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C H A P T E R 1 1

Fourier Analysis

This chapter on Fourier analysis covers three broad areas: Fourier series in Secs. 11.1–11.4,
more general orthonormal series called Sturm–Liouville expansions in Secs. 11.5 and 11.6
and Fourier integrals and transforms in Secs. 11.7–11.9.

The central starting point of Fourier analysis is Fourier series. They are infinite series
designed to represent general periodic functions in terms of simple ones, namely, cosines
and sines. This trigonometric system is orthogonal, allowing the computation of the
coefficients of the Fourier series by use of the well-known Euler formulas, as shown in
Sec. 11.1. Fourier series are very important to the engineer and physicist because they
allow the solution of ODEs in connection with forced oscillations (Sec. 11.3) and the
approximation of periodic functions (Sec. 11.4). Moreover, applications of Fourier analysis
to PDEs are given in Chap. 12. Fourier series are, in a certain sense, more universal than
the familiar Taylor series in calculus because many discontinuous periodic functions that
come up in applications can be developed in Fourier series but do not have Taylor series
expansions.

The underlying idea of the Fourier series can be extended in two important ways. We
can replace the trigonometric system by other families of orthogonal functions, e.g., Bessel
functions and obtain the Sturm–Liouville expansions. Note that related Secs. 11.5 and
11.6 used to be part of Chap. 5 but, for greater readability and logical coherence, are now
part of Chap. 11. The second expansion is applying Fourier series to nonperiodic
phenomena and obtaining Fourier integrals and Fourier transforms. Both extensions have
important applications to solving PDEs as will be shown in Chap. 12.

In a digital age, the discrete Fourier transform plays an important role. Signals, such
as voice or music, are sampled and analyzed for frequencies. An important algorithm, in
this context, is the fast Fourier transform. This is discussed in Sec. 11.9.

Note that the two extensions of Fourier series are independent of each other and may
be studied in the order suggested in this chapter or by studying Fourier integrals and
transforms first and then Sturm–Liouville expansions.

Prerequisite: Elementary integral calculus (needed for Fourier coefficients).
Sections that may be omitted in a shorter course: 11.4–11.9.
References and Answers to Problems: App. 1 Part C, App. 2.

11.1 Fourier Series
Fourier series are infinite series that represent periodic functions in terms of cosines and
sines. As such, Fourier series are of greatest importance to the engineer and applied
mathematician. To define Fourier series, we first need some background material.
A function is called a periodic function if is defined for all real x, exceptf ( x)f (x)
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SEC. 11.1 Fourier Series 475

x

f (x)

p

Fig. 258. Periodic function of period p

possibly at some points, and if there is some positive number p, called a period of ,
such that

(1) for all x.

(The function is a periodic function that is not defined for all real x but
undefined for some points (more precisely, countably many points), that is 

.)
The graph of a periodic function has the characteristic that it can be obtained by periodic

repetition of its graph in any interval of length p (Fig. 258).
The smallest positive period is often called the fundamental period. (See Probs. 2–4.)
Familiar periodic functions are the cosine, sine, tangent, and cotangent. Examples of

functions that are not periodic are , to mention just a few.
If has period p, it also has the period 2p because (1) implies 

, etc.; thus for any integer 

(2) for all x.

Furthermore if and have period p, then with any constants a and
b also has the period p.

Our problem in the first few sections of this chapter will be the representation of various
functions of period in terms of the simple functions

(3)

All these functions have the period . They form the so-called trigonometric system.
Figure 259 shows the first few of them (except for the constant 1, which is periodic with
any period).

2p

1,  cos x, sin x,  cos 2x, sin 2x, Á ,  cos nx, sin nx, Á .

2pf (x)

af (x) ! bg (x)g (x)f (x)

f (x ! np) " f (x)

n " 1, 2, 3, Á ,f ([x ! p] ! p) " f (x ! p) " f (x)
f (x ! 2p) "f (x)

x, x2, x3, ex, cosh x, and ln x

Á#3p>2,
x " #p>2,

f (x) " tan x

f (x ! p) " f (x)

f (x)

0 2ππ π

cos x

0 2ππ π

sin x

0 2ππ π

sin 2x

0 2ππ π

sin 3x

0 2ππ π

cos 2x

0 2ππ π

cos 3x

Fig. 259. Cosine and sine functions having the period 2 (the first few members of the
trigonometric system (3), except for the constant 1)

p
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The series to be obtained will be a trigonometric series, that is, a series of the form

(4)

are constants, called the coefficients of the series. We see that each
term has the period Hence if the coefficients are such that the series converges, its
sum will be a function of period

Expressions such as (4) will occur frequently in Fourier analysis. To compare the
expression on the right with that on the left, simply write the terms in the summation.
Convergence of one side implies convergence of the other and the sums will be the
same.

Now suppose that is a given function of period and is such that it can be
represented by a series (4), that is, (4) converges and, moreover, has the sum . Then,
using the equality sign, we write

(5)

and call (5) the Fourier series of . We shall prove that in this case the coefficients
of (5) are the so-called Fourier coefficients of , given by the Euler formulas

(0)

(6) (a)

(b) .

The name “Fourier series” is sometimes also used in the exceptional case that (5) with
coefficients (6) does not converge or does not have the sum —this may happen but
is merely of theoretical interest. (For Euler see footnote 4 in Sec. 2.5.)

