

To obtain the expression valid for Bz for arbitrary values of x, we can investigate
the solution:5

(34.27)

You should note two things about this solution, which is unique to the geometry
under consideration. First, when x is very small, it agrees with our original solu-
tion. Second, it satisfies the wave equation as expressed in Equation 34.9. We con-
clude that the magnetic field lies along the z axis, varies with time, and is charac-
terized by a transverse traveling wave having an angular frequency ( and an
angular wave number 

We can obtain the electric field radiating from our infinite current sheet by us-
ing Equation 34.13:

(34.28)

That is, the electric field is in the y direction, perpendicular to B, and has the same
space and time dependencies. These expressions for Bz and Ey show that the radia-
tion field of an infinite current sheet carrying a sinusoidal current is a plane electro-
magnetic wave propagating with a speed c along the x axis, as shown in Figure 34.11.

We can calculate the Poynting vector for this wave from Equations 34.19,

E y ! cBz !
"0 Jmaxc

2
 cos(kx & (t)

k ! 2+/).

Bz !
"0 Jmax

2
 cos(kx & (t)

Bz !
"0

2
 Jmax cos (t

Radiated electric field

z

y

Js

E

B

x

c

Figure 34.11 Representation of the plane electromagnetic wave radiated by an infinite current
sheet lying in the yz plane. The vector B is in the z direction, the vector E is in the y direction,
and the direction of wave motion is along x . Both vector B and vector E behave according to the
expression cos Compare this drawing with Figure 34.3a.(kx & (t ).

An Infinite Sheet Carrying a Sinusoidal CurrentEXAMPLE 34.6
Solution From Equations 34.27 and 34.28, we see that the
maximum values of Bz and Ey are

and E max !
"0 Jmaxc

2
Bmax !

"0 Jmax

2

An infinite current sheet lying in the yz plane carries a sinus-
oidal current that has a maximum density of 5.00 A/m. 
(a) Find the maximum values of the radiated magnetic and
electric fields.
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34.27, and 34.28:

(34.29)

The intensity of the wave, which equals the average value of S, is

(34.30)

This intensity represents the power per unit area of the outgoing wave on each
side of the sheet. The total rate of energy emitted per unit area of the conductor is

Optional Section

PRODUCTION OF ELECTROMAGNETIC
WAVES BY AN ANTENNA

Neither stationary charges nor steady currents can produce electromagnetic waves.
Whenever the current through a wire changes with time, however, the wire emits

34.6

2Sav ! "0 J 2
maxc /4.

I ! Sav !
"0 J 2

maxc
8

S !
EB
"0

!
"0 J 2

maxc
4

 cos2(kx & (t)

Accelerating charges produce
electromagnetic radiation

Using the values 
and we get

(b) What is the average power incident on a flat surface
that is parallel to the sheet and has an area of 3.00 m2? (The
length and width of this surface are both much greater than
the wavelength of the radiation.)

942 V/m!

E max !
(4+ ' 10&7 T *m/A)(5.00 A/m)(3.00 ' 108 m/s)

2

3.14 ' 10&6 T!

Bmax !
(4+ ' 10&7 T*m/A)(5.00 A/m)

2

c ! 3.00 ' 108 m/s,
"0 ! 4+ ' 10&7 T *m/A, Jmax ! 5.00 A/m, Solution The intensity, or power per unit area, radiated in

each direction by the current sheet is given by Equation 34.30:

Multiplying this by the area of the surface, we obtain the inci-
dent power:

The result is independent of the distance from the current
sheet because we are dealing with a plane wave.

3.54 ' 103 W!

" ! IA ! (1.18 ' 103 W/m2)(3.00 m2)

 ! 1.18 ' 103 W/m2

 !  
(4+ ' 10&7 T*m/A)(5.00 A/m)2(3.00 ' 108 m/s)

8

I !
"0 J 2

maxc
8

 

(d)  t =T

–
–
–

+
+
+ E

–
–
–

+
+
+

E

T
2(c)  t =

E

(b)  t = T
4(a)  t = 0

–
–
–

+
+
+

E

Figure 34.12 The electric field set up by charges oscillating in an antenna. The field moves
away from the antenna with the speed of light.
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electromagnetic radiation. The fundamental mechanism responsible for this
radiation is the acceleration of a charged particle. Whenever a charged par-
ticle accelerates, it must radiate energy.

An alternating voltage applied to the wires of an antenna forces an electric
charge in the antenna to oscillate. This is a common technique for accelerating
charges and is the source of the radio waves emitted by the transmitting antenna
of a radio station. Figure 34.12 shows how this is done. Two metal rods are con-
nected to a generator that provides a sinusoidally oscillating voltage. This causes
charges to oscillate in the two rods. At the upper rod is given a maximum
positive charge and the bottom rod an equal negative charge, as shown in Figure
34.12a. The electric field near the antenna at this instant is also shown in Figure
34.12a. As the positive and negative charges decrease from their maximum values,
the rods become less charged, the field near the rods decreases in strength, and
the downward-directed maximum electric field produced at moves away
from the rod. (A magnetic field oscillating in a direction perpendicular to the
plane of the diagram in Fig. 34.12 accompanies the oscillating electric field, but it
is not shown for the sake of clarity.) When the charges on the rods are momentar-
ily zero (Fig. 34.12b), the electric field at the rod has dropped to zero. This occurs
at a time equal to one quarter of the period of oscillation.

As the generator charges the rods in the opposite sense from that at the begin-
ning, the upper rod soon obtains a maximum negative charge and the lower rod a
maximum positive charge (Fig. 34.12c); this results in an electric field near the
rod that is directed upward after a time equal to one-half the period of oscillation.
The oscillations continue as indicated in Figure 34.12d. The electric field near the
antenna oscillates in phase with the charge distribution. That is, the field points
down when the upper rod is positive and up when the upper rod is negative. Fur-
thermore, the magnitude of the field at any instant depends on the amount of
charge on the rods at that instant.

As the charges continue to oscillate (and accelerate) between the rods, the

t ! 0

t ! 0,

6 We have neglected the fields caused by the wires leading to the rods. This is a good approximation if
the circuit dimensions are much less than the length of the rods.
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Figure 34.13 A pair of metal rods connected to a battery. (a) When the switch is open and no
current exists, the electric and magnetic fields are both zero. (b) Immediately after the switch is
closed, the rods are being charged (so a current exists). Because the current is changing, the
rods generate changing electric and magnetic fields. (c) When the rods are fully charged, the
current is zero, the electric field is a maximum, and the magnetic field is zero.
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electric field they set up moves away from the antenna at the speed of light. As you
can see from Figure 34.12, one cycle of charge oscillation produces one wave-
length in the electric-field pattern.

Next, consider what happens when two conducting rods are connected to the
terminals of a battery (Fig. 34.13). Before the switch is closed, the current is zero,
so no fields are present (Fig. 34.13a). Just after the switch is closed, positive charge
begins to build up on one rod and negative charge on the other (Fig. 34.13b), a
situation that corresponds to a time-varying current. The changing charge distrib-
ution causes the electric field to change; this in turn produces a magnetic field
around the rods.6 Finally, when the rods are fully charged, the current is zero;
hence, no magnetic field exists at that instant (Fig. 34.13c).

Now let us consider the production of electromagnetic waves by a half-wave an-
tenna. In this arrangement, two conducting rods are connected to a source of alter-
nating voltage (such as an LC oscillator), as shown in Figure 34.14. The length of
each rod is equal to one quarter of the wavelength of the radiation that will be
emitted when the oscillator operates at frequency f. The oscillator forces charges
to accelerate back and forth between the two rods. Figure 34.14 shows the configu-
ration of the electric and magnetic fields at some instant when the current is up-
ward. The electric field lines resemble those of an electric dipole. (As a result, this
type of antenna is sometimes called a dipole antenna.) Because these charges are
continuously oscillating between the two rods, the antenna can be approximated
by an oscillating electric dipole. The magnetic field lines form concentric circles
around the antenna and are perpendicular to the electric field lines at all points.
The magnetic field is zero at all points along the axis of the antenna. Furthermore,
E and B are 90° out of phase in time because the current is zero when the charges
at the outer ends of the rods are at a maximum.

At the two points where the magnetic field is shown in Figure 34.14, the Poynt-
ing vector S is directed radially outward. This indicates that energy is flowing away
from the antenna at this instant. At later times, the fields and the Poynting vector
change direction as the current alternates. Because E and B are 90° out of phase
at points near the dipole, the net energy flow is zero. From this, we might con-
clude (incorrectly) that no energy is radiated by the dipole.
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Figure 34.14 A half-wave an-
tenna consists of two metal rods
connected to an alternating voltage
source. This diagram shows E and
B at an instant when the current is
upward. Note that the electric field
lines resemble those of a dipole
(shown in Fig. 23.21).

Figure 34.15 Electric field lines surrounding a dipole antenna at a given instant. The radiation
fields propagate outward from the antenna with a speed c .
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However, we find that energy is indeed radiated. Because the dipole fields fall
off as 1/r 3 (as shown in Example 23.6 for the electric field of a static dipole), they
are not important at great distances from the antenna. However, at these great dis-
tances, something else causes a type of radiation different from that close to the
antenna. The source of this radiation is the continuous induction of an electric
field by the time-varying magnetic field and the induction of a magnetic field by
the time-varying electric field, predicted by Equations 34.3 and 34.4. The electric
and magnetic fields produced in this manner are in phase with each other and
vary as 1/r. The result is an outward flow of energy at all times.

The electric field lines produced by a dipole antenna at some instant are
shown in Figure 34.15 as they propagate away from the antenna. Note that the in-
tensity and the power radiated are a maximum in a plane that is perpendicular to
the antenna and passing through its midpoint. Furthermore, the power radiated is
zero along the antenna’s axis. A mathematical solution to Maxwell’s equations for
the dipole antenna shows that the intensity of the radiation varies as (sin2-)/r 2,
where - is measured from the axis of the antenna. The angular dependence of the
radiation intensity is sketched in Figure 34.16.

Electromagnetic waves can also induce currents in a receiving antenna. The
response of a dipole receiving antenna at a given position is a maximum when the
antenna axis is parallel to the electric field at that point and zero when the axis is
perpendicular to the electric field.

If the plane electromagnetic wave in Figure 34.11 represents the signal from a distant radio
station, what would be the best orientation for your portable radio antenna—(a) along the
x axis, (b) along the y axis, or (c) along the z axis?

THE SPECTRUM OF ELECTROMAGNETIC WAVES
The various types of electromagnetic waves are listed in Figure 34.17, which shows
the electromagnetic spectrum. Note the wide ranges of frequencies and wave-
lengths. No sharp dividing point exists between one type of wave and the next. Re-
member that all forms of the various types of radiation are produced by the
same phenomenon—accelerating charges. The names given to the types of
waves are simply for convenience in describing the region of the spectrum in
which they lie.

Radio waves are the result of charges accelerating through conducting wires.
Ranging from more than 104 m to about 0.1 m in wavelength, they are generated
by such electronic devices as LC oscillators and are used in radio and television
communication systems.

Microwaves have wavelengths ranging from approximately 0.3 m to 10&4 m
and are also generated by electronic devices. Because of their short wavelengths,
they are well suited for radar systems and for studying the atomic and molecular
properties of matter. Microwave ovens (in which the wavelength of the radiation is
) ! 0.122 m) are an interesting domestic application of these waves. It has been
suggested that solar energy could be harnessed by beaming microwaves to the
Earth from a solar collector in space.7

34.7

Quick Quiz 34.2

7 P. Glaser, “Solar Power from Satellites,” Phys. Today, February 1977, p. 30.

Radio waves

Microwaves

Infrared waves

Visible light waves

QuickLab
Rotate a portable radio (with a tele-
scoping antenna) about a horizontal
axis while it is tuned to a weak sta-
tion. Can you use what you learn
from this movement to verify the an-
swer to Quick Quiz 34.2?

y

x

Sθ

Figure 34.16 Angular depen-
dence of the intensity of radiation
produced by an oscillating electric
dipole.
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Infrared waves have wavelengths ranging from 10&3 m to the longest wave-
length of visible light, 7 ' 10&7 m. These waves, produced by molecules and
room-temperature objects, are readily absorbed by most materials. The infrared
(IR) energy absorbed by a substance appears as internal energy because the en-
ergy agitates the atoms of the object, increasing their vibrational or translational
motion, which results in a temperature increase. Infrared radiation has practical
and scientific applications in many areas, including physical therapy, IR photogra-
phy, and vibrational spectroscopy.

Visible light, the most familiar form of electromagnetic waves, is the part of
the electromagnetic spectrum that the human eye can detect. Light is produced by
the rearrangement of electrons in atoms and molecules. The various wavelengths of
visible light, which correspond to different colors, range from red () "
7 ' 10&7 m) to violet () " 4 ' 10&7 m). The sensitivity of the human eye is a func-
tion of wavelength, being a maximum at a wavelength of about 5.5 ' 10&7 m. With
this in mind, why do you suppose tennis balls often have a yellow-green color?

Ultraviolet waves cover wavelengths ranging from approximately 4 ' 10&7 m
to 6 ' 10&10 m. The Sun is an important source of ultraviolet (UV) light, which is
the main cause of sunburn. Sunscreen lotions are transparent to visible light but
absorb most UV light. The higher a sunscreen’s solar protection factor (SPF), the
greater the percentage of UV light absorbed. Ultraviolet rays have also been impli-

Wavelength

1 Å = 10–10m
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Figure 34.17 The electromagnetic spectrum. Note the overlap between adjacent wave types.

Satellite-dish television antennas re-
ceive television-station signals from
satellites in orbit around the Earth.
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cated in the formation of cataracts, a clouding of the lens inside the eye. Wearing
sunglasses that do not block UV light is worse for your eyes than wearing no sun-
glasses. The lenses of any sunglasses absorb some visible light, thus causing the
wearer’s pupils to dilate. If the glasses do not also block UV light, then more dam-
age may be done to the lens of the eye because of the dilated pupils. If you wear no
sunglasses at all, your pupils are contracted, you squint, and a lot less UV light en-
ters your eyes. High-quality sunglasses block nearly all the eye-damaging UV light.

Most of the UV light from the Sun is absorbed by ozone (O3) molecules in the
Earth’s upper atmosphere, in a layer called the stratosphere. This ozone shield
converts lethal high-energy UV radiation to infrared radiation, which in turn
warms the stratosphere. Recently, a great deal of controversy has arisen concern-
ing the possible depletion of the protective ozone layer as a result of the chemicals
emitted from aerosol spray cans and used as refrigerants.

X-rays have wavelengths in the range from approximately 10&8 m to 10&12 m.
The most common source of x-rays is the deceleration of high-energy electrons
bombarding a metal target. X-rays are used as a diagnostic tool in medicine and as
a treatment for certain forms of cancer. Because x-rays damage or destroy living tis-
sues and organisms, care must be taken to avoid unnecessary exposure or overex-
posure. X-rays are also used in the study of crystal structure because x-ray wave-
lengths are comparable to the atomic separation distances in solids (about 
0.1 nm).

X-rays

Gamma rays

A Half-Wave AntennaEXAMPLE 34.7
the signal is

Thus, to operate most efficiently, the antenna should have a
length of (3.19 m)/2 ! 1.60 m. For practical reasons, car an-
tennas are usually one-quarter wavelength in size.

) !
c
f

!
3.00 ' 108 m/s
9.40 ' 107 Hz

! 3.19 m

A half-wave antenna works on the principle that the opti-
mum length of the antenna is one-half the wavelength of
the radiation being received. What is the optimum length 
of a car antenna when it receives a signal of frequency 
94.0 MHz?

Solution Equation 16.14 tells us that the wavelength of

Gamma rays are electromagnetic waves emitted by radioactive nuclei (such as
60Co and 137Cs) and during certain nuclear reactions. High-energy gamma rays are
a component of cosmic rays that enter the Earth’s atmosphere from space. They
have wavelengths ranging from approximately 10&10 m to less than 10&14 m. They
are highly penetrating and produce serious damage when absorbed by living tis-
sues. Consequently, those working near such dangerous radiation must be pro-
tected with heavily absorbing materials, such as thick layers of lead.

The AM in AM radio stands for amplitude modulation, and FM stands for frequency modulation.
(The word modulate means “to change.”) If our eyes could see the electromagnetic waves
from a radio antenna, how could you tell an AM wave from an FM wave?

SUMMARY

Electromagnetic waves, which are predicted by Maxwell’s equations, have the

Quick Quiz 34.3
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following properties:

• The electric field and the magnetic field each satisfy a wave equation. These two
wave equations, which can be obtained from Maxwell’s third and fourth equa-
tions, are

(34.8)

(34.9)

• The waves travel through a vacuum with the speed of light c , where

(34.10)

• The electric and magnetic fields are perpendicular to each other and perpen-
dicular to the direction of wave propagation. (Hence, electromagnetic waves are
transverse waves.)

• The instantaneous magnitudes of E and B in an electromagnetic wave are re-
lated by the expression

(34.13)

• The waves carry energy. The rate of flow of energy crossing a unit area is de-
scribed by the Poynting vector S, where

(34.18)

• They carry momentum and hence exert pressure on surfaces. If an electromag-
netic wave whose Poynting vector is S is completely absorbed by a surface upon
which it is normally incident, the radiation pressure on that surface is

(complete absorption) (34.24)

If the surface totally reflects a normally incident wave, the pressure is doubled.
The electric and magnetic fields of a sinusoidal plane electromagnetic wave

propagating in the positive x direction can be written

(34.11)

(34.12)

where ( is the angular frequency of the wave and k is the angular wave number.
These equations represent special solutions to the wave equations for E and B . Be-

B ! Bmax cos(kx & (t)

E ! E max cos(kx & (t)

P !
S
c

S &
1

"0
 E " B

E
B

! c

c !
1

√"0$0

! 3.00 ' 108 m/s

,2B
,x2 ! "0$0

,2B
,t2

,2E
,x2 ! "0$0 

,2E
,t2

QUESTIONS

4. What is the fundamental cause of electromagnetic radia-
tion?

5. Electrical engineers often speak of the radiation resis-
tance of an antenna. What do you suppose they mean by
this phrase?

6. If a high-frequency current is passed through a solenoid
containing a metallic core, the core warms up by induc-

1. For a given incident energy of an electromagnetic wave,
why is the radiation pressure on a perfectly reflecting sur-
face twice as great as that on a perfectly absorbing sur-
face?

2. Describe the physical significance of the Poynting vector.
3. Do all current-carrying conductors emit electromagnetic

waves? Explain.
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tion. This process also cooks foods in microwave ovens.
Explain why the materials warm up in these situations.

7. Before the advent of cable television and satellite dishes,
homeowners either mounted a television antenna on the
roof or used “rabbit ears” atop their sets (Fig. Q34.7).
Certain orientations of the receiving antenna on a televi-
sion set gave better reception than others. Furthermore,
the best orientation varied from station to station. Explain.

9. If you charge a comb by running it through your hair and
then hold the comb next to a bar magnet, do the electric
and magnetic fields that are produced constitute an elec-
tromagnetic wave?

10. An empty plastic or glass dish is cool to the touch right af-
ter it is removed from a microwave oven. How can this be
possible? (Assume that your electric bill has been paid.)

11. Often when you touch the indoor antenna on a radio or
television receiver, the reception instantly improves. Why?

12. Explain how the (dipole) VHF antenna of a television set
works. (See Fig. Q34.7.)

13. Explain how the UHF (loop) antenna of a television set
works. (See Fig. Q34.7.)

14. Explain why the voltage induced in a UHF (loop) an-
tenna depends on the frequency of the signal, whereas
the voltage in a VHF (dipole) antenna does not. (See Fig.
Q34.7.)

15. List as many similarities and differences between sound
waves and light waves as you can.

16. What does a radio wave do to the charges in the receiving
antenna to provide a signal for your car radio?

17. What determines the height of an AM radio station’s
broadcast antenna?

18. Some radio transmitters use a “phased array” of antennas.
What is their purpose?

19. What happens to the radio reception in an airplane as it
flies over the (vertical) dipole antenna of the control
tower?

20. When light (or other electromagnetic radiation) travels
across a given region, what oscillates?

21. Why should an infrared photograph of a person look dif-
ferent from a photograph of that person taken with visi-
ble light?

22. Suppose a creature from another planet had eyes that
were sensitive to infrared radiation. Describe what the
creature would see if it looked around the room you are
now in. That is, what would be bright and what would be
dim?

8. Does a wire connected to the terminals of a battery emit
an electromagnetic wave? Explain.

Figure Q34.7 Questions 7, 12, 13, and 14. The 
V-shaped antenna is the VHF antenna. (George Semple)

PROBLEMS

transparent nonmagnetic substance is 
where . is the dielectric constant of the substance. 
Determine the speed of light in water, which has a 
dielectric constant at optical frequencies of 1.78.

3. An electromagnetic wave in vacuum has an electric field
amplitude of 220 V/m. Calculate the amplitude of the
corresponding magnetic field.

4. Calculate the maximum value of the magnetic field of
an electromagnetic wave in a medium where the speed
of light is two thirds of the speed of light in vacuum and
where the electric field amplitude is 7.60 mV/m.

v ! 1/√."0$0 ,Section 34.1 Maxwell’s Equations and 
Hertz’s Discoveries

Section 34.2 Plane Electromagnetic Waves
Note: Assume that the medium is vacuum unless specified 
otherwise.

1. If the North Star, Polaris, were to burn out today, in
what year would it disappear from our vision? Take 
the distance from the Earth to Polaris as 
6.44 ' 1018 m.

2. The speed of an electromagnetic wave traveling in a 

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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WEB

WEB

WEB

5. Figure 34.3a shows a plane electromagnetic sinusoidal
wave propagating in what we choose as the x direction.
Suppose that the wavelength is 50.0 m, and the electric
field vibrates in the xy plane with an amplitude of 
22.0 V/m. Calculate (a) the frequency of the wave and
(b) the magnitude and direction of B when the electric
field has its maximum value in the negative y direction.
(c) Write an expression for B in the form

with numerical values for Bmax , k , and (.
6. Write down expressions for the electric and magnetic

fields of a sinusoidal plane electromagnetic wave having
a frequency of 3.00 GHz and traveling in the positive 
x direction. The amplitude of the electric field is 
300 V/m.

7. In SI units, the electric field in an electromagnetic wave
is described by

Find (a) the amplitude of the corresponding magnetic
field, (b) the wavelength ), and (c) the frequency f.

8. Verify by substitution that the following equations are
solutions to Equations 34.8 and 34.9, respectively:

9. Review Problem. A standing-wave interference pat-
tern is set up by radio waves between two metal sheets
2.00 m apart. This is the shortest distance between the
plates that will produce a standing-wave pattern. What is
the fundamental frequency?

10. A microwave oven is powered by an electron tube called
a magnetron, which generates electromagnetic waves of
frequency 2.45 GHz. The microwaves enter the oven
and are reflected by the walls. The standing-wave pat-
tern produced in the oven can cook food unevenly, with
hot spots in the food at antinodes and cool spots at
nodes, so a turntable is often used to rotate the food
and distribute the energy. If a microwave oven intended
for use with a turntable is instead used with a cooking
dish in a fixed position, the antinodes can appear as
burn marks on foods such as carrot strips or cheese.
The separation distance between the burns is measured
to be 6 cm / 5%. From these data, calculate the speed
of the microwaves.

Section 34.3 Energy Carried by Electromagnetic Waves
11. How much electromagnetic energy per cubic meter is

contained in sunlight, if the intensity of sunlight at the
Earth’s surface under a fairly clear sky is 1 000 W/m2?

12. An AM radio station broadcasts isotropically (equally in
all directions) with an average power of 4.00 kW. A di-
pole receiving antenna 65.0 cm long is at a location
4.00 miles from the transmitter. Compute the emf that

B ! Bmax cos(kx & (t)

E ! E max cos(kx & (t)

E y ! 100 sin(1.00 ' 107x & (t)

B ! B max cos(kx & (t)

is induced by this signal between the ends of the receiv-
ing antenna.

13. What is the average magnitude of the Poynting vector
5.00 miles from a radio transmitter broadcasting
isotropically with an average power of 250 kW?

14. A monochromatic light source emits 100 W of electro-
magnetic power uniformly in all directions. (a) Calcu-
late the average electric-field energy density 1.00 m
from the source. (b) Calculate the average magnetic-
field energy density at the same distance from the
source. (c) Find the wave intensity at this location.

15. A community plans to build a facility to convert solar ra-
diation to electric power. They require 1.00 MW of
power, and the system to be installed has an efficiency
of 30.0% (that is, 30.0% of the solar energy incident on
the surface is converted to electrical energy). What
must be the effective area of a perfectly absorbing sur-
face used in such an installation, assuming a constant
intensity of 1 000 W/m2?

16. Assuming that the antenna of a 10.0-kW radio station
radiates spherical electromagnetic waves, compute the
maximum value of the magnetic field 5.00 km from the
antenna, and compare this value with the surface mag-
netic field of the Earth.

17. The filament of an incandescent lamp has a 150-0 resis-
tance and carries a direct current of 1.00 A. The fila-
ment is 8.00 cm long and 0.900 mm in radius. (a) Cal-
culate the Poynting vector at the surface of the
filament. (b) Find the magnitude of the electric and
magnetic fields at the surface of the filament.

18. In a region of free space the electric field at an instant of
time is N/C and the mag-
netic field is 
(a) Show that the two fields are perpendicular to each
other. (b) Determine the Poynting vector for these fields.

19. A lightbulb filament has a resistance of 110 0. The bulb
is plugged into a standard 120-V (rms) outlet and emits
1.00% of the electric power delivered to it as electro-
magnetic radiation of frequency f. Assuming that the
bulb is covered with a filter that absorbs all other fre-
quencies, find the amplitude of the magnetic field 
1.00 m from the bulb.

20. A certain microwave oven contains a magnetron that
has an output of 700 W of microwave power for an elec-
trical input power of 1.40 kW. The microwaves are en-
tirely transferred from the magnetron into the oven
chamber through a waveguide, which is a metal tube of
rectangular cross-section with a width of 6.83 cm and a
height of 3.81 cm. (a) What is the efficiency of the mag-
netron? (b) Assuming that the food is absorbing all the
microwaves produced by the magnetron and that no en-
ergy is reflected back into the waveguide, find the direc-
tion and magnitude of the Poynting vector, averaged
over time, in the waveguide near the entrance to the
oven chamber. (c) What is the maximum electric field
magnitude at this point?

0.290k) "T.B ! (0.200 i # 0.080 0 j #
E ! (80.0 i # 32.0 j & 64.0k)
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21. High-power lasers in factories are used to cut through
cloth and metal (Fig. P34.21). One such laser has a
beam diameter of 1.00 mm and generates an electric
field with an amplitude of 0.700 MV/m at the target.
Find (a) the amplitude of the magnetic field produced,
(b) the intensity of the laser, and (c) the power deliv-
ered by the laser.

tum does the wave transfer to the mirror each second?
(b) Find the force that the wave exerts on the mirror.

27. A possible means of space flight is to place a perfectly
reflecting aluminized sheet into orbit around the Earth
and then use the light from the Sun to push this “solar
sail.” Suppose a sail of area 6.00 ' 105 m2 and mass 
6 000 kg is placed in orbit facing the Sun. (a) What
force is exerted on the sail? (b) What is the sail’s accel-
eration? (c) How long does it take the sail to reach the
Moon, 3.84 ' 108 m away? Ignore all gravitational ef-
fects, assume that the acceleration calculated in part
(b) remains constant, and assume a solar intensity of 
1 340 W/m2.

28. A 100-mW laser beam is reflected back upon itself by a
mirror. Calculate the force on the mirror.

29. A 15.0-mW helium–neon laser () ! 632.8 nm) emits 
a beam of circular cross-section with a diameter of 
2.00 mm. (a) Find the maximum electric field in the
beam. (b) What total energy is contained in a 1.00-m
length of the beam? (c) Find the momentum carried by
a 1.00-m length of the beam.

30. Given that the intensity of solar radiation incident on
the upper atmosphere of the Earth is 1 340 W/m2, de-
termine (a) the solar radiation incident on Mars, 
(b) the total power incident on Mars, and (c) the total
force acting on the planet. (d) Compare this force to
the gravitational attraction between Mars and the Sun
(see Table 14.2).

31. A plane electromagnetic wave has an intensity of 
750 W/m2. A flat rectangular surface of dimensions 
50.0 cm ' 100 cm is placed perpendicular to the direc-
tion of the wave. If the surface absorbs half of the en-
ergy and reflects half, calculate (a) the total energy ab-
sorbed by the surface in 1.00 min and (b) the
momentum absorbed in this time.

(Optional)
Section 34.5 Radiation from an Infinite Current Sheet

32. A large current-carrying sheet emits radiation in each
direction (normal to the plane of the sheet) with an in-
tensity of 570 W/m2. What maximum value of sinus-
oidal current density is required?

33. A rectangular surface of dimensions 120 cm ' 40.0 cm
is parallel to and 4.40 m away from a much larger con-
ducting sheet in which a sinusoidally varying surface
current exists that has a maximum value of 10.0 A/m.
(a) Calculate the average power that is incident on the
smaller sheet. (b) What power per unit area is radiated
by the larger sheet?

(Optional)
Section 34.6 Production of Electromagnetic 
Waves by an Antenna

34. Two hand-held radio transceivers with dipole antennas
are separated by a great fixed distance. Assuming that
the transmitting antenna is vertical, what fraction of the

WEB

22. At what distance from a 100-W electromagnetic-wave
point source does 

23. A 10.0-mW laser has a beam diameter of 1.60 mm. 
(a) What is the intensity of the light, assuming it is uni-
form across the circular beam? (b) What is the average
energy density of the beam?

24. At one location on the Earth, the rms value of the mag-
netic field caused by solar radiation is 1.80 "T. From
this value, calculate (a) the average electric field due to
solar radiation, (b) the average energy density of the so-
lar component of electromagnetic radiation at this loca-
tion, and (c) the magnitude of the Poynting vector for
the Sun’s radiation. (d) Compare the value found in
part (c) with the value of the solar intensity given in Ex-
ample 34.5.

Section 34.4 Momentum and Radiation Pressure
25. A radio wave transmits 25.0 W/m2 of power per unit

area. A flat surface of area A is perpendicular to the di-
rection of propagation of the wave. Calculate the radia-
tion pressure on it if the surface is a perfect absorber.

26. A plane electromagnetic wave of intensity 6.00 W/m2

strikes a small pocket mirror, of area 40.0 cm2, held per-
pendicular to the approaching wave. (a) What momen-

E max ! 15.0 V/m?

Figure P34.21 A laser cutting device mounted on a robot
arm is being used to cut through a metallic plate. (Philippe
Plailly/SPL/Photo Researchers)
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maximum received power will occur in the receiving an-
tenna when it is inclined from the vertical by (a) 15.0°?
(b) 45.0°? (c) 90.0°?

35. Two radio-transmitting antennas are separated by half
the broadcast wavelength and are driven in phase with
each other. In which directions are (a) the strongest
and (b) the weakest signals radiated?

36. Figure 34.14 shows a Hertz antenna (also known as a
half-wave antenna, since its length is )/2). The antenna
is far enough from the ground that reflections do not
significantly affect its radiation pattern. Most AM radio
stations, however, use a Marconi antenna, which con-
sists of the top half of a Hertz antenna. The lower end
of this (quarter-wave) antenna is connected to earth
ground, and the ground itself serves as the missing
lower half. What are the heights of the Marconi anten-
nas for radio stations broadcasting at (a) 560 kHz and
(b) 1 600 kHz?

37. Review Problem. Accelerating charges radiate 
electromagnetic waves. Calculate the wavelength of 
radiation produced by a proton in a cyclotron with a 
radius of 0.500 m and a magnetic field with a magni-
tude of 0.350 T.

38. Review Problem. Accelerating charges radiate 
electromagnetic waves. Calculate the wavelength of ra-
diation produced by a proton in a cyclotron of radius R
and magnetic field B.

Section 34.7 The Spectrum of Electromagnetic Waves
39. (a) Classify waves with frequencies of 2 Hz, 2 kHz, 

2 MHz, 2 GHz, 2 THz, 2 PHz, 2 EHz, 2 ZHz, and 2 YHz
on the electromagnetic spectrum. (b) Classify waves
with wavelengths of 2 km, 2 m, 2 mm, 2 "m, 2 nm, 
2 pm, 2 fm, and 2 am.

40. Compute an order-of-magnitude estimate for the fre-
quency of an electromagnetic wave with a wavelength
equal to (a) your height; (b) the thickness of this sheet
of paper. How is each wave classified on the electromag-
netic spectrum?

41. The human eye is most sensitive to light having a wave-
length of 5.50 ' 10&7 m, which is in the green–yellow
region of the visible electromagnetic spectrum. What is
the frequency of this light?

42. Suppose you are located 180 m from a radio transmit-
ter. (a) How many wavelengths are you from the trans-
mitter if the station calls itself 1150 AM? (The AM band
frequencies are in kilohertz.) (b) What if this station
were 98.1 FM? (The FM band frequencies are in mega-
hertz.)

43. What are the wavelengths of electromagnetic waves in
free space that have frequencies of (a) 5.00 ' 1019 Hz
and (b) 4.00 ' 109 Hz?

44. A radar pulse returns to the receiver after a total travel
time of 4.00 ' 10&4 s. How far away is the object that re-
flected the wave?

45. This just in! An important news announcement is trans-
mitted by radio waves to people sitting next to their ra-
dios, 100 km from the station, and by sound waves to
people sitting across the newsroom, 3.00 m from the
newscaster. Who receives the news first? Explain. Take
the speed of sound in air to be 343 m/s.

46. The U.S. Navy has long proposed the construction of
extremely low-frequency (ELF) communication sys-
tems. Such waves could penetrate the oceans to reach
distant submarines. Calculate the length of a quarter-
wavelength antenna for a transmitter generating ELF
waves with a frequency of 75.0 Hz. How practical is this?

47. What are the wavelength ranges in (a) the AM radio
band (540–1 600 kHz), and (b) the FM radio band
(88.0–108 MHz)?

48. There are 12 VHF television channels (Channels 2–13)
that lie in the range of frequencies between 54.0 MHz
and 216 MHz. Each channel is assigned a width of 
6.0 MHz, with the two ranges 72.0–76.0 MHz and
88.0–174 MHz reserved for non-TV purposes. (Chan-
nel 2, for example, lies between 54.0 and 60.0 MHz.)
Calculate the wavelength ranges for (a) Channel 4, 
(b) Channel 6, and (c) Channel 8.

ADDITIONAL PROBLEMS
49. Assume that the intensity of solar radiation incident on

the cloud tops of Earth is 1 340 W/m2. (a) Calculate the
total power radiated by the Sun, taking the average
Earth–Sun separation to be 1.496 ' 1011 m. (b) Deter-
mine the maximum values of the electric and magnetic
fields at the Earth’s location due to solar radiation.

50. The intensity of solar radiation at the top of the Earth’s
atmosphere is 1 340 W/m2. Assuming that 60% of the
incoming solar energy reaches the Earth’s surface and
assuming that you absorb 50% of the incident energy,
make an order-of-magnitude estimate of the amount of
solar energy you absorb in a 60-min sunbath.

51. Review Problem. In the absence of cable input or a
satellite dish, a television set can use a dipole-receiving
antenna for VHF channels and a loop antenna for UHF
channels (see Fig. Q34.7). The UHF antenna produces
an emf from the changing magnetic flux through the
loop. The TV station broadcasts a signal with a fre-
quency f, and the signal has an electric-field amplitude
Emax and a magnetic-field amplitude Bmax at the loca-
tion of the receiving antenna. (a) Using Faraday’s law,
derive an expression for the amplitude of the emf 
that appears in a single-turn circular loop antenna with
a radius r, which is small compared to the wavelength of
the wave. (b) If the electric field in the signal points ver-
tically, what should be the orientation of the loop for
best reception?

52. Consider a small, spherical particle of radius r located
in space a distance R from the Sun. (a) Show that the
ratio Frad/Fgrav is proportional to 1/r, where Frad is the

WEB
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force exerted by solar radiation and Fgrav is the force of
gravitational attraction. (b) The result of part (a)
means that, for a sufficiently small value of r, the force
exerted on the particle by solar radiation exceeds the
force of gravitational attraction. Calculate the value of r
for which the particle is in equilibrium under the two
forces. (Assume that the particle has a perfectly absorb-
ing surface and a mass density of 1.50 g/cm3. Let the
particle be located 3.75 ' 1011 m from the Sun, and use
214 W/m2 as the value of the solar intensity at that
point.)

53. A dish antenna with a diameter of 20.0 m receives 
(at normal incidence) a radio signal from a distant
source, as shown in Figure P34.53. The radio signal 
is a continuous sinusoidal wave with amplitude 

Assume that the antenna absorbs all the
radiation that falls on the dish. (a) What is the ampli-
tude of the magnetic field in this wave? (b) What is 
the intensity of the radiation received by this antenna? 
(c) What power is received by the antenna? (d) What
force is exerted on the antenna by the radio waves?

0.200 "V/m.
E max !

n turns of wire per unit length. At a particular instant,
the solenoid current is i and is increasing at the rate
di/dt. Ignore the resistance of the wire. (a) Find the
magnitude and direction of the Poynting vector over
the interior surface of this section of solenoid. (b) Find
the rate at which the energy stored in the magnetic
field of the inductor is increasing. (c) Express the
power in terms of the voltage 1V across the inductor.

56. A goal of the Russian space program is to illuminate
dark northern cities with sunlight reflected to Earth
from a 200-m-diameter mirrored surface in orbit. Sev-
eral smaller prototypes have already been constructed
and put into orbit. (a) Assume that sunlight with an in-
tensity of 1 340 W/m2 falls on the mirror nearly perpen-
dicularly, and that the atmosphere of the Earth allows
74.6% of the energy of sunlight to pass through it in
clear weather. What power is received by a city when the
space mirror is reflecting light to it? (b) The plan is for
the reflected sunlight to cover a circle with a diameter
of 8.00 km. What is the intensity of the light (the aver-
age magnitude of the Poynting vector) received by the
city? (c) This intensity is what percentage of the vertical
component of sunlight at Saint Petersburg in January,
when the sun reaches an angle of 7.00° above the hori-
zon at noon?

57. In 1965 Arno Penzias and Robert Wilson discovered the
cosmic microwave radiation that was left over from the
Big Bang expansion of the Universe. Suppose the en-
ergy density of this background radiation is equal to
4.00 ' 10&14 J/m3. Determine the corresponding 
electric-field amplitude.

58. A hand-held cellular telephone operates in the 860- to
900-MHz band and has a power output of 0.600 W from
an antenna 10.0 cm long (Fig. P34.58). (a) Find the av-
erage magnitude of the Poynting vector 4.00 cm from
the antenna, at the location of a typical person’s head.
Assume that the antenna emits energy with cylindrical
wave fronts. (The actual radiation from antennas fol-
lows a more complicated pattern, as suggested by Fig.
34.15.) (b) The ANSI/IEEE C95.1-1991 maximum ex-
posure standard is 0.57 mW/cm2 for persons living near

54. A parallel-plate capacitor has circular plates of radius r
separated by distance !. It has been charged to voltage
1V and is being discharged as current i is drawn from
it. Assume that the plate separation ! is very small com-
pared to r, so the electric field is essentially constant in
the volume between the plates and is zero outside this
volume. Note that the displacement current between
the capacitor plates creates a magnetic field. (a) Deter-
mine the magnitude and direction of the Poynting vec-
tor at the cylindrical surface surrounding the electric
field volume. (b) Use the value of the Poynting vector
and the lateral surface area of the cylinder to find the
total power transfer for the capacitor. (c) What are the
changes to these results if the direction of the current is
reversed, so the capacitor is charging?

55. A section of a very long air-core solenoid, far from ei-
ther end, forms an inductor with radius r, length !, and

Figure P34.53

Figure P34.58. (©1998 Adam Smith/FPG International)
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cellular telephone base stations, who would be continu-
ously exposed to the radiation. Compare the answer to
part (a) with this standard.

59. A linearly polarized microwave with a wavelength of
1.50 cm is directed along the positive x axis. The elec-
tric field vector has a maximum value of 175 V/m and
vibrates in the xy plane. (a) Assume that the magnetic-
field component of the wave can be written in the form

and give values for Bmax , k , and
(. Also, determine in which plane the magnetic-field
vector vibrates. (b) Calculate the magnitude of the
Poynting vector for this wave. (c) What maximum radia-
tion pressure would this wave exert if it were directed at
normal incidence onto a perfectly reflecting sheet? 
(d) What maximum acceleration would be imparted to
a 500-g sheet (perfectly reflecting and at normal inci-
dence) with dimensions of 1.00 m ' 0.750 m?