A Basic Example
Before we derive the Euler formulas (6), let us consider how (5) and (6) are applied in
this important basic example. Be fully alert, as the way we approach and solve this
example will be the technique you will use for other functions. Note that the integration
is a little bit different from what you are familiar with in calculus because of the n. Do
not just routinely use your software but try to get a good understanding and make
observations: How are continuous functions (cosines and sines) able to represent a given
discontinuous function? How does the quality of the approximation increase if you take
more and more terms of the series? Why are the approximating functions, called the

f (x)

n " 1, 2, Ábn "
1
p  !

p

!p

f (x) sin nx dx

n " 1, 2, Áan "
1
p  !

p

!p
 
f (x) cos nx dx

a0 "
1

2p
 !
p

!p

f (x) dx

f (x)
f (x)

f (x) " a0 ! a"
n"1

(an cos nx ! bn sin nx)

f (x)
2pf (x)

2p.
2p.

a0, a1, b1, a2, b2, Á

" a0 ! a"
n"1

 (an cos nx ! bn sin nx).

a0 ! a1 cos x ! b1 sin x ! a2 cos 2x ! b2 sin 2x ! Á

476 CHAP. 11 Fourier Analysis
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SEC. 11.1 Fourier Series 477

partial sums of the series, in this example always zero at 0 and ? Why is the factor
(obtained in the integration) important?

E X A M P L E  1 Periodic Rectangular Wave (Fig. 260)

Find the Fourier coefficients of the periodic function in Fig. 260. The formula is 

(7)

Functions of this kind occur as external forces acting on mechanical systems, electromotive forces in electric
circuits, etc. (The value of at a single point does not affect the integral; hence we can leave undefined
at and .)

Solution. From (6.0) we obtain . This can also be seen without integration, since the area under the
curve of between and (taken with a minus sign where is negative) is zero. From (6a) we obtain
the coefficients of the cosine terms. Since is given by two expressions, the integrals from 
to split into two integrals:

because at , 0, and for all . We see that all these cosine coefficients are zero. That
is, the Fourier series of (7) has no cosine terms, just sine terms, it is a Fourier sine series with coefficients

obtained from (6b);

Since , this yields

.

Now, , etc.; in general,

and thus

Hence the Fourier coefficients of our function are

.b1 "
4k
p

 ,  b2 " 0,  b3 "
4k

3p
 ,  b4 " 0,  b5 "

4k

5p
 , Á

bn

1 $ cos np " b 

2 for odd n,

0 for even n.
cos np " b$1 for odd n,

1 for even n,

cos p " $1, cos 2p " 1, cos 3p " $1

bn "
k

np [cos 0 $ cos ($np) $ cos np ! cos 0] "
2k
np (1 $ cos np)

cos ($a) " cos a and cos 0 " 1

 "
1
p

 c k 
cos nx

n  `
!p

0

$ k 
cos nx

n  `
0

p

 

d .
 bn "

1
p

 !
p

!p

f (x) sin nx dx "
1
p

 c !0

!p

($k) sin nx dx ! !
p

0

k sin nx dx d
b1, b2, Á

n " 1, 2, Áp$psin nx " 0

 "
1
p

 c$k 
sin nx

n  `
!p

0

! k 
sin nx

n  `
0

p

  

d " 0

 an "
1
p

 !
p

!p

f (x) cos nx dx "
1
p

  c !0

!p

($k) cos nx dx ! !
p

0

k cos nx dx d
p

$pf (x)a1, a2, Á
f (x)p$pf (x)

a0 " 0

x " #px " 0
f (x)f (x)

f (x) " b$k if $p % x % 0

k if 0 % x % p
  and  f (x ! 2p) " f (x).

f (x)

1>n p

Fig. 260. Given function (Periodic reactangular wave)f (x)

c11-a.qxd  10/30/10  1:24 PM  Page 477



Since the are zero, the Fourier series of is

(8)

The partial sums are

etc.

Their graphs in Fig. 261 seem to indicate that the series is convergent and has the sum , the given function.
We notice that at and , the points of discontinuity of , all partial sums have the value zero, the
arithmetic mean of the limits and k of our function, at these points. This is typical.

Furthermore, assuming that is the sum of the series and setting , we have

Thus

This is a famous result obtained by Leibniz in 1673 from geometric considerations. It illustrates that the values
of various series with constant terms can be obtained by evaluating Fourier series at specific points. !

1 $
1

3
!

1

5
$

1

7
! $ Á "

p

4
 .

f  ap2 b " k "
4k
p

 a1 $
1
3 !

1
5 $ ! Áb .

x " p>2f (x)
$k

f (x)x " px " 0
f (x)

S1 "
4k
p

 sin x,   S2 "
4k
p

 asin x !
1
3 sin 3xb .

4k
p

 (sin x ! 1
3 sin 3x ! 1

5 sin 5x ! Á ).

f (x)an

478 CHAP. 11 Fourier Analysis

Fig. 261. First three partial sums of the corresponding Fourier series
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Derivation of the Euler Formulas (6)
The key to the Euler formulas (6) is the orthogonality of (3), a concept of basic importance,
as follows. Here we generalize the concept of inner product (Sec. 9.3) to functions.

T H E O R E M  1 Orthogonality of the Trigonometric System (3)

The trigonometric system (3) is orthogonal on the interval (hence
also on or any other interval of length because of periodicity); that
is, the integral of the product of any two functions in (3) over that interval is 0, so
that for any integers n and m,

(a)

(9) (b)

(c)

P R O O F This follows simply by transforming the integrands trigonometrically from products into
sums. In (9a) and (9b), by (11) in App. A3.1,

Since (integer!), the integrals on the right are all 0. Similarly, in (9c), for all integer
m and n (without exception; do you see why?)