60. Review Section 20.7 on thermal radiation. (a) An elderly
couple have installed a solar water heater on the roof of
their house (Fig. P34.60). The solar-energy collector
consists of a flat closed box with extraordinarily good
thermal insulation. Its interior is painted black, and its
front face is made of insulating glass. Assume that its
emissivity for visible light is 0.900 and its emissivity for
infrared light is 0.700. Assume that the noon Sun 
shines in perpendicular to the glass, with intensity 
1 000 W/m2, and that no water is then entering or leav-
ing the box. Find the steady-state temperature of the in-
terior of the box. (b) The couple have built an identical
box with no water tubes. It lies flat on the ground in
front of the house. They use it as a cold frame, where
they plant seeds in early spring. If the same noon Sun is
at an elevation angle of 50.0°, find the steady-state tem-
perature of the interior of this box, assuming that the
ventilation slots are tightly closed.

B ! Bmax sin(kx & (t),

ously toward the spacecraft. (a) Calculate how long it
takes him to reach the spacecraft by this method. 
(b) Suppose, instead, that he decides to throw the light
source away in a direction opposite the spacecraft. If the
light source has a mass of 3.00 kg and, after being
thrown, moves at 12.0 m/s relative to the recoiling
astronaut, how long does it take for the astronaut to
reach the spacecraft?

62. The Earth reflects approximately 38.0% of the incident
sunlight from its clouds and surface. (a) Given that the
intensity of solar radiation is 1 340 W/m2, what is the ra-
diation pressure on the Earth, in pascals, when the Sun
is straight overhead? (b) Compare this to normal atmos-
pheric pressure at the Earth’s surface, which is 101 kPa.

63. Lasers have been used to suspend spherical glass beads
in the Earth’s gravitational field. (a) If a bead has a
mass of 1.00 "g and a density of 0.200 g/cm3, deter-
mine the radiation intensity needed to support the
bead. (b) If the beam has a radius of 0.200 cm, what
power is required for this laser?

64. Lasers have been used to suspend spherical glass beads
in the Earth’s gravitational field. (a) If a bead has a
mass m and a density 2, determine the radiation inten-
sity needed to support the bead. (b) If the beam has a
radius r, what power is required for this laser?

65. Review Problem. A 1.00-m-diameter mirror focuses
the Sun’s rays onto an absorbing plate 2.00 cm in ra-
dius, which holds a can containing 1.00 L of water at
20.0°C. (a) If the solar intensity is 1.00 kW/m2, what is
the intensity on the absorbing plate? (b) What are the
maximum magnitudes of the fields E and B? (c) If
40.0% of the energy is absorbed, how long would it 
take to bring the water to its boiling point?

66. A microwave source produces pulses of 20.0-GHz radia-
tion, with each pulse lasting 1.00 ns. A parabolic reflec-
tor is used to focus these pulses into a
parallel beam of radiation, as shown in Figure P34.66.
The average power during each pulse is 25.0 kW. 
(a) What is the wavelength of these microwaves? 
(b) What is the total energy contained in each pulse?
(c) Compute the average energy density inside each
pulse. (d) Determine the amplitude of the electric and
magnetic fields in these microwaves. (e) Compute the
force exerted on the surface during the 1.00-ns dura-
tion of each pulse if the pulsed beam strikes an absorb-
ing surface.

(R ! 6.00 cm)

61. An astronaut, stranded in space 10.0 m from his space-
craft and at rest relative to it, has a mass (including
equipment) of 110 kg. Since he has a 100-W light
source that forms a directed beam, he decides to use
the beam as a photon rocket to propel himself continu-

Figure P34.60 (©Bill Banaszewski/Visuals Unlimited)

Figure P34.66

12.0 cm
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67. The electromagnetic power radiated by a nonrelativistic
moving point charge q having an acceleration a is

where $0 is the permittivity of vacuum (free space) and c
is the speed of light in vacuum. (a) Show that the right
side of this equation is in watts. (b) If an electron is
placed in a constant electric field of 100 N/C, deter-
mine the acceleration of the electron and the electro-
magnetic power radiated by this electron. (c) If a pro-
ton is placed in a cyclotron with a radius of 0.500 m and
a magnetic field of magnitude 0.350 T, what electro-
magnetic power is radiated by this proton?

68. A thin tungsten filament with a length of 1.00 m radi-
ates 60.0 W of power in the form of electromagnetic
waves. A perfectly absorbing surface, in the form of a
hollow cylinder with a radius of 5.00 cm and a length of
1.00 m, is placed concentrically with the filament. Cal-
culate the radiation pressure acting on the cylinder. (As-
sume that the radiation is emitted in the radial direc-
tion, and neglect end effects.)

69. The torsion balance shown in Figure 34.8 is used in an
experiment to measure radiation pressure. The suspen-
sion fiber exerts an elastic restoring torque. Its torque
constant is 1.00 ' 10&11 N * m/degree, and the length
of the horizontal rod is 6.00 cm. The beam from a 
3.00-mW helium–neon laser is incident on the black
disk, and the mirror disk is completely shielded. Calcu-
late the angle between the equilibrium positions of the
horizontal bar when the beam is switched from “off” to
“on.”

70. Review Problem. The study of Creation suggests a
Creator with a remarkable liking for beetles and for

" !
q2a2

6+$0c 3

small red stars. A red star, typical of the most common
kind, radiates electromagnetic waves with a power of
6.00 ' 1023 W, which is only 0.159% of the luminosity
of the Sun. Consider a spherical planet in a circular or-
bit around this star. Assume that the emissivity of the
planet, as defined in Section 20.7, is equal for infrared
and visible light. Assume that the planet has a uniform
surface temperature. Identify the projected area over
which the planet absorbs starlight, and the radiating
area of the planet. If beetles thrive at a temperature of
310 K, what should the radius of the planet’s orbit be?

71. A “laser cannon” of a spacecraft has a beam of cross-
sectional area A . The maximum electric field in the
beam is E . At what rate a will an asteroid accelerate
away from the spacecraft if the laser beam strikes the
asteroid perpendicularly to its surface, and the surface
is nonreflecting? The mass of the asteroid is m . Neglect
the acceleration of the spacecraft.

72. A plane electromagnetic wave varies sinusoidally at 
90.0 MHz as it travels along the #x direction. The peak
value of the electric field is 2.00 mV/m, and it is di-
rected along the / y direction. (a) Find the wavelength,
the period, and the maximum value of the magnetic
field. (b) Write expressions in SI units for the space and
time variations of the electric field and of the magnetic
field. Include numerical values, and include subscripts
to indicate coordinate directions. (c) Find the average
power per unit area that this wave propagates through
space. (d) Find the average energy density in the radia-
tion (in joules per cubic meter). (e) What radiation
pressure would this wave exert upon a perfectly reflect-
ing surface at normal incidence?

ANSWERS TO QUICK QUIZZES

34.3 The AM wave, because its amplitude is changing, would
appear to vary in brightness. The FM wave would have
changing colors because the color we perceive is related
to the frequency of the light.

34.1 Zero. Figure 34.3b shows that the B and E vectors reach
their maximum and minimum values at the same time.

34.2 (b) Along the y axis because that is the orientation of
the electric field. The electric field moves electrons in
the antenna, thus inducing a current that is detected
and amplified.
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areas of the Earth see a total eclipse, other areas see a
partial eclipse, and most areas see no eclipse.

17. The display windows of some department stores are
slanted slightly inward at the bottom. This is to decrease
the glare from streetlights or the Sun, which would make
it difficult for shoppers to see the display inside. Sketch a
light ray reflecting off such a window to show how this
technique works.

18. When two colors of light X and Y are sent through a glass
prism, X is bent more than Y. Which color travels more
slowly in the prism?

19. Why does the arc of a rainbow appear with red on top
and violet on the bottom?

20. Under what conditions is a mirage formed? On a hot day,
what are we seeing when we observe “water on the road”?

Figure Q35.10

PROBLEMS

3. In an experiment to measure the speed of light using
the apparatus of Fizeau (see Fig. 35.2), the distance be-
tween light source and mirror was 11.45 km and the
wheel had 720 notches. The experimentally determined
value of c was 2.998 ! 108 m/s. Calculate the minimum
angular speed of the wheel for this experiment.

4. Figure P35.4 shows an apparatus used to measure the
speed distribution of gas molecules. It consists of two
slotted rotating disks separated by a distance d, with the
slots displaced by the angle ". Suppose that the speed of
light is measured by sending a light beam from the left
through this apparatus. (a) Show that a light beam will
be seen in the detector (that is, will make it through
both slots) only if its speed is given by where
# is the angular speed of the disks and " is measured 
in radians. (b) What is the measured speed of light if
the distance between the two slotted rotating disks is
2.50 m, the slot in the second disk is displaced 1/60 of
1° from the slot in the first disk, and the disks are rotat-
ing at 5 555 rev/s?

c $ #d/",

Section 35.1 The Nature of Light

Section 35.2 Measurements of the Speed of Light
1. The Apollo 11 astronauts set up a highly reflecting

panel on the Moon’s surface. The speed of light can be
found by measuring the time it takes a laser beam to
travel from Earth, reflect from the retroreflector, and
return to Earth. If this interval is measured to be 2.51 s,
what is the measured speed of light? Take the center-
to-center distance from the Earth to the Moon to be
3.84 ! 108 m, and do not neglect the sizes of the Earth
and the Moon.

2. As a result of his observations, Roemer concluded that
eclipses of Io by Jupiter were delayed by 22 min during
a six-month period as the Earth moved from the point
in its orbit where it is closest to Jupiter to the diametri-
cally opposite point where it is farthest from Jupiter. Us-
ing 1.50 ! 108 km as the average radius of the Earth’s
orbit around the Sun, calculate the speed of light from
these data.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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Section 35.3 The Ray Approximation in Geometric Optics
Section 35.4 Reflection
Section 35.5 Refraction
Section 35.6 Huygens’s Principle
Note: In this section, if an index of refraction value is not
given, refer to Table 35.1.

5. A narrow beam of sodium yellow light, with wavelength
589 nm in vacuum, is incident from air onto a smooth
water surface at an angle "1 $ 35.0°. Determine the an-
gle of refraction "2 and the wavelength of the light in
water.

6. The wavelength of red helium–neon laser light in air is
632.8 nm. (a) What is its frequency? (b) What is its
wavelength in glass that has an index of refraction of
1.50? (c) What is its speed in the glass?

7. An underwater scuba diver sees the Sun at an apparent
angle of 45.0° from the vertical. What is the actual di-
rection of the Sun?

8. A laser beam is incident at an angle of 30.0° from the
vertical onto a solution of corn syrup in water. If the
beam is refracted to 19.24° from the vertical, (a) what 
is the index of refraction of the syrup solution? Suppose
that the light is red, with a vacuum wavelength of 
632.8 nm. Find its (b) wavelength, (c) frequency, and
(d) speed in the solution.

9. Find the speed of light in (a) flint glass, (b) water, and
(c) cubic zirconia.

10. A light ray initially in water enters a transparent sub-
stance at an angle of incidence of 37.0°, and the trans-
mitted ray is refracted at an angle of 25.0°. Calculate
the speed of light in the transparent substance.

11. A ray of light strikes a flat block of glass of
thickness 2.00 cm at an angle of 30.0° with the normal.
Trace the light beam through the glass, and find the an-
gles of incidence and refraction at each surface.

12. Light of wavelength 436 nm in air enters a fishbowl
filled with water and then exits through the crown glass
wall of the container. What is the wavelength of the
light (a) in the water and (b) in the glass?

(n $ 1.50)

Mirror Mirror

1.00 m

1.00 m

Incident beam
5.00°

Mirror
2

Mirror
1

Light
beam

P

40.0°

1.25 m

Motor

Detector

Beam

d

θ

ω
θ

15. How many times will the incident beam shown in Figure
P35.15 be reflected by each of the parallel mirrors?

13. An opaque cylindrical tank with an open top has a di-
ameter of 3.00 m and is completely filled with water.
When the setting Sun reaches an angle of 28.0° above
the horizon, sunlight ceases to illuminate any part of
the bottom of the tank. How deep is the tank?

14. The angle between the two mirrors illustrated in Figure
P35.14 is a right angle. The beam of light in the vertical
plane P strikes mirror 1 as shown. (a) Determine the
distance that the reflected light beam travels before
striking mirror 2. (b) In what direction does the light
beam travel after being reflected from mirror 2?

Figure P35.4

Figure P35.14

Figure P35.15

16. When the light illustrated in Figure P35.16 passes
through the glass block, it is shifted laterally by the dis-
tance d. If what is the value of d ?

17. Find the time required for the light to pass through the
glass block described in Problem 16.

18. The light beam shown in Figure P35.18 makes an angle
of 20.0° with the normal line NN % in the linseed oil. De-
termine the angles " and "%. (The index of refraction
for linseed oil is 1.48.)

n $ 1.50,
WEB
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19. Two light pulses are emitted simultaneously from a
source. Both pulses travel to a detector, but one first
passes through 6.20 m of ice. Determine the difference
in the pulses’ times of arrival at the detector.

20. When you look through a window, by how much time is
the light you see delayed by having to go through glass
instead of air? Make an order-of-magnitude estimate on
the basis of data you specify. By how many wavelengths
is it delayed?

21. Light passes from air into flint glass. (a) What angle of
incidence must the light have if the component of its
velocity perpendicular to the interface is to remain con-
stant? (b) Can the component of velocity parallel to the
interface remain constant during refraction?

22. The reflecting surfaces of two intersecting flat mirrors
are at an angle of " (0° & " & 90°), as shown in Figure

θ

β

Linseed oil

Water

20.0°

N ′

N

θ

 ′θ

Air

2.00 cm

d

30.0°

Figure P35.16 Problems 16 and 17.

Figure P35.18

Figure P35.22

P35.22. If a light ray strikes the horizontal mirror, show
that the emerging ray will intersect the incident ray at
an angle of 

23. A light ray enters the atmosphere of a planet and de-
scends vertically 20.0 km to the surface. The index of
refraction where the light enters the atmosphere is
1.000, and it increases linearly to the surface where it
has a value of 1.005. (a) How long does it take the ray to
traverse this path? (b) Compare this to the time it takes
in the absence of an atmosphere.

24. A light ray enters the atmosphere of a planet and de-
scends vertically to the surface a distance h . The index
of refraction where the light enters the atmosphere is
1.000, and it increases linearly to the surface where it
has a value of n . (a) How long does it take the ray to tra-
verse this path? (b) Compare this to the time it takes in
the absence of an atmosphere.

Section 35.7 Dispersion and Prisms
25. A narrow white light beam is incident on a block of

fused quartz at an angle of 30.0°. Find the angular
width of the light beam inside the quartz.

26. A ray of light strikes the midpoint of one face of an
equiangular glass prism at an angle of inci-
dence of 30.0°. Trace the path of the light ray through
the glass, and find the angles of incidence and refrac-
tion at each surface.

27. A prism that has an apex angle of 50.0° is made of cubic
zirconia, with What is its angle of minimum
deviation?

28. Light with a wavelength of 700 nm is incident on the
face of a fused quartz prism at an angle of 75.0° (with
respect to the normal to the surface). The apex angle of
the prism is 60.0°. Using the value of n from Figure
35.20, calculate the angle (a) of refraction at this first
surface, (b) of incidence at the second surface, (c) of
refraction at the second surface, and (d) between the
incident and emerging rays.

29. The index of refraction for violet light in silica flint
glass is 1.66, and that for red light is 1.62. What is the
angular dispersion of visible light passing through a
prism of apex angle 60.0° if the angle of incidence is
50.0°? (See Fig. P35.29.)

30. Show that if the apex angle ' of a prism is small, an ap-
proximate value for the angle of minimum deviation is
(min $ (n ) 1)'.

31. A triangular glass prism with an apex angle of ' $ 60.0°
has an index of refraction (Fig. P35.31). What
is the smallest angle of incidence "1 for which a light
ray can emerge from the other side?

32. A triangular glass prism with an apex angle of ' has an
index of refraction n (Fig. P35.31). What is the smallest
angle of incidence "1 for which a light ray can emerge
from the other side?

n $ 1.50

n $ 2.20.

(n $ 1.50)

* $ 180+ ) 2".

WEB
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33. An experimental apparatus includes a prism made of
sodium chloride. The angle of minimum deviation for
light of wavelength 589 nm is to be 10.0°. What is the
required apex angle of the prism?

34. A triangular glass prism with an apex angle of 60.0° has
an index of refraction of 1.50. (a) Show that if its angle
of incidence on the first surface is "1 $ 48.6°, light will
pass symmetrically through the prism, as shown in Fig-
ure 35.26. (b) Find the angle of deviation (min for "1 $
48.6°. (c) Find the angle of deviation if the angle of in-
cidence on the first surface is 45.6°. (d) Find the angle
of deviation if "1 $ 51.6°.

Section 35.8 Total Internal Reflection
35. For 589-nm light, calculate the critical angle for the 

following materials surrounded by air: (a) diamond, 
(b) flint glass, and (c) ice.

36. Repeat Problem 35 for the situation in which the mate-
rials are surrounded by water.

37. Consider a common mirage formed by super-heated 
air just above a roadway. A truck driver whose eyes are
2.00 m above the road, where looks for-
ward. She perceives the illusion of a patch of water
ahead on the road, where her line of sight makes an an-
gle of 1.20° below the horizontal. Find the index of re-
fraction of the air just above the road surface. (Hint:
Treat this as a problem in total internal reflection.)

38. Determine the maximum angle " for which the light

n $ 1.000 3,

rays incident on the end of the pipe shown in Figure
P35.38 are subject to total internal reflection along the
walls of the pipe. Assume that the pipe has an index of
refraction of 1.36 and the outside medium is air.

39. A glass fiber is submerged in water
What is the critical angle for light to stay in-

side the optical fiber?
40. A glass cube is placed on a newspaper, which rests on a

table. A person reads all of the words the cube covers,
through all of one vertical side. Determine the maxi-
mum possible index of refraction of the glass.

41. A large Lucite cube has a small air bubble (a
defect in the casting process) below one surface. When
a penny (diameter, 1.90 cm) is placed directly over the
bubble on the outside of the cube, one cannot see the
bubble by looking down into the cube at any angle.
However, when a dime (diameter, 1.75 cm) is placed di-
rectly over it, one can see the bubble by looking down
into the cube. What is the range of the possible depths
of the air bubble beneath the surface?

42. A room contains air in which the speed of sound is 
343 m/s. The walls of the room are made of concrete,
in which the speed of sound is 1 850 m/s. (a) Find the
critical angle for total internal reflection of sound at the
concrete–air boundary. (b) In which medium must the
sound be traveling to undergo total internal reflection?
(c) “A bare concrete wall is a highly efficient mirror for
sound.” Give evidence for or against this statement.

43. In about 1965, engineers at the Toro Company invented
a gasoline gauge for small engines, diagrammed in Fig-
ure P35.43. The gauge has no moving parts. It consists
of a flat slab of transparent plastic fitting vertically into
a slot in the cap on the gas tank. None of the plastic has
a reflective coating. The plastic projects from the hori-
zontal top down nearly to the bottom of the opaque
tank. Its lower edge is cut with facets making angles of
45° with the horizontal. A lawnmower operator looks
down from above and sees a boundary between bright
and dark on the gauge. The location of the boundary,
across the width of the plastic, indicates the quantity of
gasoline in the tank. Explain how the gauge works. Ex-
plain the design requirements, if any, for the index of
refraction of the plastic.

(n $ 1.59)

(n $ 1.33).
(n $ 1.50)
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β

Figure P35.31

Figure P35.38
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(Optional)
Section 35.9 Fermat’s Principle

44. The shoreline of a lake runs from east to west. A swim-
mer gets into trouble 20.0 m out from shore and 26.0 m
to the east of a lifeguard, whose station is 16.0 m in
from the shoreline. The lifeguard takes a negligible
amount of time to accelerate. He can run at 7.00 m/s
and swim at 1.40 m/s. To reach the swimmer as quickly
as possible, in what direction should the lifeguard start
running? You will need to solve a transcendental equa-
tion numerically.

ADDITIONAL PROBLEMS
45. A narrow beam of light is incident from air onto a glass

surface with an index of refraction of 1.56. Find the an-
gle of incidence for which the corresponding angle of
refraction is one half the angle of incidence. (Hint: You
might want to use the trigonometric identity sin 2" $
2 sin " cos ".)

46. (a) Consider a horizontal interface between air above
and glass with an index of 1.55 below. Draw a light ray
incident from the air at an angle of incidence of 30.0°.
Determine the angles of the reflected and refracted rays
and show them on the diagram. (b) Suppose instead
that the light ray is incident from the glass at an angle
of incidence of 30.0°. Determine the angles of the re-
flected and refracted rays and show all three rays on a
new diagram. (c) For rays incident from the air onto
the air–glass surface, determine and tabulate the angles
of reflection and refraction for all the angles of inci-
dence at 10.0° intervals from 0 to 90.0°. (d) Do the
same for light rays traveling up to the interface through
the glass.

47. A small underwater pool light is 1.00 m below the sur-
face. The light emerging from the water forms a circle

on the water’s surface. What is the diameter of this
circle?

48. One technique for measuring the angle of a prism is
shown in Figure P35.48. A parallel beam of light is di-
rected on the angle so that the beam reflects from op-
posite sides. Show that the angular separation of the
two beams is given by B $ 2A.

WEB

Figure P35.43

A

B

θ
θi

r

Figure P35.48

49. The walls of a prison cell are perpendicular to the four
cardinal compass directions. On the first day of spring,
light from the rising Sun enters a rectangular window in
the eastern wall. The light traverses 2.37 m horizontally
to shine perpendicularly on the wall opposite the win-
dow. A young prisoner observes the patch of light mov-
ing across this western wall and for the first time forms
his own understanding of the rotation of the Earth. 
(a) With what speed does the illuminated rectangle
move? (b) The prisoner holds a small square mirror flat
against the wall at one corner of the rectangle of light.
The mirror reflects light back to a spot on the eastern
wall close beside the window. How fast does the smaller
square of light move across that wall? (c) Seen from a
latitude of 40.0° north, the rising Sun moves through
the sky along a line making a 50.0° angle with the south-
eastern horizon. In what direction does the rectangular
patch of light on the western wall of the prisoner’s cell
move? (d) In what direction does the smaller square of
light on the eastern wall move?

50. The laws of refraction and reflection are the same for
sound as for light. The speed of sound in air is 340 m/s,
and that of sound in water is 1 510 m/s. If a sound wave
approaches a plane water surface at an angle of inci-
dence of 12.0°, what is the angle of refraction?

51. Cold sodium atoms (near absolute zero) in a state
called a Bose–Einstein condensate can slow the speed of
light from its normally high value to a speed approach-
ing that of an automobile in a city. The speed of light 
in one such medium was recorded as 61.15 km/h. 
(a) Find the index of refraction of this medium. 
(b) What is the critical angle for total internal reflec-
tion if the condensate is surrounded by vacuum?

52. A narrow beam of white light is incident at 25.0° onto 
a slab of heavy flint glass 5.00 cm thick. The indices of
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refraction of the glass at wavelengths of 400 nm and 
700 nm are 1.689 and 1.642, respectively. Find the width
of the visible beam as it emerges from the slab.

53. A hiker stands on a mountain peak near sunset and 
observes a rainbow caused by water droplets in the air
8.00 km away. The valley is 2.00 km below the mountain
peak and entirely flat. What fraction of the complete
circular arc of the rainbow is visible to the hiker? (See
Fig. 35.25.)

54. A fish is at a depth d under water. Take the index of re-
fraction of water as 4/3. Show that when the fish is
viewed at an angle of refraction "1 , the apparent depth
z of the fish is

55. A laser beam strikes one end of a slab of material, as
shown in Figure P35.55. The index of refraction of the
slab is 1.48. Determine the number of internal reflec-
tions of the beam before it emerges from the opposite
end of the slab.

z $
3d cos "1

!7 , 9 cos2 "1

56. When light is normally incident on the interface be-
tween two transparent optical media, the intensity of
the reflected light is given by the expression

In this equation, S1 represents the average magnitude
of the Poynting vector in the incident light (the inci-
dent intensity), is the reflected intensity, and n1 and
n2 are the refractive indices of the two media. (a) What
fraction of the incident intensity is reflected for 589-nm
light normally incident on an interface between air and
crown glass? (b) In part (a), does it matter whether the
light is in the air or in the glass as it strikes the inter-
face? (c) A Bose–Einstein condensate (see Problem 51)
has an index of refraction of 1.76 ! 107. Find the per-
cent reflection for light falling perpendicularly on its
surface. What would the condensate look like?

57. Refer to Problem 56 for a description of the reflected
intensity of light normally incident on an interface be-
tween two transparent media. (a) When light is nor-
mally incident on an interface between vacuum and a
transparent medium of index n, show that the intensity
S2 of the transmitted light is given by the expression

S %1

S %1 $ ! n2 ) n1

n2 , n1
"2

S1

WEB

WEB

(b) Light travels perpendicularly
through a diamond slab, surrounded by air, with paral-
lel surfaces of entry and exit. Apply the transmission
fraction in part (a) to find the approximate overall
transmission through the slab of diamond as a percent-
age. Ignore light reflected back and forth within the
slab.

58. This problem builds upon the results of Problems 56
and 57. Light travels perpendicularly through a dia-
mond slab, surrounded by air, with parallel surfaces of
entry and exit. What fraction of the incident intensity is
the intensity of the transmitted light? Include the ef-
fects of light reflected back and forth inside the slab.

59. The light beam shown in Figure P35.59 strikes surface 
2 at the critical angle. Determine the angle of inci-
dence, "1 .

S2/S1 $ 4n/(n , 1)2.

60. A 4.00-m-long pole stands vertically in a lake having a
depth of 2.00 m. When the Sun is 40.0° above the hori-
zontal, determine the length of the pole’s shadow on
the bottom of the lake. Take the index of refraction for
water to be 1.33.

61. A light ray of wavelength 589 nm is incident at an angle
" on the top surface of a block of polystyrene, as shown
in Figure P35.61. (a) Find the maximum value of " for
which the refracted ray undergoes total internal reflec-

Figure P35.55

Surface 1

Su
rf

ac
e 

2

42.0°

60.0°

1θ

42.0°

42.0 cm

50.0°
3.10 mmn  = 1.48

Figure P35.59

Figure P35.61

θ
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66. A transparent cylinder of radius m has a mir-
rored surface on its right half, as shown in Figure
P35.66. A light ray traveling in air is incident on the left
side of the cylinder. The incident light ray and exiting
light ray are parallel and m. Determine the in-
dex of refraction of the material.

d $ 2.00

R $ 2.00

64. A material having an index of refraction n is sur-
rounded by a vacuum and is in the shape of a quarter
circle of radius R (Fig. P35.64). A light ray parallel to
the base of the material is incident from the left at a dis-
tance of L above the base and emerges out of the mater-
ial at the angle ". Determine an expression for ".

tion at the left vertical face of the block. Repeat the cal-
culation for the case in which the polystyrene block is
immersed in (b) water and (c) carbon disulfide.

62. A ray of light passes from air into water. For its deviation
angle to be 10.0°, what must be its angle
of incidence?

63. A shallow glass dish is 4.00 cm wide at the bottom, as
shown in Figure P35.63. When an observer’s eye is posi-
tioned as shown, the observer sees the edge of the bot-
tom of the empty dish. When this dish is filled with wa-
ter, the observer sees the center of the bottom of the
dish. Find the height of the dish.

( $ # "1 ) "2 #

65. Derive the law of reflection (Eq. 35.2) from Fermat’s
principle of least time. (See the procedure outlined in
Section 35.9 for the derivation of the law of refraction
from Fermat’s principle.)

Figure P35.63

Figure P35.64

Outgoing ray

θ

n

R

Incoming ray

L

4.00 cm

h

Figure P35.66

Mirrored
surface

Incident ray

Exiting ray

R

d
C

n

67. A. H. Pfund’s method for measuring the index of re-
fraction of glass is illustrated in Figure P35.67. One face
of a slab of thickness t is painted white, and a small hole
scraped clear at point P serves as a source of diverging
rays when the slab is illuminated from below. Ray PBB %
strikes the clear surface at the critical angle and is to-
tally reflected, as are rays such as PCC %. Rays such as
PAA% emerge from the clear surface. On the painted
surface there appears a dark circle of diameter d , sur-
rounded by an illuminated region, or halo. (a) Derive a
formula for n in terms of the measured quantities d and
t . (b) What is the diameter of the dark circle if 
for a slab 0.600 cm thick? (c) If white light is used, the
critical angle depends on color caused by dispersion. Is
the inner edge of the white halo tinged with red light or
violet light? Explain.

n $ 1.52

Figure P35.67

A′

B ′C ′

t

C B A

P
d

Clear
surface

Painted
surface

68. A light ray traveling in air is incident on one face of a
right-angle prism with an index of refraction of

as shown in Figure P35.68, and the ray follows
the path shown in the figure. If " $ 60.0° and the base
of the prism is mirrored, what is the angle - made by

n $ 1.50,
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ANSWERS TO QUICK QUIZZES

35.3 The two rays on the right result from total internal re-
flection at the right face of the prism. Because all of the
light in these rays is reflected (rather than partly re-
fracted), these two rays are brightest. The light from the
other three rays is divided into reflected and refracted
parts.

35.1 Beams ! and " are reflected; beams # and $ are re-
fracted.

35.2 Fused quartz. An ideal lens would have an index of re-
fraction that does not vary with wavelength so that all
colors would be bent through the same angle by the
lens. Of the three choices, fused quartz has the least
variation in n across the visible spectrum. Thus, it is the
best choice for a single-element lens.

Angle of Incidence Angle of Refraction
(degrees) (degrees)

10.0 7.5
20.0 15.1
30.0 22.3
40.0 28.7
50.0 35.2
60.0 40.3
70.0 45.3
80.0 47.7

tion. Use the resulting plot to deduce the index of re-
fraction of water.

the outgoing ray with the normal to the right face of the
prism?

69. A light ray enters a rectangular block of plastic at an an-
gle of "1 $ 45.0° and emerges at an angle of "2 $ 76.0°,
as shown in Figure P35.69. (a) Determine the index of
refraction for the plastic. (b) If the light ray enters the
plastic at a point cm from the bottom edge,
how long does it take the light ray to travel through the
plastic?

70. Students allow a narrow beam of laser light to strike a
water surface. They arrange to measure the angle of re-
fraction for selected angles of incidence and record the
data shown in the accompanying table. Use the data to
verify Snell’s law of refraction by plotting the sine of the
angle of incidence versus the sine of the angle of refrac-

L $ 50.0

Figure P35.68
Figure P35.69

n
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1θ
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θ
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90° – θ





2.2 This is the Nearest One Head 1139

c h a p t e r

Geometric Optics

P U Z Z L E R

Most car headlights have lines across
their faces, like those shown here. With-
out these lines, the headlights either
would not function properly or would be
much more likely to break from the jar-
ring of the car on a bumpy road. What 
is the purpose of the lines? (George
Semple)

C h a p t e r  O u t l i n e

36.1 Images Formed by Flat Mirrors
36.2 Images Formed by Spherical

Mirrors
36.3 Images Formed by Refraction
36.4 Thin Lenses
36.5 (Optional) Lens Aberrations

36.6 (Optional) The Camera
36.7 (Optional) The Eye
36.8 (Optional) The Simple Magnifier
36.9 (Optional) The Compound

Microscope
36.10 (Optional) The Telescope

P U Z Z L E R

1139
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his chapter is concerned with the images that result when spherical waves fall
on flat and spherical surfaces. We find that images can be formed either by re-
flection or by refraction and that mirrors and lenses work because of reflection

and refraction. We continue to use the ray approximation and to assume that
light travels in straight lines. Both of these steps lead to valid predictions in the
field called geometric optics. In subsequent chapters, we shall concern ourselves
with interference and diffraction effects—the objects of study in the field of wave
optics.

IMAGES FORMED BY FLAT MIRRORS
We begin by considering the simplest possible mirror, the flat mirror. Consider a
point source of light placed at O in Figure 36.1, a distance p in front of a flat mir-
ror. The distance p is called the object distance. Light rays leave the source and
are reflected from the mirror. Upon reflection, the rays continue to diverge
(spread apart), but they appear to the viewer to come from a point I behind the
mirror. Point I is called the image of the object at O. Regardless of the system un-
der study, we always locate images by extending diverging rays back to a point from
which they appear to diverge. Images are located either at the point from
which rays of light actually diverge or at the point from which they appear
to diverge. Because the rays in Figure 36.1 appear to originate at I, which is a dis-
tance q behind the mirror, this is the location of the image. The distance q is
called the image distance.

Images are classified as real or virtual. A real image is formed when light
rays pass through and diverge from the image point; a virtual image is
formed when the light rays do not pass through the image point but appear
to diverge from that point. The image formed by the mirror in Figure 36.1 is vir-
tual. The image of an object seen in a flat mirror is always virtual. Real images can
be displayed on a screen (as at a movie), but virtual images cannot be displayed on
a screen.

We can use the simple geometric techniques shown in Figure 36.2 to examine
the properties of the images formed by flat mirrors. Even though an infinite num-
ber of light rays leave each point on the object, we need to follow only two of them
to determine where an image is formed. One of those rays starts at P, follows a hor-
izontal path to the mirror, and reflects back on itself. The second ray follows the
oblique path PR and reflects as shown, according to the law of reflection. An ob-
server in front of the mirror would trace the two reflected rays back to the point at
which they appear to have originated, which is point P! behind the mirror. A con-
tinuation of this process for points other than P on the object would result in a vir-
tual image (represented by a yellow arrow) behind the mirror. Because triangles
PQR and P !QR are congruent, PQ " P!Q. We conclude that the image formed by
an object placed in front of a flat mirror is as far behind the mirror as the
object is in front of the mirror.

Geometry also reveals that the object height h equals the image height h!. Let
us define lateral magnification M as follows:

(36.1)M !
Image height
Object height

"
h!

h

36.1

T

Lateral magnification

14.6

Mirror

O I

qp

Figure 36.2 A geometric con-
struction that is used to locate the
image of an object placed in front
of a flat mirror. Because the trian-
gles PQR and P !QR are congruent,

and h " h!." p " " " q "

Figure 36.1 An image formed by
reflection from a flat mirror. The
image point I is located behind the
mirror a perpendicular distance q
from the mirror (the image dis-
tance). Study of Figure 36.2 shows
that this image distance has the
same magnitude as the object dis-
tance p.

Object θ
θh R

QP P ′

Image

p q

h′
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This is a general definition of the lateral magnification for any type of mirror. For
a flat mirror, because 

Finally, note that a flat mirror produces an image that has an apparent
left–right reversal. You can see this reversal by standing in front of a mirror and
raising your right hand, as shown in Figure 36.3. The image you see raises its left
hand. Likewise, your hair appears to be parted on the side opposite your real part,
and a mole on your right cheek appears to be on your left cheek.

This reversal is not actually a left–right reversal. Imagine, for example, lying
on your left side on the floor, with your body parallel to the mirror surface. Now
your head is on the left and your feet are on the right. If you shake your feet, the
image does not shake its head! If you raise your right hand, however, the image
again raises its left hand. Thus, the mirror again appears to produce a left–right
reversal but in the up–down direction!

The reversal is actually a front–back reversal, caused by the light rays going for-
ward toward the mirror and then reflecting back from it. An interesting exercise is
to stand in front of a mirror while holding an overhead transparency in front of
you so that you can read the writing on the transparency. You will be able to read
the writing on the image of the transparency, also. You may have had a similar ex-
perience if you have attached a transparent decal with words on it to the rear win-
dow of your car. If the decal can be read from outside the car, you can also read it
when looking into your rearview mirror from inside the car.

We conclude that the image that is formed by a flat mirror has the following
properties.

h! " h.M " 1

• The image is as far behind the mirror as the object is in front of the mirror.
• The image is unmagnified, virtual, and upright. (By upright we mean that, if

the object arrow points upward as in Figure 36.2, so does the image arrow.)
• The image has front–back reversal.

QuickLab
View yourself in a full-length mirror.
Standing close to the mirror, place
one piece of tape at the top of the im-
age of your head and another piece
at the very bottom of the image of
your feet. Now step back a few meters
and observe your image. How big is it
relative to its original size? How does
the distance between the pieces of
tape compare with your actual
height? You may want to refer to
Problem 3.

Figure 36.3 The image in the
mirror of a person’s right hand 
is reversed front to back. This
makes the right hand appear to be
a left hand. Notice that the thumb
is on the left side of both real
hands and on the left side of the
image. That the thumb is not on
the right side of the image indi-
cates that there is no left-to-right
reversal.

Mt. Hood reflected in Trillium
Lake. Why is the image inverted
and the same size as the moun-
tain?
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2 1

A B C D E

Figure 36.4

Multiple Images Formed by Two MirrorsCONCEPTUAL EXAMPLE 36.1
Two flat mirrors are at right angles to each other, as illus-
trated in Figure 36.5, and an object is placed at point O. In
this situation, multiple images are formed. Locate the posi-
tions of these images.

Solution The image of the object is at I1 in mirror 1 and
at I2 in mirror 2. In addition, a third image is formed at I3 .
This third image is the image of I1 in mirror 2 or, equiva-
lently, the image of I2 in mirror 1. That is, the image at I1 (or
I2) serves as the object for I3 . Note that to form this image at
I3 , the rays reflect twice after leaving the object at O .

Figure 36.5 When an object is placed in front of two mutually
perpendicular mirrors as shown, three images are formed.

Figure 36.6 An optical illusion.

Mirror 2

Mirror 1

I1 I3

I2O

The Levitated ProfessorCONCEPTUAL EXAMPLE 36.2
The professor in the box shown in Figure 36.6 appears to be
balancing himself on a few fingers, with his feet off the floor.
He can maintain this position for a long time, and he appears
to defy gravity. How was this illusion created?

Solution This is one of many magicians’ optical illusions
that make use of a mirror. The box in which the professor
stands is a cubical frame that contains a flat vertical mirror po-
sitioned in a diagonal plane of the frame. The professor strad-
dles the mirror so that one foot, which you see, is in front of
the mirror, and one foot, which you cannot see, is behind the
mirror. When he raises the foot in front of the mirror, the re-
flection of that foot also rises, so he appears to float in air.

In the overhead view of Figure 36.4, the image of the stone seen by observer 1 is at C .
Where does observer 2 see the image—at A , at B , at C , at D , at E , or not at all?

Quick Quiz 36.1
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IMAGES FORMED BY SPHERICAL MIRRORS
Concave Mirrors

A spherical mirror, as its name implies, has the shape of a section of a sphere.
This type of mirror focuses incoming parallel rays to a point, as demonstrated by
the colored light rays in Figure 36.8. Figure 36.9a shows a cross-section of a spheri-
cal mirror, with its surface represented by the solid, curved black line. (The blue
band represents the structural support for the mirrored surface, such as a curved
piece of glass on which the silvered surface is deposited.) Such a mirror, in which
light is reflected from the inner, concave surface, is called a concave mirror. The
mirror has a radius of curvature R , and its center of curvature is point C . Point V
is the center of the spherical section, and a line through C and V is called the
principal axis of the mirror.

Now consider a point source of light placed at point O in Figure 36.9b, where
O is any point on the principal axis to the left of C . Two diverging rays that origi-
nate at O are shown. After reflecting from the mirror, these rays converge (come
together) at the image point I. They then continue to diverge from I as if an object
were there. As a result, we have at point I a real image of the light source at O.

We shall consider in this section only rays that diverge from the object and
make a small angle with the principal axis. Such rays are called paraxial rays. All

36.2

The Tilting Rearview MirrorCONCEPTUAL EXAMPLE 36.3
Most rearview mirrors in cars have a day setting and a night
setting. The night setting greatly diminishes the intensity of
the image in order that lights from trailing vehicles do not
blind the driver. How does such a mirror work?

Solution Figure 36.7 shows a cross-sectional view of a
rearview mirror for each setting. The unit consists of a re-
flective coating on the back of a wedge of glass. In the day
setting (Fig. 36.7a), the light from an object behind the car
strikes the glass wedge at point 1. Most of the light enters the
wedge, refracting as it crosses the front surface, and reflects

from the back surface to return to the front surface, where it
is refracted again as it re-enters the air as ray B (for bright).
In addition, a small portion of the light is reflected at the
front surface of the glass, as indicated by ray D (for dim).

This dim reflected light is responsible for the image that is
observed when the mirror is in the night setting (Fig. 36.7b).
In this case, the wedge is rotated so that the path followed by
the bright light (ray B) does not lead to the eye. Instead, the
dim light reflected from the front surface of the wedge trav-
els to the eye, and the brightness of trailing headlights does
not become a hazard.

14.7

B

D
1

Daytime setting

Incident
light

Reflecting
side of mirror

(a)

B

D

Incident
light

Nighttime setting

(b)

Figure 36.7 Cross-sectional views of a rearview mirror. (a) With the day setting, the silvered back surface of the mirror reflects a bright ray B
into the driver’s eyes. (b) With the night setting, the glass of the unsilvered front surface of the mirror reflects a dim ray D into the driver’s eyes.
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such rays reflect through the image point, as shown in Figure 36.9b. Rays that are
far from the principal axis, such as those shown in Figure 36.10, converge to other
points on the principal axis, producing a blurred image. This effect, which is
called spherical aberration, is present to some extent for any spherical mirror
and is discussed in Section 36.5.