Application of Theorem 1 to the Fourier Series (5)
We prove (6.0). Integrating on both sides of (5) from to , we get

We now assume that termwise integration is allowed. (We shall say in the proof of
Theorem 2 when this is true.) Then we obtain

!
p

!p

f (x) dx " a0!
p

!p

dx ! a"
n"1

 aan!
p

!p

cos nx dx ! bn!
p

!p

sin nx dxb .
!
p

!p

f (x) dx " !
p

!p

ca0 ! a"
n"1

 (an cos nx ! bn sin nx) d  dx.

p$p

!!
p

!p

sin nx cos mx dx "
1
2 !
p

!p

sin (n ! m)x dx !
1
2 !
p

!p

sin (n $ m)x dx " 0 ! 0.

m & n

!
p

!p

sin nx sin mx dx "
1
2 !
p

!p

cos (n $ m)x dx $
1
2 !
p

!p

cos (n ! m)x dx.

!
p

!p

cos nx cos mx dx "
1
2 !
p

!p

cos (n ! m)x dx !
1
2 !
p

!p

cos (n $ m)x dx

!
p

!p

sin nx cos mx dx " 0   (n & m or n " m).

!
p

!p

sin nx sin mx dx " 0   (n & m)

!
p

!p

cos nx cos mx dx " 0     (n & m)

2p0 ' x ' 2p
$p ' x ' p

SEC. 11.1 Fourier Series 479
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The first term on the right equals . Integration shows that all the other integrals are 0.
Hence division by gives (6.0).

We prove (6a). Multiplying (5) on both sides by cos mx with any fixed positive integer
m and integrating from to , we have

(10)

We now integrate term by term. Then on the right we obtain an integral of 
which is 0; an integral of , which is for and 0 for by
(9a); and an integral of , which is 0 for all n and m by (9c). Hence the
right side of (10) equals Division by gives (6a) (with m instead of n).

We finally prove (6b). Multiplying (5) on both sides by with any fixed positive
integer m and integrating from to , we get

(11)

Integrating term by term, we obtain on the right an integral of , which is 0; an
integral of , which is 0 by (9c); and an integral of , which
is if and 0 if , by (9b). This implies (6b) (with n denoted by m). This
completes the proof of the Euler formulas (6) for the Fourier coefficients.

Convergence and Sum of a Fourier Series
The class of functions that can be represented by Fourier series is surprisingly large and
general. Sufficient conditions valid in most applications are as follows.

T H E O R E M  2 Representation by a Fourier Series

Let be periodic with period and piecewise continuous (see Sec. 6.1) in the
interval . Furthermore, let have a left-hand derivative and a right-
hand derivative at each point of that interval. Then the Fourier series (5) of
[with coefficients (6)] converges. Its sum is , except at points x0 where is
discontinuous. There the sum of the series is the average of the left- and right-hand
limits2 of at .x0f (x)

f (x)f (x)
f (x)

f (x)$p ' x ' p
2pf (x)

!
n & mn " mbmp

bn sin nx sin mxan cos nx sin mx
a0 sin mx

!
p

!p

f (x) sin mx dx " !
p

!p

ca0 ! a"
n"1

 (an cos nx ! bn sin nx) d  sin mx dx.

p$p
sin mx

pamp.
bn sin nx cos mx

n & mn " mampan cos nx cos mx 
a0 cos mx,

!
p

!p

f (x) cos mx dx " !
p

!p
 ca0 ! a

"

n"1

 (an cos nx ! bn sin nx) d  cos mx dx.

p$p

2p
2pa0

480 CHAP. 11 Fourier Analysis

2The left-hand limit of at is defined as the limit of as x approaches x0 from the left
and is commonly denoted by . Thus

ƒ(x0 $ 0) " lim
h*0

ƒ(x0 $ h) as h * 0 through positive values.

The right-hand limit is denoted by ƒ(x0 ! 0) and

ƒ(x0 ! 0) " lim
h*0

ƒ(x0 ! h) as h * 0 through positive values.

The left- and right-hand derivatives of ƒ(x) at x0 are defined as the limits of

and ,

respectively, as h * 0 through positive values. Of course if ƒ(x) is continuous at x0, the last term in
both numerators is simply ƒ(x0).

f (x0 ! h) $ f (x0 ! 0)

$h

f (x0 $ h) $ f (x0 $ 0)

$h

f (x0 $ 0)
f (x)x0f (x)

x

f (x)

f (1 – 0)

f (1 + 0)

1

10

Fig. 262. Left- and
right-hand limits

ƒ(1 $ 0) " 1,

ƒ(1 ! 0) " 1_
2

of the function

f (x) " b x2 if x % 1

x>2 if x ( 1
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P R O O F We prove convergence, but only for a continuous function having continuous first
and second derivatives. And we do not prove that the sum of the series is because
these proofs are much more advanced; see, for instance, Ref. listed in App. 1.
Integrating (6a) by parts, we obtain

The first term on the right is zero. Another integration by parts gives

The first term on the right is zero because of the periodicity and continuity of . Since
is continuous in the interval of integration, we have

for an appropriate constant M. Furthermore, . It follows that

Similarly, for all n. Hence the absolute value of each term of the Fourier
series of is at most equal to the corresponding term of the series

which is convergent. Hence that Fourier series converges and the proof is complete.
(Readers already familiar with uniform convergence will see that, by the Weierstrass
test in Sec. 15.5, under our present assumptions the Fourier series converges uniformly,
and our derivation of (6) by integrating term by term is then justified by Theorem 3 of
Sec. 15.5.)