We can use Figure 36.11 to calculate the image distance q from a knowledge
of the object distance p and radius of curvature R . By convention, these distances
are measured from point V. Figure 36.11 shows two rays leaving the tip of the ob-
ject. One of these rays passes through the center of curvature C of the mirror, hit-
ting the mirror perpendicular to the mirror surface and reflecting back on itself.
The second ray strikes the mirror at its center (point V ) and reflects as shown,
obeying the law of reflection. The image of the tip of the arrow is located at the
point where these two rays intersect. From the gold right triangle in Figure 36.11,
we see that tan and from the blue right triangle we see that tan u

The negative sign is introduced because the image is inverted, so h! is
taken to be negative. Thus, from Equation 36.1 and these results, we find that the
magnification of the mirror is

(36.2)M "
h!

h
" #

q
p

" #h!/q.
$ " h/p,

Figure 36.8 Red, blue, and
green light rays are reflected by 
a curved mirror. Note that the 
point where the three colors meet
is white.

Mirror

C V

(a)

Center of
curvature R

Principal
axis

Mirror

O VI

(b)

C

Figure 36.9 (a) A concave mirror of radius R. The center of curvature C is located on the
principal axis. (b) A point object placed at O in front of a concave spherical mirror of radius R ,
where O is any point on the principal axis farther than R from the mirror surface, forms a real
image at I. If the rays diverge from O at small angles, they all reflect through the same image
point.

Figure 36.10 Rays diverging
from the object at large angles
from the principal axis reflect from
a spherical concave mirror to inter-
sect the principal axis at different
points, resulting in a blurred im-
age. This condition is called 
spherical aberration.

Figure 36.11 The image formed by a spherical concave mirror when the object O lies outside
the center of curvature C .
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O
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Focal length

Mirror equation in terms of R

Figure 36.12 (a) Light rays from a distant object (p # %) reflect from a concave mirror
through the focal point F. In this case, the image distance q # R/2 " f, where f is the focal
length of the mirror. (b) Reflection of parallel rays from a concave mirror.

We also note from the two triangles in Figure 36.11 that have & as one angle
that

from which we find that

(36.3)

If we compare Equations 36.2 and 36.3, we see that

Simple algebra reduces this to

(36.4)

This expression is called the mirror equation. It is applicable only to paraxial
rays.

If the object is very far from the mirror—that is, if p is so much greater than R
that p can be said to approach infinity—then 1/ and we see from Equation
36.4 that That is, when the object is very far from the mirror, the image
point is halfway between the center of curvature and the center point on the mir-
ror, as shown in Figure 36.12a. The incoming rays from the object are essentially
parallel in this figure because the source is assumed to be very far from the mirror.
We call the image point in this special case the focal point F and the image dis-
tance the focal length f, where

(36.5)f "
R
2

q # R/2.
p # 0,

1
p

'
1
q

"
2
R

R # q
p # R

"
q
p

h!

h
" #

R # q
p # R

tan & "
h

p # R
  and  tan & " #

h!

R # q

C F

R

f

(a) (b)
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Focal length is a parameter particular to a given mirror and therefore can be
used to compare one mirror with another. The mirror equation can be expressed
in terms of the focal length:

(36.6)

Notice that the focal length of a mirror depends only on the curvature of the mir-
ror and not on the material from which the mirror is made. This is because the
formation of the image results from rays reflected from the surface of the mater-
ial. We shall find in Section 36.4 that the situation is different for lenses; in that
case the light actually passes through the material.

Convex Mirrors

Figure 36.13 shows the formation of an image by a convex mirror— that is, one
silvered so that light is reflected from the outer, convex surface. This is some-
times called a diverging mirror because the rays from any point on an object
diverge after reflection as though they were coming from some point behind
the mirror. The image in Figure 36.13 is virtual because the reflected rays only
appear to originate at the image point, as indicated by the dashed lines. Fur-
thermore, the image is always upright and smaller than the object. This type of
mirror is often used in stores to foil shoplifters. A single mirror can be used to
survey a large field of view because it forms a smaller image of the interior of
the store.

We do not derive any equations for convex spherical mirrors because we can
use Equations 36.2, 36.4, and 36.6 for either concave or convex mirrors if we ad-
here to the following procedure. Let us refer to the region in which light rays
move toward the mirror as the front side of the mirror, and the other side as the
back side. For example, in Figures 36.10 and 36.12, the side to the left of the mir-
rors is the front side, and the side to the right of the mirrors is the back side. Fig-
ure 36.14 states the sign conventions for object and image distances, and Table
36.1 summarizes the sign conventions for all quantities.

1
p

'
1
q

"
1
f

Mirror equation in terms of f

Front
Back

O I F C

p q

Front, or
real, side

Reflected light

Back, or
virtual, side

p and q negative

No light

p and q positive

Incident light

Convex or
concave mirror

Figure 36.13 Formation of an image by a spherical convex mirror. The image formed by the
real object is virtual and upright.

Figure 36.14 Signs of p and q for
convex and concave mirrors.
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Ray Diagrams for Mirrors

The positions and sizes of images formed by mirrors can be conveniently deter-
mined with ray diagrams. These graphical constructions reveal the nature of the
image and can be used to check results calculated from the mirror and magnifi-
cation equations. To draw a ray diagram, we need to know the position of the ob-
ject and the locations of the mirror’s focal point and center of curvature. We
then draw three rays to locate the image, as shown by the examples in Figure
36.15. These rays all start from the same object point and are drawn as follows.
We may choose any point on the object; here, we choose the top of the object for
simplicity:

TABLE 36.1 Sign Conventions for Mirrors

p is positive if object is in front of mirror (real object).
p is negative if object is in back of mirror (virtual object).

q is positive if image is in front of mirror (real image).
q is negative if image is in back of mirror (virtual image).

Both f and R are positive if center of curvature is in front of mirror (concave mirror).
Both f and R are negative if center of curvature is in back of mirror (convex mirror).

If M is positive, image is upright.
If M is negative, image is inverted.

Reflection of parallel lines from a
convex cylindrical mirror. The im-
age is virtual, upright, and reduced
in size.

• Ray 1 is drawn from the top of the object parallel to the principal axis and is
reflected through the focal point F.

• Ray 2 is drawn from the top of the object through the focal point and is re-
flected parallel to the principal axis.

• Ray 3 is drawn from the top of the object through the center of curvature C
and is reflected back on itself.

The intersection of any two of these rays locates the image. The third ray serves as
a check of the construction. The image point obtained in this fashion must always
agree with the value of q calculated from the mirror equation.

With concave mirrors, note what happens as the object is moved closer to the
mirror. The real, inverted image in Figure 36.15a moves to the left as the object
approaches the focal point. When the object is at the focal point, the image is infi-
nitely far to the left. However, when the object lies between the focal point and the
mirror surface, as shown in Figure 36.15b, the image is virtual, upright, and en-
larged. This latter situation applies in the use of a shaving mirror or a makeup mir-
ror. Your face is closer to the mirror than the focal point, and you see an upright,
enlarged image of your face.

In a convex mirror (see Fig. 36.15c), the image of an object is always virtual,
upright, and reduced in size. In this case, as the object distance increases, the vir-
tual image decreases in size and approaches the focal point as p approaches infin-
ity. You should construct other diagrams to verify how image position varies with
object position.

QuickLab
Compare the images formed of your
face when you look first at the front
side and then at the back side of a
shiny soup spoon. Why do the two im-
ages look so different from each
other?
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(a)

1

2

3

C FO

Front Back

I

Principal axis

(b)

1

2

3
C F O I

Front Back

(c)

CFO I

1

2

3

Front Back

Figure 36.15 Ray diagrams for spherical mirrors, along with corresponding photographs of
the images of candles. (a) When the object is located so that the center of curvature lies between
the object and a concave mirror surface, the image is real, inverted, and reduced in size. 
(b) When the object is located between the focal point and a concave mirror surface, the image
is virtual, upright, and enlarged. (c) When the object is in front of a convex mirror, the image is
virtual, upright, and reduced in size.
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The Image from a MirrorEXAMPLE 36.4

which means that rays originating from an object positioned
at the focal point of a mirror are reflected so that the image
is formed at an infinite distance from the mirror; that is, the
rays travel parallel to one another after reflection. This is the
situation in a flashlight, where the bulb filament is placed at
the focal point of a reflector, producing a parallel beam of
light.

(c) When the object is at p " 5.00 cm, it lies between the
focal point and the mirror surface, as shown in Figure
36.15b. Thus, we expect a magnified, virtual, upright image.
In this case, the mirror equation gives

The image is virtual because it is located behind the mirror,
as expected. The magnification is

The image is twice as large as the object, and the positive sign
for M indicates that the image is upright (see Fig. 36.15b).

Exercise At what object distance is the magnification
# 1.00?

Answer 20.0 cm.

M " #
q
p

" #$ #10.0 cm
5.00 cm % " 2.00

#10.0 cm q "

1
5.00 cm

'
1
q

"
1

10.0 cm

% q "Assume that a certain spherical mirror has a focal length of
' 10.0 cm. Locate and describe the image for object dis-
tances of (a) 25.0 cm, (b) 10.0 cm, and (c) 5.00 cm.

Solution Because the focal length is positive, we know that
this is a concave mirror (see Table 36.1). (a) This situation is
analogous to that in Figure 36.15a; hence, we expect the im-
age to be real and closer to the mirror than the object. Ac-
cording to the figure, it should also be inverted and reduced
in size. We find the image distance by using the Equation
36.6 form of the mirror equation:

The magnification is given by Equation 36.2:

The fact that the absolute value of M is less than unity tells us
that the image is smaller than the object, and the negative
sign for M tells us that the image is inverted. Because q is pos-
itive, the image is located on the front side of the mirror and
is real. Thus, we see that our predictions were correct.

(b) When the object distance is 10.0 cm, the object is lo-
cated at the focal point. Now we find that

1
10.0 cm

'
1
q

"
1

10.0 cm

M " #
q
p

" #
16.7 cm
25.0 cm

" #0.668

16.7 cm q "

1
25.0 cm

'
1
q

"
1

10.0 cm

 
1
p

'
1
q

"
1
f

 

The Image from a Convex MirrorEXAMPLE 36.5
A woman who is 1.5 m tall is located 3.0 m from an anti-
shoplifting mirror, as shown in Figure 36.16. The focal length
of the mirror is # 0.25 m. Find (a) the position of her image
and (b) the magnification.

Solution (a) This situation is depicted in Figure 36.15c.
We should expect to find an upright, reduced, virtual image.
To find the image position, we use Equation 36.6:

#0.23 m q "

 
1
q

"
1

#0.25 m
#

1
3.0 m

1
p

'
1
q

"
1
f

"
1

#0.25 m
 

Figure 36.16 Convex mirrors, often used for security in depart-
ment stores, provide wide-angle viewing.
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IMAGES FORMED BY REFRACTION
In this section we describe how images are formed when light rays are refracted at
the boundary between two transparent materials. Consider two transparent media
having indices of refraction n1 and n2 , where the boundary between the two me-
dia is a spherical surface of radius R (Fig. 36.17). We assume that the object at O is
in the medium for which the index of refraction is n1 , where Let us con-
sider the paraxial rays leaving O. As we shall see, all such rays are refracted at the
spherical surface and focus at a single point I, the image point.

Figure 36.18 shows a single ray leaving point O and focusing at point I. Snell’s
law of refraction applied to this refracted ray gives

Because $1 and $2 are assumed to be small, we can use the small-angle approxima-
tion sin $ # $ (angles in radians) and say that

Now we use the fact that an exterior angle of any triangle equals the sum of the
two opposite interior angles. Applying this rule to triangles OPC and PIC in Figure
36.18 gives

If we combine all three expressions and eliminate $1 and $2 , we find that

(36.7)

Looking at Figure 36.18, we see three right triangles that have a common vertical
leg of length d. For paraxial rays (unlike the relatively large-angle ray shown in Fig.

n1& ' n2( " (n2 # n1))

 ) " $2 ' (

$1 " & ' ) 

n1$1 " n2$2

n1 sin $1 " n2 sin $2

n1 * n2 .

36.3

The negative value of q indicates that her image is virtual, or
behind the mirror, as shown in Figure 36.15c.

(b) The magnification is

0.077M " #
q
p

" #$ #0.23 m
3.0 m % "

The image is much smaller than the woman, and it is upright
because M is positive.

Exercise Find the height of the image.

Answer 0.12 m.

n1 < n2

O I

p q

n2n1
R

Figure 36.17 An image formed by re-
fraction at a spherical surface. Rays mak-
ing small angles with the principal axis di-
verge from a point object at O and are
refracted through the image point I.
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36.18), the horizontal legs of these triangles are approximately p for the triangle
containing angle &, R for the triangle containing angle ), and q for the triangle
containing angle (. In the small-angle approximation, tan $ $, so we can write
the approximate relationships from these triangles as follows:

We substitute these expressions into Equation 36.7 and divide through by d to get

(36.8)

For a fixed object distance p, the image distance q is independent of the angle that
the ray makes with the axis. This result tells us that all paraxial rays focus at the
same point I.

As with mirrors, we must use a sign convention if we are to apply this equation
to a variety of cases. We define the side of the surface in which light rays originate
as the front side. The other side is called the back side. Real images are formed by
refraction in back of the surface, in contrast with mirrors, where real images are
formed in front of the reflecting surface. Because of the difference in location of
real images, the refraction sign conventions for q and R are opposite the reflection
sign conventions. For example, q and R are both positive in Figure 36.18. The sign
conventions for spherical refracting surfaces are summarized in Table 36.2.

We derived Equation 36.8 from an assumption that This assumption
is not necessary, however. Equation 36.8 is valid regardless of which index of re-
fraction is greater.

n1 * n2.

n1

p
'

n2

q
"

n2 # n1

R

tan & # & #
d
p
  tan ) # ) #

d
R
  tan ( # ( #

d
q

#

O

P

R

C

n1 n2

d

p q

I

1 2

α

θ θ

β γ

Figure 36.18 Geometry used to derive Equation 36.8.

TABLE 36.2 Sign Conventions for Refracting Surfaces

p is positive if object is in front of surface (real object).
p is negative if object is in back of surface (virtual object).

q is positive if image is in back of surface (real image).
q is negative if image is in front of surface (virtual image).

R is positive if center of curvature is in back of convex surface.
R is negative if center of curvature is in front of concave surface.



Flat Refracting Surfaces

If a refracting surface is flat, then R is infinite and Equation 36.8 reduces to

(36.9)

From this expression we see that the sign of q is opposite that of p. Thus, according
to Table 36.2, the image formed by a flat refracting surface is on the same
side of the surface as the object. This is illustrated in Figure 36.19 for the situa-
tion in which the object is in the medium of index n1 and n1 is greater than n2 . In
this case, a virtual image is formed between the object and the surface. If n1 is less
than n2 , the rays in the back side diverge from each other at lesser angles than
those in Figure 36.19. As a result, the virtual image is formed to the left of the
object.

 q " #
n2

n1
 p

n1

p
" #

n2

q
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O

I

q

p

n1 > n2

n1  n2

Figure 36.19 The image formed
by a flat refracting surface is virtual
and on the same side of the surface
as the object. All rays are assumed
to be paraxial.

Let’s Go Scuba Diving!CONCEPTUAL EXAMPLE 36.6
amount of refraction at the eye–air interface, and the light
from the object is focused on the retina.

(b) If a lens prescription is ground into the glass of a
mask, should the curved surface be on the inside of the
mask, the outside, or both?

Solution If a lens prescription is ground into the glass of
the mask so that the wearer can see without eyeglasses, only
the inside surface is curved. In this way the prescription is ac-
curate whether the mask is used under water or in air. If the
curvature were on the outer surface, the refraction at the
outer surface of the glass would change depending on
whether air or water were present on the outside of the mask.

It is well known that objects viewed under water with the
naked eye appear blurred and out of focus. However, a scuba
diver using a mask has a clear view of underwater objects. 
(a) Explain how this works, using the facts that the indices of
refraction of the cornea, water, and air are 1.376, 1.333, and
1.000 29, respectively.

Solution Because the cornea and water have almost iden-
tical indices of refraction, very little refraction occurs when a
person under water views objects with the naked eye. In this
case, light rays from an object focus behind the retina, result-
ing in a blurred image. When a mask is used, the air space be-
tween the eye and the mask surface provides the normal

Gaze into the Crystal BallEXAMPLE 36.7

The negative sign for q indicates that the image is in front of
the surface—in other words, in the same medium as the ob-
ject, as shown in Figure 36.20b. Being in the same medium as
the object, the image must be virtual (see Table 36.2). The
surface of the seed ball appears to be closer to the paper-
weight surface than it actually is.

#0.75 cm q "

1.50
1.0 cm

'
1
q

"
1.00 # 1.50

#3.0 cm

 
n1

p
'

n2

q
"

n2 # n1

R
 A dandelion seed ball 4.0 cm in diameter is embedded in the

center of a spherical plastic paperweight having a diameter of
6.0 cm (Fig. 36.20a). The index of refraction of the plastic is

Find the position of the image of the near edge of
the seed ball.

Solution Because where is the index
of refraction for air, the rays originating from the seed ball
are refracted away from the normal at the surface and di-
verge outward, as shown in Figure 36.20b. Hence, the image
is formed inside the paperweight and is virtual. From the
given dimensions, we know that the near edge of the seed
ball is 1.0 cm beneath the surface of the paperweight. Apply-
ing Equation 36.8 and noting from Table 36.2 that R is nega-
tive, we obtain

n2 " 1.00n1 + n2 ,

n1 " 1.50.
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(b)

n1

1.0 cm
n2

q

3.0 cm

2.0 cm

n1>n2

Figure 36.20 (a) An object embedded in a plastic sphere forms a virtual image between the surface of the object and the sphere surface.
All rays are assumed paraxial. Because the object is inside the sphere, the front of the refracting surface is the interior of the sphere. (b) Rays
from the surface of the object form an image that is still inside the plastic sphere but closer to the plastic surface.

The One That Got AwayEXAMPLE 36.8
Because q is negative, the image is virtual, as indicated by the
dashed lines in Figure 36.21. The apparent depth is three-
fourths the actual depth.

A small fish is swimming at a depth d below the surface of a
pond (Fig. 36.21). What is the apparent depth of the fish, as
viewed from directly overhead?

Solution Because the refracting surface is flat, R is infi-
nite. Hence, we can use Equation 36.9 to determine the loca-
tion of the image with Using the indices of refraction
given in Figure 36.21, we obtain

#0.752dq " #
n2

n1
 p " #

1.00
1.33

 d "

p " d.

d

q

n2 = 1.00

n1 = 1.33

Figure 36.21 The apparent depth q of the fish is less than the
true depth d . All rays are assumed to be paraxial.

(a)



THIN LENSES
Lenses are commonly used to form images by refraction in optical instruments,
such as cameras, telescopes, and microscopes. We can use what we just learned
about images formed by refracting surfaces to help us locate the image formed by
a lens. We recognize that light passing through a lens experiences refraction at two
surfaces. The development we shall follow is based on the notion that the image
formed by one refracting surface serves as the object for the second surface.
We shall analyze a thick lens first and then let the thickness of the lens be approxi-
mately zero.

Consider a lens having an index of refraction n and two spherical surfaces
with radii of curvature R1 and R 2 , as in Figure 36.22. (Note that R1 is the radius of
curvature of the lens surface that the light leaving the object reaches first and that
R2 is the radius of curvature of the other surface of the lens.) An object is placed
at point O at a distance p1 in front of surface 1. If the object were far from surface
1, the light rays from the object that struck the surface would be almost parallel to
each other. The refraction at the surface would focus these rays, forming a real im-
age to the right of surface 1 in Figure 36.22 (as in Fig. 36.17). If the object is
placed close to surface 1, as shown in Figure 36.22, the rays diverging from the ob-
ject and striking the surface cover a wide range of angles and are not parallel to
each other. In this case, the refraction at the surface is not sufficient to cause the
rays to converge on the right side of the surface. They still diverge, although they
are closer to parallel than they were before they struck the surface. This results in
a virtual image of the object at I1 to the left of the surface, as shown in Figure
36.22. This image is then used as the object for surface 2, which results in a real
image I2 to the right of the lens.

Let us begin with the virtual image formed by surface 1. Using Equation 36.8
and assuming that because the lens is surrounded by air, we find that the
image I1 formed by surface 1 satisfies the equation

(1)

where q1 is a negative number because it represents a virtual image formed on the
front side of surface 1.

Now we apply Equation 36.8 to surface 2, taking and (We
make this switch in index because the light rays from I1 approaching surface 2 are
in the material of the lens, and this material has index n. We could also imagine re-
moving the object at O, filling all of the space to the left of surface 1 with the mate-

n2 " 1.n1 " n

1
p1

'
n
q1

"
n # 1

R 1

n1 " 1

36.4
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p1

p2

q1

q2

R1 R2

n1 = 1

I1

I2

O

Surface 1
Surface 2n

tFigure 36.22 To locate the image formed
by a lens, we use the virtual image at I1
formed by surface 1 as the object for the im-
age formed by surface 2. The final image is
real and is located at I2 .

14.8
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rial of the lens, and placing the object at I1 ; the light rays approaching surface 2
would be the same as in the actual situation in Fig. 36.22.) Taking p2 as the object
distance for surface 2 and q2 as the image distance gives

(2)

We now introduce mathematically the fact that the image formed by the first sur-
face acts as the object for the second surface. We do this by noting from Figure
36.22 that p2 is the sum of q1 and t and by setting where t is the
thickness of the lens. (Remember that q1 is a negative number and that p2 must be
positive by our sign convention—thus, we must introduce a negative sign for q1 .)
For a thin lens (for which the thickness is small compared to the radii of curva-
ture), we can neglect t. In this approximation, we see that Hence,
Equation (2) becomes

(3)

Adding Equations (1) and (3), we find that

(4)

For a thin lens, we can omit the subscripts on p1 and q2 in Equation (4) and call
the object distance p and the image distance q, as in Figure 36.23. Hence, we can
write Equation (4) in the form

(36.10)

This expression relates the image distance q of the image formed by a thin lens to
the object distance p and to the thin-lens properties (index of refraction and radii
of curvature). It is valid only for paraxial rays and only when the lens thickness is
much less than R1 and R2 .

The focal length f of a thin lens is the image distance that corresponds to an
infinite object distance, just as with mirrors. Letting p approach % and q approach
f in Equation 36.10, we see that the inverse of the focal length for a thin lens is

(36.11)

This relationship is called the lens makers’ equation because it can be used to
determine the values of R 1 and R 2 that are needed for a given index of refraction
and a desired focal length f. Conversely, if the index of refraction and the radii of
curvature of a lens are given, this equation enables a calculation of the focal
length. If the lens is immersed in something other than air, this same equation can
be used, with n interpreted as the ratio of the index of refraction of the lens mater-
ial to that of the surrounding fluid.

What is the focal length of a pane of window glass?

Quick Quiz 36.2
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p q
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Lens makers’ equation

Figure 36.23 Simplified geome-
try for a thin lens.
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Using Equation 36.11, we can write Equation 36.10 in a form identical to
Equation 36.6 for mirrors:

(36.12)

This equation, called the thin-lens equation, can be used to relate the image dis-
tance and object distance for a thin lens.

Because light can travel in either direction through a lens, each lens has two
focal points, one for light rays passing through in one direction and one for rays
passing through in the other direction. This is illustrated in Figure 36.24 for a bi-
convex lens (two convex surfaces, resulting in a converging lens) and a biconcave
lens (two concave surfaces, resulting in a diverging lens). Focal point F1 is some-
times called the object focal point, and F2 is called the image focal point.

Figure 36.25 is useful for obtaining the signs of p and q, and Table 36.3 gives
the sign conventions for thin lenses. Note that these sign conventions are the same
as those for refracting surfaces (see Table 36.2). Applying these rules to a biconvex
lens, we see that when p + f , the quantities p, q, and R 1 are positive, and R 2 is neg-
ative. Therefore, p, q, and f are all positive when a converging lens forms a real im-
age of an object. For a biconcave lens, p and R 2 are positive and q and R 1 are neg-
ative, with the result that f is negative.

Various lens shapes are shown in Figure 36.26. Note that a converging lens is
thicker at the center than at the edge, whereas a diverging lens is thinner at the
center than at the edge.

1
p

'
1
q

"
1
f

f f

f f

(a)

(b)

F2 F1F1 F2

F2
F1F1 F2

Figure 36.24 (Left) Effects of a converging lens (top) and a diverging lens (bottom) on paral-
lel rays. (Right) The object and image focal points of (a) a converg-
ing lens and (b) a diverging lens.

Front

p positive
q negative

Incident light

Back

p negative
q positive

Refracted light

Figure 36.25 A diagram for ob-
taining the signs of p and q for a
thin lens. (This diagram also ap-
plies to a refracting surface.)

Thin-lens equation
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Magnification of Images

Consider a thin lens through which light rays from an object pass. As with mirrors
(Eq. 36.2), the lateral magnification of the lens is defined as the ratio of the image
height h! to the object height h:

From this expression, it follows that when M is positive, the image is upright and
on the same side of the lens as the object. When M is negative, the image is in-
verted and on the side of the lens opposite the object.

Ray Diagrams for Thin Lenses

Ray diagrams are convenient for locating the images formed by thin lenses or sys-
tems of lenses. They also help clarify our sign conventions. Figure 36.27 shows
such diagrams for three single-lens situations. To locate the image of a converg-

M "
h!

h
" #

q
p

TABLE 36.3 Sign Conventions for Thin Lenses

p is positive if object is in front of lens (real object).
p is negative if object is in back of lens (virtual object).

q is positive if image is in back of lens (real image).
q is negative if image is in front of lens (virtual image).

R1 and R2 are positive if center of curvature is in back of lens.
R1 and R2 are negative if center of curvature is in front of lens.

f is positive if the lens is converging.
f is negative if the lens is diverging.

(a)

(b)

Figure 36.26 Various lens
shapes. (a) Biconvex, convex–
concave, and plano–convex. These
are all converging lenses; they have
a positive focal length and are
thickest at the middle. (b) Bicon-
cave, convex–concave, and
plano–concave. These are all di-
verging lenses; they have a negative
focal length and are thickest at the
edges.

O

(a)

F1

Front

F2

Back

I

1

2
3

I

(b)

F1

Front

F2

Back

O

1

2

3

O

(c)

F1

Front

F2

Back

I

1

2

3Figure 36.27 Ray diagrams for locating the image formed by a
thin lens. (a) When the object is in front of and outside the object
focal point F1 of a converging lens, the image is real, inverted, and
on the back side of the lens. (b) When the object is between F1
and a converging lens, the image is virtual, upright, larger than
the object, and on the front side of the lens. (c) When an object is
anywhere in front of a diverging lens, the image is virtual, upright,
smaller than the object, and on the front side of the lens.
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ing lens (Fig. 36.27a and b), the following three rays are drawn from the top of
the object:

• Ray 1 is drawn parallel to the principal axis. After being refracted by the lens,
this ray passes through the focal point on the back side of the lens.

• Ray 2 is drawn through the center of the lens and continues in a straight line.
• Ray 3 is drawn through that focal point on the front side of the lens (or as if

coming from the focal point if p * f ) and emerges from the lens parallel to
the principal axis.

• Ray 1 is drawn parallel to the principal axis. After being refracted by the lens,
this ray emerges such that it appears to have passed through the focal point
on the front side of the lens. (This apparent direction is indicated by the
dashed line in Fig. 36.27c.)

• Ray 2 is drawn through the center of the lens and continues in a straight line.
• Ray 3 is drawn toward the focal point on the back side of the lens and

emerges from the lens parallel to the optic axis.

To locate the image of a diverging lens (Fig. 36.27c), the following three rays are
drawn from the top of the object:

In Figure 36.27a, the blue object arrow is replaced by one that is much taller than the lens.
How many rays from the object will strike the lens?

For the converging lens in Figure 36.27a, where the object is to the left of the
object focal point (p + f 1), the image is real and inverted. When the object is be-
tween the object focal point and the lens (p * f 1), as shown in Figure 36.27b, the
image is virtual and upright. For a diverging lens (see Fig. 36.27c), the image is al-
ways virtual and upright, regardless of where the object is placed. These geometric
constructions are reasonably accurate only if the distance between the rays and the
principal axis is much less than the radii of the lens surfaces.

It is important to realize that refraction occurs only at the surfaces of the lens.
A certain lens design takes advantage of this fact to produce the Fresnel lens, a pow-
erful lens without great thickness. Because only the surface curvature is important
in the refracting qualities of the lens, material in the middle of a Fresnel lens is re-
moved, as shown in Figure 36.28. Because the edges of the curved segments cause
some distortion, Fresnel lenses are usually used only in situations in which image
quality is less important than reduction of weight.

The lines that are visible across the faces of most automobile headlights are
the edges of these curved segments. A headlight requires a short-focal-length lens
to collimate light from the nearby filament into a parallel beam. If it were not for
the Fresnel design, the glass would be very thick in the center and quite heavy. The
weight of the glass would probably cause the thin edge where the lens is supported
to break when subjected to the shocks and vibrations that are typical of travel on
rough roads.

Quick Quiz 36.3

Figure 36.28 The Fresnel lens
on the left has the same focal
length as the thick lens on the right
but is made of much less glass.
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If you cover the top half of a lens, which of the following happens to the appearance of the
image of an object? (a) The bottom half disappears; (b) the top half disappears; (c) the en-
tire image is visible but has half the intensity; (d) no change occurs; (e) the entire image
disappears.

Quick Quiz 36.4

An Image Formed by a Diverging LensEXAMPLE 36.9
The negative sign tells us that the image is in front of the lens
and virtual, as indicated in Figure 36.27c.

Exercise Determine both the magnification and the height
of the image.

Answer M " 0.400; h! " 0.800 cm.

A diverging lens has a focal length of # 20.0 cm. An object
2.00 cm tall is placed 30.0 cm in front of the lens. Locate the
image.

Solution Using the thin-lens equation (Eq. 36.12) with 
p " 30.0 cm and we obtain

#12.0 cm q "

1
30.0 cm

'
1
q

"
1

#20.0 cm

f " #20.0 cm,

An Image Formed by a Converging LensEXAMPLE 36.10
sign for M means that the image is inverted. The situation is
like that pictured in Figure 36.27a.

(b) No calculation is necessary for this case because we
know that, when the object is placed at the focal point, the
image is formed at infinity. We can readily verify this by sub-
stituting p " 10.0 cm into the thin-lens equation.

(c) We now move inside the focal point, to an object dis-
tance of 5.00 cm:

The negative image distance indicates that the image is in
front of the lens and virtual. The image is enlarged, and the
positive sign for M tells us that the image is upright, as shown
in Figure 36.27b.

2.00 M " #
q
p

" #$ #10.0 cm
5.00 cm % "

#10.0 cm q "

1
5.00 cm

'
1
q

"
1

10.0 cm
 

A converging lens of focal length 10.0 cm forms an image of
each of three objects placed (a) 30.0 cm, (b) 10.0 cm, and
(c) 5.00 cm in front of the lens. In each case, find the image
distance and describe the image.

Solution (a) The thin-lens equation can be used again:

The positive sign indicates that the image is in back of the
lens and real. The magnification is

The image is reduced in size by one half, and the negative

#0.500M " #
q
p

" #
15.0 cm
30.0 cm

"

15.0 cm q "

1
30.0 cm

'
1
q

"
1

10.0 cm

 
1
p

'
1
q

"
1
f

 

A Lens Under WaterEXAMPLE 36.11
Solution We can use the lens makers’ equation (Eq.
36.11) in both cases, noting that R1 and R2 remain the same
in air and water:

A converging glass lens has a focal length of 
40.0 cm in air. Find its focal length when it is immersed in wa-
ter, which has an index of refraction of 1.33.

(n " 1.52)
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Combination of Thin Lenses

If two thin lenses are used to form an image, the system can be treated in the fol-
lowing manner. First, the image formed by the first lens is located as if the second
lens were not present. Then a ray diagram is drawn for the second lens, with the
image formed by the first lens now serving as the object for the second lens. The
second image formed is the final image of the system. One configuration is partic-
ularly straightforward; that is, if the image formed by the first lens lies on the back
side of the second lens, then that image is treated as a virtual object for the sec-
ond lens (that is, p is negative). The same procedure can be extended to a system
of three or more lenses. The overall magnification of a system of thin lenses equals
the product of the magnifications of the separate lenses.

Let us consider the special case of a system of two lenses in contact. Suppose
two thin lenses of focal lengths f1 and f2 are placed in contact with each other. If p
is the object distance for the combination, application of the thin-lens equation
(Eq. 36.12) to the first lens gives

where q1 is the image distance for the first lens. Treating this image as the object
for the second lens, we see that the object distance for the second lens must be
#q1 (negative because the object is virtual). Therefore, for the second lens,

where q is the final image distance from the second lens. Adding these equations
eliminates q1 and gives

(36.13)

Because the two thin lenses are touching, q is also the distance of the final image
from the first lens. Therefore, two thin lenses in contact with each other are
equivalent to a single thin lens having a focal length given by Equation
36.13.

 
1
f

"
1
f 1

'
1
f 2

1
p

'
1
q

"
1
f 1

'
1
f 2

1
#q1

'
1
q

"
1
f2

1
p

'
1
q1

"
1
f 1

where n! is the ratio of the index of refraction of glass to that
of water: Dividing the first equation
by the second gives

n! " 1.52/1.33 " 1.14.

1
f water

" (n! # 1)$ 1
R 1

#
1

R 2
%

 
1

f air
" (n # 1)$ 1

R 1
#

1
R 2

% 

Because we find that

The focal length of any glass lens is increased by a factor
when the lens is immersed in water.(n # 1)/(n! # 1)

148 cmf water " 3.71f air " 3.71(40.0 cm) "

f air " 40.0 cm,

f water

f air
"

n # 1
n! # 1

"
1.52 # 1
1.14 # 1

" 3.71

Light from a distant object brought
into focus by two converging
lenses.

Focal length of two thin lenses in
contact
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Where Is the Final Image?EXAMPLE 36.12

The final image lies 6.67 cm to the right of lens 2.
The individual magnifications of the images are

The total magnification M is equal to the product 

The final image is real because

q2 is positive. The image is also inverted and enlarged.

#1.33.(#2.00)(0.667) "

M1M2 "

M2 " #
q2

p2
" #

6.67 cm
#10.0 cm

" 0.667

M1 " #
q1

p1
" #

30.0 cm
15.0 cm

" #2.00 

6.67 cm q2 "

1
#10.0 cm

'
1
q2

"
1

20.0 cm
Even when the conditions just described do not apply, the
lens equations yield image position and magnification. For
example, two thin converging lenses of focal lengths

and are separated by 20.0 cm, as
illustrated in Figure 36.29. An object is placed 15.0 cm to the
left of lens 1. Find the position of the final image and the
magnification of the system.

Solution First we locate the image formed by lens 1 while
ignoring lens 2:

where q1 is measured from lens 1. A positive value for q1
means that this first image is in back of lens 1. 

Because q1 is greater than the separation between the two
lenses, this image formed by lens 1 lies 10.0 cm to the right of
lens 2. We take this as the object distance for the second lens,
so p2 " # 10.0 cm, where distances are now measured from
lens 2:

 
1
p2

'
1
q2

"
1
f 2

 

 q1 " 30.0 cm 

1
15.0 cm

'
1
q1

"
1

10.0 cm

1
p1

'
1
q1

"
1
f 1

f 2 " 20.0 cmf 1 " 10.0 cm

15.0 cm 20.0 cm

f2 = 20.0 cmf1 = 10.0 cm

O

Figure 36.29 A combination of two converging lenses.

Watch Your p’s and q’s!CONCEPTUAL EXAMPLE 36.13
near side of the lens. At this point, the rays leaving the lens are
parallel, making the image infinitely far away. This is described
in the graph by the asymptotic approach of the curve to the
line p " f " 10 cm.

As the object moves inside the focal point, the image be-
comes virtual and located near q " # %. We are now follow-
ing the curve in the lower left portion of Figure 36.30a. As
the object moves closer to the lens, the virtual image also
moves closer to the lens. As p : 0, the image distance q also
approaches 0. Now imagine that we bring the object to the
back side of the lens, where p * 0. The object is now a virtual
object, so it must have been formed by some other lens. For
all locations of the virtual object, the image distance is posi-
tive and less than the focal length. The final image is real,
and its position approaches the focal point as p gets more
and more negative.

The f " # 10 cm graph shows that a distant real object
forms an image at the focal point on the front side of the
lens. As the object approaches the lens, the image remains

Use a spreadsheet or a similar tool to create two graphs of im-
age distance as a function of object distance—one for a lens
for which the focal length is 10 cm and one for a lens for
which the focal length is # 10 cm.

Solution The graphs are shown in Figure 36.30. In each
graph a gap occurs where p " f, which we shall discuss. Note
the similarity in the shapes—a result of the fact that image
and object distances for both lenses are related according to
the same equation—the thin-lens equation.

The curve in the upper right portion of the 
graph corresponds to an object on the front side of a lens,
which we have drawn as the left side of the lens in our previous
diagrams. When the object is at positive infinity, a real image
forms at the focal point on the back side (the positive side) of
the lens, q " f. (The incoming rays are parallel in this case.) As
the object gets closer to the lens, the image moves farther from
the lens, corresponding to the upward path of the curve. This
continues until the object is located at the focal point on the

f " '10 cm



Optional Section

LENS ABERRATIONS
One problem with lenses is imperfect images. The theory of mirrors and lenses that
we have been using assumes that rays make small angles with the principal axis and
that the lenses are thin. In this simple model, all rays leaving a point source focus at
a single point, producing a sharp image. Clearly, this is not always true. When the
approximations used in this theory do not hold, imperfect images are formed.

A precise analysis of image formation requires tracing each ray, using Snell’s
law at each refracting surface and the law of reflection at each reflecting surface.
This procedure shows that the rays from a point object do not focus at a single
point, with the result that the image is blurred. The departures of actual (imper-
fect) images from the ideal predicted by theory are called aberrations.

Spherical Aberrations

Spherical aberrations occur because the focal points of rays far from the principal
axis of a spherical lens (or mirror) are different from the focal points of rays of the
same wavelength passing near the axis. Figure 36.31 illustrates spherical aberration
for parallel rays passing through a converging lens. Rays passing through points
near the center of the lens are imaged farther from the lens than rays passing
through points near the edges.

Many cameras have an adjustable aperture to control light intensity and re-
duce spherical aberration. (An aperture is an opening that controls the amount of
light passing through the lens.) Sharper images are produced as the aperture size
is reduced because with a small aperture only the central portion of the lens is ex-
posed to the light; as a result, a greater percentage of the rays are paraxial. At the

36.5
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virtual and moves closer to the lens. But as we continue to-
ward the left end of the p axis, the object becomes virtual. As
the position of this virtual object approaches the focal point,
the image recedes toward infinity. As we pass the focal point,

the image shifts from a location at positive infinity to one at
negative infinity. Finally, as the virtual object continues mov-
ing away from the lens, the image is virtual, starts moving in
from negative infinity, and approaches the focal point.
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Figure 36.30 (a) Image position as a function of object position for a lens having a focal length of '10 cm. (b) Image posi-
tion as a function of object position for a lens having a focal length of #10 cm.

Figure 36.31 Spherical aberra-
tion caused by a converging lens.
Does a diverging lens cause spheri-
cal aberration?
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Lens aberrations. (a) Spherical aberration occurs when light passing through the lens at different
distances from the principal axis is focused at different points. (b) Astigmatism occurs for objects
not located on the principal axis of the lens. (c) Coma occurs as light passing through the lens
far from the principal axis and light passing near the center of the lens focus at different parts of
the focal plane.

Figure 36.32 Chromatic aberra-
tion caused by a converging lens.
Rays of different wavelengths focus
at different points.

same time, however, less light passes through the lens. To compensate for this
lower light intensity, a longer exposure time is used.

In the case of mirrors used for very distant objects, spherical aberration can be
minimized through the use of a parabolic reflecting surface rather than a spheri-
cal surface. Parabolic surfaces are not used often, however, because those with
high-quality optics are very expensive to make. Parallel light rays incident on a par-
abolic surface focus at a common point, regardless of their distance from the prin-
cipal axis. Parabolic reflecting surfaces are used in many astronomical telescopes
to enhance image quality.

Chromatic Aberrations

The fact that different wavelengths of light refracted by a lens focus at different
points gives rise to chromatic aberrations. In Chapter 35 we described how the in-
dex of refraction of a material varies with wavelength. For instance, when white
light passes through a lens, violet rays are refracted more than red rays (Fig.
36.32). From this we see that the focal length is greater for red light than for violet
light. Other wavelengths (not shown in Fig. 36.32) have focal points intermediate
between those of red and violet.