E X A M P L E  2 Convergence at a Jump as Indicated in Theorem 2

The rectangular wave in Example 1 has a jump at . Its left-hand limit there is and its right-hand limit
is k (Fig. 261). Hence the average of these limits is 0. The Fourier series (8) of the wave does indeed converge
to this value when because then all its terms are 0. Similarly for the other jumps. This is in agreement
with Theorem 2.

Summary. A Fourier series of a given function of period is a series of the form
(5) with coefficients given by the Euler formulas (6). Theorem 2 gives conditions that are
sufficient for this series to converge and at each x to have the value , except at
discontinuities of , where the series equals the arithmetic mean of the left-hand and
right-hand limits of at that point.f (x)

f (x)
f (x)

2pf (x)

!
x " 0

$kx " 0

!

ƒ a0 ƒ ! 2M a1 ! 1 !
1

22
!

1

22
!

1

32
!

1

32
! Áb

f (x)
ƒ bn ƒ % 2 M>n2

ƒ an ƒ "
1

n2p
 2!p

!p

f s(x) cos nx dx 2 % 1

n2p
!
p

!p

M dx "
2M

n2
 .

ƒ cos nx ƒ ' 1

ƒ f s(x) ƒ % M

f s
f r(x)

an "
f r(x) cos nx

n2p
 2p

!p

$
1

n2p
!
p

!p

f s(x) cos nx dx.

an "
1
p !

p

!p

f (x) cos nx dx "
f (x) sin nx

np  2p
!p

$
1

np !
p

!p

f r(x) sin nx dx.

3C124 f (x)
f (x)
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482 CHAP. 11 Fourier Analysis

1–5 PERIOD, FUNDAMENTAL PERIOD
The fundamental period is the smallest positive period. Find
it for
1.

2.

3. If and have period p, show that 
(a, b, constant) has the period p. Thus

all functions of period p form a vector space.
4. Change of scale. If has period p, show that

, and , are periodic functions
of x of periods and bp, respectively. Give examples.

5. Show that is periodic with any period but has
no fundamental period.

6–10 GRAPHS OF 2 –PERIODIC FUNCTIONS
Sketch or graph which for is given as
follows.
6.
7.
8.

9.

10.

11. Calculus review. Review integration techniques for
integrals as they are likely to arise from the Euler
formulas, for instance, definite integrals of 

, etc.

12–21 FOURIER SERIES
Find the Fourier series of the given function , which is
assumed to have the period . Show the details of your
work. Sketch or graph the partial sums up to that including

.
12. in Prob. 6
13. in Prob. 9
14.
15.
16.

0–π π

1
2

π

1
2

π

f (x) " x2 (0 % x % 2p)
f (x) " x2 ($p % x % p)
f (x)
f (x)

cos 5x and sin 5x

2p
f (x)

e!2x cos nxx2 sin nx,
x cos nx,

f (x) " b$cos2 x if $p % x % 0

cos2 x  if 0 % x % p

f (x) " b x if $p % x % 0

p $ x if 0 % x % p

f (x) " e! ƒ x ƒ, f (x) " ƒ e!x ƒ
f (x) " ƒ sin x ƒ , f (x) " sin ƒ x ƒ
f (x) " ƒ x ƒ

$p % x % pf (x)

p

f " const
p>af (x>b), b & 0f (ax), a & 0

f (x)

af (x) ! bg(x)
h (x) "g (x)f (x)

sin 
2pnx

k

cos 
2pnx

k
 ,sin 

2px

k
 ,cos 

2px

k
 ,sin nx,cos nx,

sin 2pxcos 2px,
sin px,cos px,sin 2x,cos 2x,sin x,cos x,

17.

18.

19.

20.

21.

22. CAS EXPERIMENT. Graphing. Write a program for
graphing partial sums of the following series. Guess
from the graph what the series may represent.
Confirm or disprove your guess by using the Euler
formulas.
(a)

(b)

(c)

23. Discontinuities. Verify the last statement in Theorem
2 for the discontinuities of in Prob. 21.

24. CAS EXPERIMENT. Orthogonality. Integrate and
graph the integral of the product (with
various integer m and n of your choice) from to a
as a function of a and conclude orthogonality of cos mx

$a
cos mx cos nx

f (x)

! $ Á)

2
3 p2 ! 4(cos x $ 1

4 cos 2x ! 1
9 cos 3x $ 1

16 cos 4x

1
2

!
4
p2 acos x !

1
9 cos 3x !

1
25 cos 5x ! Áb$ 2(1

2 sin 2x ! 1
4 sin 4x ! 1

6  sin 6x Á)

2(sin x ! 1
3  sin 3x ! 1

5  sin 5x ! Á)

f (x)

–π

–π

π

π

0–π π

1
2

π

1
2

π

1
2

π1
2

π–

–

0–π π

π

0–π π

1

0–π π

π

P R O B L E M  S E T  1 1 . 1
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SEC. 11.2 Arbitrary Period. Even and Odd Functions. Half-Range Expansions 483

and for from the graph. For what
m and n will you get orthogonality for 

? Other a? Extend the experiment to 
and .