Chromatic aberration for a diverging lens also results in a shorter focal length
for violet light than for red light, but on the front side of the lens. Chromatic aber-
ration can be greatly reduced by combining a converging lens made of one type of
glass and a diverging lens made of another type of glass.

Optional Section

THE CAMERA
The photographic camera is a simple optical instrument whose essential features
are shown in Figure 36.33. It consists of a light-tight box, a converging lens that
produces a real image, and a film behind the lens to receive the image. One fo-
cuses the camera by varying the distance between lens and film. This is accom-

36.6
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plished with an adjustable bellows in older-style cameras and with some other me-
chanical arrangement in modern cameras. For proper focusing—which is neces-
sary for the formation of sharp images—the lens-to-film distance depends on the
object distance as well as on the focal length of the lens.

The shutter, positioned behind the lens, is a mechanical device that is opened
for selected time intervals, called exposure times. One can photograph moving ob-
jects by using short exposure times, or photograph dark scenes (with low light lev-
els) by using long exposure times. If this adjustment were not available, it would
be impossible to take stop-action photographs. For example, a rapidly moving ve-
hicle could move enough in the time that the shutter was open to produce a
blurred image. Another major cause of blurred images is the movement of the
camera while the shutter is open. To prevent such movement, either short expo-
sure times or a tripod should be used, even for stationary objects. Typical shutter
speeds (that is, exposure times) are 1/30, 1/60, 1/125, and 1/250 s. For handheld
cameras, the use of slower speeds can result in blurred images (due to movement),
but the use of faster speeds reduces the gathered light intensity. In practice, sta-
tionary objects are normally shot with an intermediate shutter speed of 1/60 s.

More expensive cameras have an aperture of adjustable diameter to further
control the intensity of the light reaching the film. As noted earlier, when an aper-
ture of small diameter is used, only light from the central portion of the lens
reaches the film; in this way spherical aberration is reduced.

The intensity I of the light reaching the film is proportional to the area of the
lens. Because this area is proportional to the square of the diameter D, we con-
clude that I is also proportional to D2. Light intensity is a measure of the rate at
which energy is received by the film per unit area of the image. Because the area
of the image is proportional to q2, and q # f (when so p can be approxi-
mated as infinite), we conclude that the intensity is also proportional to 1/f 2, and
thus The brightness of the image formed on the film depends on the
light intensity, so we see that the image brightness depends on both the focal
length and the diameter of the lens.

The ratio f/D is called the f-number of a lens:

(36.14)

Hence, the intensity of light incident on the film can be expressed as

(36.15)

The f -number is often given as a description of the lens “speed.” The lower the
f -number,  the wider the aperture and the higher the rate at which energy from
the light exposes the film—thus, a lens with a low f -number is a “fast” lens. The
conventional notation for an f -number is “f/” followed by the actual number. For
example, “f/4” means an f -number of 4—it does not mean to divide f by 4! Ex-
tremely fast lenses, which have f -numbers as low as approximately f/1.2, are ex-
pensive because it is very difficult to keep aberrations acceptably small with light
rays passing through a large area of the lens. Camera lens systems (that is, combi-
nations of lenses with adjustable apertures) are often marked with multiple f -num-
bers, usually f/2.8, f/4, f/5.6, f/8, f/11, and f/16. Any one of these settings can
be selected by adjusting the aperture, which changes the value of D. Increasing the
setting from one f -number to the next higher value (for example, from f/2.8 to
f/4) decreases the area of the aperture by a factor of two. The lowest f -number set-

I ,
1

( f/D)2 ,
1

( f -number)2

f -number !
f
D

I , D2/f 2.

p W f,

Shutter
Lens

Aperture
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Image

qp

Figure 36.33 Cross-sectional
view of a simple camera. Note that
in reality, p W q.
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ting on a camera lens corresponds to a wide-open aperture and the use of the
maximum possible lens area.

Simple cameras usually have a fixed focal length and a fixed aperture size,
with an f -number of about f/11. This high value for the f -number allows for a
large depth of field, meaning that objects at a wide range of distances from the
lens form reasonably sharp images on the film. In other words, the camera does
not have to be focused.

Finding the Correct Exposure TimeEXAMPLE 36.14
the energy per unit area received by the film is proportional
to It. Comparing the two situations, we require that

where t1 is the correct exposure time for f/1.8
and t2 is the correct exposure time for f/4. Using this result
together with Equation 36.15, we find that

As the aperture size is reduced, exposure time must increase.

1
100

 s" $ 4
1.8 %

2$ 1
500

 s% #

 t 2 " $ f 2-number
f 1-number %

2
t 1

t 1

( f 1-number)2 "
t 2

( f 2-number)2  

I1t 1 " I2t 2 ,

The lens of a certain 35-mm camera (where 35 mm is the
width of the film strip) has a focal length of 55 mm and a
speed (an f -number) of f/1.8. The correct exposure time for
this speed under certain conditions is known to be (1/500) s.
(a) Determine the diameter of the lens.

Solution From Equation 36.14, we find that

(b) Calculate the correct exposure time if the f -number is
changed to f/4 under the same lighting conditions.

Solution The total light energy hitting the film is propor-
tional to the product of the intensity and the exposure time.
If I is the light intensity reaching the film, then in a time t

31 mmD "
f

f -number
"

55 mm
1.8

"

Optional Section

THE EYE
Like a camera, a normal eye focuses light and produces a sharp image. However,
the mechanisms by which the eye controls the amount of light admitted and ad-
justs to produce correctly focused images are far more complex, intricate, and ef-
fective than those in even the most sophisticated camera. In all respects, the eye is
a physiological wonder.

Figure 36.34 shows the essential parts of the human eye. Light entering the
eye passes through a transparent structure called the cornea, behind which are a
clear liquid (the aqueous humor), a variable aperture (the pupil , which is an open-
ing in the iris), and the crystalline lens. Most of the refraction occurs at the outer
surface of the eye, where the cornea is covered with a film of tears. Relatively little
refraction occurs in the crystalline lens because the aqueous humor in contact
with the lens has an average index of refraction close to that of the lens. The iris,
which is the colored portion of the eye, is a muscular diaphragm that controls
pupil size. The iris regulates the amount of light entering the eye by dilating the
pupil in low-light conditions and contracting the pupil in high-light conditions.
The f -number range of the eye is from about f/2.8 to f/16.

The cornea– lens system focuses light onto the back surface of the eye, the
retina, which consists of millions of sensitive receptors called rods and cones. When
stimulated by light, these receptors send impulses via the optic nerve to the brain,

36.7

Close-up photograph of the cornea
of the human eye.
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where an image is perceived. By this process, a distinct image of an object is ob-
served when the image falls on the retina.

The eye focuses on an object by varying the shape of the pliable crystalline
lens through an amazing process called accommodation. An important compo-
nent of accommodation is the ciliary muscle, which is situated in a circle around the
rim of the lens. Thin filaments, called zonules, run from this muscle to the edge of
the lens. When the eye is focused on a distant object, the ciliary muscle is relaxed,
tightening the zonules that attach the muscle to the edge of the lens. The force of
the zonules causes the lens to flatten, increasing its focal length. For an object dis-
tance of infinity, the focal length of the eye is equal to the fixed distance between
lens and retina, about 1.7 cm. The eye focuses on nearby objects by tensing the cil-
iary muscle, which relaxes the zonules. This action allows the lens to bulge a bit,
and its focal length decreases, resulting in the image being focused on the retina.
All these lens adjustments take place so swiftly that we are not even aware of the
change. In this respect, even the finest electronic camera is a toy compared with
the eye.

Accommodation is limited in that objects that are very close to the eye pro-
duce blurred images. The near point is the closest distance for which the lens can
accommodate to focus light on the retina. This distance usually increases with age
and has an average value of 25 cm. Typically, at age 10 the near point of the eye is
about 18 cm. It increases to about 25 cm at age 20, to 50 cm at age 40, and to 500
cm or greater at age 60. The far point of the eye represents the greatest distance
for which the lens of the relaxed eye can focus light on the retina. A person with
normal vision can see very distant objects, such as the Moon, and thus has a far
point near infinity.

Recall that the light leaving the mirror in Figure 36.8 becomes white where it
comes together but then diverges into separate colors again. Because nothing but
air exists at the point where the rays cross (and hence nothing exists to cause the
colors to separate again), seeing white light as a result of a combination of colors
must be a visual illusion. In fact, this is the case. Only three types of color-sensitive

Pupil

Cornea

Crystalline
lens

Ciliary
muscle

Retinal
arteries

and veins

Retina

Vitreous
humor

Iris
Optic
nerve

Aqueous
humor

Figure 36.34 Essential parts of the eye. 

QuickLab
Move this book toward your face until
the letters just begin to blur. The dis-
tance from the book to your eyes is
your near point.
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Figure 36.35 Approximate color sensitivity of the three types of cones in the retina.

QuickLab
Pour a pile of salt or sugar into your
palm. Compare its white appearance
with the transparency of a single
grain.

cells are present in the retina; they are called red, green, and blue cones because
of the peaks of the color ranges to which they respond (Fig. 36.35). If the red and
green cones are stimulated simultaneously (as would be the case if yellow light
were shining on them), the brain interprets what we see as yellow. If all three types
of cones are stimulated by the separate colors red, blue, and green, as in Figure
36.8, we see white. If all three types of cones are stimulated by light that contains
all colors, such as sunlight, we again see white light.

Color televisions take advantage of this visual illusion by having only red,
green, and blue dots on the screen. With specific combinations of brightness in
these three primary colors, our eyes can be made to see any color in the rainbow.
Thus, the yellow lemon you see in a television commercial is not really yellow, it is
red and green! The paper on which this page is printed is made of tiny, matted,
translucent fibers that scatter light in all directions; the resultant mixture of colors
appears white to the eye. Snow, clouds, and white hair are not really white. In fact,
there is no such thing as a white pigment. The appearance of these things is a con-
sequence of the scattering of light containing all colors, which we interpret as
white.

Conditions of the Eye

When the eye suffers a mismatch between the focusing range of the lens–cornea
system and the length of the eye, with the result that light rays reach the retina be-
fore they converge to form an image, as shown in Figure 36.36a, the condition is
known as farsightedness (or hyperopia). A farsighted person can usually see far-
away objects clearly but not nearby objects. Although the near point of a normal
eye is approximately 25 cm, the near point of a farsighted person is much farther
away. The eye of a farsighted person tries to focus by accommodation—that is, by
shortening its focal length. This works for distant objects, but because the focal
length of the farsighted eye is greater than normal, the light from nearby objects
cannot be brought to a sharp focus before it reaches the retina, and it thus causes
a blurred image. The refracting power in the cornea and lens is insufficient to fo-
cus the light from all but distant objects satisfactorily. The condition can be cor-
rected by placing a converging lens in front of the eye, as shown in Figure 36.36b.
The lens refracts the incoming rays more toward the principal axis before entering
the eye, allowing them to converge and focus on the retina.

A person with nearsightedness (or myopia), another mismatch condition, can
focus on nearby objects but not on faraway objects. In the case of axial myopia, the
nearsightedness is caused by the lens being too far from the retina. In refractive my-
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Near
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Figure 36.36 (a) When a farsighted eye looks at an object located between the near point and
the eye, the image point is behind the retina, resulting in blurred vision. The eye muscle con-
tracts to try to bring the object into focus. (b) Farsightedness is corrected with a converging lens.
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Figure 36.37 (a) When a nearsighted eye looks at an object that lies beyond the eye’s far
point, the image is formed in front of the retina, resulting in blurred vision. (b) Nearsightedness
is corrected with a diverging lens.
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opia, the lens–cornea system is too powerful for the length of the eye. The far
point of the nearsighted eye is not infinity and may be less than 1 m. The maxi-
mum focal length of the nearsighted eye is insufficient to produce a sharp image
on the retina, and rays from a distant object converge to a focus in front of the
retina. They then continue past that point, diverging before they finally reach the
retina and causing blurred vision (Fig. 36.37a). Nearsightedness can be corrected
with a diverging lens, as shown in Figure 36.37b. The lens refracts the rays away
from the principal axis before they enter the eye, allowing them to focus on the
retina.

Which glasses in Figure 36.38 correct nearsightedness and which correct farsightedness?

Quick Quiz 36.5

Figure 36.38

Beginning in middle age, most people lose some of their accommodation abil-
ity as the ciliary muscle weakens and the lens hardens. Unlike farsightedness,
which is a mismatch between focusing power and eye length, presbyopia (liter-
ally, “old-age vision”) is due to a reduction in accommodation ability. The cornea
and lens do not have sufficient focusing power to bring nearby objects into focus
on the retina. The symptoms are the same as those of farsightedness, and the con-
dition can be corrected with converging lenses.

In the eye defect known as astigmatism, light from a point source produces a
line image on the retina. This condition arises when either the cornea or the lens
or both are not perfectly symmetric. Astigmatism can be corrected with lenses that
have different curvatures in two mutually perpendicular directions.

(a) (b)
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Optometrists and ophthalmologists usually prescribe lenses1 measured in
diopters:

The power P of a lens in diopters equals the inverse of the focal length in me-
ters: P " 1/f.

1 The word lens comes from lentil, the name of an Italian legume. (You may have eaten lentil soup.)
Early eyeglasses were called “glass lentils” because the biconvex shape of their lenses resembled the
shape of a lentil. The first lenses for farsightedness and presbyopia appeared around 1280; concave eye-
glasses for correcting nearsightedness did not appear for more than 100 years after that.

For example, a converging lens of focal length ' 20 cm has a power of ' 5.0
diopters, and a diverging lens of focal length # 40 cm has a power of # 2.5
diopters.

A Case of NearsightednessEXAMPLE 36.15

Why did we use a negative sign for the image distance? As you
should have suspected, the lens must be a diverging lens (one
with a negative focal length) to correct nearsightedness.

Exercise What is the power of this lens?

Answer # 0.40 diopter.

#2.5 m f "
A particular nearsighted person is unable to see objects
clearly when they are beyond 2.5 m away (the far point of this
particular eye). What should the focal length be in a lens pre-
scribed to correct this problem?

Solution The purpose of the lens in this instance is to
“move” an object from infinity to a distance where it can be
seen clearly. This is accomplished by having the lens produce
an image at the far point. From the thin-lens equation, we
have

1
p
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1
q

"
1
%

'
1
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Optional Section

THE SIMPLE MAGNIFIER
The simple magnifier consists of a single converging lens. As the name implies,
this device increases the apparent size of an object.

Suppose an object is viewed at some distance p from the eye, as illustrated in
Figure 36.39. The size of the image formed at the retina depends on the angle $
subtended by the object at the eye. As the object moves closer to the eye, $ in-
creases and a larger image is observed. However, an average normal eye cannot fo-
cus on an object closer than about 25 cm, the near point (Fig. 36.40a). Therefore,
$ is maximum at the near point.

To further increase the apparent angular size of an object, a converging lens
can be placed in front of the eye as in Figure 36.40b, with the object located at
point O, just inside the focal point of the lens. At this location, the lens forms a vir-
tual, upright, enlarged image. We define angular magnification m as the ratio of
the angle subtended by an object with a lens in use (angle $ in Fig. 36.40b) to the
angle subtended by the object placed at the near point with no lens in use (angle

36.8

θ

p

Figure 36.39 The size of the im-
age formed on the retina depends
on the angle $ subtended at the
eye.
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$0 in Fig. 36.40a):

(36.16)

The angular magnification is a maximum when the image is at the near point of
the eye—that is, when q " # 25 cm. The object distance corresponding to this im-
age distance can be calculated from the thin-lens equation:

where f is the focal length of the magnifier in centimeters. If we make the small-
angle approximations

(36.17)

Equation 36.16 becomes

(36.18)

Although the eye can focus on an image formed anywhere between the near
point and infinity, it is most relaxed when the image is at infinity. For the image
formed by the magnifying lens to appear at infinity, the object has to be at the fo-
cal point of the lens. In this case, Equations 36.17 become

$0 #
h

25
  and  $ #

h
f

mmax " 1 '
25 cm

f
 

mmax "
$

$0
"

h/p
h/25

"
25
p

"
25

25f /(25 ' f )

tan $0 # $0 #
h

25
  and  tan $ # $ #

h
p

 p "
25f

25 ' f

1
p

'
1

#25 cm
"

1
f

 

m !
$

$0

θ
θ

25 cm

(a)

h

25 cm

h'

θ0

I

h

p
F O θ

(b)

θ

Figure 36.40 (a) An object
placed at the near point of the
eye (p " 25 cm) subtends an
angle $0 # h/25 at the eye.
(b) An object placed near the
focal point of a converging lens
produces a magnified image
that subtends an angle $ #
h!/25 at the eye.

Angular magnification with the
object at the near point
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and the magnification is

(36.19)

With a single lens, it is possible to obtain angular magnifications up to about 4
without serious aberrations. Magnifications up to about 20 can be achieved by us-
ing one or two additional lenses to correct for aberrations.

mmin "
$

$0
"

25 cm
f

Objective Eyepiece

L

(a)

I2

O

Fo

fo

p1 q1

Fe I l

fe

Figure 36.41 (a) Diagram of a compound microscope, which consists of an objective lens and
an eyepiece lens. (b) A compound microscope. The three-objective turret allows the user to
choose from several powers of magnification. Combinations of eyepieces with different focal
lengths and different objectives can produce a wide range of magnifications.

(b)

Maximum Magnification of a LensEXAMPLE 36.16
When the eye is relaxed, the image is at infinity. In this case,
we use Equation 36.19:

2.5mmin "
25 cm 

f
"

25 cm
10 cm

"

What is the maximum magnification that is possible with a
lens having a focal length of 10 cm, and what is the magnifi-
cation of this lens when the eye is relaxed?

Solution The maximum magnification occurs when the
image is located at the near point of the eye. Under these cir-
cumstances, Equation 36.18 gives

3.5mmax " 1 '
25 cm

f
" 1 '

25 cm
10 cm

"

Optional Section

THE COMPOUND MICROSCOPE
A simple magnifier provides only limited assistance in inspecting minute details of
an object. Greater magnification can be achieved by combining two lenses in a de-
vice called a compound microscope, a schematic diagram of which is shown in
Figure 36.41a. It consists of one lens, the objective, that has a very short focal length

36.9
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cm and a second lens, the eyepiece, that has a focal length f e of a few cen-
timeters. The two lenses are separated by a distance L that is much greater than ei-
ther f o or f e . The object, which is placed just outside the focal point of the objec-
tive, forms a real, inverted image at I1 , and this image is located at or close to the
focal point of the eyepiece. The eyepiece, which serves as a simple magnifier, pro-
duces at I2 a virtual, inverted image of I1 . The lateral magnification M1 of the first
image is #q1/p1 . Note from Figure 36.41a that q1 is approximately equal to L and
that the object is very close to the focal point of the objective: Thus, the
lateral magnification by the objective is

The angular magnification by the eyepiece for an object (corresponding to the im-
age at I1) placed at the focal point of the eyepiece is, from Equation 36.19,

The overall magnification of the compound microscope is defined as the product
of the lateral and angular magnifications:

(36.20)

The negative sign indicates that the image is inverted.
The microscope has extended human vision to the point where we can view

previously unknown details of incredibly small objects. The capabilities of this in-
strument have steadily increased with improved techniques for precision grinding
of lenses. An often-asked question about microscopes is: “If one were extremely
patient and careful, would it be possible to construct a microscope that would en-
able the human eye to see an atom?” The answer is no, as long as light is used to il-
luminate the object. The reason is that, for an object under an optical microscope
(one that uses visible light) to be seen, the object must be at least as large as a
wavelength of light. Because the diameter of any atom is many times smaller than
the wavelengths of visible light, the mysteries of the atom must be probed using
other types of “microscopes.”

The ability to use other types of waves to “see” objects also depends on wave-
length. We can illustrate this with water waves in a bathtub. Suppose you vibrate
your hand in the water until waves having a wavelength of about 15 cm are moving
along the surface. If you hold a small object, such as a toothpick, so that it lies in
the path of the waves, it does not appreciably disturb the waves; they continue
along their path “oblivious” to it. Now suppose you hold a larger object, such as a
toy sailboat, in the path of the 15-cm waves. In this case, the waves are considerably
disturbed by the object. Because the toothpick was smaller than the wavelength of
the waves, the waves did not “see” it (the intensity of the scattered waves was low).
Because it is about the same size as the wavelength of the waves, however, the boat
creates a disturbance. In other words, the object acts as the source of scattered
waves that appear to come from it.

Light waves behave in this same general way. The ability of an optical micro-
scope to view an object depends on the size of the object relative to the wavelength
of the light used to observe it. Hence, we can never observe atoms with an optical
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microscope2 because their dimensions are small (# 0.1 nm) relative to the wave-
length of the light (# 500 nm). 

Optional Section

THE TELESCOPE
Two fundamentally different types of telescopes exist; both are designed to aid in
viewing distant objects, such as the planets in our Solar System. The refracting
telescope uses a combination of lenses to form an image, and the reflecting tele-
scope uses a curved mirror and a lens.

The lens combination shown in Figure 36.42a is that of a refracting telescope.
Like the compound microscope, this telescope has an objective and an eyepiece.
The two lenses are arranged so that the objective forms a real, inverted image of
the distant object very near the focal point of the eyepiece. Because the object is
essentially at infinity, this point at which I1 forms is the focal point of the objective.
Hence, the two lenses are separated by a distance which corresponds to
the length of the telescope tube. The eyepiece then forms, at I2 , an enlarged, in-
verted image of the image at I1 .

The angular magnification of the telescope is given by $/$o , where $o is the
angle subtended by the object at the objective and $ is the angle subtended by the
final image at the viewer’s eye. Consider Figure 36.42a, in which the object is a
very great distance to the left of the figure. The angle $o (to the left of the objec-
tive) subtended by the object at the objective is the same as the angle (to the right
of the objective) subtended by the first image at the objective. Thus,

where the negative sign indicates that the image is inverted.
The angle $ subtended by the final image at the eye is the same as the angle

that a ray coming from the tip of I1 and traveling parallel to the principal axis
makes with the principal axis after it passes through the lens. Thus,

We have not used a negative sign in this equation because the final image is not in-
verted; the object creating this final image I2 is I1 , and both it and I2 point in the
same direction. To see why the adjacent side of the triangle containing angle $ is f e
and not 2f e, note that we must use only the bent length of the refracted ray.
Hence, the angular magnification of the telescope can be expressed as

(36.21)

and we see that the angular magnification of a telescope equals the ratio of the ob-
jective focal length to the eyepiece focal length. The negative sign indicates that
the image is inverted.

Why isn’t the lateral magnification given by Equation 36.1 a useful concept for telescopes?

Quick Quiz 36.6
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36.10

2 Single-molecule near-field optic studies are routinely performed with visible light having wavelengths
of about 500 nm. The technique uses very small apertures to produce images having resolution as small
as 10 nm.
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Figure 36.43 A Newtonian-focus
reflecting telescope.
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Figure 36.42 (a) Lens arrangement in a refracting telescope, with the object at infinity. (b) A
refracting telescope.

(b)

When we look through a telescope at such relatively nearby objects as the
Moon and the planets, magnification is important. However, stars are so far away
that they always appear as small points of light no matter how great the magnifica-
tion. A large research telescope that is used to study very distant objects must have
a great diameter to gather as much light as possible. It is difficult and expensive to
manufacture large lenses for refracting telescopes. Another difficulty with large
lenses is that their weight leads to sagging, which is an additional source of aberra-
tion. These problems can be partially overcome by replacing the objective with a
concave mirror, which results in a reflecting telescope. Because light is reflected
from the mirror and does not pass through a lens, the mirror can have rigid sup-
ports on the back side. Such supports eliminate the problem of sagging.

Figure 36.43 shows the design for a typical reflecting telescope. Incoming light
rays pass down the barrel of the telescope and are reflected by a parabolic mirror
at the base. These rays converge toward point A in the figure, where an image
would be formed. However, before this image is formed, a small, flat mirror M re-
flects the light toward an opening in the side of the tube that passes into an eye-
piece. This particular design is said to have a Newtonian focus because Newton de-
veloped it. Note that in the reflecting telescope the light never passes through
glass (except through the small eyepiece). As a result, problems associated with
chromatic aberration are virtually eliminated.

The largest reflecting telescopes in the world are at the Keck Observatory on
Mauna Kea, Hawaii. The site includes two telescopes with diameters of 10 m, each
containing 36 hexagonally shaped, computer-controlled mirrors that work to-
gether to form a large reflecting surface. In contrast, the largest refracting tele-
scope in the world, at the Yerkes Observatory in Williams Bay, Wisconsin, has a di-
ameter of only 1 m.

Eyepiece

M

A

Parabolic
mirror

web
For more information on the Keck
telescopes, visit
http://www2.keck.hawaii.edu:3636/
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SUMMARY

The lateral magnification M of a mirror or lens is defined as the ratio of the im-
age height h! to the object height h:

(36.1)

In the paraxial ray approximation, the object distance p and image distance q
for a spherical mirror of radius R are related by the mirror equation:

(36.4, 36.6)

where is the focal length of the mirror.
An image can be formed by refraction from a spherical surface of radius R.

The object and image distances for refraction from such a surface are related by

(36.8)

where the light is incident in the medium for which the index of refraction is n1
and is refracted in the medium for which the index of refraction is n2 .

The inverse of the focal length f of a thin lens surrounded by air is given by
the lens makers’ equation:

(36.11)

Converging lenses have positive focal lengths, and diverging lenses have nega-
tive focal lengths.

For a thin lens, and in the paraxial ray approximation, the object and image
distances are related by the thin-lens equation:

(36.12)
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Figure Q36.1

QUESTIONS

1. What is wrong with the caption of the cartoon shown in
Figure Q36.1?

2. Using a simple ray diagram, such as the one shown in Fig-
ure 36.2, show that a flat mirror whose top is at eye level
need not be as long as you are for you to see your entire
body in it.

3. Consider a concave spherical mirror with a real object. Is
the image always inverted? Is the image always real? Give
conditions for your answers.

4. Repeat the preceding question for a convex spherical
mirror.

5. Why does a clear stream of water, such as a creek, always
appear to be shallower than it actually is? By how much is
its depth apparently reduced?

6. Consider the image formed by a thin converging lens.
Under what conditions is the image (a) inverted, (b) up-
right, (c) real, (d) virtual, (e) larger than the object, and
(f) smaller than the object?

7. Repeat Question 6 for a thin diverging lens.
8. Use the lens makers’ equation to verify the sign of the fo-

cal length of each of the lenses in Figure 36.26.

“Most mirrors reverse left and right. This one reverses top and
bottom.”
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Figure Q36.9

9. If a cylinder of solid glass or clear plastic is placed above
the words LEAD OXIDE and viewed from the side as shown
in Figure Q36.9, the LEAD appears inverted but the OXIDE
does not. Explain.

10. If the camera “sees” a movie actor’s reflection in a mirror,
what does the actor see in the mirror?

11. Explain why a mirror cannot give rise to chromatic aber-
ration.

12. Why do some automobile mirrors have printed on them
the statement “Objects in mirror are closer than they ap-
pear” ? (See Fig. Q36.12.)

Figure Q36.12

13. Why do some emergency vehicles have the symbol
written on the front?AMBULANCE

14. Explain why a fish in a spherical goldfish bowl appears
larger than it really is.

15. Lenses used in eyeglasses, whether converging or diverg-
ing, are always designed such that the middle of the lens
curves away from the eye, like the center lenses of Figure
36.26a and b. Why?

16. A mirage is formed when the air gets gradually cooler
with increasing altitude. What might happen if the air
grew gradually warmer with altitude? This often happens
over bodies of water or snow-covered ground; the effect is
called looming.

17. Consider a spherical concave mirror, with an object posi-
tioned to the left of the mirror beyond the focal point.
Using ray diagrams, show that the image moves to the left
as the object approaches the focal point.

18. In a Jules Verne novel, a piece of ice is shaped into a mag-
nifying lens to focus sunlight to start a fire. Is this possi-
ble?

19. The f -number of a camera is the focal length of the lens
divided by its aperture (or diameter). How can the f -num-
ber of the lens be changed? How does changing this
number affect the required exposure time?

20. A solar furnace can be constructed through the use of a
concave mirror to reflect and focus sunlight into a fur-
nace enclosure. What factors in the design of the reflect-
ing mirror would guarantee very high temperatures?

21. One method for determining the position of an image,
either real or virtual, is by means of parallax. If a finger or
another object is placed at the position of the image, as
shown in Figure Q36.21, and the finger and the image
are viewed simultaneously (the image is viewed through
the lens if it is virtual), the finger and image have the
same parallax; that is, if the image is viewed from differ-
ent positions, it will appear to move along with the finger.
Use this method to locate the image formed by a lens. Ex-
plain why the method works.

Finger

Image

Figure Q36.21

22. Figure Q36.22 shows a lithograph by M. C. Escher titled
Hand with Reflection Sphere (Self-Portrait in Spherical Mirror).
Escher had this to say about the work: “The picture shows
a spherical mirror, resting on a left hand. But as a print is
the reverse of the original drawing on stone, it was my
right hand that you see depicted. (Being left-handed, I
needed my left hand to make the drawing.) Such a globe
reflection collects almost one’s whole surroundings in
one disk-shaped image. The whole room, four walls, the
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floor, and the ceiling, everything, albeit distorted, is com-
pressed into that one small circle. Your own head, or
more exactly the point between your eyes, is the absolute
center. No matter how you turn or twist yourself, you
can’t get out of that central point. You are immovably the
focus, the unshakable core, of your world.” Comment on
the accuracy of Escher’s description.

23. You can make a corner reflector by placing three flat mir-
rors in the corner of a room where the ceiling meets the
walls. Show that no matter where you are in the room,
you can see yourself reflected in the mirrors—upside
down.

Figure Q36.22

PROBLEMS

5. A person walks into a room with two flat mirrors on op-
posite walls, which produce multiple images. When the
person is 5.00 ft from the mirror on the left wall and
10.0 ft from the mirror on the right wall, find the dis-
tances from that person to the first three images seen in
the mirror on the left.

Section 36.2 Images Formed by Spherical Mirrors
6. A concave spherical mirror has a radius of curvature of

20.0 cm. Find the location of the image for object dis-
tances of (a) 40.0 cm, (b) 20.0 cm, and (c) 10.0 cm. For
each case, state whether the image is real or virtual and
upright or inverted, and find the magnification.

7. At an intersection of hospital hallways, a convex mirror
is mounted high on a wall to help people avoid colli-
sions. The mirror has a radius of curvature of 0.550 m.
Locate and describe the image of a patient 10.0 m from
the mirror. Determine the magnification.

8. A large church has a niche in one wall. On the floor
plan it appears as a semicircular indentation of radius
2.50 m. A worshiper stands on the center line of the
niche, 2.00 m out from its deepest point, and whispers a
prayer. Where is the sound concentrated after reflec-
tion from the back wall of the niche?

Section 36.1 Images Formed by Flat Mirrors
1. Does your bathroom mirror show you older or younger

than you actually are? Compute an order-of-magnitude
estimate for the age difference, based on data that you
specify.

2. In a church choir loft, two parallel walls are 5.30 m
apart. The singers stand against the north wall. The or-
ganist faces the south wall, sitting 0.800 m away from it.
To enable her to see the choir, a flat mirror 0.600 m
wide is mounted on the south wall, straight in front of
her. What width of the north wall can she see? Hint:
Draw a top-view diagram to justify your answer.

3. Determine the minimum height of a vertical flat mirror
in which a person 5!10- in height can see his or her full
image. (A ray diagram would be helpful.)

4. Two flat mirrors have their reflecting surfaces facing
each other, with an edge of one mirror in contact with
an edge of the other, so that the angle between the mir-
rors is &. When an object is placed between the mirrors,
a number of images are formed. In general, if the angle
& is such that where n is an integer, the
number of images formed is Graphically, find all
the image positions for the case when a point ob-
ject is between the mirrors (but not on the angle bisec-
tor).

n " 6
n # 1.

n& " 360.,

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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9. A spherical convex mirror has a radius of curvature of
40.0 cm. Determine the position of the virtual image
and the magnification (a) for an object distance of 
30.0 cm and (b) for an object distance of 60.0 cm. 
(c) Are the images upright or inverted?

10. The height of the real image formed by a concave mir-
ror is four times the object height when the object is
30.0 cm in front of the mirror. (a) What is the radius of
curvature of the mirror? (b) Use a ray diagram to locate
this image.

11. A concave mirror has a radius of curvature of 60.0 cm.
Calculate the image position and magnification of an
object placed in front of the mirror (a) at a distance of
90.0 cm and (b) at a distance of 20.0 cm. (c) In each
case, draw ray diagrams to obtain the image characteris-
tics.

12. A concave mirror has a focal length of 40.0 cm. Deter-
mine the object position for which the resulting image
is upright and four times the size of the object.

13. A spherical mirror is to be used to form, on a screen
5.00 m from the object, an image five times the size of
the object. (a) Describe the type of mirror required. 
(b) Where should the mirror be positioned relative to
the object?

14. A rectangle 10.0 cm / 20.0 cm is placed so that its right
edge is 40.0 cm to the left of a concave spherical mirror,
as in Figure P36.14. The radius of curvature of the mir-
ror is 20.0 cm. (a) Draw the image formed by this mir-
ror. (b) What is the area of the image?

Section 36.3 Images Formed by Refraction
18. A flint-glass plate rests on the bottom of an

aquarium tank. The plate is 8.00 cm thick (vertical di-
mension) and covered with water to a depth
of 12.0 cm. Calculate the apparent thickness of the
plate as viewed from above the water. (Assume nearly
normal incidence.)

19. A cubical block of ice 50.0 cm on a side is placed on a
level floor over a speck of dust. Find the location of the
image of the speck if the index of refraction of ice is
1.309.

20. A simple model of the human eye ignores its lens en-
tirely. Most of what the eye does to light happens at the
transparent cornea. Assume that this outer surface has a
6.00-mm radius of curvature, and assume that the eye-
ball contains just one fluid with an index of refraction
of 1.40. Prove that a very distant object will be imaged
on the retina, 21.0 mm behind the cornea. Describe the
image.

21. A glass sphere with a radius of 15.0 cm has a
tiny air bubble 5.00 cm above its center. The sphere is
viewed looking down along the extended radius con-
taining the bubble. What is the apparent depth of the
bubble below the surface of the sphere?

22. A transparent sphere of unknown composition is ob-
served to form an image of the Sun on the surface of
the sphere opposite the Sun. What is the refractive in-
dex of the sphere material?

23. One end of a long glass rod is formed into a
convex surface of radius 6.00 cm. An object is posi-
tioned in air along the axis of the rod. Find the image
positions corresponding to object distances of 
(a) 20.0 cm, (b) 10.0 cm, and (c) 3.00 cm from the 
end of the rod.

24. A goldfish is swimming at 2.00 cm/s toward the front
wall of a rectangular aquarium. What is the apparent
speed of the fish as measured by an observer looking in
from outside the front wall of the tank? The index of re-
fraction of water is 1.33.

25. A goldfish is swimming inside a spherical plastic bowl of
water, with an index of refraction of 1.33. If the goldfish
is 10.0 cm from the wall of the 15.0-cm-radius bowl,
where does it appear to an observer outside the bowl?

Section 36.4 Thin Lenses
26. A contact lens is made of plastic with an index of refrac-

tion of 1.50. The lens has an outer radius of curvature
of ' 2.00 cm and an inner radius of curvature of 
' 2.50 cm. What is the focal length of the lens?

27. The left face of a biconvex lens has a radius of curvature
of magnitude 12.0 cm, and the right face has a radius of
curvature of magnitude 18.0 cm. The index of refrac-
tion of the glass is 1.44. (a) Calculate the focal length of
the lens. (b) Calculate the focal length if the radii of
curvature of the two faces are interchanged.

(n " 1.50)

(n " 1.50)

(n " 1.33)

(n " 1.66)

WEB

C

40.0 cm

10.0 cm

20.0 cm

Figure P36.14

15. A dedicated sports-car enthusiast polishes the inside
and outside surfaces of a hubcap that is a section of a
sphere. When she looks into one side of the hubcap,
she sees an image of her face 30.0 cm in back of the
hubcap. She then flips the hubcap over and sees an-
other image of her face 10.0 cm in back of the hubcap.
(a) How far is her face from the hubcap? (b) What is
the radius of curvature of the hubcap?

16. An object is 15.0 cm from the surface of a reflective
spherical Christmas-tree ornament 6.00 cm in diameter.
What are the magnification and position of the image?

17. A ball is dropped from rest 3.00 m directly above the
vertex of a concave mirror that has a radius of 1.00 m
and lies in a horizontal plane. (a) Describe the motion
of the ball’s image in the mirror. (b) At what time do
the ball and its image coincide?

WEB
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28. A converging lens has a focal length of 20.0 cm. 
Locate the image for object distances of (a) 40.0 cm,
(b) 20.0 cm, and (c) 10.0 cm. For each case, state
whether the image is real or virtual and upright or in-
verted. Find the magnification in each case.

29. A thin lens has a focal length of 25.0 cm. Locate and de-
scribe the image when the object is placed (a) 26.0 cm
and (b) 24.0 cm in front of the lens.

30. An object positioned 32.0 cm in front of a lens forms an
image on a screen 8.00 cm behind the lens. (a) Find the
focal length of the lens. (b) Determine the magnifica-
tion. (c) Is the lens converging or diverging?

31. The nickel’s image in Figure P36.31 has twice the diam-
eter of the nickel and is 2.84 cm from the lens. Deter-
mine the focal length of the lens.

location and (b) the magnification of the image. 
(c) Construct a ray diagram for this arrangement.

38. Figure P36.38 shows a thin glass converging
lens for which the radii of curvature are cm
and cm. To the left of the lens is a cube
with a face area of 100 cm2. The base of the cube is on
the axis of the lens, and the right face is 20.0 cm to the
left of the lens. (a) Determine the focal length of the
lens. (b) Draw the image of the square face formed by
the lens. What type of geometric figure is this? 
(c) Determine the area of the image.

R 2 " #12.0
R 1 " 15.0

(n " 1.50)

39. An object is 5.00 m to the left of a flat screen. A con-
verging lens for which the focal length is m is
placed between object and screen. (a) Show that two
lens positions exist that form images on the screen, and
determine how far these positions are from the object.
(b) How do the two images differ from each other?

40. An object is at a distance d to the left of a flat screen. A
converging lens with focal length is placed be-
tween object and screen. (a) Show that two lens posi-
tions exist that form an image on the screen, and 
determine how far these positions are from the object.
(b) How do the two images differ from each other?

41. Figure 36.33 diagrams a cross-section of a camera. It has
a single lens with a focal length of 65.0 mm, which is to
form an image on the film at the back of the camera.
Suppose the position of the lens has been adjusted to
focus the image of a distant object. How far and in what
direction must the lens be moved to form a sharp image
of an object that is 2.00 m away?

(Optional)
Section 36.5 Lens Aberrations

42. The magnitudes of the radii of curvature are 32.5 cm
and 42.5 cm for the two faces of a biconcave lens. The
glass has index 1.53 for violet light and 1.51 for red
light. For a very distant object, locate and describe 
(a) the image formed by violet light and (b) the image
formed by red light.

f * d/4

f " 0.800

Figure P36.31

20.0 cm

F F

Figure P36.38

32. A magnifying glass is a converging lens of focal length
15.0 cm. At what distance from a postage stamp should
you hold this lens to get a magnification of ' 2.00?

33. A transparent photographic slide is placed in front of a
converging lens with a focal length of 2.44 cm. The lens
forms an image of the slide 12.9 cm from the slide. How
far is the lens from the slide if the image is (a) real? 
(b) virtual?

34. A person looks at a gem with a jeweler’s loupe—a con-
verging lens that has a focal length of 12.5 cm. The
loupe forms a virtual image 30.0 cm from the lens. 
(a) Determine the magnification. Is the image upright
or inverted? (b) Construct a ray diagram for this
arrangement.

35. Suppose an object has thickness dp so that it extends
from object distance p to p ' dp. Prove that the thick-
ness dq of its image is given by (#q2/p2)dp, so the longi-
tudinal magnification dq/dp " #M 2, where M is the
lateral magnification.

36. The projection lens in a certain slide projector is a sin-
gle thin lens. A slide 24.0 mm high is to be projected so
that its image fills a screen 1.80 m high. The slide-to-
screen distance is 3.00 m. (a) Determine the focal
length of the projection lens. (b) How far from the
slide should the lens of the projector be placed to form
the image on the screen?

37. An object is positioned 20.0 cm to the left of a diverging
lens with focal length cm. Determine (a) thef " #32.0

WEB



Problems 1181

43. Two rays traveling parallel to the principal axis strike a
large plano–convex lens having a refractive index of
1.60 (Fig. P36.43). If the convex face is spherical, a ray
near the edge does not pass through the focal point
(spherical aberration occurs). If this face has a radius of
curvature of magnitude 20.0 cm and the two rays are

cm and cm from the principal
axis, find the difference in the positions where they
cross the principal axis.

h2 " 12.0h1 " 0.500

focal length of the eyepiece is 2.50 cm, and that of the
objective is 0.400 cm. What is the overall magnification
of the microscope?