25. CAS EXPERIMENT. Order of Fourier Coefficients.
The order seems to be if f is discontinous, and 1>n21>nsin mx sin nx

cos mx  sin nxp>4 p>3,a " p>2,
a " pcos nx (m & n) if f is continuous but is discontinuous, 

if f and are continuous but is discontinuous, etc.
Try to verify this for examples. Try to prove it by
integrating the Euler formulas by parts. What is the
practical significance of this?

f sf r
1>n3f r " df>dx

11.2 Arbitrary Period. Even and Odd Functions.
Half-Range Expansions

We now expand our initial basic discussion of Fourier series.

Orientation. This section concerns three topics:

1. Transition from period to any period 2L, for the function f, simply by a
transformation of scale on the x-axis.

2. Simplifications. Only cosine terms if f is even (“Fourier cosine series”). Only sine
terms if f is odd (“Fourier sine series”).

3. Expansion of f given for in two Fourier series, one having only cosine
terms and the other only sine terms (“half-range expansions”).

1. From Period 2 to Any Period 
Clearly, periodic functions in applications may have any period, not just as in the last
section (chosen to have simple formulas). The notation for the period is practical
because L will be a length of a violin string in Sec. 12.2, of a rod in heat conduction in
Sec. 12.5, and so on.

The transition from period to be period is effected by a suitable change of
scale, as follows. Let have period . Then we can introduce a new variable v
such that , as a function of v, has period . If we set

(1)

then corresponds to . This means that f, as a function of v, has period
and, therefore, a Fourier series of the form

(2)

with coefficients obtained from (6) in the last section

(3)

bn "
1
p !

p

!p
 
f a L
p vb sin nv dv.

a0 "
1

2p !
p

!p

 
f a L
p  vb dv,  an "

1
p !

p

!p

f a L
p

 vb cos nv dv,

f (x) " f  a L
p vb " a0 ! a"

n"1

 (an cos nv ! bn sin nv)

2p
x " #Lv " #p

(a) x "
p

2p
 v,  so that  (b) v "

2p
p  x "

p
L

 x

2pf (x)
p " 2Lf (x)

p " 2L2p

p " 2L
2p

p " 2Lp

0 ' x ' L

2p
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484 CHAP. 11 Fourier Analysis

We could use these formulas directly, but the change to x simplifies calculations. Since

(4)

and we integrate over x from to L. Consequently, we obtain for a function of
period 2L the Fourier series

(5)

with the Fourier coefficients of given by the Euler formulas ( in dx cancels
in (3))

(0)

(6) (a)

(b)

Just as in Sec. 11.1, we continue to call (5) with any coefficients a trigonometric series.
And we can integrate from 0 to 2L or over any other interval of length .

E X A M P L E  1 Periodic Rectangular Wave

Find the Fourier series of the function (Fig. 263)

Solution. From (6.0) we obtain (verify!). From (6a) we obtain

Thus if n is even and

if

From (6b) we find that . Hence the Fourier series is a Fourier cosine series (that is, it
has no sine terms)

!f (x) "
k

2
!

2k

p
 acos 

p

2
 x $

1

3
 cos 

3p

2
 x !

1

5
 cos 

5p

2
 x $ ! Áb .

bn " 0 for n " 1, 2, Á

n " 1, 5, 9, Á ,  an " $2k>np if n " 3, 7, 11, Á .an " 2k>npan " 0

an "
1

2 !
2

!2

f (x) cos 
npx

2
 dx "

1

2 !
1

!1

k cos 
npx

2
 dx "

2k

np
 sin 

np

2
.

a0 " k>2
f (x) " d 0 if $2 % x % $1

k if $1 % x % 1

0 if 1 % x % 2

  p " 2L " 4, L " 2.

p " 2L

n " 1, 2, Á .bn "
1
L !

L

!L

f (x) sin 
npx

L
 dx

n " 1, 2, Áan "
1
L !

L

!L

f (x) cos 
npx

L
 dx

a0 "
1

2L !
L

!L  

f (x) dx

1>p p>Lf (x)

f (x) " a0 ! a"
n"1

 aan cos 
np
L

 x ! bn sin 
np
L

 xb
f (x)$L

v "
p
L

 x,  we have  dv "
p
L

  dx
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E X A M P L E  2 Periodic Rectangular Wave. Change of Scale

Find the Fourier series of the function (Fig. 264)

Solution. Since , we have in (3) and obtain from (8) in Sec. 11.1 with v instead of x, that is,

the present Fourier series

Confirm this by using (6) and integrating.

E X A M P L E  3 Half-Wave Rectifier

A sinusoidal voltage , where t is time, is passed through a half-wave rectifier that clips the negative
portion of the wave (Fig. 265). Find the Fourier series of the resulting periodic function

Solution. Since when , we obtain from (6.0), with t instead of x,

and from (6a), by using formula (11) in App. A3.1 with and ,

If , the integral on the right is zero, and if , we readily obtain

If n is odd, this is equal to zero, and for even n we have

an "
E

2p
 a 2

1 ! n
 !

2

1 $ n
 b " $ 

2E

(n $ 1)(n ! 1)p
     (n " 2, 4, Á ).

 "
E

2p
 a$cos (1 ! n)p ! 1

1 ! n
 !

$cos (1 $ n)p ! 1

1 $ n
 b .

an "
vE

2p
 c$ 

cos (1 ! n) vt

(1 ! n) v
$

cos (1 $ n) vt

(1 $ n) v
d

0

p>v
n " 2, 3, Án " 1

an "
v

p
 !
p>v

0

 E sin vt cos nvt dt "
vE

2p
 !
p>v

0

 [sin (1 ! n) vt ! sin (1 $ n) vt] dt.

y " nvtx " vt

a0 "
v

2p
 !
p>v

0

 E sin vt dt "
E

p
 

$L % t % 0u " 0

u(t) " c 0 if $L % t % 0,

E sin vt if 0 % t % L
  p " 2L "

2p
v

,  L "
p
v

.

E sin vt

!

f (x) "
4k

p
  asin 

p

2
 x !

1

3
 sin 

3p

2
 x !

1

5
 sin 

5p

2
 x ! Áb .

g(v) "
4k

p
 asin v !

1

3
 sin 3v !

1

5
 sin 5v ! Áb

v " px>2L " 2

f (x) " c$k if $2 % x % 0

k if 0 % x % 2
  p " 2L " 4,  L " 2.
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x

f(x)

0 21–2 –1

k

f (x)
k

x

–k
–2 2

Fig. 263. Example 1 Fig. 264. Example 2 

c11-a.qxd  10/30/10  1:24 PM  Page 485



In a similar fashion we find from (6b) that and for . Consequently,

!u(t) "
E

p
 !

E

2
 sin vt $

2E

p
  a 1

1 # 3
 cos 2vt !

1

3 # 5
 cos 4vt ! Áb .

n " 2, 3, Ábn " 0b1 " E>2
486 CHAP. 11 Fourier Analysis

t

u(t)

0π ω– / π ω/

x

Fig. 265. Half-wave rectifier

Fig. 266.
Even function

x

Fig. 267.
Odd function

2. Simplifications: Even and Odd Functions
If is an even function, that is, (see Fig. 266), its Fourier series (5)
reduces to a Fourier cosine series

(5*) ( f even)

with coefficients (note: integration from 0 to L only!)

(6*)

If is an odd function, that is, (see Fig. 267), its Fourier series (5)
reduces to a Fourier sine series

(5**) ( f odd)

with coefficients

(6**)

These formulas follow from (5) and (6) by remembering from calculus that the definite
integral gives the net area ( area above the axis minus area below the axis) under the
curve of a function between the limits of integration. This implies

(7)

(a) for even g

(b) for odd h

Formula (7b) implies the reduction to the cosine series (even f makes odd
since sin is odd) and to the sine series (odd f makes odd since cos is even).
Similarly, (7a) reduces the integrals in and to integrals from 0 to L. These reductions
are obvious from the graphs of an even and an odd function. (Give a formal proof.)

(6**)(6*)
f (x) cos (npx>L)

f (x) sin (npx>L)

!
L

!L

 h (x) dx " 0

!
L

!L

 g (x) dx " 2!
L

0

 g (x) dx

"

bn "
2
L

 !
L

0

 f (x) sin 
npx

L
 dx.

f (x) " a
"

n"1

 bn sin 
np
L

 x

f ($x) " $f (x)f (x)

n " 1, 2, Á .a0 "
1
L

 !
L

0

 f (x) dx,  an "
2
L

 !
L

0

 f (x) cos 
npx

L
 dx,

f (x) " a0 ! a
"

n"1

 an cos 
np
L

 x

f ($x) " f (x)f (x)
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Summary

Even Function of Period . If f is even and , then

with coefficients

Odd Function of Period . If f is odd and , then

with coefficients

E X A M P L E  4 Fourier Cosine and Sine Series

The rectangular wave in Example 1 is even. Hence it follows without calculation that its Fourier series is a
Fourier cosine series, the are all zero. Similarly, it follows that the Fourier series of the odd function in
Example 2 is a Fourier sine series.

In Example 3 you can see that the Fourier cosine series represents . Can you prove
that this is an even function?

Further simplifications result from the following property, whose very simple proof is left
to the student.

T H E O R E M  1 Sum and Scalar Multiple

The Fourier coefficients of a sum are the sums of the corresponding Fourier
coefficients of and .

The Fourier coefficients of cf are c times the corresponding Fourier coefficients of f.

E X A M P L E  5 Sawtooth Wave

Find the Fourier series of the function (Fig. 268)

f (x) " x ! p if $p % x % p  and  f (x ! 2p) " f (x).

f2f1
f1 ! f2

!
u(t) $ E>p $ 1

2 E sin vt

bn

n " 1, 2, Á .bn "
2
p !

p

0

 f (x) sin nx dx,

f (x) " a
"

n"1

 bn sin nx

L " p2p

n " 1, 2, Áa0 "
1
p  !

p

0

 f (x) dx,  an "
2
p  !

p

0

 f (x) cos nx dx,

f (x) " a0 ! a
"

n"1

  an cos nx

L " p2#
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f (x)

x–π π

Fig. 268. The function f(x). Sawtooth wave
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488 CHAP. 11 Fourier Analysis

Solution. We have , where and . The Fourier coefficients of are zero, except for
the first one (the constant term), which is . Hence, by Theorem 1, the Fourier coefficients are those of

, except for , which is . Since is odd, for and

Integrating by parts, we obtain

Hence , and the Fourier series of is

(Fig. 269)

3. Half-Range Expansions
Half-range expansions are Fourier series. The idea is simple and useful. Figure 270
explains it. We want to represent in Fig. 270.0 by a Fourier series, where 
may be the shape of a distorted violin string or the temperature in a metal bar of length
L, for example. (Corresponding problems will be discussed in Chap. 12.) Now comes
the idea. 