50. The desired overall magnification of a compound mi-
croscope is 140/. The objective alone produces a lat-
eral magnification of 12.0/. Determine the required fo-
cal length of the eyepiece.

51. The Yerkes refracting telescope has a 1.00-m-diameter
objective lens with a focal length of 20.0 m. Assume 
that it is used with an eyepiece that has a focal length of 
2.50 cm. (a) Determine the magnification of the planet
Mars as seen through this telescope. (b) Are the Mar-
tian polar caps seen right side up or upside down?

52. Astronomers often take photographs with the objective
lens or the mirror of a telescope alone, without an eye-
piece. (a) Show that the image size h! for this telescope
is given by where h is the object size, 
f is the objective focal length, and p is the object dis-
tance. (b) Simplify the expression in part (a) for the
case in which the object distance is much greater than
objective focal length. (c) The “wingspan” of the Inter-
national Space Station is 108.6 m, the overall width of
its solar-panel configuration. Find the width of the im-
age formed by a telescope objective of focal length 4.00 m
when the station is orbiting at an altitude of 407 km.

53. Galileo devised a simple terrestrial telescope that pro-
duces an upright image. It consists of a converging ob-
jective lens and a diverging eyepiece at opposite ends of
the telescope tube. For distant objects, the tube length
is the objective focal length less the absolute value of
the eyepiece focal length. (a) Does the user of the tele-
scope see a real or virtual image? (b) Where is the final
image? (c) If a telescope is to be constructed with a
tube 10.0 cm long and a magnification of 3.00, what are
the focal lengths of the objective and eyepiece?

54. A certain telescope has an objective mirror with an
aperture diameter of 200 mm and a focal length of 
2 000 mm. It captures the image of a nebula on photo-
graphic film at its prime focus with an exposure time of
1.50 min. To produce the same light energy per unit
area on the film, what is the required exposure time to
photograph the same nebula with a smaller telescope,
which has an objective lens with an aperture diameter
of 60.0 mm and a focal length of 900 mm?

ADDITIONAL PROBLEMS

55. The distance between an object and its upright image is
20.0 cm. If the magnification is 0.500, what is the focal
length of the lens that is being used to form the image?

56. The distance between an object and its upright image is
d . If the magnification is M, what is the focal length of
the lens that is being used to form the image?

57. The lens and mirror in Figure P36.57 have focal lengths
of ' 80.0 cm and # 50.0 cm, respectively. An object is

h! " f h/( f # p),C

R ∆x

Figure P36.43

(Optional)
Section 36.7 The Eye

44. The accommodation limits for Nearsighted Nick’s eyes
are 18.0 cm and 80.0 cm. When he wears his glasses, he
can see faraway objects clearly. At what minimum dis-
tance can he see objects clearly?

45. A nearsighted person cannot see objects clearly beyond
25.0 cm (her far point). If she has no astigmatism and
contact lenses are prescribed for her, what power and
type of lens are required to correct her vision?

46. A person sees clearly when he wears eyeglasses that have
a power of # 4.00 diopters and sit 2.00 cm in front of
his eyes. If he wants to switch to contact lenses, which
are placed directly on the eyes, what lens power should
be prescribed?

(Optional)
Section 36.8 The Simple Magnifier
Section 36.9 The Compound Microscope
Section 36.10 The Telescope

47. A philatelist examines the printing detail on a stamp,
using a biconvex lens with a focal length of 10.0 cm as a
simple magnifier. The lens is held close to the eye, and
the lens-to-object distance is adjusted so that the virtual
image is formed at the normal near point (25.0 cm).
Calculate the magnification.

48. A lens that has a focal length of 5.00 cm is used as a
magnifying glass. (a) Where should the object be
placed to obtain maximum magnification? (b) What is
the magnification?

49. The distance between the eyepiece and the objective
lens in a certain compound microscope is 23.0 cm. The
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placed 1.00 m to the left of the lens, as shown. Locate
the final image, which is formed by light that has gone
through the lens twice. State whether the image is up-
right or inverted, and determine the overall magnifica-
tion.

58. Your friend needs glasses with diverging lenses of focal
length # 65.0 cm for both eyes. You tell him he looks
good when he does not squint, but he is worried about
how thick the lenses will be. If the radius of curvature of
the first surface is cm and the high-index
plastic has a refractive index of 1.66, (a) find the re-
quired radius of curvature of the second surface. 
(b) Assume that the lens is ground from a disk 4.00 cm
in diameter and 0.100 cm thick at the center. Find the
thickness of the plastic at the edge of the lens, mea-
sured parallel to the axis. Hint: Draw a large cross-
sectional diagram.

59. The object in Figure P36.59 is midway between the 
lens and the mirror. The mirror’s radius of curvature is
20.0 cm, and the lens has a focal length of #16.7 cm.
Considering only the light that leaves the object and
travels first toward the mirror, locate the final image
formed by this system. Is this image real or virtual? Is it
upright or inverted? What is the overall magnification?

R 1 " 50.0

MirrorLens

1.00 m1.00 m

Object

Figure P36.57

Lens Object
Mirror

25.0 cm

Figure P36.59

n

R

Air

I

q

Figure P36.61

60. An object placed 10.0 cm from a concave spherical mir-
ror produces a real image 8.00 cm from the mirror. If
the object is moved to a new position 20.0 cm from the

mirror, what is the position of the image? Is the latter
image real or virtual?

61. A parallel beam of light enters a glass hemisphere per-
pendicular to the flat face, as shown in Figure P36.61.
The radius is "R " cm, and the index of refrac-
tion is Determine the point at which the
beam is focused. (Assume paraxial rays.)

n " 1.560.
" 6.00

62. Review Problem. A spherical lightbulb with a diame-
ter of 3.20 cm radiates light equally in all directions,
with a power of 4.50 W. (a) Find the light intensity at
the surface of the bulb. (b) Find the light intensity 
7.20 m from the center of the bulb. (c) At this 
7.20-m distance, a lens is set up with its axis pointing to-
ward the bulb. The lens has a circular face with a diame-
ter of 15.0 cm and a focal length of 35.0 cm. Find the
diameter of the image of the bulb. (d) Find the light in-
tensity at the image.

63. An object is placed 12.0 cm to the left of a diverging
lens with a focal length of # 6.00 cm. A converging lens
with a focal length of 12.0 cm is placed a distance d to
the right of the diverging lens. Find the distance d that
corresponds to a final image at infinity. Draw a ray dia-
gram for this case.

64. Assume that the intensity of sunlight is 1.00 kW/m2 at a
particular location. A highly reflecting concave mirror
is to be pointed toward the Sun to produce a power of
at least 350 W at the image. (a) Find the required ra-
dius Ra of the circular face area of the mirror. (b) Now
suppose the light intensity is to be at least 120 kW/m2 at
the image. Find the required relationship between Ra
and the radius of curvature R of the mirror. The disk of
the Sun subtends an angle of 0.533° at the Earth.

65. The disk of the Sun subtends an angle of 0.533° at the
Earth. What are the position and diameter of the solar
image formed by a concave spherical mirror with a ra-
dius of curvature of 3.00 m?

66. Figure P36.66 shows a thin converging lens for which
the radii are cm and cm. The
lens is in front of a concave spherical mirror of radius

cm. (a) If its focal points F1 and F2 are 
5.00 cm from the vertex of the lens, determine its index
of refraction. (b) If the lens and mirror are 20.0 cm
apart and an object is placed 8.00 cm to the left of the

R " 8.00

R 2 " #11.0R 1 " 9.00

WEB

WEB
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lens, determine the position of the final image and its
magnification as seen by the eye in the figure. (c) Is the
final image inverted or upright? Explain.

67. In a darkened room, a burning candle is placed 1.50 m
from a white wall. A lens is placed between candle and
wall at a location that causes a larger, inverted image to
form on the wall. When the lens is moved 90.0 cm to-
ward the wall, another image of the candle is formed.
Find (a) the two object distances that produce the spec-
ified images and (b) the focal length of the lens. 
(c) Characterize the second image.

68. A thin lens of focal length f lies on a horizontal front-
surfaced flat mirror. How far above the lens should an
object be held if its image is to coincide with the object?

69. A compound microscope has an objective of focal
length 0.300 cm and an eyepiece of focal length 
2.50 cm. If an object is 3.40 mm from the objective,
what is the magnification? (Hint: Use the lens equation
for the objective.)

70. Two converging lenses with focal lengths of 10.0 cm and
20.0 cm are positioned 50.0 cm apart, as shown in Fig-
ure P36.70. The final image is to be located between the
lenses, at the position indicated. (a) How far to the left

Strawberry

Small hole

Figure P36.72

f2 (20.0 cm)f1 (10.0 cm)

Final image
Object

p 31.0 cm
50.0 cm

Figure P36.70

F2

C

F1

Figure P36.66

of the first lens should the object be? (b) What is the
overall magnification? (c) Is the final image upright or
inverted?

71. A cataract-impaired lens in an eye may be surgically re-
moved and replaced by a manufactured lens. The focal
length required for the new lens is determined by the
lens-to-retina distance, which is measured by a sonar-

like device, and by the requirement that the implant
provide for correct distant vision. (a) If the distance
from lens to retina is 22.4 mm, calculate the power of
the implanted lens in diopters. (b) Since no accommo-
dation occurs and the implant allows for correct distant
vision, a corrective lens for close work or reading must
be used. Assume a reading distance of 33.0 cm, and cal-
culate the power of the lens in the reading glasses.

72. A floating strawberry illusion consists of two parabolic
mirrors, each with a focal length of 7.50 cm, facing each
other so that their centers are 7.50 cm apart (Fig.
P36.72). If a strawberry is placed on the lower mirror,
an image of the strawberry is formed at the small open-
ing at the center of the top mirror. Show that the final
image is formed at that location, and describe its char-
acteristics. (Note: A very startling effect is to shine a
flashlight beam on these images. Even at a glancing an-
gle, the incoming light beam is seemingly reflected off
the images! Do you understand why?)

73. An object 2.00 cm high is placed 40.0 cm to the left of 
a converging lens with a focal length of 30.0 cm. A di-
verging lens with a focal length of # 20.0 cm is placed
110 cm to the right of the converging lens. (a) Deter-
mine the final position and magnification of the final
image. (b) Is the image upright or inverted? (c) Repeat
parts (a) and (b) for the case in which the second lens
is a converging lens with a focal length of ' 20.0 cm.
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ANSWERS TO QUICK QUIZZES

rays, but the remaining ones still come from all parts of
the object.

36.5 The eyeglasses on the left are diverging lenses, which
correct for nearsightedness. If you look carefully at the
edge of the person’s face through the lens, you will see
that everything viewed through these glasses is reduced
in size. The eyeglasses on the right are converging
lenses, which correct for farsightedness. These lenses
make everything that is viewed through them look
larger.

36.6 The lateral magnification of a telescope is not well de-
fined. For viewing with the eye relaxed, the user may
slightly adjust the position of the eyepiece to place the
final image I2 in Figure 36.42a at infinity. Then, its
height and its lateral magnification also are infinite. The
angular magnification of a telescope as we define it is
the factor by which the telescope increases in the diame-
ter—on the retina of the viewer’s eye—of the real im-
age of an extended object.

36.1 At C . A ray traced from the stone to the mirror and then
to observer 2 looks like this:

2 1

Figure QQA36.1

F

Front

F

Back

1

2

3

Extension of lens

Figure QQA36.2

36.2 The focal length is infinite. Because the flat surfaces of
the pane have infinite radii of curvature, Equation 36.11
indicates that the focal length is also infinite. Parallel
rays striking the pane focus at infinity, which means that
they remain parallel after passing through the glass.

36.3 An infinite number. In general, an infinite number of
rays leave each point of any object and travel outward in
all directions. (The three principal rays that we use to
locate an image make up a selected subset of the infinite
number of rays.) When an object is taller than a lens, we
merely extend the plane containing the lens, as shown
in Figure QQA36.2.

36.4 (c) The entire image is visible but has half the intensity.
Each point on the object is a source of rays that travel in
all directions. Thus, light from all parts of the object
goes through all parts of the lens and forms an image. If
you block part of the lens, you are blocking some of the
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c h a p t e r

Interference of Light Waves

P U Z Z L E R

The brilliant colors seen in peacock
feathers are not caused by pigments in
the feathers. If they are not produced by
pigments, how are these beautiful colors
created? (Terry Qing/FPG International)

C h a p t e r  O u t l i n e

37.1 Conditions for Interference
37.2 Young’s Double-Slit Experiment
37.3 Intensity Distribution of the

Double-Slit Interference Pattern
37.4 Phasor Addition of Waves

37.5 Change of Phase Due to
Reflection

37.6 Interference in Thin Films
37.7 (Optional) The Michelson

Interferometer

P U Z Z L E R
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n the preceding chapter on geometric optics, we used light rays to examine
what happens when light passes through a lens or reflects from a mirror. Here
in Chapter 37 and in the next chapter, we are concerned with wave optics, the

study of interference, diffraction, and polarization of light. These phenomena can-
not be adequately explained with the ray optics used in Chapter 36. We now learn
how treating light as waves rather than as rays leads to a satisfying description of
such phenomena.

CONDITIONS FOR INTERFERENCE
In Chapter 18, we found that the adding together of two mechanical waves can be
constructive or destructive. In constructive interference, the amplitude of the re-
sultant wave is greater than that of either individual wave, whereas in destructive
interference, the resultant amplitude is less than that of either individual wave.
Light waves also interfere with each other. Fundamentally, all interference associ-
ated with light waves arises when the electromagnetic fields that constitute the in-
dividual waves combine.

If two lightbulbs are placed side by side, no interference effects are observed
because the light waves from one bulb are emitted independently of those from
the other bulb. The emissions from the two lightbulbs do not maintain a constant
phase relationship with each other over time. Light waves from an ordinary source
such as a lightbulb undergo random changes about once every 10!8 s. Therefore,
the conditions for constructive interference, destructive interference, or some in-
termediate state last for lengths of time of the order of 10!8 s. Because the eye
cannot follow such short-term changes, no interference effects are observed. (In
1993 interference from two separate light sources was photographed in an ex-
tremely fast exposure. Nonetheless, we do not ordinarily see interference effects
because of the rapidly changing phase relationship between the light waves.) Such
light sources are said to be incoherent.

Interference effects in light waves are not easy to observe because of the short
wavelengths involved (from 4 " 10!7 m to 7 " 10!7 m). For sustained interfer-
ence in light waves to be observed, the following conditions must be met:

• The sources must be coherent—that is, they must maintain a constant phase
with respect to each other.

• The sources should be monochromatic—that is, of a single wavelength.

We now describe the characteristics of coherent sources. As we saw when we
studied mechanical waves, two sources (producing two traveling waves) are
needed to create interference. In order to produce a stable interference pattern,
the individual waves must maintain a constant phase relationship with one
another. As an example, the sound waves emitted by two side-by-side loudspeakers
driven by a single amplifier can interfere with each other because the two speakers
are coherent—that is, they respond to the amplifier in the same way at the same
time.

A common method for producing two coherent light sources is to use one
monochromatic source to illuminate a barrier containing two small openings (usu-
ally in the shape of slits). The light emerging from the two slits is coherent because
a single source produces the original light beam and the two slits serve only to sep-
arate the original beam into two parts (which, after all, is what was done to the
sound signal from the side-by-side loudspeakers). Any random change in the light

37.1

I

Conditions for interference



37.2 Young’s Double-Slit Experiment 1187

emitted by the source occurs in both beams at the same time, and as a result inter-
ference effects can be observed when the light from the two slits arrives at a view-
ing screen.

YOUNG’S DOUBLE-SLIT EXPERIMENT
Interference in light waves from two sources was first demonstrated by Thomas
Young in 1801. A schematic diagram of the apparatus that Young used is shown
in Figure 37.1a. Light is incident on a first barrier in which there is a slit S0 .
The waves emerging from this slit arrive at a second barrier that contains two
parallel slits S1 and S2 . These two slits serve as a pair of coherent light sources
because waves emerging from them originate from the same wave front and
therefore maintain a constant phase relationship. The light from S1 and S2 pro-
duces on a viewing screen a visible pattern of bright and dark parallel bands
called fringes (Fig. 37.1b). When the light from S1 and that from S2 both arrive
at a point on the screen such that constructive interference occurs at that loca-
tion, a bright fringe appears. When the light from the two slits combines de-
structively at any location on the screen, a dark fringe results. Figure 37.2 is a
photograph of an interference pattern produced by two coherent vibrating
sources in a water tank.

37.2

S0

S1

S2

First barrier

Second barrier

Viewing
screen

max

min

max

min

max

min

max

min

max

(a) (b)

Figure 37.1 (a) Schematic diagram of Young’s double-slit experiment. Slits S1 and S2 behave as
coherent sources of light waves that produce an interference pattern on the viewing screen
(drawing not to scale). (b) An enlargement of the center of a fringe pattern formed on the view-
ing screen with many slits could look like this.

Figure 37.2 An interference pat-
tern involving water waves is pro-
duced by two vibrating sources at
the water’s surface. The pattern is
analogous to that observed in
Young’s double-slit experiment.
Note the regions of constructive
(A) and destructive (B) interfer-
ence.

A

B
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If you were to blow smoke into the space between the second barrier and the viewing screen
of Figure 37.1a, what would you see?

Figure 37.2 is an overhead view of a shallow water tank. If you wanted to use a small ruler to
measure the water’s depth, would this be easier to do at location A or at location B?

Figure 37.3 shows some of the ways in which two waves can combine at the
screen. In Figure 37.3a, the two waves, which leave the two slits in phase, strike the
screen at the central point P. Because both waves travel the same distance, they ar-
rive at P in phase. As a result, constructive interference occurs at this location, and
a bright fringe is observed. In Figure 37.3b, the two waves also start in phase, but
in this case the upper wave has to travel one wavelength farther than the lower
wave to reach point Q . Because the upper wave falls behind the lower one by ex-
actly one wavelength, they still arrive in phase at Q , and so a second bright fringe
appears at this location. At point R in Figure 37.3c, however, midway between
points P and Q , the upper wave has fallen half a wavelength behind the lower
wave. This means that a trough of the lower wave overlaps a crest of the upper
wave; this gives rise to destructive interference at point R. For this reason, a dark
fringe is observed at this location.

We can describe Young’s experiment quantitatively with the help of Figure
37.4. The viewing screen is located a perpendicular distance L from the double-
slitted barrier. S1 and S2 are separated by a distance d, and the source is mono-
chromatic. To reach any arbitrary point P, a wave from the lower slit travels farther
than a wave from the upper slit by a distance d sin #. This distance is called the
path difference $ (lowercase Greek delta). If we assume that r 1 and r 2 are paral-
lel, which is approximately true because L is much greater than d , then $ is given
by

(37.1)$ % r2 ! r1 % d sin #

Quick Quiz 37.2

Quick Quiz 37.1

Path difference

QuickLab
Look through the fabric of an um-
brella at a distant streetlight. Can you
explain what you see? (The fringe
pattern in Figure 37.1b is from rec-
tangular slits. The fabric of the um-
brella creates a two-dimensional set of
square holes.)

(a)

Bright
fringe

Dark
fringe

(b) (c)

Bright
fringe

S1

S2

S1

S2

Slits P

P P

R

Q

 Viewing screen

Q

S2

S1

Figure 37.3 (a) Constructive interference occurs at point P when the waves combine. (b) Con-
structive interference also occurs at point Q. (c) Destructive interference occurs at R when the
two waves combine because the upper wave falls half a wavelength behind the lower wave (all fig-
ures not to scale).



The value of $ determines whether the two waves are in phase when they arrive at
point P. If $ is either zero or some integer multiple of the wavelength, then the
two waves are in phase at point P and constructive interference results. Therefore,
the condition for bright fringes, or constructive interference, at point P is

m % 0, & 1, & 2, . . . (37.2)

The number m is called the order number. The central bright fringe at # % 0
is called the zeroth-order maximum. The first maximum on either side,

where m % & 1, is called the first-order maximum, and so forth.
When $ is an odd multiple of '/2, the two waves arriving at point P are 180°

out of phase and give rise to destructive interference. Therefore, the condition for
dark fringes, or destructive interference, at point P is

m % 0, & 1, & 2, . . . (37.3)

It is useful to obtain expressions for the positions of the bright and dark
fringes measured vertically from O to P. In addition to our assumption that

we assume that These can be valid assumptions because in practice
L is often of the order of 1 m, d a fraction of a millimeter, and ' a fraction of a mi-
crometer for visible light. Under these conditions, # is small; thus, we can use the
approximation sin # ! tan #. Then, from triangle OPQ in Figure 37.4, we see that

(37.4)

Solving Equation 37.2 for sin # and substituting the result into Equation 37.4, we
see that the positions of the bright fringes measured from O are given by the ex-
pression

(37.5)ybright %
'L
d

 m

y % L tan # ! L sin #

d W '.L W d ,

d sin # % (m ( 1
2 )'

(m % 0)

$ % d sin # % m'

37.2 Young’s Double-Slit Experiment 1189

Conditions for constructive
interference

Conditions for destructive
interference

(b)

r2 – r1 = d sin θ

S1

S2

θ
d

r2

r1

(a)

d

S1

S2

Q

L
Viewing screen

θ

θ

P

O

δ
Source

y

r1

r2

θ

Figure 37.4 (a) Geometric construction for describing Young’s double-slit experiment (not to
scale). (b) When we assume that r 1 is parallel to r2 , the path difference between the two rays is

sin #. For this approximation to be valid, it is essential that L W d .r2 ! r1 % d
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Using Equations 37.3 and 37.4, we find that the dark fringes are located at

(37.6)

As we demonstrate in Example 37.1, Young’s double-slit experiment provides a
method for measuring the wavelength of light. In fact, Young used this technique
to do just that. Additionally, the experiment gave the wave model of light a great
deal of credibility. It was inconceivable that particles of light coming through the
slits could cancel each other in a way that would explain the dark fringes.

ydark %
'L
d

 (m ( 1
2)

Separating Double-Slit Fringes of Two WavelengthsEXAMPLE 37.2

Hence, the separation distance between the two fringes is

1.4 cm % 1.4 " 10!2 m %

)y % y *3 ! y3 % 9.18 " 10!2
 
 m ! 7.74 " 10!2

 
 m 

y *3 %  
'*L
d

 m % 3 
'*L
d

% 9.18 " 10!2 m
A light source emits visible light of two wavelengths: ' %
430 nm and '* % 510 nm. The source is used in a double-slit
interference experiment in which m and 

mm. Find the separation distance between the third-
order bright fringes.

Solution Using Equation 37.5, with we find that
the fringe positions corresponding to these two wavelengths
are

y3 %
'L
d

 m % 3 
'L
d

% 7.74 " 10!2 m 

m % 3,

0.025
d %L % 1.5

Measuring the Wavelength of a Light SourceEXAMPLE 37.1
(b) Calculate the distance between adjacent bright

fringes.

Solution From Equation 37.5 and the results of part (a),
we obtain

Note that the spacing between all fringes is equal.

2.2 cm % 2.2 " 10!2 m %

 %
'L
d

%
(5.6 " 10!7 m)(1.2 m)

3.0 " 10!5 m

ym(1 ! ym %
'L(m ( 1)

d
!

'Lm
d

 

A viewing screen is separated from a double-slit source by 
1.2 m. The distance between the two slits is 0.030 mm. The
second-order bright fringe is 4.5 cm from the center
line. (a) Determine the wavelength of the light.

Solution We can use Equation 37.5, with 
and 

560 nm% 5.6 " 10!7 m %

' %
dy2

mL
%

(3.0 " 10!5 m)(4.5 " 10!2 m)
2(1.2 m)

d % 3.0 " 10!5 m:L % 1.2 m,4.5 " 10!2 m,
y2 %m % 2,

(m % 2)

INTENSITY DISTRIBUTION OF THE DOUBLE-SLIT
INTERFERENCE PATTERN

Note that the edges of the bright fringes in Figure 37.1b are fuzzy. So far we have
discussed the locations of only the centers of the bright and dark fringes on a dis-
tant screen. We now direct our attention to the intensity of the light at other
points between the positions of maximum constructive and destructive interfer-
ence. In other words, we now calculate the distribution of light intensity associated
with the double-slit interference pattern.

37.3
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Again, suppose that the two slits represent coherent sources of sinusoidal
waves such that the two waves from the slits have the same angular frequency +
and a constant phase difference ,. The total magnitude of the electric field at
point P on the screen in Figure 37.5 is the vector superposition of the two waves.
Assuming that the two waves have the same amplitude E0 , we can write the magni-
tude of the electric field at point P due to each wave separately as

(37.7)

Although the waves are in phase at the slits, their phase difference , at point P depends
on the path difference $ % r2 ! r 1 % d sin #. Because a path difference of ' (con-
structive interference) corresponds to a phase difference of 2- rad, we obtain the
ratio

(37.8)

This equation tells us precisely how the phase difference , depends on the angle #
in Figure 37.4.

Using the superposition principle and Equation 37.7, we can obtain the mag-
nitude of the resultant electric field at point P :

(37.9)

To simplify this expression, we use the trigonometric identity

Taking and we can write Equation 37.9 in the form

(37.10)

This result indicates that the electric field at point P has the same frequency + as the
light at the slits, but that the amplitude of the field is multiplied by the factor 
2 cos(,/2). To check the consistency of this result, note that if , % 0, 2-, 4-, . . . ,
then the electric field at point P is 2E 0 , corresponding to the condition for con-
structive interference. These values of , are consistent with Equation 37.2 for con-
structive interference. Likewise, if , % -, 3-, 5-, . . . , then the magnitude of
the electric field at point P is zero; this is consistent with Equation 37.3 for destruc-
tive interference.

Finally, to obtain an expression for the light intensity at point P, recall from
Section 34.3 that the intensity of a wave is proportional to the square of the resultant elec-
tric field magnitude at that point (Eq. 34.20). Using Equation 37.10, we can therefore
express the light intensity at point P as

Most light-detecting instruments measure time-averaged light intensity, and the
time-averaged value of sin2(+t ( ,/2) over one cycle is Therefore, we can write
the average light intensity at point P as

(37.11)I % Imax cos2 " ,

2 #

1
2 .

I . E P 

2 % 4E 0 

2 cos2" ,

2 # sin2"+t (
,

2 #

E P % 2E 0 cos" ,

2 # sin"+t (
,

2 #
B % +t,A % +t ( ,

sin A ( sin B % 2 sin" A ( B
2 # cos" A ! B

2 #

E P % E 1 ( E 2 % E 0[sin +t ( sin(+t ( ,)]

, %
2-

'
 $ %

2-

'
 d sin #

$

'
%

,

2-
 

E 1 % E 0 sin +t  and  E 2 % E 0 sin(+t ( ,)

Phase difference

O

y

d
r2

r1

L

S2

S1

P

Figure 37.5 Construction for an-
alyzing the double-slit interference
pattern. A bright fringe, or inten-
sity maximum, is observed at O.
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where Imax is the maximum intensity on the screen and the expression represents
the time average. Substituting the value for , given by Equation 37.8 into this ex-
pression, we find that

(37.12)

Alternatively, because sin # ! y/L for small values of # in Figure 37.4, we can write
Equation 37.12 in the form

(37.13)

Constructive interference, which produces light intensity maxima, occurs
when the quantity -dy/'L is an integral multiple of -, corresponding to y %
('L/d )m . This is consistent with Equation 37.5.

A plot of light intensity versus d sin # is given in Figure 37.6. Note that the in-
terference pattern consists of equally spaced fringes of equal intensity. Remember,
however, that this result is valid only if the slit-to-screen distance L is much greater
than the slit separation, and only for small values of #.

We have seen that the interference phenomena arising from two sources de-
pend on the relative phase of the waves at a given point. Furthermore, the phase
difference at a given point depends on the path difference between the two waves.
The resultant light intensity at a point is proportional to the square of the
resultant electric field at that point. That is, the light intensity is proportional
to It would be incorrect to calculate the light intensity by adding the
intensities of the individual waves. This procedure would give which of
course is not the same as Note, however, that has the same
average value as when the time average is taken over all values of theE 1 

2 ( E 2 

2
(E 1 ( E 2)2(E 1 ( E 2)2.

E 1 

2 ( E 2 

2,
(E 1 ( E 2)2.

I % Imax cos2" -d
'L

 y#

I % Imax cos2" -d sin #
' #

I

–2 –λ λ 2

Imax

d sin θ

λλ

Figure 37.6 Light intensity versus d sin # for a double-slit interference pattern when the screen
is far from the slits (L W d).
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phase difference between E1 and E2 . Hence, the law of conservation of energy is
not violated.

PHASOR ADDITION OF WAVES
In the preceding section, we combined two waves algebraically to obtain the resul-
tant wave amplitude at some point on a screen. Unfortunately, this analytical pro-
cedure becomes cumbersome when we must add several wave amplitudes. Because
we shall eventually be interested in combining a large number of waves, we now
describe a graphical procedure for this purpose.

Let us again consider a sinusoidal wave whose electric field component is
given by

where E0 is the wave amplitude and + is the angular frequency. This wave can be
represented graphically by a phasor of magnitude E0 rotating about the origin
counterclockwise with an angular frequency +, as shown in Figure 37.7a. Note that
the phasor makes an angle +t with the horizontal axis. The projection of the pha-
sor on the vertical axis represents E1 , the magnitude of the wave disturbance at
some time t . Hence, as the phasor rotates in a circle, the projection E1 oscillates
along the vertical axis about the origin.

Now consider a second sinusoidal wave whose electric field component is
given by

This wave has the same amplitude and frequency as E1 , but its phase is , with re-
spect to E1 . The phasor representing E2 is shown in Figure 37.7b. We can obtain
the resultant wave, which is the sum of E1 and E2 , graphically by redrawing the
phasors as shown in Figure 37.7c, in which the tail of the second phasor is placed
at the tip of the first. As with vector addition, the resultant phasor ER runs from
the tail of the first phasor to the tip of the second. Furthermore, ER rotates along
with the two individual phasors at the same angular frequency +. The projection
of ER along the vertical axis equals the sum of the projections of the two other
phasors: 

It is convenient to construct the phasors at as in Figure 37.8. From the
geometry of one of the right triangles, we see that

which gives

Because the sum of the two opposite interior angles equals the exterior angle ,,
we see that thus,

Hence, the projection of the phasor ER along the vertical axis at any time t is

E P % E R sin"+t (
,

2 # % 2E 0 cos(,/2) sin"+t (
,

2 #

E R % 2E 0 cos " ,

2 #
/ % ,/2;

E R % 2E 0 cos /

cos / %
E R /2

E 0

t % 0
E P % E 1 ( E 2 .

E 2 % E 0 sin(+t ( ,)

E 1 % E 0 sin +t

37.4

tω

E1

(a)

E2 E0

(b)

E1 E0

 φ

(c)

EP

E0

ERE2

E0
tω

ωt + φω φ

Figure 37.7 (a) Phasor diagram
for the wave disturbance 

sin +t. The phasor 
is a vector of length E 0 rotating
counterclockwise. (b) Phasor
diagram for the wave 

sin(+t ( ,). (c) The distur-
bance ER is the resultant phasor
formed from the phasors of 
parts (a) and (b).

E 0

E 2 %

E 0

E 1 %

Figure 37.8 A reconstruction of
the resultant phasor ER . From the
geometry, note that / % ,/2.
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φ
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This is consistent with the result obtained algebraically, Equation 37.10. The resul-
tant phasor has an amplitude 2E0 cos(,/2) and makes an angle ,/2 with the first
phasor. Furthermore, the average light intensity at point P, which varies as is
proportional to cos2(,/2), as described in Equation 37.11.

We can now describe how to obtain the resultant of several waves that have the
same frequency:

• Represent the waves by phasors, as shown in Figure 37.9, remembering to main-
tain the proper phase relationship between one phasor and the next.

• The resultant phasor ER is the vector sum of the individual phasors. At each
instant, the projection of ER along the vertical axis represents the time varia-
tion of the resultant wave. The phase angle / of the resultant wave is the
angle between ER and the first phasor. From Figure 37.9, drawn for four pha-
sors, we see that the phasor of the resultant wave is given by the expression

Phasor Diagrams for Two Coherent Sources

As an example of the phasor method, consider the interference pattern produced
by two coherent sources. Figure 37.10 represents the phasor diagrams for various
values of the phase difference , and the corresponding values of the path differ-
ence $, which are obtained from Equation 37.8. The light intensity at a point is a
maximum when ER is a maximum; this occurs at , % 0, 2-, 4-, . . . . The light
intensity at some point is zero when ER is zero; this occurs at , % -, 3-, 5-, . . . .
These results are in complete agreement with the analytical procedure described
in the preceding section.

E P % E R sin(+t ( /).

E P 

2,

Figure 37.9 The phasor ER is the
resultant of four phasors of equal
amplitude E0 . The phase of ER
with respect to the first phasor is /.

Figure 37.10 Phasor diagrams for a double-slit interference pattern. The resultant phasor ER
is a maximum when , % 0, 2-, 4-, . . . and is zero when , % -, 3-, 5-, . . . .
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Three-Slit Interference Pattern

Using phasor diagrams, let us analyze the interference pattern caused by three
equally spaced slits. We can express the electric field components at a point P on
the screen caused by waves from the individual slits as

where , is the phase difference between waves from adjacent slits. We can obtain
the resultant magnitude of the electric field at point P from the phasor diagram in
Figure 37.11.

The phasor diagrams for various values of , are shown in Figure 37.12. Note
that the resultant magnitude of the electric field at P has a maximum value of 3E0 ,
a condition that occurs when , % 0, & 2-, & 4-, . . . . These points are called
primary maxima. Such primary maxima occur whenever the three phasors are
aligned as shown in Figure 37.12a. We also find secondary maxima of amplitude
E0 occurring between the primary maxima at points where , % & -, & 3-, . . . .
For these points, the wave from one slit exactly cancels that from another slit (Fig.
37.12d). This means that only light from the third slit contributes to the resultant,
which consequently has a total amplitude of E0 . Total destructive interference oc-
curs whenever the three phasors form a closed triangle, as shown in Figure 37.12c.
These points where correspond to , % & 2-/3, & 4-/3, . . . . You
should be able to construct other phasor diagrams for values of , greater than -.

Figure 37.13 shows multiple-slit interference patterns for a number of configu-
rations. For three slits, note that the primary maxima are nine times more intense
than the secondary maxima as measured by the height of the curve. This is be-
cause the intensity varies as ER

2. For N slits, the intensity of the primary maxima is
N 2 times greater than that due to a single slit. As the number of slits increases, the
primary maxima increase in intensity and become narrower, while the secondary
maxima decrease in intensity relative to the primary maxima. Figure 37.13 also
shows that as the number of slits increases, the number of secondary maxima also
increases. In fact, the number of secondary maxima is always where N is
the number of slits.

N ! 2,

E R % 0

E 3 % E 0 sin(+t ( 2,)

E 2 % E 0 sin(+t ( ,) 

E 1 % E 0 sin +t 

Figure 37.11 Phasor diagram for
three equally spaced slits.

Figure 37.12 Phasor diagrams for three equally spaced slits at various values of ,. Note from
(a) that there are primary maxima of amplitude 3E0 and from (d) that there are secondary max-
ima of amplitude E0 .
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Using Figure 37.13 as a model, sketch the interference pattern from six slits.

CHANGE OF PHASE DUE TO REFLECTION
Young’s method for producing two coherent light sources involves illuminating
a pair of slits with a single source. Another simple, yet ingenious, arrangement
for producing an interference pattern with a single light source is known as
Lloyd’s mirror (Fig. 37.14). A light source is placed at point S close to a mirror,
and a viewing screen is positioned some distance away at right angles to the
mirror. Light waves can reach point P on the screen either by the direct path
SP or by the path involving reflection from the mirror. The reflected ray can be
treated as a ray originating from a virtual source at point S*. As a result, we can
think of this arrangement as a double-slit source with the distance between

37.5

Quick Quiz 37.3

Single
slit

N = 2

N = 3

N = 4

N = 5

N = 10

0–2λ– 2λλ λ λ λ

Primary maximum
Secondary maximum

 I
Imax

d sin θθ

Figure 37.13 Multiple-slit interference patterns. As N, the number of slits, is increased, the pri-
mary maxima (the tallest peaks in each graph) become narrower but remain fixed in position,
and the number of secondary maxima increases. For any value of N, the decrease in intensity in
maxima to the left and right of the central maximum, indicated by the blue dashed arcs, is due to
diffraction, which is discussed in Chapter 38.

Figure 37.14 Lloyd’s mirror. An
interference pattern is produced at
point P on the screen as a result of
the combination of the direct ray
(blue) and the reflected ray (red).
The reflected ray undergoes a
phase change of 180°.

S ′

S

Real
source

Viewing
screen

Mirror

P

P ′
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points S and S* comparable to length d in Figure 37.4. Hence, at observation
points far from the source we expect waves from points S and S* to
form an interference pattern just like the one we see from two real coherent
sources. An interference pattern is indeed observed. However, the positions of
the dark and bright fringes are reversed relative to the pattern created by two
real coherent sources (Young’s experiment). This is because the coherent
sources at points S and S* differ in phase by 180°, a phase change produced by
reflection.

To illustrate this further, consider point P*, the point where the mirror inter-
sects the screen. This point is equidistant from points S and S*. If path difference
alone were responsible for the phase difference, we would see a bright fringe at
point P* (because the path difference is zero for this point), corresponding to the
central bright fringe of the two-slit interference pattern. Instead, we observe a
dark fringe at point P* because of the 180° phase change produced by reflection.
In general,

(L W d ),

Figure 37.15 (a) For a light ray traveling in medium 1 when reflected from the sur-
face of medium 2 undergoes a 180° phase change. The same thing happens with a reflected
pulse traveling along a string fixed at one end. (b) For a light ray traveling in medium
1 undergoes no phase change when reflected from the surface of medium 2. The same is true of
a reflected wave pulse on a string whose supported end is free to move.

n 1 0 n 2 ,

n 1 1 n 2 ,

an electromagnetic wave undergoes a phase change of 180° upon reflection
from a medium that has a higher index of refraction than the one in which the
wave is traveling.

It is useful to draw an analogy between reflected light waves and the reflec-
tions of a transverse wave pulse on a stretched string (see Section 16.6). The re-
flected pulse on a string undergoes a phase change of 180° when reflected from
the boundary of a denser medium, but no phase change occurs when the pulse is
reflected from the boundary of a less dense medium. Similarly, an electromagnetic
wave undergoes a 180° phase change when reflected from a boundary leading to
an optically denser medium, but no phase change occurs when the wave is re-
flected from a boundary leading to a less dense medium. These rules, summarized
in Figure 37.15, can be deduced from Maxwell’s equations, but the treatment is
beyond the scope of this text.

Rigid support
String analogy

180° phase change

n1

n1

n2

n2<

(a)

Free support

No phase change

n1

n1

n2

n2>

(b)
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INTERFERENCE IN THIN FILMS
Interference effects are commonly observed in thin films, such as thin layers of oil
on water or the thin surface of a soap bubble. The varied colors observed when
white light is incident on such films result from the interference of waves reflected
from the two surfaces of the film.

Consider a film of uniform thickness t and index of refraction n, as shown in
Figure 37.16. Let us assume that the light rays traveling in air are nearly normal to
the two surfaces of the film. To determine whether the reflected rays interfere
constructively or destructively, we first note the following facts:

• A wave traveling from a medium of index of refraction n1 toward a medium of
index of refraction n2 undergoes a 180° phase change upon reflection when

and undergoes no phase change if 
• The wavelength of light 'n in a medium whose refraction index is n (see Section

35.5) is

(37.14)

where ' is the wavelength of the light in free space.

Let us apply these rules to the film of Figure 37.16, where Re-
flected ray 1, which is reflected from the upper surface (A), undergoes a phase
change of 180° with respect to the incident wave. Reflected ray 2, which is re-
flected from the lower film surface (B), undergoes no phase change because it is
reflected from a medium (air) that has a lower index of refraction. Therefore, ray
1 is 180° out of phase with ray 2, which is equivalent to a path difference of 'n/2.

n film 0 nair .

'n %
'

n

n2 1 n1 .n2 0 n1

37.6

Interference in soap bubbles. The colors are
due to interference between light rays reflected
from the front and back surfaces of the thin 
film of soap making up the bubble. The color
depends on the thickness of the film, ranging
from black where the film is thinnest to 
red where it is thickest.

The brilliant colors in a peacock’s feathers are
due to interference. The multilayer structure of
the feathers causes constructive interference for
certain colors, such as blue and green. The col-
ors change as you view a peacock’s feathers from
different angles. Iridescent colors of butterflies
and hummingbirds are the result of similar in-
terference effects.