We could extend as a function of period L and develop the extended function into
a Fourier series. But this series would, in general, contain both cosine and sine terms. We
can do better and get simpler series. Indeed, for our given f we can calculate Fourier
coefficients from or from . And we have a choice and can take what seems
more practical. If we use , we get . This is the even periodic extension of f
in Fig. 270a. If we choose instead, we get the odd periodic extension of
f in Fig. 270b.

Both extensions have period 2L. This motivates the name half-range expansions: f is
given (and of physical interest) only on half the range, that is, on half the interval of
periodicity of length 2L.

Let us illustrate these ideas with an example that we shall also need in Chap. 12.

f2(5**),(6**)
f1(5*)(6*)

(6**)(6*)

f (x)

f (x)f (x)

!f (x) " p ! 2 asin x $
1

2
 sin 2x !

1

3
 sin 3x $ ! Áb .

f (x)b1 " 2, b2 " $ 
2
2, b3 " 2

3, b4 " $ 

2
4, Á

bn "
2
p

 c$x cos nx
n  2

0

p

!
1
n  !

p

0

 cos nx dx d " $ 
2
n cos np.

bn "
2
p

 !
p

0

 f1 (x) sin nx dx "
2
p

 !
p

0

 x sin nx dx.

n " 1, 2, Á ,an " 0f1pa0f1
an, bnp

f2f2 " pf1 " xf " f1 ! f2

y

x

y

0–

5

π π

S1

S2

S3

S20

Fig. 269. Partial sums in Example 5 S1, S2, S3, S20
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E X A M P L E  6 “Triangle” and Its Half-Range Expansions

Find the two half-range expansions of the function (Fig. 271)

Solution. (a) Even periodic extension. From we obtain

We consider . For the first integral we obtain by integration by parts

Similarly, for the second integral we obtain

 " a0 $
L

np
 aL $

L

2
b sin 

np

2
b $

L2

n2p2 acos  np $ cos  
np

2
b .

 !
L

L>2(L $ x) cos 
np

L
 x dx "

L

np
 (L $ x) sin 

np

L
 x 2 L

L>2 !
L

np
 !

L

L>2sin 
np

L
 x dx

 "
L2

2np
 sin  

np

2
!

L2

n2p2 acos  
np

2
$ 1b .

 !
L>2

0

x cos 
np

L
 x dx "

Lx

np
 sin 

np

L
 x 2L>2

0

$
L

np
!

L>2
0

sin  
np

L
 x dx

an

an "
2

L
 c 2k

L
 !

L>2
L

x cos 
np

L
 x dx !

2k

L
 !

L

L>2 (L $ x) cos 
np

L
 x  dx d .

a0 "
1

L
 c 2k

L
 !

L>2
0

x dx !
2k

L
 !

L

L>2 (L $ x) dx d "
k

2
 ,

(6*)

f(x) " e2k

L
 x if 0 % x %

L

2

2k

L
 (L $ x) if

L

2
% x % L.
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x

f1(x)

x

f (x)

L

L –L 

x

f2(x)

(0)  The given function f (x)

(a)  f (x) continued as an even periodic function of period 2L

(b)  f (x) continued as an odd periodic function of period 2L

L –L  

Fig. 270. Even and odd extensions of period 2L

Fig. 271. The given
function in Example 6 

x

k

0 L/2 L
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We insert these two results into the formula for . The sine terms cancel and so does a factor . This gives

Thus,

and . Hence the first half-range expansion of is (Fig. 272a)

This Fourier cosine series represents the even periodic extension of the given function , of period 2L.
(b) Odd periodic extension. Similarly, from ( ) we obtain

(5)

Hence the other half-range expansion of is (Fig. 272b)

The series represents the odd periodic extension of , of period 2L.
Basic applications of these results will be shown in Secs. 12.3 and 12.5. !

f (x)

f (x) "
8k

p2
 a 1

12
 sin 
p

L
 x $

1

32
 sin 

3p

L
 x !

1

52
  sin  

5p

L
 x $ ! Á b .

f (x)

bn "
8k

n2p2  sin  
np

2
.

6**
f (x)

f (x) "
k

2
$

16k

p2  a 1

22 cos 
2p

L
 x !

1

62 cos 
6p

L
 x ! Áb .

f (x)an " 0 if n & 2, 6, 10, 14, Á

a2 " $16k>(22p2),  a6 " $16k>(62p2),  a10 " $16k>(102p2), Á

an "
4k

n2p2 a2 cos  
np

2
$ cos  np $ 1b .

L2an
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x0 L–L

x0–L L

(a)  Even extension

(b)  Odd extension

Fig. 272. Periodic extensions of f(x) in Example 6

1–7 EVEN AND ODD FUNCTIONS
Are the following functions even or odd or neither even nor
odd?
1.
2.
3. Sums and products of even functions
4. Sums and products of odd functions
5. Absolute values of odd functions
6. Product of an odd times an even function
7. Find all functions that are both even and odd.

sin2 x, sin (x2), ln x, x>(x2 ! 1), x cot x
ex, e! ƒ x ƒ, x3 cos nx, x2 tan px, sinh x $ cosh x

8–17 FOURIER SERIES FOR PERIOD p = 2L
Is the given function even or odd or neither even nor
odd? Find its Fourier series. Show details of your
work.