No phase
change

Air

180° phase
change

1
2

A

t
Film

Air

B

nair < nfilm

Figure 37.16 Interference in
light reflected from a thin film is
due to a combination of rays re-
flected from the upper and lower
surfaces of the film.
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However, we must also consider that ray 2 travels an extra distance 2t before the
waves recombine in the air above surface A. If then rays 1 and 2 recom-
bine in phase, and the result is constructive interference. In general, the condition
for constructive interference in such situations is

m % 0, 1, 2, . . . (37.15)

This condition takes into account two factors: (1) the difference in path length for
the two rays (the term m'n) and (2) the 180° phase change upon reflection (the
term 'n/2). Because 'n % '/n, we can write Equation 37.15 as

m % 0, 1, 2, . . . (37.16)

If the extra distance 2t traveled by ray 2 corresponds to a multiple of 'n , then
the two waves combine out of phase, and the result is destructive interference. The
general equation for destructive interference is

m % 0, 1, 2, . . . (37.17)

The foregoing conditions for constructive and destructive interference are
valid when the medium above the top surface of the film is the same as the
medium below the bottom surface. The medium surrounding the film may have
a refractive index less than or greater than that of the film. In either case, the
rays reflected from the two surfaces are out of phase by 180°. If the film 
is placed between two different media, one with n 1 n film and the other with 
n 0 n film , then the conditions for constructive and destructive interference are
reversed. In this case, either there is a phase change of 180° for both ray 1 re-
flecting from surface A and ray 2 reflecting from surface B, or there is no phase
change for either ray; hence, the net change in relative phase due to the reflec-
tions is zero.

In Figure 37.17, where does the oil film thickness vary the least?

Newton’s Rings

Another method for observing interference in light waves is to place a plano-
convex lens on top of a flat glass surface, as shown in Figure 37.18a. With this
arrangement, the air film between the glass surfaces varies in thickness from zero
at the point of contact to some value t at point P. If the radius of curvature R of
the lens is much greater than the distance r, and if the system is viewed from above
using light of a single wavelength ', a pattern of light and dark rings is observed,
as shown in Figure 37.18b. These circular fringes, discovered by Newton, are called
Newton’s rings.

The interference effect is due to the combination of ray 1, reflected from the
flat plate, with ray 2, reflected from the curved surface of the lens. Ray 1 under-
goes a phase change of 180° upon reflection (because it is reflected from a
medium of higher refractive index), whereas ray 2 undergoes no phase change
(because it is reflected from a medium of lower refractive index). Hence, the con-
ditions for constructive and destructive interference are given by Equations 37.16
and 37.17, respectively, with because the film is air.

The contact point at O is dark, as seen in Figure 37.18b, because ray 1 under-
goes a 180° phase change upon external reflection (from the flat surface); in con-

n % 1

Quick Quiz 37.4

2nt % m'

2nt % (m ( 1
2 )'

2t % (m ( 1
2 )'n

2t % 'n/2,

Figure 37.17 A thin film of oil
floating on water displays interfer-
ence, as shown by the pattern of
colors produced when white light is
incident on the film. Variations in
film thickness produce the interest-
ing color pattern. The razor blade
gives one an idea of the size of the
colored bands.

Conditions for constructive
interference in thin films

Conditions for destructive
interference in thin films
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r

2 1

(a)

P O

R

Figure 37.18 (a) The combination of rays reflected from the flat plate and the curved lens sur-
face gives rise to an interference pattern known as Newton’s rings. (b) Photograph of Newton’s
rings.

(b)

trast, ray 2 undergoes no phase change upon internal reflection (from the curved
surface).

Using the geometry shown in Figure 37.18a, we can obtain expressions for the
radii of the bright and dark bands in terms of the radius of curvature R and wave-
length '. For example, the dark rings have radii given by the expression 

The details are left as a problem for you to solve (see Problem 67).
We can obtain the wavelength of the light causing the interference pattern by
measuring the radii of the rings, provided R is known. Conversely, we can use a
known wavelength to obtain R .

One important use of Newton’s rings is in the testing of optical lenses. A
circular pattern like that pictured in Figure 37.18b is obtained only when the
lens is ground to a perfectly symmetric curvature. Variations from such sym-
metry might produce a pattern like that shown in Figure 37.19. These varia-
tions indicate how the lens must be reground and repolished to remove the
imperfections.

r ! !m'R/n .

QuickLab
Observe the colors appearing to swirl
on the surface of a soap bubble. What
do you see just before a bubble
bursts? Why?

Problem-Solving Hints
Thin-Film Interference
You should keep the following ideas in mind when you work thin-film interfer-
ence problems:
• Identify the thin film causing the interference.
• The type of interference that occurs is determined by the phase relationship

between the portion of the wave reflected at the upper surface of the film
and the portion reflected at the lower surface.

• Phase differences between the two portions of the wave have two causes: (1)
differences in the distances traveled by the two portions and (2) phase
changes that may occur upon reflection.

• When the distance traveled and phase changes upon reflection are both
taken into account, the interference is constructive if the equivalent path
difference between the two waves is an integral multiple of ', and it is de-
structive if the path difference is '/2, 3'/2, 5'/2, and so forth.

Figure 37.19 This asymmetrical
interference pattern indicates im-
perfections in the lens of a New-
ton’s-rings apparatus.
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Interference in a Soap FilmEXAMPLE 37.3

Exercise What other film thicknesses produce constructive
interference?

Answer 338 nm, 564 nm, 789 nm, and so on.

113 nmt %
'

4n
%

600 nm
4(1.33)

%
Calculate the minimum thickness of a soap-bubble film

that results in constructive interference in the re-
flected light if the film is illuminated with light whose wave-
length in free space is 

Solution The minimum film thickness for constructive in-
terference in the reflected light corresponds to in
Equation 37.16. This gives or2nt % '/2,

m % 0

' % 600 nm.

(n % 1.33)

Nonreflective Coatings for Solar CellsEXAMPLE 37.4
and the required thickness is

A typical uncoated solar cell has reflective losses as high as
30%; a SiO coating can reduce this value to about 10%. This
significant decrease in reflective losses increases the cell’s effi-
ciency because less reflection means that more sunlight en-
ters the silicon to create charge carriers in the cell. No coat-
ing can ever be made perfectly nonreflecting because the
required thickness is wavelength-dependent and the incident
light covers a wide range of wavelengths.

Glass lenses used in cameras and other optical instru-
ments are usually coated with a transparent thin film to re-
duce or eliminate unwanted reflection and enhance the
transmission of light through the lenses.

94.8 nmt %
'

4n
%

550 nm
4(1.45)

%

2t % '/2n,Solar cells—devices that generate electricity when exposed
to sunlight—are often coated with a transparent, thin film of
silicon monoxide (SiO, to minimize reflective
losses from the surface. Suppose that a silicon solar cell

is coated with a thin film of silicon monoxide for
this purpose (Fig. 37.20). Determine the minimum film
thickness that produces the least reflection at a wavelength of
550 nm, near the center of the visible spectrum.

Solution The reflected light is a minimum when rays 1
and 2 in Figure 37.20 meet the condition of destructive inter-
ference. Note that both rays undergo a 180° phase change
upon reflection—ray 1 from the upper SiO surface and ray 2
from the lower SiO surface. The net change in phase due to
reflection is therefore zero, and the condition for a reflection
minimum requires a path difference of 'n/2. Hence,

(n % 3.5)

n % 1.45)

Si

180° phase
change

1 2

SiO

Air

n = 3.5

n = 1.45

n = 1

180° phase
change

This camera lens has several coatings (of different thicknesses)
that minimize reflection of light waves having wavelengths near
the center of the visible spectrum. As a result, the little light that
is reflected by the lens has a greater proportion of the far ends of
the spectrum and appears reddish-violet. 

Figure 37.20 Reflective losses from a silicon solar cell are mini-
mized by coating the surface of the cell with a thin film of silicon
monoxide.
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Interference in a Wedge-Shaped FilmEXAMPLE 37.5
the thickness satisfies Equation 37.16, corre-
sponding to thicknesses of '/4n, 3'/4n, 5'/4n, and so on.

If white light is used, bands of different colors are ob-
served at different points, corresponding to the different
wavelengths of light (see Fig. 37.21b). This is why we see dif-
ferent colors in soap bubbles.

2nt % (m ( 1
2 )',A thin, wedge-shaped film of refractive index n is illuminated

with monochromatic light of wavelength ', as illustrated in
Figure 37.21a. Describe the interference pattern observed for
this case.

Solution The interference pattern, because it is created
by a thin film of variable thickness surrounded by air, is a se-
ries of alternating bright and dark parallel fringes. A dark
fringe corresponding to destructive interference appears at
point O, the apex, because here the upper reflected ray un-
dergoes a 180° phase change while the lower one undergoes
no phase change.

According to Equation 37.17, other dark minima appear
when thus, and
so on. Similarly, the bright maxima appear at locations where

t3 % 3'/2n,t2 % '/n,t1 % '/2n,2nt % m';

t1

O

t2

t3

Incident
light

(a)

n

(b)

Figure 37.21 (a) Interference bands in re-
flected light can be observed by illuminating a
wedge-shaped film with monochromatic light.
The darker areas correspond to regions where
rays tend to cancel each other because of inter-
ference effects. (b) Interference in a vertical
film of variable thickness. The top of the film
appears darkest where the film is thinnest.

Optional Section

THE MICHELSON INTERFEROMETER
The interferometer, invented by the American physicist A. A. Michelson
(1852–1931), splits a light beam into two parts and then recombines the parts to
form an interference pattern. The device can be used to measure wavelengths or
other lengths with great precision.

A schematic diagram of the interferometer is shown in Figure 37.22. A ray of
light from a monochromatic source is split into two rays by mirror M, which is in-
clined at 45° to the incident light beam. Mirror M, called a beam splitter, transmits
half the light incident on it and reflects the rest. One ray is reflected from M verti-
cally upward toward mirror M1 , and the second ray is transmitted horizontally
through M toward mirror M2 . Hence, the two rays travel separate paths L1 and L2 .
After reflecting from M1 and M2 , the two rays eventually recombine at M to pro-
duce an interference pattern, which can be viewed through a telescope. The glass
plate P, equal in thickness to mirror M, is placed in the path of the horizontal ray
to ensure that the two returning rays travel the same thickness of glass.

37.7
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L1

M
Light source

L2

P
M2

Telescope

Beam
splitter

Adjustable mirror

Image of M2

M1

M2′

Figure 37.22 Diagram of the Michelson interferometer. A single ray of light is split into two
rays by mirror M, which is called a beam splitter. The path difference between the two rays is var-
ied with the adjustable mirror M1 . As M1 is moved toward M, an interference pattern moves
across the field of view.

The interference condition for the two rays is determined by their path length
differences. When the two rays are viewed as shown, the image of M2 produced by
the mirror M is at which is nearly parallel to M1 . (Because M1 and M2 are not
exactly perpendicular to each other, the image is at a slight angle to M1 .)
Hence, the space between and M1 is the equivalent of a wedge-shaped air film.
The effective thickness of the air film is varied by moving mirror M1 parallel to it-
self with a finely threaded screw adjustment. Under these conditions, the interfer-
ence pattern is a series of bright and dark parallel fringes as described in Example
37.5. As M1 is moved, the fringe pattern shifts. For example, if a dark fringe ap-
pears in the field of view (corresponding to destructive interference) and M1 is
then moved a distance '/4 toward M, the path difference changes by '/2 (twice
the separation between M1 and What was a dark fringe now becomes a bright
fringe. As M1 is moved an additional distance '/4 toward M, the bright fringe be-
comes a dark fringe. Thus, the fringe pattern shifts by one-half fringe each time
M1 is moved a distance '/4. The wavelength of light is then measured by counting
the number of fringe shifts for a given displacement of M1 . If the wavelength is ac-
curately known (as with a laser beam), mirror displacements can be measured to
within a fraction of the wavelength.

M*2 ).

M*2

M*2

M*2 ,
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SUMMARY

Interference in light waves occurs whenever two or more waves overlap at a given
point. A sustained interference pattern is observed if (1) the sources are coherent
and (2) the sources have identical wavelengths.

In Young’s double-slit experiment, two slits S1 and S2 separated by a distance d
are illuminated by a single-wavelength light source. An interference pattern con-
sisting of bright and dark fringes is observed on a viewing screen. The condition
for bright fringes (constructive interference) is

m % 0, & 1, & 2, . . . (37.2)

The condition for dark fringes (destructive interference) is

m % 0, & 1, & 2, . . . (37.3)

The number m is called the order number of the fringe.
The intensity at a point in the double-slit interference pattern is

(37.12)

where Imax is the maximum intensity on the screen and the expression represents
the time average.

A wave traveling from a medium of index of refraction n1 toward a medium of
index of refraction n2 undergoes a 180° phase change upon reflection when

and undergoes no phase change when 
The condition for constructive interference in a film of thickness t and refrac-

tive index n surrounded by air is

m % 0, 1, 2, . . . (37.16)

where ' is the wavelength of the light in free space.
Similarly, the condition for destructive interference in a thin film is

m % 0, 1, 2, . . . (37.17)2nt % m'

2nt % (m ( 1
2 )l

n2 1 n1 .n2 0 n1

I % Imax cos2" -d sin #
' #

d sin # % (m ( 1
2 )'

d sin # % m'

QUESTIONS

7. In our discussion of thin-film interference, we looked at
light reflecting from a thin film. Consider one light ray, the
direct ray, that transmits through the film without reflect-
ing. Consider a second ray, the reflected ray, that trans-
mits through the first surface, reflects from the second,
reflects again from the first, and then transmits out into
the air, parallel to the direct ray. For normal incidence,
how thick must the film be, in terms of the wavelength of
light, for the outgoing rays to interfere destructively? Is it
the same thickness as for reflected destructive interfer-
ence?

8. Suppose that you are watching television connected to an
antenna rather than a cable system. If an airplane flies
near your location, you may notice wavering ghost images
in the television picture. What might cause this?

9. If we are to observe interference in a thin film, why must
the film not be very thick (on the order of a few wave-
lengths)?

10. A lens with outer radius of curvature R and index of re-

1. What is the necessary condition on the path length differ-
ence between two waves that interfere (a) constructively
and (b) destructively?

2. Explain why two flashlights held close together do not
produce an interference pattern on a distant screen.

3. If Young’s double-slit experiment were performed under
water, how would the observed interference pattern be af-
fected?

4. In Young’s double-slit experiment, why do we use mono-
chromatic light? If white light is used, how would the pat-
tern change?

5. Consider a dark fringe in an interference pattern, at
which almost no light is arriving. Light from both slits is
arriving at this point, but the waves are canceling. Where
does the energy go?

6. An oil film on water appears brightest at the outer re-
gions, where it is thinnest. From this information, what
can you say about the index of refraction of oil relative to
that of water?
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fraction n rests on a flat glass plate, and the combination
is illuminated with white light from above. Is there a dark
spot or a light spot at the center of the lens? What does it
mean if the observed rings are noncircular?

11. Why is the lens on a high-quality camera coated with a
thin film?

12. Why is it so much easier to perform interference experi-
ments with a laser than with an ordinary light source?

PROBLEMS

5. Young’s double-slit experiment is performed with 
589-nm light and a slit-to-screen distance of 2.00 m. The
tenth interference minimum is observed 7.26 mm from
the central maximum. Determine the spacing of the slits.

6. The two speakers of a boom box are 35.0 cm apart. 
A single oscillator makes the speakers vibrate in phase
at a frequency of 2.00 kHz. At what angles, measured
from the perpendicular bisector of the line joining the
speakers, would a distant observer hear maximum
sound intensity? minimum sound intensity? (Take the
speed of sound as 340 m/s.)

7. A pair of narrow, parallel slits separated by 0.250 mm
are illuminated by green light (' % 546.1 nm). The in-
terference pattern is observed on a screen 1.20 m away
from the plane of the slits. Calculate the distance 
(a) from the central maximum to the first bright region
on either side of the central maximum and (b) between
the first and second dark bands.

8. Light with a wavelength of 442 nm passes through 
a double-slit system that has a slit separation 

mm. Determine how far away a screen must be
placed so that a dark fringe appears directly opposite
both slits, with just one bright fringe between them.

9. A riverside warehouse has two open doors, as illustrated
in Figure P37.9. Its walls are lined with sound-absorbing
material. A boat on the river sounds its horn. To person
A, the sound is loud and clear. To person B, the sound
is barely audible. The principal wavelength of the sound
waves is 3.00 m. Assuming that person B is at the posi-
tion of the first minimum, determine the distance be-
tween the doors, center to center.

0.400
d %

Section 37.1 Conditions for Interference
Section 37.2 Young’s Double-Slit Experiment

1. A laser beam (' % 632.8 nm) is incident on two slits
0.200 mm apart. How far apart are the bright interfer-
ence fringes on a screen 5.00 m away from the slits?

2. A Young’s interference experiment is performed with
monochromatic light. The separation between the slits
is 0.500 mm, and the interference pattern on a screen
3.30 m away shows the first maximum 3.40 mm from
the center of the pattern. What is the wavelength?

3. Two radio antennas separated by 300 m as shown in 
Figure P37.3 simultaneously broadcast identical signals
at the same wavelength. A radio in a car traveling due
north receives the signals. (a) If the car is at the posi-
tion of the second maximum, what is the wavelength of
the signals? (b) How much farther must the car travel
to encounter the next minimum in reception? (Note: Do
not use the small-angle approximation in this problem.)

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

400 m

1000 m
300 m

Figure P37.3
20.0 m

150 m

A

B

Figure P37.9

4. In a location where the speed of sound is 354 m/s, a 
2 000-Hz sound wave impinges on two slits 30.0 cm
apart. (a) At what angle is the first maximum located?
(b) If the sound wave is replaced by 3.00-cm microwaves,
what slit separation gives the same angle for the first
maximum? (c) If the slit separation is 1.00 2m, what fre-
quency of light gives the same first maximum angle?

WEB
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10. Two slits are separated by 0.320 mm. A beam of 500-nm
light strikes the slits, producing an interference pattern.
Determine the number of maxima observed in the an-
gular range ! 30.0° 1 # 1 30.0°.

11. In Figure 37.4 let m and mm, and
assume that the slit system is illuminated with mono-
chromatic 500-nm light. Calculate the phase difference
between the two wavefronts arriving at point P when 
(a) # % 0.500° and (b) mm. (c) What is the
value of # for which the phase difference is 0.333 rad?
(d) What is the value of # for which the path difference
is '/4?

12. Coherent light rays of wavelength ' strike a pair of slits
separated by distance d at an angle of #1 , as shown in
Figure P37.12. If an interference maximum is formed at
an angle of #2 a great distance from the slits, show that

where m is an integer.d(sin #2 ! sin #1) % m',

y % 5.00

d % 0.120L % 1.20

17. Two narrow parallel slits separated by 0.850 mm are illu-
minated by 600-nm light, and the viewing screen is 
2.80 m away from the slits. (a) What is the phase differ-
ence between the two interfering waves on a screen at a
point 2.50 mm from the central bright fringe? (b) What
is the ratio of the intensity at this point to the intensity
at the center of a bright fringe?

18. Monochromatic coherent light of amplitude E0 and an-
gular frequency + passes through three parallel slits
each separated by a distance d from its neighbor. 
(a) Show that the time-averaged intensity as a function
of the angle # is

(b) Determine the ratio of the intensities of the primary
and secondary maxima.

Section 37.4 Phasor Addition of Waves
19. Marie Cornu invented phasors in about 1880. This

problem helps you to see their utility. Find the ampli-
tude and phase constant of the sum of two waves repre-
sented by the expressions

and

(a) by using a trigonometric identity (see Appendix B)
and (b) by representing the waves by phasors. (c) Find
the amplitude and phase constant of the sum of the
three waves represented by

and

20. The electric fields from three coherent sources are de-
scribed by sin +t, sin(+t ( ,), and

sin(+t ( 2,). Let the resultant field be repre-
sented by sin(+t ( /). Use phasors to find ER
and / when (a) , % 20.0°, (b) , % 60.0°, and (c) , %
120°. (d) Repeat when , % (3-/2) rad.

21. Determine the resultant of the two waves 
6.0 sin(100 -t) and sin(100 -t ( -/2).

22. Suppose that the slit openings in a Young’s double-slit
experiment have different sizes so that the electric
fields and the intensities from each slit are different. If

sin(+t) and sin(+t ( ,), show that
the resultant electric field is sin(+t ( #), where

and

E 0 % !E 01 

2 ( E 02 

2 ( 2E 01 E 02 cos ,

E % E 0

E 2 % E 02E 01E 1 %

E 2 % 8.0
E 1 %

E P % E R

E 3 % E 0

E 2 % E 0E 1 % E 0

E 3 % (17.0 kN/C) sin(15x ! 4.5t ( 1603)

E 2 % (15.5 kN/C) sin(15x ! 4.5t ! 803)

E 1 % (12.0 kN/C) sin(15x ! 4.5t ( 703)

E 2 % (12.0 kN/C) sin(15x ! 4.5t ( 703)

E 1 % (12.0 kN/C) sin(15x ! 4.5t)

I(#) % Imax$1 ( 2 cos" 2-d sin #
' #%2

1

d

2

θ

θ

Figure P37.12

13. In the double-slit arrangement of Figure 37.4, 
0.150 mm, cm, nm, and cm.
(a) What is the path difference $ for the rays from the
two slits arriving at point P ? (b) Express this path differ-
ence in terms of '. (c) Does point P correspond to a
maximum, a minimum, or an intermediate condition?

Section 37.3 Intensity Distribution of the Double-Slit 
Interference Pattern

14. The intensity on the screen at a certain point in a dou-
ble-slit interference pattern is 64.0% of the maximum
value. (a) What minimum phase difference (in radians)
between sources produces this result? (b) Express this
phase difference as a path difference for 486.1-nm light.

15. In Figure 37.4, let cm and cm. The
slits are illuminated with coherent 600-nm light. Calcu-
late the distance y above the central maximum for
which the average intensity on the screen is 75.0% of
the maximum.

16. Two slits are separated by 0.180 mm. An interference
pattern is formed on a screen 80.0 cm away by 656.3-nm
light. Calculate the fraction of the maximum intensity
0.600 cm above the central maximum.

d % 0.250L % 120

y % 1.80' % 643L % 140
d %

WEB

WEB
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d

Figure P37.35

Figure P37.37 Problems 37 and 38.

23. Use phasors to find the resultant (magnitude and phase
angle) of two fields represented by sin +t and

sin(+t ( 60°). (Note that in this case the am-
plitudes of the two fields are unequal.)

24. Two coherent waves are described by the expressions

Determine the relationship between x1 and x2 that pro-
duces constructive interference when the two waves are
superposed.

25. When illuminated, four equally spaced parallel slits act
as multiple coherent sources, each differing in phase
from the adjacent one by an angle ,. Use a phasor dia-
gram to determine the smallest value of , for which the
resultant of the four waves (assumed to be of equal am-
plitude) is zero.

26. Sketch a phasor diagram to illustrate the resultant of
sin +t and sin(+t ( ,), where

and -/6 4 , 4 -/3. Use the sketch and
the law of cosines to show that, for two coherent waves,
the resultant intensity can be written in the form 

27. Consider N coherent sources described by 
sin(+t ( ,), sin(+t ( 2,), 
sin(+t ( 3,), . . . , sin(+t ( N,). Find

the minimum value of , for which 
is zero.

Section 37.5 Change of Phase Due to Reflection
Section 37.6 Interference in Thin Films

28. A soap bubble is floating in air. If the thick-
ness of the bubble wall is 115 nm, what is the wave-
length of the light that is most strongly reflected?

29. An oil film floating on water is illuminated
by white light at normal incidence. The film is 280 nm
thick. Find (a) the dominant observed color in the re-
flected light and (b) the dominant color in the trans-
mitted light. Explain your reasoning.

30. A thin film of oil is located on a smooth, wet
pavement. When viewed perpendicular to the pave-
ment, the film appears to be predominantly red 
(640 nm) and has no blue color (512 nm). How thick is
the oil film?

31. A possible means for making an airplane invisible to
radar is to coat the plane with an antireflective polymer.
If radar waves have a wavelength of 3.00 cm and the in-
dex of refraction of the polymer is how thick
would you make the coating?

32. A material having an index of refraction of 1.30 is used

n % 1.50,

(n % 1.25)

(n % 1.45)

(n % 1.33)

E 3 ( . . . (  E N

E R % E 1 ( E 2 (
E N % E 0E 0

E 3 %E 2 % E 0E 0

E 1 %
IR % I1 ( I2 ( 2!I1I2 cos ,.

E 02 % 1.50E 01

E 2 % E 02E 1 % E 01

E 2 % E 0 sin" 2-x2

'
! 2-ft (

-

8 #

E 1 % E 0 sin" 2-x1

'
! 2-ft (

-

6 #

E 2 % 18
E 1 % 12

sin # %
E 02 sin ,

E 0

to coat a piece of glass What should be the
minimum thickness of this film if it is to minimize re-
flection of 500-nm light?

33. A film of MgF2 having a thickness of
is used to coat a camera lens. Are any

wavelengths in the visible spectrum intensified in the re-
flected light?

34. Astronomers observe the chromosphere of the Sun with
a filter that passes the red hydrogen spectral line of
wavelength 656.3 nm, called the H/ line. The filter con-
sists of a transparent dielectric of thickness d held be-
tween two partially aluminized glass plates. The filter is
held at a constant temperature. (a) Find the minimum
value of d that produces maximum transmission of per-
pendicular H/ light, if the dielectric has an index of re-
fraction of 1.378. (b) Assume that the temperature of
the filter increases above its normal value and that its in-
dex of refraction does not change significantly. What
happens to the transmitted wavelength? (c) The dielec-
tric will also pass what near-visible wavelength? One of
the glass plates is colored red to absorb this light.

35. A beam of 580-nm light passes through two closely
spaced glass plates, as shown in Figure P37.35. For what
minimum nonzero value of the plate separation d is the
transmitted light bright?

1.00 " 10!5 cm
(n % 1.38)

(n % 1.50).

36. When a liquid is introduced into the air space between
the lens and the plate in a Newton’s-rings apparatus, 
the diameter of the tenth ring changes from 1.50 to
1.31 cm. Find the index of refraction of the liquid.

37. An air wedge is formed between two glass plates sepa-
rated at one edge by a very fine wire, as shown in Figure
P37.37. When the wedge is illuminated from above by
600-nm light, 30 dark fringes are observed. Calculate
the radius of the wire.

WEB
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38. Two rectangular flat glass plates are in con-
tact along one end and separated along the other end
by a sheet of paper 4.00 " 10!3 cm thick (see Fig.
P37.37). The top plate is illuminated by monochro-
matic light Calculate the number of
dark parallel bands crossing the top plate (include the
dark band at zero thickness along the edge of contact
between the two plates).

39. Two glass plates 10.0 cm long are in contact at one end
and separated at the other end by a thread 0.050 0 mm
in diameter. Light containing the two wavelengths 
400 nm and 600 nm is incident perpendicularly. At what
distance from the contact point is the next dark fringe?

(Optional)
Section 37.7 The Michelson Interferometer

40. Light of wavelength 550.5 nm is used to calibrate a
Michelson interferometer, and mirror M1 is moved
0.180 mm. How many dark fringes are counted?

41. Mirror M1 in Figure 37.22 is displaced a distance )L .
During this displacement, 250 fringe reversals (forma-
tion of successive dark or bright bands) are counted.
The light being used has a wavelength of 632.8 nm. Cal-
culate the displacement )L .

42. Monochromatic light is beamed into a Michelson inter-
ferometer. The movable mirror is displaced 0.382 mm;
this causes the interferometer pattern to reproduce it-
self 1 700 times. Determine the wavelength and the
color of the light.

43. One leg of a Michelson interferometer contains an
evacuated cylinder 3.00 cm long having glass plates on
each end. A gas is slowly leaked into the cylinder until a
pressure of 1 atm is reached. If 35 bright fringes pass on
the screen when light of wavelength 633 nm is used,
what is the index of refraction of the gas?

44. One leg of a Michelson interferometer contains an
evacuated cylinder of length L having glass plates on
each end. A gas is slowly leaked into the cylinder until a
pressure of 1 atm is reached. If N bright fringes pass on
the screen when light of wavelength ' is used, what is
the index of refraction of the gas?

ADDITIONAL PROBLEMS
45. One radio transmitter A operating at 60.0 MHz is 

10.0 m from another similar transmitter B that is 180°
out of phase with transmitter A. How far must an ob-
server move from transmitter A toward transmitter B
along the line connecting A and B to reach the nearest
point where the two beams are in phase?

46. Raise your hand and hold it flat. Think of the space be-
tween your index finger and your middle finger as one
slit, and think of the space between middle finger and
ring finger as a second slit. (a) Consider the interfer-
ence resulting from sending coherent visible light per-
pendicularly through this pair of openings. Compute an
order-of-magnitude estimate for the angle between adja-

(' % 546.1 nm).

(n % 1.52) cent zones of constructive interference. (b) To make the
angles in the interference pattern easy to measure with a
plastic protractor, you should use an electromagnetic
wave with frequency of what order of magnitude? How is
this wave classified on the electromagnetic spectrum?

47. In a Young’s double-slit experiment using light of wave-
length ', a thin piece of Plexiglas having index of re-
fraction n covers one of the slits. If the center point on
the screen is a dark spot instead of a bright spot, what is
the minimum thickness of the Plexiglas?

48. Review Problem. A flat piece of glass is held stationary
and horizontal above the flat top end of a 10.0-cm-long
vertical metal rod that has its lower end rigidly fixed.
The thin film of air between the rod and glass is ob-
served to be bright by reflected light when it is illumi-
nated by light of wavelength 500 nm. As the tempera-
ture is slowly increased by 25.0°C, the film changes from
bright to dark and back to bright 200 times. What is the
coefficient of linear expansion of the metal?

49. A certain crude oil has an index of refraction of 1.25. 
A ship dumps 1.00 m3 of this oil into the ocean, and the
oil spreads into a thin uniform slick. If the film pro-
duces a first-order maximum of light of wavelength 
500 nm normally incident on it, how much surface area
of the ocean does the oil slick cover? Assume that the
index of refraction of the ocean water is 1.34.

50. Interference effects are produced at point P on a screen
as a result of direct rays from a 500-nm source and re-
flected rays off the mirror, as shown in Figure P37.50. If
the source is 100 m to the left of the screen and 1.00 cm
above the mirror, find the distance y (in millimeters) to
the first dark band above the mirror.

O

Source
P

Viewing screen

Mirror

!

y

Figure P37.50

51. Astronomers observed a 60.0-MHz radio source both di-
rectly and by reflection from the sea. If the receiving
dish is 20.0 m above sea level, what is the angle of the
radio source above the horizon at first maximum?

52. The waves from a radio station can reach a home re-
ceiver by two paths. One is a straight-line path from
transmitter to home, a distance of 30.0 km. The second
path is by reflection from the ionosphere (a layer of ion-
ized air molecules high in the atmosphere). Assume that
this reflection takes place at a point midway between the
receiver and the transmitter. The wavelength broadcast
by the radio station is 350 m. Find the minimum height
of the ionospheric layer that produces destructive inter-
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ference between the direct and reflected beams. (As-
sume that no phase changes occur on reflection.)

53. Measurements are made of the intensity distribution in
a Young’s interference pattern (see Fig. 37.6). At a par-
ticular value of y, it is found that when
600-nm light is used. What wavelength of light should
be used if the relative intensity at the same location is to
be reduced to 64.0%?

54. In a Young’s interference experiment, the two slits are
separated by 0.150 mm, and the incident light includes
light of wavelengths '1 % 540 nm and '2 % 450 nm.
The overlapping interference patterns are formed on a
screen 1.40 m from the slits. Calculate the minimum
distance from the center of the screen to the point
where a bright line of the '1 light coincides with a
bright line of the '2 light.

55. An air wedge is formed between two glass plates in con-
tact along one edge and slightly separated at the oppo-
site edge. When the plates are illuminated with mono-
chromatic light from above, the reflected light has 85
dark fringes. Calculate the number of dark fringes that
would appear if water were to replace the air
between the plates.

56. Our discussion of the techniques for determining con-
structive and destructive interference by reflection from
a thin film in air has been confined to rays striking the
film at nearly normal incidence. Assume that a ray is in-
cident at an angle of 30.0° (relative to the normal) on a
film with an index of refraction of 1.38. Calculate the
minimum thickness for constructive interference if the
light is sodium light with a wavelength of 590 nm.

57. The condition for constructive interference by reflec-
tion from a thin film in air as developed in Section 37.6
assumes nearly normal incidence. Show that if the light
is incident on the film at a nonzero angle ,1 (relative to
the normal), then the condition for constructive inter-
ference is 2nt cos where #2 is the angle
of refraction.

58. (a) Both sides of a uniform film that has index of refrac-
tion n and thickness d are in contact with air. For nor-
mal incidence of light, an intensity minimum is ob-
served in the reflected light at '2 , and an intensity
maximum is observed at '1 , where If no inten-
sity minima are observed between '1 and '2 , show that
the integer m in Equations 37.16 and 37.17 is given by

(b) Determine the thickness of the
film if nm, and nm.

59. Figure P37.59 shows a radio wave transmitter and a re-
ceiver separated by a distance d and located a distance h
above the ground. The receiver can receive signals both
directly from the transmitter and indirectly from signals
that reflect off the ground. Assume that the ground is
level between the transmitter and receiver and that a
180° phase shift occurs upon reflection. Determine the
longest wavelengths that interfere (a) constructively
and (b) destructively.

'2 % 370'1 % 500n % 1.40,
m % '1/2('1 ! '2).

'1 0 '2 .

#2 % (m ( 1
2 )',

(n % 1.33)

I/Imax % 0.810

60. Consider the double-slit arrangement shown in Figure
P37.60, where the separation d is 0.300 mm and the dis-
tance L is 1.00 m. A sheet of transparent plastic

0.050 0 mm thick (about the thickness of
this page) is placed over the upper slit. As a result, the
central maximum of the interference pattern moves up-
ward a distance y*. Find y*.

(n % 1.50)

Transmitter Receiver

d

h

Figure P37.59

61. Consider the double-slit arrangement shown in Figure
P37.60, where the slit separation is d and the slit to
screen distance is L. A sheet of transparent plastic having
an index of refraction n and thickness t is placed over the
upper slit. As a result, the central maximum of the inter-
ference pattern moves upward a distance y*. Find y*.

62. Waves broadcast by a 1 500-kHz radio station arrive at a
home receiver by two paths. One is a direct path, and
the other is from reflection off an airplane directly
above the receiver. The airplane is approximately 100 m
above the receiver, and the direct distance from station
to home is 20.0 km. What is the precise height of the
airplane if destructive interference is occurring? (As-
sume that no phase change occurs on reflection.)

63. In a Newton’s-rings experiment, a plano-convex glass
lens having a diameter of 10.0 cm is placed

on a flat plate, as shown in Figure 37.18a. When 650-nm
light is incident normally, 55 bright rings are observed,
with the last ring right on the edge of the lens. (a) What
is the radius of curvature of the convex surface of the
lens? (b) What is the focal length of the lens?

64. A piece of transparent material having an index of re-

(n % 1.52)

θ

m =0 Zero order

Viewing screen

Plastic
sheet

L

d

∆r

y′

Figure P37.60 Problems 60 and 61.
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fraction n is cut into the shape of a wedge, as shown in
Figure P37.64. The angle of the wedge is small, and
monochromatic light of wavelength ' is normally inci-
dent from above. If the height of the wedge is h and the
width is !, show that bright fringes occur at the posi-
tions and that dark fringes occur at
the positions where m % 0, 1, 2, . . .
and x is measured as shown.

x % '!m/2hn,
x % '!(m ( 1

2 )/2hn

where m is an integer and r is much less than R .
68. A soap film is contained within a rectangular

wire frame. The frame is held vertically so that the film
drains downward and becomes thicker at the bottom
than at the top, where the thickness is essentially zero.
The film is viewed in white light with near-normal inci-
dence, and the first violet interference
band is observed 3.00 cm from the top edge of the film.
(a) Locate the first red interference
band. (b) Determine the film thickness at the positions
of the violet and red bands. (c) What is the wedge angle
of the film?

69. Interference fringes are produced using Lloyd’s mirror
and a 606-nm source, as shown in Figure 37.14. Fringes
1.20 mm apart are formed on a screen 2.00 m from the
real source S. Find the vertical distance h of the source
above the reflecting surface.

70. Slit 1 of a double slit is wider than slit 2, so that the light
from slit 1 has an amplitude 3.00 times that of the light
from slit 2. Show that Equation 37.11 is replaced by the
equation for this situa-
tion.

(4Imax/9)(1 ( 3 cos2 ,/2)I %

(' % 680 nm)

(' % 420 nm)

(n % 1.33)

r & !m'R/n film

R

r

Figure P37.66

 I
Imax

0–2λ– 2λλ λ λ λ
d sin θθ

!

x

h

Figure P37.64

65. Use phasor addition to find the resultant amplitude and
phase constant when the following three harmonic
functions are combined: 

66. A plano-convex lens having a radius of curvature of
m is placed on a concave reflecting surface

whose radius of curvature is m, as shown in
Figure P37.66. Determine the radius of the 100th bright
ring if 500-nm light is incident normal to the flat sur-
face of the lens.

67. A plano-convex lens has index of refraction n . The
curved side of the lens has radius of curvature R and
rests on a flat glass surface of the same index of refrac-
tion, with a film of index nfilm between them. The lens
is illuminated from above by light of wavelength '.
Show that the dark Newton’s rings have radii given ap-
proximately by

R % 12.0
r % 4.00

E 3 % 6.0 sin(+t ( 4-/3).E 2 % 3.0 sin(+t ( 7-/2),
E 1 % sin(+t ( -/6),

ANSWERS TO QUICK QUIZZES

of the photograph and at the bottom right corner of the
razor blade. Thus, the thickness of the oil film changes
most slowly with position in these areas.

37.1 Bands of light along the orange lines interspersed with
dark bands running along the dashed black lines.

37.2 At location B. At A, which is on a line of constructive in-
terference, the water surface undulates so much that you
probably could not determine the depth. Because B is on
a line of destructive interference, the water level does not
change, and you should be able to read the ruler easily.

37.3 The graph is shown in Figure QQA37.1. The width of
the primary maxima is slightly narrower than the 
primary width but wider than the primary width.
Because the secondary maxima are as intense
as the primary maxima.

37.4 The greater the variation in thickness, the narrower the
bands of color (like the lines on a topographic map).
The widest bands are the gold ones along the left edge

1
36N % 6,

N % 10
N % 5

Figure QQA37.1
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c h a p t e r

Diffraction and Polarization

P U Z Z L E R

At sunset, the sky is ablaze with brilliant
reds, pinks, and oranges. Yet, we 
wouldn’t be able to see this sunset were
it not for the fact that someone else is 
simultaneously seeing a blue sky. What
causes the beautiful colors of a sunset,
and why must the sky be blue some-
where else for us to enjoy one? (© W. A.
Banaszewski/Visuals Unlimited)

C h a p t e r  O u t l i n e

38.1 Introduction to Diffraction
38.2 Diffraction from Narrow Slits
38.3 Resolution of Single-Slit and

Circular Apertures

38.4 The Diffraction Grating
38.5 (Optional) Diffraction of X-Rays

by Crystals
38.6 Polarization of Light Waves

P U Z Z L E R

1211
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hen light waves pass through a small aperture, an interference pattern is
observed rather than a sharp spot of light. This behavior indicates that light,

once it has passed through the aperture, spreads beyond the narrow path de-
fined by the aperture into regions that would be in shadow if light traveled in
straight lines. Other waves, such as sound waves and water waves, also have this
property of spreading when passing through apertures or by sharp edges. This
phenomenon, known as diffraction, can be described only with a wave model for
light.

In Chapter 34, we learned that electromagnetic waves are transverse. That is,
the electric and magnetic field vectors are perpendicular to the direction of wave
propagation. In this chapter, we see that under certain conditions these transverse
waves can be polarized in various ways.

INTRODUCTION TO DIFFRACTION
In Section 37.2 we learned that an interference pattern is observed on a viewing
screen when two slits are illuminated by a single-wavelength light source. If the
light traveled only in its original direction after passing through the slits, as
shown in Figure 38.1a, the waves would not overlap and no interference pattern
would be seen. Instead, Huygens’s principle requires that the waves spread out
from the slits as shown in Figure 38.1b. In other words, the light deviates from a
straight-line path and enters the region that would otherwise be shadowed. As
noted in Section 35.1, this divergence of light from its initial line of travel is
called diffraction.

In general, diffraction occurs when waves pass through small openings,
around obstacles, or past sharp edges, as shown in Figure 38.2. When an opaque
object is placed between a point source of light and a screen, no sharp boundary
exists on the screen between a shadowed region and an illuminated region. The il-
luminated region above the shadow of the object contains alternating light and
dark fringes. Such a display is called a diffraction pattern.

Figure 38.3 shows a diffraction pattern associated with the shadow of a penny.
A bright spot occurs at the center, and circular fringes extend outward from the
shadow’s edge. We can explain the central bright spot only by using the wave the-

38.1

W

(a)

(b)

Figure 38.2 Light from a small source passes by the edge of an opaque object. We might ex-
pect no light to appear on the screen below the position of the edge of the object. In reality, light
bends around the top edge of the object and enters this region. Because of these effects, a dif-
fraction pattern consisting of bright and dark fringes appears in the region above the edge of the
object.

Figure 38.1 (a) If light waves did
not spread out after passing
through the slits, no interference
would occur. (b) The light waves
from the two slits overlap as they
spread out, filling what we expect
to be shadowed regions with light
and producing interference
fringes.

Source

Opaque object

Viewing
screen
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ory of light, which predicts constructive interference at this point. From the view-
point of geometric optics (in which light is viewed as rays traveling in straight
lines), we expect the center of the shadow to be dark because that part of the view-
ing screen is completely shielded by the penny.

It is interesting to point out an historical incident that occurred shortly before
the central bright spot was first observed. One of the supporters of geometric op-
tics, Simeon Poisson, argued that if Augustin Fresnel’s wave theory of light were
valid, then a central bright spot should be observed in the shadow of a circular ob-
ject illuminated by a point source of light. To Poisson’s astonishment, the spot was
observed by Dominique Arago shortly thereafter. Thus, Poisson’s prediction rein-
forced the wave theory rather than disproving it.

In this chapter we restrict our attention to Fraunhofer diffraction, which oc-
curs, for example, when all the rays passing through a narrow slit are approxi-
mately parallel to one another. This can be achieved experimentally either by plac-
ing the screen far from the opening used to create the diffraction or by using a
converging lens to focus the rays once they pass through the opening, as shown in
Figure 38.4a. A bright fringe is observed along the axis at ! " 0, with alternating
dark and bright fringes occurring on either side of the central bright one. Figure
38.4b is a photograph of a single-slit Fraunhofer diffraction pattern.

Figure 38.3 Diffraction pattern created by the illumina-
tion of a penny, with the penny positioned midway between
screen and light source.

Figure 38.4 (a) Fraunhofer diffraction pattern of a single slit. The pattern consists of a central
bright fringe flanked by much weaker maxima alternating with dark fringes (drawing not to
scale). (b) Photograph of a single-slit Fraunhofer diffraction pattern.

Lens

Slit

Incoming
wave

(a)
Viewing screen

(b)

θ
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DIFFRACTION FROM NARROW SLITS
Until now, we have assumed that slits are point sources of light. In this section, we
abandon that assumption and see how the finite width of slits is the basis for un-
derstanding Fraunhofer diffraction.

We can deduce some important features of this phenomenon by examining
waves coming from various portions of the slit, as shown in Figure 38.5. According
to Huygens’s principle, each portion of the slit acts as a source of light waves.
Hence, light from one portion of the slit can interfere with light from another
portion, and the resultant light intensity on a viewing screen depends on the direc-
tion !.

To analyze the diffraction pattern, it is convenient to divide the slit into two
halves, as shown in Figure 38.5. Keeping in mind that all the waves are in phase
as they leave the slit, consider rays 1 and 3. As these two rays travel toward a view-
ing screen far to the right of the figure, ray 1 travels farther than ray 3 by an
amount equal to the path difference (a/2) sin !, where a is the width of the slit.
Similarly, the path difference between rays 2 and 4 is also (a/2) sin !. If this path
difference is exactly half a wavelength (corresponding to a phase difference of
180°), then the two waves cancel each other and destructive interference results.
This is true for any two rays that originate at points separated by half the slit
width because the phase difference between two such points is 180°. Therefore,
waves from the upper half of the slit interfere destructively with waves from the
lower half when

or when

If we divide the slit into four equal parts and use similar reasoning, we find
that the viewing screen is also dark when

Likewise, we can divide the slit into six equal parts and show that darkness oc-
curs on the screen when

Therefore, the general condition for destructive interference is

m " # 1, # 2, # 3, . . . (38.1)

This equation gives the values of ! for which the diffraction pattern has zero light
intensity—that is, when a dark fringe is formed. However, it tells us nothing about
the variation in light intensity along the screen. The general features of the inten-
sity distribution are shown in Figure 38.6. A broad central bright fringe is ob-

sin ! " m 
$

a

 sin ! "
3$

a

sin ! "
2$

a

sin ! "
$

a

a
2

 sin ! "
$

2

38.2

a/2

a

a/2

a
2 sin

3

2

5

4

1

θ

θ

Figure 38.5 Diffraction of light
by a narrow slit of width a. Each
portion of the slit acts as a point
source of light waves. The path dif-
ference between rays 1 and 3 or be-
tween rays 2 and 4 is (a/2)sin !
(drawing not to scale).

Condition for destructive
interference
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served; this fringe is flanked by much weaker bright fringes alternating with dark
fringes. The various dark fringes occur at the values of ! that satisfy Equation 38.1.
Each bright-fringe peak lies approximately halfway between its bordering dark-
fringe minima. Note that the central bright maximum is twice as wide as the sec-
ondary maxima.

If the door to an adjoining room is slightly ajar, why is it that you can hear sounds from the
room but cannot see much of what is happening in the room?

Quick Quiz 38.1

Where Are the Dark Fringes?EXAMPLE 38.1
The positive and negative signs correspond to the dark
fringes on either side of the central bright fringe. Hence, 
the width of the central bright fringe is equal to

Note that this value is
much greater than the width of the slit. However, as the slit
width is increased, the diffraction pattern narrows, corre-
sponding to smaller values of !. In fact, for large values of a ,
the various maxima and minima are so closely spaced that
only a large central bright area resembling the geometric im-
age of the slit is observed. This is of great importance in the
design of lenses used in telescopes, microscopes, and other
optical instruments.

Exercise Determine the width of the first-order 
bright fringe.

Answer 3.87 mm.

(m " 1)

2! y1 ! " 7.74 % 10&3 m " 7.74 mm.

Light of wavelength 580 nm is incident on a slit having a
width of 0.300 mm. The viewing screen is 2.00 m from the
slit. Find the positions of the first dark fringes and the width
of the central bright fringe.

Solution The two dark fringes that flank the central
bright fringe correspond to m " # 1 in Equation 38.1.
Hence, we find that

From the triangle in Figure 38.6, note that tan Be-
cause ! is very small, we can use the approximation sin ! "
tan !; thus, sin ! " y1/L . Therefore, the positions of the first
minima measured from the central axis are given by

#3.87 % 10&3 my1 " L sin ! " #L 
$

a
"

! " y1/L .

sin ! " #
$

a
" #

5.80 % 10&7 m
0.300 % 10&3 m

" #1.93 % 10&3

The diffraction pattern that ap-
pears on a screen when light passes
through a narrow vertical slit. The
pattern consists of a broad central
bright fringe and a series of less in-
tense and narrower side bright
fringes.

sin   = 2  /aθ

sin   =   /aθ

sin   = 0θ

sin   = –  /aθ

sin    = –2  /aθL

θ

a 0

y2

y1

–y1

–y2

Viewing screen

λ

λ

λ

λ

Figure 38.6 Intensity distribution for a
Fraunhofer diffraction pattern from a single
slit of width a. The positions of two minima
on each side of the central maximum are la-
beled (drawing not to scale).

Intensity of Single-Slit Diffraction Patterns

We can use phasors to determine the light intensity distribution for a single-slit dif-
fraction pattern. Imagine a slit divided into a large number of small zones, each of
width 'y as shown in Figure 38.7. Each zone acts as a source of coherent radiation,
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and each contributes an incremental electric field of magnitude 'E at some point
P on the screen. We obtain the total electric field magnitude E at point P by sum-
ming the contributions from all the zones. The light intensity at point P is propor-
tional to the square of the magnitude of the electric field (see Section 37.3).

The incremental electric field magnitudes between adjacent zones are out of
phase with one another by an amount '(, where the phase difference '( is re-
lated to the path difference 'y sin ! between adjacent zones by the expression

(38.2)

To find the magnitude of the total electric field on the screen at any angle !,
we sum the incremental magnitudes 'E due to each zone. For small values of !, we
can assume that all the 'E values are the same. It is convenient to use phasor dia-
grams for various angles, as shown in Figure 38.8. When ! " 0, all phasors are
aligned as shown in Figure 38.8a because all the waves from the various zones are
in phase. In this case, the total electric field at the center of the screen is 
N 'E, where N is the number of zones. The resultant magnitude E R at some small
angle ! is shown in Figure 38.8b, where each phasor differs in phase from an adja-
cent one by an amount '(. In this case, ER is the vector sum of the incremental

E 0 "

 '( "
2)

$
 'y sin ! 

P

a

∆y

∆y sin

Viewing
screen

θ

θ

Figure 38.7 Fraunhofer diffrac-
tion by a single slit. The light inten-
sity at point P is the resultant of all
the incremental electric field magni-
tudes from zones of width 'y.

QuickLab
Make a V with your index and middle
fingers. Hold your hand up very close
to your eye so that you are looking
between your two fingers toward a
bright area. Now bring the fingers to-
gether until there is only a very tiny
slit between them. You should be able
to see a series of parallel lines. Al-
though the lines appear to be located
in the narrow space between your fin-
gers, what you are actually seeing is a
diffraction pattern cast upon your
retina.

= 2

(a)

(b)

(c)

(d)

= 0β
β π

= 3β π

EθR

EθR
EθR

Figure 38.8 Phasor diagrams for obtaining the various maxima and minima of a single-slit dif-
fraction pattern.
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magnitudes and hence is given by the length of the chord. Therefore, 
The total phase difference ( between waves from the top and bottom portions of
the slit is

(38.3)

where is the width of the slit.
As ! increases, the chain of phasors eventually forms the closed path shown in

Figure 38.8c. At this point, the vector sum is zero, and so corresponding
to the first minimum on the screen. Noting that in this situation,
we see from Equation 38.3 that

That is, the first minimum in the diffraction pattern occurs where sin ! " $/a; this
is in agreement with Equation 38.1.

At greater values of !, the spiral chain of phasors tightens. For example, Fig-
ure 38.8d represents the situation corresponding to the second maximum, which
occurs when ( " 360° * 180° " 540° (3) rad). The second minimum (two com-
plete circles, not shown) corresponds to ( " 720° (4) rad), which satisfies the
condition sin ! " 2$/a.

We can obtain the total electric field magnitude ER and light intensity I at any
point P on the screen in Figure 38.7 by considering the limiting case in which 'y
becomes infinitesimal (dy) and N approaches +. In this limit, the phasor chains in
Figure 38.8 become the red curve of Figure 38.9. The arc length of the curve is E0
because it is the sum of the magnitudes of the phasors (which is the total electric
field magnitude at the center of the screen). From this figure, we see that at some
angle !, the resultant electric field magnitude ER on the screen is equal to the
chord length. From the triangle containing the angle (/2, we see that

where R is the radius of curvature. But the arc length E0 is equal to the product
R(, where ( is measured in radians. Combining this information with the previous
expression gives

Because the resultant light intensity I at point P on the screen is proportional to
the square of the magnitude ER , we find that

(38.4)

where Imax is the intensity at ! " 0 (the central maximum). Substituting the ex-
pression for ( (Eq. 38.3) into Equation 38.4, we have

(38.5)I " Imax# sin ()a sin !/$)
)a sin !/$ $2

I " Imax# sin ((/2)
(/2 $2

E R " 2R sin 
(

2
" 2% E 0

( & sin 
(

2
" E 0# sin ((/2)

(/2 $

sin 
(

2
"

E R/2
R

sin ! "
$

a
 

 2) "
2)

$
 a sin !

( " N '( " 2)
E R " 0,

a " N 'y

( " N '( "
2)

$
 N 'y sin ! "

2)

$
 a sin !

E R , E 0 .

Intensity of a single-slit Fraunhofer
diffraction pattern

R

R

O

β

/2β

Eθ/2R EθR

Figure 38.9 Phasor diagram for
a large number of coherent
sources. All the ends of the phasors
lie on the circular red arc of radius
R . The resultant electric field mag-
nitude ER equals the length of the
chord.
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From this result, we see that minima occur when

or

m " # 1, # 2, # 3, . . .

in agreement with Equation 38.1.
Figure 38.10a represents a plot of Equation 38.5, and Figure 38.10b is a photo-

graph of a single-slit Fraunhofer diffraction pattern. Note that most of the light in-
tensity is concentrated in the central bright fringe.

sin ! " m 
$

a

)a sin !
$

" m)

Relative Intensities of the MaximaEXAMPLE 38.2

That is, the first secondary maxima (the ones adjacent to the
central maximum) have an intensity of 4.5% that of the cen-
tral maximum, and the next secondary maxima have an in-
tensity of 1.6% that of the central maximum.

Exercise Determine the intensity, relative to the central
maximum, of the secondary maxima corresponding to

Answer 0.008 3.

m " #3.

0.016
I2

Imax
" # sin (5)/2)

5)/2 $2
"

1
25)2/4

"
Find the ratio of the intensities of the secondary maxima to
the intensity of the central maximum for the single-slit Fraun-
hofer diffraction pattern.

Solution To a good approximation, the secondary max-
ima lie midway between the zero points. From Figure 38.10a,
we see that this corresponds to (/2 values of 3)/2, 5)/2,
7)/2, . . . . Substituting these values into Equation 38.4
gives for the first two ratios

0.045
I1

Imax
" # sin (3)/2)

(3)/2) $2
"

1
9)2/4

"

(a)

Imax

I2 I1 I1 I2

_3 _2 2 3π_π
/2

I

β
π πππ

(b)

Figure 38.10 (a) A plot of
light intensity I versus (/2 for
the single-slit Fraunhofer dif-
fraction pattern. (b) Photo-
graph of a single-slit Fraunhofer
diffraction pattern.

Intensity of Two-Slit Diffraction Patterns

When more than one slit is present, we must consider not only diffraction due to
the individual slits but also the interference of the waves coming from different
slits. You may have noticed the curved dashed line in Figure 37.13, which indicates
a decrease in intensity of the interference maxima as ! increases. This decrease is

Condition for intensity minima
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I

Diffraction
envelope

Interference
fringes

–3 –2 –π π 2 3
/2β

π π π π

Figure 38.11 The combined effects of diffraction and interference. This is the pattern pro-
duced when 650-nm light waves pass through two 3.0--m slits that are 18 -m apart. Notice how
the diffraction pattern acts as an “envelope” and controls the intensity of the regularly spaced in-
terference maxima.

due to diffraction. To determine the effects of both interference and diffraction,
we simply combine Equation 37.12 and Equation 38.5:

(38.6)

Although this formula looks complicated, it merely represents the diffraction pat-
tern (the factor in brackets) acting as an “envelope” for a two-slit interference pat-
tern (the cosine-squared factor), as shown in Figure 38.11.

Equation 37.2 indicates the conditions for interference maxima as d sin ! " m$,
where d is the distance between the two slits. Equation 38.1 specifies that the first
diffraction minimum occurs when a sin ! " $, where a is the slit width. Dividing
Equation 37.2 by Equation 38.1 (with allows us to determine which inter-
ference maximum coincides with the first diffraction minimum:

(38.7)

In Figure 38.11, -m/3.0 -m " 6. Thus, the sixth interference maxi-
mum (if we count the central maximum as is aligned with the first diffrac-
tion minimum and cannot be seen.

m " 0)
d /a " 18

 
d
a

" m 

d sin !
a sin !

"
m$

$

m " 1)

I " Imax cos2% )d sin !
$ & # sin()a sin !/$)

)a sin !/$ $2
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Using Figure 38.11 as a starting point, make a sketch of the combined diffraction and inter-
ference pattern for 650-nm light waves striking two 3.0--m slits located 9.0 -m apart.

RESOLUTION OF SINGLE-SLIT AND
CIRCULAR APERTURES

The ability of optical systems to distinguish between closely spaced objects is lim-
ited because of the wave nature of light. To understand this difficulty, let us con-
sider Figure 38.12, which shows two light sources far from a narrow slit of width a.
The sources can be considered as two noncoherent point sources S1 and S2 —for
example, they could be two distant stars. If no diffraction occurred, two distinct
bright spots (or images) would be observed on the viewing screen. However, be-
cause of diffraction, each source is imaged as a bright central region flanked by
weaker bright and dark fringes. What is observed on the screen is the sum of two
diffraction patterns: one from S1 , and the other from S2 .

If the two sources are far enough apart to keep their central maxima from
overlapping, as shown in Figure 38.12a, their images can be distinguished and are
said to be resolved. If the sources are close together, however, as shown in Figure
38.12b, the two central maxima overlap, and the images are not resolved. In deter-
mining whether two images are resolved, the following condition is often used:

38.3

Quick Quiz 38.2

S1

S2

S1

S2

Slit Viewing screen

(a) (b)

Slit Viewing screen

θ θ

Figure 38.12 Two point sources far from a narrow slit each produce a diffraction pattern. 
(a) The angle subtended by the sources at the slit is large enough for the diffraction patterns to be
distinguishable. (b) The angle subtended by the sources is so small that their diffraction patterns
overlap, and the images are not well resolved. (Note that the angles are greatly exaggerated. The
drawing is not to scale.)

When the central maximum of one image falls on the first minimum of the
other image, the images are said to be just resolved. This limiting condition of
resolution is known as Rayleigh’s criterion.

Figure 38.13 shows diffraction patterns for three situations. When the objects
are far apart, their images are well resolved (Fig. 38.13a). When the angular sepa-
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ration of the objects satisfies Rayleigh’s criterion (Fig. 38.13b), the images are just
resolved. Finally, when the objects are close together, the images are not resolved
(Fig. 38.13c).

From Rayleigh’s criterion, we can determine the minimum angular separation
!min subtended by the sources at the slit for which the images are just resolved.
Equation 38.1 indicates that the first minimum in a single-slit diffraction pattern
occurs at the angle for which

where a is the width of the slit. According to Rayleigh’s criterion, this expression
gives the smallest angular separation for which the two images are resolved. Be-
cause in most situations, sin ! is small, and we can use the approximation
sin ! " !. Therefore, the limiting angle of resolution for a slit of width a is

(38.8)

where !min is expressed in radians. Hence, the angle subtended by the two sources
at the slit must be greater than $/a if the images are to be resolved.

Many optical systems use circular apertures rather than slits. The diffraction
pattern of a circular aperture, shown in Figure 38.14, consists of a central circular

!min "
$

a

$ V a

sin ! "
$

a

(b)(a) (c)

Figure 38.13 Individual diffraction patterns of two point sources (solid curves) and the resul-
tant patterns (dashed curves) for various angular separations of the sources. In each case, the
dashed curve is the sum of the two solid curves. (a) The sources are far apart, and the patterns
are well resolved. (b) The sources are closer together such that the angular separation just satis-
fies Rayleigh’s criterion, and the patterns are just resolved. (c) The sources are so close together
that the patterns are not resolved.

Figure 38.14 The diffraction
pattern of a circular aperture con-
sists of a central bright disk sur-
rounded by concentric bright and
dark rings.
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bright disk surrounded by progressively fainter bright and dark rings. Analysis
shows that the limiting angle of resolution of the circular aperture is

(38.9)

where D is the diameter of the aperture. Note that this expression is similar to
Equation 38.8 except for the factor 1.22, which arises from a complex mathemati-
cal analysis of diffraction from the circular aperture.

!min " 1.22 
$

D
Limiting angle of resolution for a
circular aperture

Limiting Resolution of a MicroscopeEXAMPLE 38.3
Violet light (400 nm) gives a limiting angle of resolution of

(c) Suppose that water fills the space between
the object and the objective. What effect does this have on re-
solving power when 589-nm light is used?

Solution We find the wavelength of the 589-nm light in
the water using Equation 35.7:

The limiting angle of resolution at this wavelength is now
smaller than that calculated in part (a):

6.00 % 10&5 rad!min " 1.22% 443 % 10&9 m
0.900 % 10&2 m & "

$water "
$air

n water
"

589 nm
1.33

" 443 nm

(n " 1.33)

5.42 % 10&5 rad!min " 1.22% 400 % 10&9 m
0.900 % 10&2 m & "

Light of wavelength 589 nm is used to view an object under a
microscope. If the aperture of the objective has a diameter of
0.900 cm, (a) what is the limiting angle of resolution?

Solution (a) Using Equation 38.9, we find that the limit-
ing angle of resolution is

This means that any two points on the object subtending an
angle smaller than this at the objective cannot be distin-
guished in the image.

(b) If it were possible to use visible light of any wave-
length, what would be the maximum limit of resolution for
this microscope?

Solution To obtain the smallest limiting angle, we have to
use the shortest wavelength available in the visible spectrum.

7.98 % 10&5 rad!min " 1.22% 589 % 10&9 m
0.900 % 10&2 m & "

Resolution of a TelescopeEXAMPLE 38.4
mospheric blurring. This seeing limit is usually about 1 s of
arc and is never smaller than about 0.1 s of arc. (This is one
of the reasons for the superiority of photographs from the
Hubble Space Telescope, which views celestial objects from
an orbital position above the atmosphere.)

Exercise The large radio telescope at Arecibo, Puerto Rico,
has a diameter of 305 m and is designed to detect 0.75-m ra-
dio waves. Calculate the minimum angle of resolution for this
telescope and compare your answer with that for the Hale
telescope.

Answer 3.0 % 10&3 rad (10 min of arc), more than 10 000
times larger (that is, worse) than the Hale minimum.

The Hale telescope at Mount Palomar has a diameter of 200 in.
What is its limiting angle of resolution for 600-nm light?

Solution Because in. " 5.08 m and $ " 6.00 %
10&7 m, Equation 38.9 gives

Any two stars that subtend an angle greater than or equal to
this value are resolved (if atmospheric conditions are ideal).

The Hale telescope can never reach its diffraction limit
because the limiting angle of resolution is always set by at-

1.44 % 10&7 rad " 0.03 s of arc "

!min " 1.22 
$

D
" 1.22% 6.00 % 10&7 m

5.08 m &

D " 200

Resolution of the EyeEXAMPLE 38.5
Solution Let us choose a wavelength of 500 nm, near the
center of the visible spectrum. Although pupil diameter

Estimate the limiting angle of resolution for the human eye,
assuming its resolution is limited only by diffraction.
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S1

S2

L

d minθ

Figure 38.15 Two point sources separated by a distance d as ob-
served by the eye.

Figure 38.16 An audio speaker system for high-fidelity sound repro-
duction. The tweeter is at the top, the midrange speaker is in the mid-
dle, and the woofer is at the bottom. (International Stock Photography)

varies from person to person, we estimate a diameter of 2 mm.
We use Equation 38.9, taking $ " 500 nm and D " 2 mm:

We can use this result to determine the minimum separa-
tion distance d between two point sources that the eye can
distinguish if they are a distance L from the observer (Fig.
38.15). Because !min is small, we see that

For example, if the point sources are 25 cm from the eye (the
near point), then

This is approximately equal to the thickness of a human hair.

d " (25 cm)(3 % 10&4 rad) " 8 % 10&3 cm

 d " L!min 

sin !min " !min "
d
L

3 % 10&4 rad " 1 min of arc "

!min " 1.22 
$

D
" 1.22% 5.00 % 10&7 m

2 % 10&3 m &

Exercise Suppose that the pupil is dilated to a diameter of
5.0 mm and that two point sources 3.0 m away are being
viewed. How far apart must the sources be if the eye is to re-
solve them?

Answer 0.037 cm.

Loudspeaker DesignAPPLICATION
The three-way speaker system shown in Figure 38.16 contains
a woofer, a midrange speaker, and a tweeter. The small-
diameter tweeter is for high frequencies, and the large-
diameter woofer is for low frequencies. The midrange
speaker, of intermediate diameter, is used for the frequency
band above the high-frequency cutoff of the woofer and be-
low the low-frequency cutoff of the tweeter. Circuits known as
crossover networks include low-pass, midrange, and high-pass
filters that direct the electrical signal to the appropriate
speaker. The effective aperture size of a speaker is approxi-
mately its diameter. Because the wavelengths of sound waves
are comparable to the typical sizes of the speakers, diffraction
effects determine the angular radiation pattern. To be most
useful, a speaker should radiate sound over a broad range of
angles so that the listener does not have to stand at a particu-
lar spot in the room to hear maximum sound intensity. On
the basis of the angular radiation pattern, let us investigate
the frequency range for which a 6-in. (0.15-m) midrange
speaker is most useful.

The speed of sound in air is 344 m/s, and for a circu-
lar aperture, diffraction effects become important when $ "
1.22D, where D is the speaker diameter. Therefore, we would
expect this speaker to radiate non-uniformly for all frequen-
cies above 

Suppose our design specifies that the midrange speaker
operates between 500 Hz (the high-frequency woofer cutoff)
and 2 000 Hz. Measurements of the dispersion of radiated

344 m/s
1.22(0.15 m)

" 1 900 Hz



THE DIFFRACTION GRATING
The diffraction grating, a useful device for analyzing light sources, consists of a
large number of equally spaced parallel slits. A transmission grating can be made by
cutting parallel lines on a glass plate with a precision ruling machine. The spaces
between the lines are transparent to the light and hence act as separate slits. A re-
flection grating can be made by cutting parallel lines on the surface of a reflective
material. The reflection of light from the spaces between the lines is specular, and
the reflection from the lines cut into the material is diffuse. Thus, the spaces be-
tween the lines act as parallel sources of reflected light, like the slits in a transmis-
sion grating. Gratings that have many lines very close to each other can have very
small slit spacings. For example, a grating ruled with 5 000 lines/cm has a slit spac-
ing d " (1/5 000) cm " 2.00 % 10&4 cm.

38.4
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Figure 38.17 Angular dispersion of sound intensity I for a midrange speaker at 
(a) 500 Hz and (b) 2 000 Hz.

–50 0 50

0.5

1

θ (degrees)

 I
Imax

(a)   500 Hz

–50 0 50

0.5

1

θ (degrees)

 I
Imax

(b)   2 000 Hz

sound at a suitably great distance from the speaker yield the
angular profiles of sound intensity shown in Figure 38.17. In
examining these plots, we see that the dispersion pattern for
a 500-Hz sound is fairly uniform. This angular range is suffi-

ciently great for us to say that this midrange speaker satisfies
the design criterion. The intensity of a 2 000-Hz sound de-
creases to about half its maximum value about 30° from the
centerline.
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Condition for interference
maxima for a grating

P

d

d

θ

θ

   = d sin θ

Viewing
screen

δ

Figure 38.18 Side view of a diffraction grating. The slit separation is d, and the path difference
between adjacent slits is d sin !.

A section of a diffraction grating is illustrated in Figure 38.18. A plane wave is
incident from the left, normal to the plane of the grating. A converging lens
brings the rays together at point P. The pattern observed on the screen is the re-
sult of the combined effects of interference and diffraction. Each slit produces dif-
fraction, and the diffracted beams interfere with one another to produce the final
pattern.

The waves from all slits are in phase as they leave the slits. However, for some
arbitrary direction ! measured from the horizontal, the waves must travel different
path lengths before reaching point P. From Figure 38.18, note that the path differ-
ence . between rays from any two adjacent slits is equal to d sin !. If this path dif-
ference equals one wavelength or some integral multiple of a wavelength, then
waves from all slits are in phase at point P and a bright fringe is observed. There-
fore, the condition for maxima in the interference pattern at the angle ! is

m " 0, 1, 2, 3, . . . (38.10)

We can use this expression to calculate the wavelength if we know the grating
spacing and the angle !. If the incident radiation contains several wavelengths, the
mth-order maximum for each wavelength occurs at a specific angle. All wave-
lengths are seen at ! " 0, corresponding to the zeroth-order maximum.
The first-order maximum is observed at an angle that satisfies the rela-
tionship sin ! " $/d; the second-order maximum is observed at a larger
angle !, and so on.

The intensity distribution for a diffraction grating obtained with the use of a
monochromatic source is shown in Figure 38.19. Note the sharpness of the princi-
pal maxima and the broadness of the dark areas. This is in contrast to the broad
bright fringes characteristic of the two-slit interference pattern (see Fig. 37.6). Be-
cause the principal maxima are so sharp, they are very much brighter than two-slit

(m " 2)
(m " 1)

m " 0,

d sin ! " m$

_2 _1  0  1  2

 0

m

2λ
d

_  λ
d

_  λ
d

2λ
d

sin θ

 λ  λ  λ  λ

Figure 38.19 Intensity versus 
sin ! for a diffraction grating. The
zeroth-, first-, and second-order
maxima are shown.
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interference maxima. The reason for this is illustrated in Figure 38.20, in which
the combination of multiple wave fronts for a ten-slit grating is compared with the
wave fronts for a two-slit system. Actual gratings have thousands of times more slits,
and therefore the maxima are even stronger.

A schematic drawing of a simple apparatus used to measure angles in a diffrac-
tion pattern is shown in Figure 38.21. This apparatus is a diffraction grating spec-
trometer. The light to be analyzed passes through a slit, and a collimated beam of
light is incident on the grating. The diffracted light leaves the grating at angles
that satisfy Equation 38.10, and a telescope is used to view the image of the slit.
The wavelength can be determined by measuring the precise angles at which the
images of the slit appear for the various orders.

(a)

(b)

Telescope

Slit

Source

Grating

θ

Collimator

Figure 38.20 (a) Addition of two wave fronts
from two slits. (b) Addition of ten wave fronts
from ten slits. The resultant wave is much stronger
in part (b) than in part (a).

Figure 38.21 Diagram of a diffraction grating spectrometer. The collimated beam incident on
the grating is diffracted into the various orders at the angles ! that satisfy the equation d sin ! "
m$, where m " 0, 1, 2, . . . .

QuickLab
Stand a couple of meters from a light-
bulb. Facing away from the light,
hold a compact disc about 10 cm
from your eye and tilt it until the re-
flection of the bulb is located in the
hole at the disc’s center. You should
see spectra radiating out from the
center, with violet on the inside and
red on the outside. Now move the
disc away from your eye until the vio-
let band is at the outer edge. Care-
fully measure the distance from your
eye to the center of the disc and also
determine the radius of the disc. Use
this information to find the angle ! to
the first-order maximum for violet
light. Now use Equation 38.10 to de-
termine the spacing between the
grooves on the disc. The industry
standard is 1.6 -m. How close did
you come?
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Resolving Power of the Diffraction Grating

The diffraction grating is most useful for measuring wavelengths accurately. Like
the prism, the diffraction grating can be used to disperse a spectrum into its wave-
length components. Of the two devices, the grating is the more precise if one
wants to distinguish two closely spaced wavelengths.

For two nearly equal wavelengths $1 and $2 between which a diffraction grat-
ing can just barely distinguish, the resolving power R of the grating is defined as

(38.11)

where and Thus, a grating that has a high resolv-
ing power can distinguish small differences in wavelength. If N lines of the grating

'$ " $2 & $1 .$ " ($1 * $2)/2

R "
$

$2 & $1
"

$

'$

A Compact Disc Is a Diffraction GratingCONCEPTUAL EXAMPLE 38.6
Light reflected from the surface of a compact disc is multi-
colored, as shown in Figure 38.22. The colors and their in-
tensities depend on the orientation of the disc relative to 
the eye and relative to the light source. Explain how this
works.

Solution The surface of a compact disc has a spiral
grooved track (with adjacent grooves having a separation on
the order of 1 -m). Thus, the surface acts as a reflection grat-
ing. The light reflecting from the regions between these
closely spaced grooves interferes constructively only in cer-
tain directions that depend on the wavelength and on the di-
rection of the incident light. Any one section of the disc
serves as a diffraction grating for white light, sending dif-
ferent colors in different directions. The different colors you
see when viewing one section change as the light source, the
disc, or you move to change the angles of incidence or dif-
fraction.

The Orders of a Diffraction GratingEXAMPLE 38.7

For the second-order maximum we find

For we find that sin Because sin ! can-
not exceed unity, this does not represent a realistic solution.
Hence, only zeroth-, first-, and second-order maxima are ob-
served for this situation.

!3 " 1.139.m " 3,

49.39/ !2 "

sin !2 "
2$

d
"

2(632.8 nm)
1 667 nm

" 0.759 2

(m " 2),

22.31/ !1 "Monochromatic light from a helium-neon laser ($ " 632.8
nm) is incident normally on a diffraction grating containing
6 000 lines per centimeter. Find the angles at which the first-
order, second-order, and third-order maxima are observed.

Solution First, we must calculate the slit separation, which
is equal to the inverse of the number of lines per centimeter:

For the first-order maximum we obtain

sin !1 "
$

d
"

632.8 nm
1 667 nm

" 0.379 6

(m " 1),

d "
1

6 000
 cm " 1.667 % 10&4 cm " 1 667 nm

Figure 38.22 A compact disc observed under white light. The col-
ors observed in the reflected light and their intensities depend on
the orientation of the disc relative to the eye and relative to the light
source.

Resolving power
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are illuminated, it can be shown that the resolving power in the mth-order diffrac-
tion is

(38.12)

Thus, resolving power increases with increasing order number and with increasing
number of illuminated slits.

Note that for this signifies that all wavelengths are indistin-
guishable for the zeroth-order maximum. However, consider the second-order
diffraction pattern of a grating that has 5 000 rulings illuminated by
the light source. The resolving power of such a grating in second order is

Therefore, for a mean wavelength of, for example, 
600 nm, the minimum wavelength separation between two spectral lines that
can be just resolved is For the third-order princi-
pal maximum, and and so on.

One of the most interesting applications of diffraction is holography, which is
used to create three-dimensional images found practically everywhere, from credit
cards to postage stamps. The production of these special diffracting films is dis-
cussed in Chapter 42 of the extended version of this text.

'$ " 4.00 % 10&2 nm,R " 15 000
'$ " $/R " 6.00 % 10&2 nm.

R " 5 000 % 2 " 10 000.

(m " 2)

m " 0;R " 0

R " NmResolving power of a grating

Resolving Sodium Spectral LinesEXAMPLE 38.8
(b) To resolve these lines in the second-order spectrum,

how many lines of the grating must be illuminated?

Solution From Equation 38.12 and the results to part (a),
we find that

500 linesN "
R
m

"
999
2

"

When an element is raised to a very high temperature, the
atoms emit radiation having discrete wavelengths. The set of
wavelengths for a given element is called its atomic spectrum.
Two strong components in the atomic spectrum of sodium
have wavelengths of 589.00 nm and 589.59 nm. (a) What
must be the resolving power of a grating if these wavelengths
are to be distinguished?

Solution

999R "
$

'$
"

589.30 nm
589.59 nm & 589.00 nm

"
589.30
0.59

"

Optional Section

DIFFRACTION OF X-RAYS BY CRYSTALS
In principle, the wavelength of any electromagnetic wave can be determined if a
grating of the proper spacing (of the order of $) is available. X-rays, discovered by
Wilhelm Roentgen (1845–1923) in 1895, are electromagnetic waves of very short
wavelength (of the order of 0.1 nm). It would be impossible to construct a grating
having such a small spacing by the cutting process described at the beginning of
Section 38.4. However, the atomic spacing in a solid is known to be about 0.1 nm.
In 1913, Max von Laue (1879–1960) suggested that the regular array of atoms in a
crystal could act as a three-dimensional diffraction grating for x-rays. Subsequent
experiments confirmed this prediction. The diffraction patterns are complex be-
cause of the three-dimensional nature of the crystal. Nevertheless, x-ray diffraction

38.5
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has proved to be an invaluable technique for elucidating crystalline structures and
for understanding the structure of matter.1

Figure 38.23 is one experimental arrangement for observing x-ray diffraction
from a crystal. A collimated beam of x-rays is incident on a crystal. The diffracted
beams are very intense in certain directions, corresponding to constructive inter-
ference from waves reflected from layers of atoms in the crystal. The diffracted
beams can be detected by a photographic film, and they form an array of spots
known as a Laue pattern. One can deduce the crystalline structure by analyzing the
positions and intensities of the various spots in the pattern.

The arrangement of atoms in a crystal of sodium chloride (NaCl) is shown in
Figure 38.24. Each unit cell (the geometric solid that repeats throughout the crys-
tal) is a cube having an edge length a. A careful examination of the NaCl structure
shows that the ions lie in discrete planes (the shaded areas in Fig. 38.24). Now sup-
pose that an incident x-ray beam makes an angle ! with one of the planes, as
shown in Figure 38.25. The beam can be reflected from both the upper plane and
the lower one. However, the beam reflected from the lower plane travels farther
than the beam reflected from the upper plane. The effective path difference is 
2d sin !. The two beams reinforce each other (constructive interference) when
this path difference equals some integer multiple of $. The same is true for reflec-
tion from the entire family of parallel planes. Hence, the condition for construc-
tive interference (maxima in the reflected beam) is

m " 1, 2, 3, . . . (38.13)

This condition is known as Bragg’s law, after W. L. Bragg (1890–1971), who first
derived the relationship. If the wavelength and diffraction angle are measured,
Equation 38.13 can be used to calculate the spacing between atomic planes.

When you receive a chest x-ray at a hospital, the rays pass through a series of parallel ribs in
your chest. Do the ribs act as a diffraction grating for x-rays?

Quick Quiz 38.3

2d sin ! " m$

1 For more details on this subject, see Sir Lawrence Bragg, “X-Ray Crystallography,” Sci. Am. 219:58–70,
1968.

Bragg’s law

Photographic
film

Collimator

X-ray
tube

Crystal

X-rays

Figure 38.23 Schematic diagram
of the technique used to observe
the diffraction of x-rays by a crystal.
The array of spots formed on the
film is called a Laue pattern.

a

Incident
beam

Reflected
beam

Upper plane

Lower plane

d

d sin

θ

θ

θ

θ

Figure 38.24 Crystalline struc-
ture of sodium chloride (NaCl).
The blue spheres represent Cl&

ions, and the red spheres represent
Na+ ions. The length of the cube
edge is a " 0.562 737 nm.

Figure 38.25 A two-dimensional description of the reflection of an x-ray beam from two paral-
lel crystalline planes separated by a distance d. The beam reflected from the lower plane travels
farther than the one reflected from the upper plane by a distance 2d sin !.
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POLARIZATION OF LIGHT WAVES
In Chapter 34 we described the transverse nature of light and all other electro-
magnetic waves. Polarization is firm evidence of this transverse nature.

An ordinary beam of light consists of a large number of waves emitted by the
atoms of the light source. Each atom produces a wave having some particular ori-
entation of the electric field vector E, corresponding to the direction of atomic vi-
bration. The direction of polarization of each individual wave is defined to be the di-
rection in which the electric field is vibrating. In Figure 38.26, this direction
happens to lie along the y axis. However, an individual electromagnetic wave could
have its E vector in the yz plane, making any possible angle with the y axis. Because
all directions of vibration from a wave source are possible, the resultant electro-
magnetic wave is a superposition of waves vibrating in many different directions.
The result is an unpolarized light beam, represented in Figure 38.27a. The direc-
tion of wave propagation in this figure is perpendicular to the page. The arrows
show a few possible directions of the electric field vectors for the individual waves
making up the resultant beam. At any given point and at some instant of time, all
these individual electric field vectors add to give one resultant electric field vector.

As noted in Section 34.2, a wave is said to be linearly polarized if the resul-
tant electric field E vibrates in the same direction at all times at a particular point,
as shown in Figure 38.27b. (Sometimes, such a wave is described as plane-polarized,
or simply polarized.) The plane formed by E and the direction of propagation is
called the plane of polarization of the wave. If the wave in Figure 38.26 represented
the resultant of all individual waves, the plane of polarization is the xy plane.

It is possible to obtain a linearly polarized beam from an unpolarized beam by
removing all waves from the beam except those whose electric field vectors oscil-
late in a single plane. We now discuss four processes for producing polarized light
from unpolarized light.

Polarization by Selective Absorption

The most common technique for producing polarized light is to use a material
that transmits waves whose electric fields vibrate in a plane parallel to a certain di-
rection and that absorbs waves whose electric fields vibrate in all other directions.

In 1938, E. H. Land (1909–1991) discovered a material, which he called po-
laroid, that polarizes light through selective absorption by oriented molecules. This
material is fabricated in thin sheets of long-chain hydrocarbons. The sheets are
stretched during manufacture so that the long-chain molecules align. After a sheet
is dipped into a solution containing iodine, the molecules become good electrical
conductors. However, conduction takes place primarily along the hydrocarbon
chains because electrons can move easily only along the chains. As a result, the

38.6
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Figure 38.26 Schematic diagram of an electro-
magnetic wave propagating at velocity c in the x
direction. The electric field vibrates in the xy
plane, and the magnetic field vibrates in the xz
plane.
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molecules readily absorb light whose electric field vector is parallel to their length
and allow light through whose electric field vector is perpendicular to their length.

It is common to refer to the direction perpendicular to the molecular chains
as the transmission axis. In an ideal polarizer, all light with E parallel to the trans-
mission axis is transmitted, and all light with E perpendicular to the transmission
axis is absorbed.

Figure 38.28 represents an unpolarized light beam incident on a first polariz-
ing sheet, called the polarizer. Because the transmission axis is oriented vertically in
the figure, the light transmitted through this sheet is polarized vertically. A second
polarizing sheet, called the analyzer, intercepts the beam. In Figure 38.28, the ana-
lyzer transmission axis is set at an angle ! to the polarizer axis. We call the electric
field vector of the transmitted beam E0 . The component of E0 perpendicular to
the analyzer axis is completely absorbed. The component of E0 parallel to the ana-
lyzer axis, which is allowed through by the analyzer, is Because the inten-
sity of the transmitted beam varies as the square of its magnitude, we conclude that
the intensity of the (polarized) beam transmitted through the analyzer varies as

(38.14)

where Imax is the intensity of the polarized beam incident on the analyzer. This ex-
pression, known as Malus’s law,2 applies to any two polarizing materials whose
transmission axes are at an angle ! to each other. From this expression, note that
the intensity of the transmitted beam is maximum when the transmission axes are
parallel (! " 0 or 180°) and that it is zero (complete absorption by the analyzer)
when the transmission axes are perpendicular to each other. This variation in
transmitted intensity through a pair of polarizing sheets is illustrated in Figure
38.29. Because the average value of cos2 ! is the intensity of the light passed
through an ideal polarizer is one-half the intensity of unpolarized light.

Polarization by Reflection

When an unpolarized light beam is reflected from a surface, the reflected light
may be completely polarized, partially polarized, or unpolarized, depending on
the angle of incidence. If the angle of incidence is 0°, the reflected beam is unpo-
larized. For other angles of incidence, the reflected light is polarized to some ex-

1
2 ,

I " Imax cos2 !

E 0 cos !.

2 Named after its discoverer, E. L. Malus (1775–1812). Malus discovered that reflected light was polar-
ized by viewing it through a calcite (CaCO3) crystal.

E

(a)

E

(b)

Figure 38.27 (a) An unpolarized
light beam viewed along the direc-
tion of propagation (perpendicular
to the page). The transverse elec-
tric field can vibrate in any direc-
tion in the plane of the page with
equal probability. (b) A linearly po-
larized light beam with the electric
field vibrating in the vertical direc-
tion.

Analyzer

Unpolarized
light

Transmission
axis

Polarized
light

E0 cos

E0

Polarizer

θ

θ

Figure 38.28 Two polarizing sheets whose transmission axes make an angle ! with each other.
Only a fraction of the polarized light incident on the analyzer is transmitted through it.
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tent, and for one particular angle of incidence, the reflected light is completely
polarized. Let us now investigate reflection at that special angle.

Suppose that an unpolarized light beam is incident on a surface, as shown in
Figure 38.30a. Each individual electric field vector can be resolved into two com-
ponents: one parallel to the surface (and perpendicular to the page in Fig. 38.30,
represented by the dots), and the other (represented by the red arrows) perpen-
dicular both to the first component and to the direction of propagation. Thus, the
polarization of the entire beam can be described by two electric field components
in these directions. It is found that the parallel component reflects more strongly
than the perpendicular component, and this results in a partially polarized re-
flected beam. Furthermore, the refracted beam is also partially polarized.

Figure 38.29 The intensity of light transmitted through two polarizers depends on the relative
orientation of their transmission axes. (a) The transmitted light has maximum intensity when the
transmission axes are aligned with each other. (b) The transmitted light has lesser intensity when
the transmission axes are at an angle of 45° with each other. (c) The transmitted light intensity is
a minimum when the transmission axes are at right angles to each other.

Refracted
beam

Refracted
beam

(a) (b)

n1

θp
θp

Incident
beam

90°

Incident
beam

θ1 θ1
θ θ

θ

θ θ

θ
2

2

n2

n1

n2

Reflected
beam

Reflected
beam

Figure 38.30 (a) When unpolarized light is incident on a reflecting surface, the reflected and
refracted beams are partially polarized. (b) The reflected beam is completely polarized when the
angle of incidence equals the polarizing angle !p , which satisfies the equation n " tan ! p .

(a) (b) (c)
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Now suppose that the angle of incidence !1 is varied until the angle between
the reflected and refracted beams is 90°, as shown in Figure 38.30b. At this particu-
lar angle of incidence, the reflected beam is completely polarized (with its electric
field vector parallel to the surface), and the refracted beam is still only partially
polarized. The angle of incidence at which this polarization occurs is called the
polarizing angle !p .

We can obtain an expression relating the polarizing angle to the index of re-
fraction of the reflecting substance by using Figure 38.30b. From this figure, we
see that thus, Using Snell’s law of refraction
(Eq. 35.8) and taking for air and we have

Because sin !2 " sin(90° & !p) " cos !p , we can write this expression for n as
!p /cos !p , which means that

(38.15)

This expression is called Brewster’s law, and the polarizing angle !p is sometimes
called Brewster’s angle, after its discoverer, David Brewster (1781–1868). Be-
cause n varies with wavelength for a given substance, Brewster’s angle is also a
function of wavelength.

Polarization by reflection is a common phenomenon. Sunlight reflected from
water, glass, and snow is partially polarized. If the surface is horizontal, the electric
field vector of the reflected light has a strong horizontal component. Sunglasses
made of polarizing material reduce the glare of reflected light. The transmission
axes of the lenses are oriented vertically so that they absorb the strong horizontal
component of the reflected light. If you rotate sunglasses 90°, they will not be as
effective at blocking the glare from shiny horizontal surfaces.

Polarization by Double Refraction

Solids can be classified on the basis of internal structure. Those in which the atoms
are arranged in a specific order are called crystalline; the NaCl structure of Figure
38.24 is just one example of a crystalline solid. Those solids in which the atoms are
distributed randomly are called amorphous. When light travels through an amor-
phous material, such as glass, it travels with a speed that is the same in all direc-
tions. That is, glass has a single index of refraction. In certain crystalline materials,
however, such as calcite and quartz, the speed of light is not the same in all direc-
tions. Such materials are characterized by two indices of refraction. Hence, they
are often referred to as double-refracting or birefringent materials.

Upon entering a calcite crystal, unpolarized light splits into two plane-
polarized rays that travel with different velocities, corresponding to two angles of
refraction, as shown in Figure 38.31. The two rays are polarized in two mutually
perpendicular directions, as indicated by the dots and arrows. One ray, called the
ordinary (O) ray, is characterized by an index of refraction nO that is the same in
all directions. This means that if one could place a point source of light inside the
crystal, as shown in Figure 38.32, the ordinary waves would spread out from the
source as spheres.

The second plane-polarized ray, called the extraordinary (E) ray, travels with
different speeds in different directions and hence is characterized by an index of
refraction nE that varies with the direction of propagation. The point source in Fig-

n " tan !p

n " sin

n "
sin !1

sin !2
"

sin !p

sin !2

n2 " n,n1 " 1.00
!2 " 90/ & !p .!p * 90/ * !2 " 180/;

Brewster’s law

QuickLab
Devise a way to use a protractor,
desklamp, and polarizing sunglasses
to measure Brewster’s angle for the
glass in a window. From this, deter-
mine the index of refraction of the
glass. Compare your results with the
values given in Table 35.1.

Polarizing angle
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ure 38.32 sends out an extraordinary wave having wave fronts that are elliptical in
cross-section. Note from Figure 38.32 that there is one direction, called the optic
axis, along which the ordinary and extraordinary rays have the same speed, corre-
sponding to the direction for which The difference in speed for the two
rays is a maximum in the direction perpendicular to the optic axis. For example,
in calcite, at a wavelength of 589.3 nm, and nE varies from 1.658 along
the optic axis to 1.486 perpendicular to the optic axis. Values for nO and nE for var-
ious double-refracting crystals are given in Table 38.1.

If we place a piece of calcite on a sheet of paper and then look through the
crystal at any writing on the paper, we see two images, as shown in Figure 38.33. As
can be seen from Figure 38.31, these two images correspond to one formed by the
ordinary ray and one formed by the extraordinary ray. If the two images are viewed
through a sheet of rotating polarizing glass, they alternately appear and disappear
because the ordinary and extraordinary rays are plane-polarized along mutually
perpendicular directions.

Polarization by Scattering

When light is incident on any material, the electrons in the material can absorb
and reradiate part of the light. Such absorption and reradiation of light by elec-
trons in the gas molecules that make up air is what causes sunlight reaching an ob-
server on the Earth to be partially polarized. You can observe this effect—called
scattering—by looking directly up at the sky through a pair of sunglasses whose
lenses are made of polarizing material. Less light passes through at certain orienta-
tions of the lenses than at others.

Figure 38.34 illustrates how sunlight becomes polarized when it is scattered.
An unpolarized beam of sunlight traveling in the horizontal direction (parallel to

nO " 1.658

nO " nE .

Unpolarized
light

E ray

O ray

Calcite

Figure 38.31 Unpolarized
light incident on a calcite crystal
splits into an ordinary (O) ray
and an extraordinary (E) ray.
These two rays are polarized in
mutually perpendicular direc-
tions (drawing not to scale).

Figure 38.32 A point source S
inside a double-refracting crystal
produces a spherical wave front
corresponding to the ordinary ray
and an elliptical wave front corre-
sponding to the extraordinary ray.
The two waves propagate with the
same velocity along the optic axis.

E

O

S

Optic axis

TABLE 38.1 Indices of Refraction for Some Double-Refracting
Crystals at a Wavelength of 589.3 nm

Crystal nO nE nO /nE

Calcite (CaCO3) 1.658 1.486 1.116
Quartz (SiO2) 1.544 1.553 0.994
Sodium nitrate (NaNO3) 1.587 1.336 1.188
Sodium sulfite (NaSO3) 1.565 1.515 1.033
Zinc chloride (ZnCl2) 1.687 1.713 0.985
Zinc sulfide (ZnS) 2.356 2.378 0.991

Figure 38.33 A calcite crystal
produces a double image because
it is a birefringent (double-
refracting) material.
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the ground) strikes a molecule of one of the gases that make up air, setting the
electrons of the molecule into vibration. These vibrating charges act like the vi-
brating charges in an antenna. The horizontal component of the electric field vec-
tor in the incident wave results in a horizontal component of the vibration of the
charges, and the vertical component of the vector results in a vertical component
of vibration. If the observer in Figure 38.34 is looking straight up (perpendicular
to the original direction of propagation of the light), the vertical oscillations of the
charges send no radiation toward the observer. Thus, the observer sees light that is
completely polarized in the horizontal direction, as indicated by the red arrows. If
the observer looks in other directions, the light is partially polarized in the hori-
zontal direction.

Some phenomena involving the scattering of light in the atmosphere can be
understood as follows. When light of various wavelengths $ is incident on gas mol-
ecules of diameter d, where the relative intensity of the scattered light
varies as 1/$4. The condition is satisfied for scattering from oxygen (O2)
and nitrogen (N2) molecules in the atmosphere, whose diameters are about 
0.2 nm. Hence, short wavelengths (blue light) are scattered more efficiently than
long wavelengths (red light). Therefore, when sunlight is scattered by gas mole-
cules in the air, the short-wavelength radiation (blue) is scattered more intensely
than the long-wavelength radiation (red).

When you look up into the sky in a direction that is not toward the Sun, you
see the scattered light, which is predominantly blue; hence, you see a blue sky. If
you look toward the west at sunset (or toward the east at sunrise), you are looking
in a direction toward the Sun and are seeing light that has passed through a large
distance of air. Most of the blue light has been scattered by the air between you
and the Sun. The light that survives this trip through the air to you has had much
of its blue component scattered and is thus heavily weighted toward the red end of
the spectrum; as a result, you see the red and orange colors of sunset. However, a
blue sky is seen by someone to your west for whom it is still a quarter hour before
sunset.

Optical Activity

Many important applications of polarized light involve materials that display opti-
cal activity. A material is said to be optically active if it rotates the plane of polar-
ization of any light transmitted through the material. The angle through which
the light is rotated by a specific material depends on the length of the path
through the material and on concentration if the material is in solution. One opti-
cally active material is a solution of the common sugar dextrose. A standard
method for determining the concentration of sugar solutions is to measure the ro-
tation produced by a fixed length of the solution.

Molecular asymmetry determines whether a material is optically active. For ex-
ample, some proteins are optically active because of their spiral shape. Other ma-
terials, such as glass and plastic, become optically active when stressed. Suppose
that an unstressed piece of plastic is placed between a polarizer and an analyzer so
that light passes from polarizer to plastic to analyzer. When the plastic is un-
stressed and the analyzer axis is perpendicular to the polarizer axis, none of the
polarized light passes through the analyzer. In other words, the unstressed plastic
has no effect on the light passing through it. If the plastic is stressed, however, the
regions of greatest stress rotate the polarized light through the largest angles.
Hence, a series of bright and dark bands is observed in the transmitted light, with
the bright bands corresponding to regions of greatest stress.

d V $
d V $,

Unpolarized
light

Air
molecule

Figure 38.34 The scattering of
unpolarized sunlight by air mole-
cules. The scattered light traveling
perpendicular to the incident light
is plane-polarized because the verti-
cal vibrations of the charges in the
air molecule send no light in this
direction.
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Engineers often use this technique, called optical stress analysis, in designing
structures ranging from bridges to small tools. They build a plastic model and ana-
lyze it under different load conditions to determine regions of potential weakness
and failure under stress. Some examples of a plastic model under stress are shown
in Figure 38.35.

The liquid crystal displays found in most calculators have their optical activity
changed by the application of electric potential across different parts of the dis-
play. Try using a pair of polarizing sunglasses to investigate the polarization used in
the display of your calculator.

SUMMARY

Diffraction is the deviation of light from a straight-line path when the light passes
through an aperture or around an obstacle.

The Fraunhofer diffraction pattern produced by a single slit of width a on a
distant screen consists of a central bright fringe and alternating bright and dark
fringes of much lower intensities. The angles ! at which the diffraction pattern has
zero intensity, corresponding to destructive interference, are given by

m " # 1, # 2, # 3, . . . (38.1)

How the intensity I of a single-slit diffraction pattern varies with angle ! is
given by the expression

(38.4)

where ( " (2)a sin !)/$ and Imax is the intensity at ! " 0.
Rayleigh’s criterion, which is a limiting condition of resolution, states that

two images formed by an aperture are just distinguishable if the central maximum
of the diffraction pattern for one image falls on the first minimum of the diffrac-

I " Imax# sin ((/2)
(/2 $2

sin ! " m 
$

a

Figure 38.35 (a) Strain distribution in a plastic model of a hip replacement used in a medical
research laboratory. The pattern is produced when the plastic model is viewed between a polar-
izer and analyzer oriented perpendicular to each other. (b) A plastic model of
an arch structure under load conditions observed between perpendicular polarizers. Such pat-
terns are useful in the optimum design of architectural components.

(a) (b)
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tion pattern for the other image. The limiting angle of resolution for a slit of
width a is !min " $/a, and the limiting angle of resolution for a circular aperture
of diameter D is !min " 1.22$/D.

A diffraction grating consists of a large number of equally spaced, identical
slits. The condition for intensity maxima in the interference pattern of a diffrac-
tion grating for normal incidence is

m " 0, 1, 2, 3, . . . (38.10)

where d is the spacing between adjacent slits and m is the order number of the dif-
fraction pattern. The resolving power of a diffraction grating in the mth order of
the diffraction pattern is

(38.12)

where N is the number of lines in the grating that are illuminated.
When polarized light of intensity I0 is emitted by a polarizer and then incident

on an analyzer, the light transmitted through the analyzer has an intensity equal to
Imax cos2 !, where ! is the angle between the polarizer and analyzer transmission
axes.

In general, reflected light is partially polarized. However, reflected light is
completely polarized when the angle of incidence is such that the angle between
the reflected and refracted beams is 90°. This angle of incidence, called the polar-
izing angle !p , satisfies Brewster’s law:

(38.15)

where n is the index of refraction of the reflecting medium.

n " tan !p

R " Nm

d sin ! " m$

QUESTIONS

7. Certain sunglasses use a polarizing material to reduce the
intensity of light reflected from shiny surfaces. What ori-
entation of polarization should the material have to be
most effective?

8. During the “day” on the Moon (that is, when the Sun is
visible), you see a black sky and the stars are clearly visi-
ble. During the day on the Earth, you see a blue sky and
no stars. Account for this difference.

9. You can make the path of a light beam visible by placing
dust in the air (perhaps by shaking a blackboard eraser in
the path of the light beam). Explain why you can see the
beam under these circumstances.

10. Is light from the sky polarized? Why is it that clouds seen
through Polaroid glasses stand out in bold contrast to the
sky?

11. If a coin is glued to a glass sheet and the arrangement is
held in front of a laser beam, the projected shadow has
diffraction rings around its edge and a bright spot in the
center. How is this possible?

12. If a fine wire is stretched across the path of a laser beam,
is it possible to produce a diffraction pattern?

13. How could the index of refraction of a flat piece of dark
obsidian glass be determined?

1. Why can you hear around corners but not see around
them?

2. Observe the shadow of your book when it is held a few
inches above a table while illuminated by a lamp several
feet above it. Why is the shadow somewhat fuzzy at the
edges?

3. Knowing that radio waves travel at the speed of light and
that a typical AM radio frequency is 1 000 kHz while an
FM radio frequency might be 100 MHz, estimate the
wavelengths of typical AM and FM radio signals. Use this
information to explain why FM radio stations often fade
out when you drive through a short tunnel or underpass
but AM radio stations do not.

4. Describe the change in width of the central maximum of
the single-slit diffraction pattern as the width of the slit is
made narrower.

5. Assuming that the headlights of a car are point sources,
estimate the maximum observer-to-car distance at which
the headlights are distinguishable from each other.

6. A laser beam is incident at a shallow angle on a machin-
ist’s ruler that has a finely calibrated scale. The engraved
rulings on the scale give rise to a diffraction pattern on a
screen. Discuss how you can use this arrangement to ob-
tain a measure of the wavelength of the laser light.
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PROBLEMS

10. Coherent light with a wavelength of 501.5 nm is sent
through two parallel slits in a large flat wall. Each slit is
0.700 -m wide, and the slits’ centers are 2.80 -m apart.
The light falls on a semicylindrical screen, with its axis
at the midline between the slits. (a) Predict the direc-
tion of each interference maximum on the screen, as
an angle away from the bisector of the line joining the
slits. (b) Describe the pattern of light on the screen,
specifying the number of bright fringes and the loca-
tion of each. (c) Find the intensity of light on the
screen at the center of each bright fringe, expressed as
a fraction of the light intensity I0 at the center of the
pattern.

Section 38.3 Resolution of Single-Slit and 
Circular Apertures

11. The pupil of a cat’s eye narrows to a vertical slit of width
0.500 mm in daylight. What is the angular resolution for
horizontally separated mice? Assume that the average
wavelength of the light is 500 nm.

12. Find the radius of a star image formed on the retina of
the eye if the aperture diameter (the pupil) at night is
0.700 cm and the length of the eye is 3.00 cm. Assume
that the representative wavelength of starlight in the eye
is 500 nm.

13. A helium-neon laser emits light that has a wavelength of
632.8 nm. The circular aperture through which the
beam emerges has a diameter of 0.500 cm. Estimate the
diameter of the beam 10.0 km from the laser.

14. On the night of April 18, 1775, a signal was to be sent
from the steeple of Old North Church in Boston to Paul
Revere, who was 1.80 mi away: “One if by land, two if by
sea.” At what minimum separation did the sexton have
to set the lanterns for Revere to receive the correct mes-
sage? Assume that Revere’s pupils had a diameter of
4.00 mm at night and that the lantern light had a pre-
dominant wavelength of 580 nm.

15. The Impressionist painter Georges Seurat created paint-
ings with an enormous number of dots of pure pig-
ment, each of which was approximately 2.00 mm in di-
ameter. The idea was to locate colors such as red and
green next to each other to form a scintillating canvas
(Fig. P38.15). Outside what distance would one be un-
able to discern individual dots on the canvas? (Assume
that $ " 500 nm and that the pupil diameter is 
4.00 mm.)

16. A binary star system in the constellation Orion has an
angular interstellar separation of 1.00 % 10&5 rad. If 
$ " 500 nm, what is the smallest diameter a telescope
must have to just resolve the two stars?

Section 38.1 Introduction to Diffraction

Section 38.2 Diffraction from Narrow Slits
1. Helium-neon laser light ($ " 632.8 nm) is sent through

a 0.300-mm-wide single slit. What is the width of the
central maximum on a screen 1.00 m from the slit?

2. A beam of green light is diffracted by a slit with a width
of 0.550 mm. The diffraction pattern forms on a wall
2.06 m beyond the slit. The distance between the posi-
tions of zero intensity on both sides of the central
bright fringe is 4.10 mm. Calculate the wavelength of
the laser light.

3. A screen is placed 50.0 cm from a single slit, which is
illuminated with 690-nm light. If the distance between
the first and third minima in the diffraction pattern is
3.00 mm, what is the width of the slit?

4. Coherent microwaves of wavelength 5.00 cm enter a
long, narrow window in a building otherwise essentially
opaque to the microwaves. If the window is 36.0 cm
wide, what is the distance from the central maximum to
the first-order minimum along a wall 6.50 m from the
window?

5. Sound with a frequency of 650 Hz from a distant source
passes through a doorway 1.10 m wide in a sound-
absorbing wall. Find the number and approximate di-
rections of the diffraction-maximum beams radiated
into the space beyond.

6. Light with a wavelength of 587.5 nm illuminates a single
slit 0.750 mm in width. (a) At what distance from the
slit should a screen be located if the first minimum in
the diffraction pattern is to be 0.850 mm from the cen-
ter of the screen? (b) What is the width of the central
maximum?

7. A diffraction pattern is formed on a screen 120 cm away
from a 0.400-mm-wide slit. Monochromatic 546.1-nm
light is used. Calculate the fractional intensity I/I0 at a
point on the screen 4.10 mm from the center of the
principal maximum.

8. The second-order bright fringe in a single-slit diffrac-
tion pattern is 1.40 mm from the center of the central
maximum. The screen is 80.0 cm from a slit of width
0.800 mm. Assuming that the incident light is mono-
chromatic, calculate the light’s approximate wave-
length.

9. If the light in Figure 38.5 strikes the single slit at an an-
gle ( from the perpendicular direction, show that Equa-
tion 38.1, the condition for destructive interference,
must be modified to read

sin ! " m% $

a & & sin (

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

WEB
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17. A child is standing at the edge of a straight highway
watching her grandparents’ car driving away at 
20.0 m/s. The air is perfectly clear and steady, and after 
10.0 min the car’s two taillights appear to merge into
one. Assuming the diameter of the child’s pupils is 
5.00 mm, estimate the width of the car.

18. Suppose that you are standing on a straight highway
and watching a car moving away from you at a speed v.
The air is perfectly clear and steady, and after a time t
the taillights appear to merge into one. Assuming the
diameter of your pupil is d, estimate the width of the
car.

19. A circular radar antenna on a Coast Guard ship has a
diameter of 2.10 m and radiates at a frequency of 
15.0 GHz. Two small boats are located 9.00 km away
from the ship. How close together could the boats be
and still be detected as two objects?

20. If we were to send a ruby laser beam ($ " 694.3 nm)
outward from the barrel of a 2.70-m-diameter telescope,
what would be the diameter of the big red spot when
the beam hit the Moon 384 000 km away? (Neglect at-
mospheric dispersion.)

21. The angular resolution of a radio telescope is to be
0.100° when the incident waves have a wavelength of
3.00 mm. What minimum diameter is required for the
telescope’s receiving dish?

22. When Mars is nearest the Earth, the distance separating
the two planets is 88.6 % 106 km. Mars is viewed
through a telescope whose mirror has a diameter of
30.0 cm. (a) If the wavelength of the light is 590 nm,
what is the angular resolution of the telescope? 
(b) What is the smallest distance that can be resolved
between two points on Mars?

Section 38.4 The Diffraction Grating
Note: In the following problems, assume that the light is inci-
dent normally on the gratings.

23. White light is spread out into its spectral components by
a diffraction grating. If the grating has 2 000 lines per
centimeter, at what angle does red light of wavelength
640 nm appear in first order?

24. Light from an argon laser strikes a diffraction grating
that has 5 310 lines per centimeter. The central and
first-order principal maxima are separated by 0.488 m
on a wall 1.72 m from the grating. Determine the wave-
length of the laser light.

25. The hydrogen spectrum has a red line at 656 nm and a
violet line at 434 nm. What is the angular separation be-
tween two spectral lines obtained with a diffraction grat-
ing that has 4 500 lines per centimeter?

26. A helium-neon laser ($ " 632.8 nm) is used to calibrate
a diffraction grating. If the first-order maximum occurs
at 20.5°, what is the spacing between adjacent grooves
in the grating?

27. Three discrete spectral lines occur at angles of 10.09°,
13.71°, and 14.77° in the first-order spectrum of a grat-
ing spectroscope. (a) If the grating has 3 660 slits per
centimeter, what are the wavelengths of the light? 
(b) At what angles are these lines found in the second-
order spectrum?

28. A diffraction grating has 800 rulings per millimeter. 
A beam of light containing wavelengths from 500 to 
700 nm hits the grating. Do the spectra of different or-
ders overlap? Explain.

29. A diffraction grating with a width of 4.00 cm has been
ruled with 3 000 grooves per centimeter. (a) What is the
resolving power of this grating in the first three orders?
(b) If two monochromatic waves incident on this grat-
ing have a mean wavelength of 400 nm, what is their
wavelength separation if they are just resolved in the
third order?

30. Show that, whenever white light is passed through a dif-
fraction grating of any spacing size, the violet end of the
continuous visible spectrum in third order always over-
laps the red light at the other end of the second-order
spectrum.

31. A source emits 531.62-nm and 531.81-nm light. 
(a) What minimum number of lines is required for a
grating that resolves the two wavelengths in the first-
order spectrum? (b) Determine the slit spacing for a
grating 1.32 cm wide that has the required minimum
number of lines.

32. Two wavelengths $ and are inci-
dent on a diffraction grating. Show that the angular sep-
aration between the spectral lines in the mth order
spectrum is

where d is the slit spacing and m is the order number.
33. A grating with 250 lines per millimeter is used with an

incandescent light source. Assume that the visible spec-
trum ranges in wavelength from 400 to 700 nm. In how

'! "
'$

!(d/m)2 & $2

$ * '$(with '$ V $)

WEB

WEB

Figure P38.15 Sunday Afternoon on the Isle of La Grande Jatte, by
Georges Seurat. (SuperStock)
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many orders can one see (a) the entire visible spectrum
and (b) the short-wavelength region?

34. A diffraction grating has 4 200 rulings per centimeter.
On a screen 2.00 m from the grating, it is found that for
a particular order m, the maxima corresponding to two
closely spaced wavelengths of sodium (589.0 nm and
589.6 nm) are separated by 1.59 mm. Determine the
value of m.

(Optional)
Section 38.5 Diffraction of X-Rays by Crystals

35. Potassium iodide (KI) has the same crystalline structure
as NaCl, with nm. A monochromatic x-ray
beam shows a diffraction maximum when the grazing
angle is 7.60°. Calculate the x-ray wavelength. (Assume
first order.)

36. A wavelength of 0.129 nm characterizes K0 x-rays from
zinc. When a beam of these x-rays is incident on the sur-
face of a crystal whose structure is similar to that of
NaCl, a first-order maximum is observed at 8.15°. Calcu-
late the interplanar spacing on the basis of this informa-
tion.

37. If the interplanar spacing of NaCl is 0.281 nm, what is
the predicted angle at which 0.140-nm x-rays are dif-
fracted in a first-order maximum?

38. The first-order diffraction maximum is observed at
12.6° for a crystal in which the interplanar spacing is
0.240 nm. How many other orders can be observed?

39. Monochromatic x-rays of the K0 line from a nickel tar-
get ($ " 0.166 nm) are incident on a potassium chlo-
ride (KCl) crystal surface. The interplanar distance in
KCl is 0.314 nm. At what angle (relative to the surface)
should the beam be directed for a second-order maxi-
mum to be observed?

40. In water of uniform depth, a wide pier is supported on
pilings in several parallel rows 2.80 m apart. Ocean
waves of uniform wavelength roll in, moving in a direc-
tion that makes an angle of 80.0° with the rows of posts.
Find the three longest wavelengths of waves that will be
strongly reflected by the pilings.

Section 38.6 Polarization of Light Waves
41. Unpolarized light passes through two polaroid sheets.

The axis of the first is vertical, and that of the second is
at 30.0° to the vertical. What fraction of the initial light
is transmitted?

42. Three polarizing disks whose planes are parallel are
centered on a common axis. The direction of the trans-
mission axis in each case is shown in Figure P38.42 rela-
tive to the common vertical direction. A plane-polarized
beam of light with E0 parallel to the vertical reference
direction is incident from the left on the first disk with
an intensity of units (arbitrary). Calculate 
the transmitted intensity If when (a) !1 " 20.0°, !2 "
40.0°, and !3 " 60.0°; (b) !1 " 0°, !2 " 30.0°, and 
!3 " 60.0°.

I i " 10.0

d " 0.353
43. Plane-polarized light is incident on a single polarizing

disk with the direction of E0 parallel to the direction 
of the transmission axis. Through what angle should
the disk be rotated so that the intensity in the transmit-
ted beam is reduced by a factor of (a) 3.00, (b) 5.00, 
(c) 10.0?

44. The angle of incidence of a light beam onto a reflecting
surface is continuously variable. The reflected ray is
found to be completely polarized when the angle of in-
cidence is 48.0°. What is the index of refraction of the
reflecting material?

45. The critical angle for total internal reflection for sap-
phire surrounded by air is 34.4°. Calculate the polariz-
ing angle for sapphire.

46. For a particular transparent medium surrounded by air,
show that the critical angle for total internal reflection
and the polarizing angle are related by the expression
cot 

47. How far above the horizon is the Moon when its image
reflected in calm water is completely polarized?

ADDITIONAL PROBLEMS
48. In Figure P38.42, suppose that the transmission axes of

the left and right polarizing disks are perpendicular to
each other. Also, let the center disk be rotated on the
common axis with an angular speed 1. Show that if un-
polarized light is incident on the left disk with an inten-
sity Imax, the intensity of the beam emerging from the
right disk is

This means that the intensity of the emerging beam is
modulated at a rate that is four times the rate of rota-
tion of the center disk. [Hint: Use the trigonometric
identities cos2! " (1 * cos 2!)/2 and sin2! "
(1 & cos 2!)/2, and recall that ! " 1t.]

49. You want to rotate the plane of polarization of a polar-
ized light beam by 45.0° with a maximum intensity re-
duction of 10.0%. (a) How many sheets of perfect po-
larizers do you need to achieve your goal? (b) What is
the angle between adjacent polarizers?

I "
1
16

 Imax(1 & cos 41t )

(nwater " 1.33.)

!p " sin ! c .

WEB

Ii

If

3θ
2θ

1θ

Figure P38.42 Problems 42 and 48.
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50. Figure P38.50 shows a megaphone in use. Construct a
theoretical description of how a megaphone works. You
may assume that the sound of your voice radiates just
through the opening of your mouth. Most of the infor-
mation in speech is carried not in a signal at the funda-
mental frequency, but rather in noises and in harmon-
ics, with frequencies of a few thousand hertz. Does your
theory allow any prediction that is simple to test?

55. Grote Reber was a pioneer in radio astronomy. He con-
structed a radio telescope with a 10.0-m diameter receiv-
ing dish. What was the telescope’s angular resolution
for 2.00-m radio waves?

56. A 750-nm light beam hits the flat surface of a certain
liquid, and the beam is split into a reflected ray and a
refracted ray. If the reflected ray is completely polarized
at 36.0°, what is the wavelength of the refracted ray?

57. Light of wavelength 500 nm is incident normally on a
diffraction grating. If the third-order maximum of 
the diffraction pattern is observed at 32.0°, (a) what is
the number of rulings per centimeter for the grating? 
(b) Determine the total number of primary maxima
that can be observed in this situation.

58. Light strikes a water surface at the polarizing angle. The
part of the beam refracted into the water strikes a sub-
merged glass slab (index of refraction, 1.50), as shown
in Figure P38.58. If the light reflected from the upper
surface of the slab is completely polarized, what is the
angle between the water surface and the glass slab?

51. Light from a helium-neon laser ($ " 632.8 nm) is inci-
dent on a single slit. What is the maximum width for
which no diffraction minima are observed?

52. What are the approximate dimensions of the smallest
object on Earth that astronauts can resolve by eye 
when they are orbiting 250 km above the Earth? As-
sume that $ " 500 nm and that a pupil’s diameter is
5.00 mm.

53. Review Problem. A beam of 541-nm light is incident
on a diffraction grating that has 400 lines per millime-
ter. (a) Determine the angle of the second-order ray.
(b) If the entire apparatus is immersed in water, what is
the new second-order angle of diffraction? (c) Show
that the two diffracted rays of parts (a) and (b) are re-
lated through the law of refraction.

54. The Very Large Array is a set of 27 radio telescope
dishes in Caton and Socorro Counties, New Mexico
(Fig. P38.54). The antennas can be moved apart on
railroad tracks, and their combined signals give the re-
solving power of a synthetic aperture 36.0 km in diame-
ter. (a) If the detectors are tuned to a frequency of 
1.40 GHz, what is the angular resolution of the VLA?
(b) Clouds of hydrogen radiate at this frequency. What
must be the separation distance for two clouds at the
center of the galaxy, 26 000 lightyears away, if they are
to be resolved? (c) As the telescope looks up, a circling
hawk looks down. For comparison, find the angular res-
olution of the hawk’s eye. Assume that it is most sensi-
tive to green light having a wavelength of 500 nm and
that it has a pupil with a diameter of 12.0 mm. (d) A
mouse is on the ground 30.0 m below. By what distance
must the mouse’s whiskers be separated for the hawk to
resolve them?

Figure P38.50 (Susan Allen Sigmon/Allsport USA)

Figure P38.54 A rancher in New Mexico rides past
one of the 27 radio telescopes that make up the Very
Large Array (VLA). © Danny Lehman)

θp

θ
Air

Water

θ

Figure P38.58

59. An American standard television picture is composed of
about 485 horizontal lines of varying light intensity. As-
sume that your ability to resolve the lines is limited only
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by the Rayleigh criterion and that the pupils of your
eyes are 5.00 mm in diameter. Calculate the ratio of
minimum viewing distance to the vertical dimension of
the picture such that you will not be able to resolve the
lines. Assume that the average wavelength of the light
coming from the screen is 550 nm.

60. (a) If light traveling in a medium for which the index of
refraction is n1 is incident at an angle ! on the surface
of a medium of index n2 so that the angle between the
reflected and refracted rays is (, show that

[Hint: Use the identity 
cos (b) Show that this expression for tan ! re-
duces to Brewster’s law when ( " 90°, and

61. Suppose that the single slit in Figure 38.6 is 6.00 cm
wide and in front of a microwave source operating at
7.50 GHz. (a) Calculate the angle subtended by the first
minimum in the diffraction pattern. (b) What is the rel-
ative intensity at ! " 15.0°? (c) Consider the case
when there are two such sources, separated laterally by
20.0 cm, behind the slit. What must the maximum dis-
tance between the plane of the sources and the slit be if
the diffraction patterns are to be resolved? (In this case,
the approximation sin ! " tan ! is not valid because of
the relatively small value of a/$.)

62. Two polarizing sheets are placed together with their
transmission axes crossed so that no light is transmitted.
A third sheet is inserted between them with its transmis-
sion axis at an angle of 45.0° with respect to each of the
other axes. Find the fraction of incident unpolarized
light intensity transmitted by the three-sheet combina-
tion. (Assume that each polarizing sheet is ideal.)

63. Figure P38.63a is a three-dimensional sketch of a bire-
fringent crystal. The dotted lines illustrate how a thin
parallel-faced slab of material could be cut from the
larger specimen with the optic axis of the crystal paral-
lel to the faces of the plate. A section cut from the crys-
tal in this manner is known as a retardation plate. When a
beam of light is incident on the plate perpendicular to
the direction of the optic axis, as shown in Figure
P38.63b, the O ray and the E ray travel along a single
straight line but with different speeds. (a) Letting the
thickness of the plate be d ,  show that the phase differ-
ence between the O ray and the E ray is

where $ is the wavelength in air. (b) If in a particular
case the incident light has a wavelength of 550 nm, what
is the minimum value of d for a quartz plate for which 
! " )/2? Such a plate is called a quarter-wave plate. (Use
values of nO and nE from Table 38.1.)

! "
2)d

$
 (nO & nE)

I/Imax

n 2 " n.
n1 " 1,

A sin B.]
sin(A * B) " sin A cos B *

tan ! "
n2 sin (

n1 & n2 cos (

64. Derive Equation 38.12 for the resolving power of a grat-
ing, where N is the number of lines illumi-
nated and m is the order in the diffraction pattern. Re-
member that Rayleigh’s criterion (see Section 38.3)
states that two wavelengths will be resolved when the
principal maximum for one falls on the first minimum
for the other.

65. Light of wavelength 632.8 nm illuminates a single slit,
and a diffraction pattern is formed on a screen 1.00 m
from the slit. Using the data in the table on the follow-
ing page, plot relative intensity versus distance. Choose
an appropriate value for the slit width a, and on the
same graph used for the experimental data, plot the
theoretical expression for the relative intensity

What value of a gives the best fit of theory and experi-
ment?

66. How much diffraction spreading does a light beam un-
dergo? One quantitative answer is the full width at half
maximum of the central maximum of the Fraunhofer
diffraction pattern of a single slit. You can evaluate this
angle of spreading in this problem and in the next. 
(a) In Equation 38.4, define (/2 " 2 and show that, 
at the point where Imax , we must have sin 

(b) Let 2 and Plot y1
and 
y2 on the same set of axes over a range from 2 " 1 rad
to 2 " )/2 rad. Determine 2 from the point of inter-

y2 " 2/!2.y1 " sin2/!2.
2 "I " 0.5

I
Imax

"
sin2((/2)

((/2)2

R " Nm ,

(b)

(a)

Optic
axis

Optic
axis

Wavefront
E ray

O ray

d

IO

Figure P38.63
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Distance from Center of
Relative Intensity Central Maximum (mm)

1.00 0
0.95 0.8
0.80 1.6
0.60 2.4
0.39 3.2
0.21 4.0
0.079 4.8
0.014 5.6
0.003 6.5
0.015 7.3
0.036 8.1
0.047 8.9
0.043 9.7
0.029 10.5
0.013 11.3
0.002 12.1
0.000 3 12.9
0.005 13.7
0.012 14.5
0.016 15.3
0.015 16.1
0.010 16.9
0.004 4 17.7
0.000 6 18.5
0.000 3 19.3
0.003 20.2

section of the two curves. (c) Then show that, if the
fraction $/a is not large, the angular full width at half
maximum of the central diffraction maximum is '! "

0.886$/a.
67. Another method to solve the equation sin 2 in

Problem 66 is to use a calculator, guess a first value of 2,
see if it fits, and continue to update your estimate until
the equation balances. How many steps (iterations)
does this take?

68. In the diffraction pattern of a single slit, described by
the equation

with ( " (2)a sin !)/$, the central maximum is at ( "
0 and the side maxima are approximately at (/2 "
(m * )) for 2, 3, . . . . Determine more pre-
cisely (a) the location of the first side maximum, where

and (b) the location of the second side maximum.
Observe in Figure 38.10a that the graph of intensity ver-
sus (/2 has a horizontal tangent at maxima and also at
minima. You will need to solve a transcendental equation.

69. A pinhole camera has a small circular aperture of diame-
ter D. Light from distant objects passes through the
aperture into an otherwise dark box, falling upon a
screen located a distance L away. If D is too large, the
display on the screen will be fuzzy because a bright
point in the field of view will send light onto a circle of
diameter slightly larger than D. On the other hand, if D
is too small, diffraction will blur the display on the
screen. The screen shows a reasonably sharp image if
the diameter of the central disk of the diffraction pat-
tern, specified by Equation 38.9, is equal to D at the
screen. (a) Show that for monochromatic light with
plane wave fronts and the condition for a sharp
view is fulfilled if $L . (b) Find the optimum
pinhole diameter if 500-nm light is projected onto a
screen 15.0 cm away.

D2 " 2.44
L W D,

m " 1,

m " 1,1
2

I! " Imax# sin((/2)
(/2 $2

2 " !2

ANSWERS TO QUICK QUIZZES

38.1 The space between the slightly open door and the door-
frame acts as a single slit. Sound waves have wavelengths
that are approximately the same size as the opening and
so are diffracted and spread throughout the room you
are in. Because light wavelengths are much smaller than
the slit width, they are virtually undiffracted. As a result,
you must have a direct line of sight to detect the light
waves.

38.2 The situation is like that depicted in Figure 38.11 except
that now the slits are only half as far apart. The diffrac-
tion pattern is the same, but the interference pattern is
stretched out because d is smaller. Because the
third interference maximum coincides with the first dif-
fraction minimum. Your sketch should look like the fig-
ure to the right.

38.3 Yes, but no diffraction effects are observed because the
separation distance between adjacent ribs is so much
greater than the wavelength of the x-rays.

d/a " 3,

π

I

/2β

π–