8.

0

1

1–1

P R O B L E M  S E T  1 1 . 2
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SEC. 11.2 Arbitrary Period. Even and Odd Functions. Half-Range Expansions 491

9.

10.

11.

12.

13.

14.
15.

16.

17.

18. Rectifier. Find the Fourier series of the function
obtained by passing the voltage 
through a half-wave rectifier that clips the negative
half-waves.

19. Trigonometric Identities. Show that the familiar
identities and 

can be interpreted as Fourier series
expansions. Develop .

20. Numeric Values. Using Prob. 11, show that 

.

21. CAS PROJECT. Fourier Series of 2L-Periodic
Functions. (a) Write a program for obtaining partial
sums of a Fourier series (5).

1
9 ! 1

16 ! Á " 1
6 p2

1 ! 1
4 !

cos4 x
sin 3xsin x $ 1

4

sin3 x " 3
4cos3 x " 3

4 cos x ! 1
4  cos 3x

v(t) " V0 cos 100pt

–1 1

1

f (x) " x ƒ x ƒ ($1 % x % 1), p " 2

–
2
π

–
2

– π
–π π

f (x) " cos px ($ 
1
2 % x % 1

2), p " 1

1
2

1
2

– 1
2

f (x) " 1 $ x2>4 ($2 % x % 2), p " 4

f (x) " x2 ($1 % x % 1), p " 2

4

–4

4–4

1

–1

2–2

(b) Apply the program to Probs. 8–11, graphing the first
few partial sums of each of the four series on common
axes. Choose the first five or more partial sums until
they approximate the given function reasonably well.
Compare and comment.

22. Obtain the Fourier series in Prob. 8 from that in 
Prob. 17.

23–29 HALF-RANGE EXPANSIONS
Find (a) the Fourier cosine series, (b) the Fourier sine series.
Sketch and its two periodic extensions. Show the
details.

23.

24.

25.

26.

27.

28.

29.

30. Obtain the solution to Prob. 26 from that of 
Prob. 27.

f (x) " sin x (0 % x % p)

L

L

π–
2
π

–
2
π

π–
2
π

–
2
π

π

π

4

1

2

4

1

f (x)
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11.3 Forced Oscillations
Fourier series have important applications for both ODEs and PDEs. In this section we
shall focus on ODEs and cover similar applications for PDEs in Chap. 12. All these
applications will show our indebtedness to Euler’s and Fourier’s ingenious idea of splitting
up periodic functions into the simplest ones possible.

From Sec. 2.8 we know that forced oscillations of a body of mass m on a spring of
modulus k are governed by the ODE

(1)

where is the displacement from rest, c the damping constant, k the spring constant
(spring modulus), and the external force depending on time t. Figure 274 shows the
model and Fig. 275 its electrical analog, an RLC-circuit governed by

(1*) (Sec. 2.9).

We consider (1). If is a sine or cosine function and if there is damping ,
then the steady-state solution is a harmonic oscillation with frequency equal to that of .
However, if is not a pure sine or cosine function but is any other periodic function,
then the steady-state solution will be a superposition of harmonic oscillations with
frequencies equal to that of and integer multiples of these frequencies. And if one of
these frequencies is close to the (practical) resonant frequency of the vibrating system (see
Sec. 2.8), then the corresponding oscillation may be the dominant part of the response of
the system to the external force. This is what the use of Fourier series will show us. Of
course, this is quite surprising to an observer unfamiliar with Fourier series, which are
highly important in the study of vibrating systems and resonance. Let us discuss the entire
situation in terms of a typical example.

r (t)

r (t)
r (t)

(c ) 0)r (t)

LIs ! RIr !
1
C

 I " Er  (t)

r (t)
y " y (t)

mys ! cyr ! ky " r (t)

492 CHAP. 11 Fourier Analysis

Fig. 274. Vibrating system
under consideration

E(t)

C

R L

Dashpot

External
force r (t) 

Mass m

Spring

Fig. 275. Electrical analog of the system
in Fig. 274 (RLC-circuit)

E X A M P L E  1 Forced Oscillations under a Nonsinusoidal Periodic Driving Force

In (1), let , and , so that (1) becomes

(2) ys ! 0.05yr ! 25y " r (t)

k " 25 (g>sec2)m " 1 (g), c " 0.05 (g>sec)
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SEC. 11.3 Forced Oscillations 493

Fig. 276. Force in Example 1 

t

r (t)

π

π/2π

–ππ
π/2–ππ

where is measured in . Let (Fig. 276)

Find the steady-state solution .

Solution. We represent by a Fourier series, finding

(3) .

Then we consider the ODE

(4)

whose right side is a single term of the series (3). From Sec. 2.8 we know that the steady-state solution 
of (4) is of the form

(5)

By substituting this into (4) we find that

(6) where

Since the ODE (2) is linear, we may expect the steady-state solution to be

(7)

where is given by (5) and (6). In fact, this follows readily by substituting (7) into (2) and using the Fourier
series of , provided that termwise differentiation of (7) is permissible. (Readers already familiar with the
notion of uniform convergence [Sec. 15.5] may prove that (7) may be differentiated term by term.)

From (6) we find that the amplitude of (5) is (a factor cancels out)

Values of the first few amplitudes are

.

Figure 277 shows the input (multiplied by 0.1) and the output. For the quantity is very small, the
denominator of is small, and is so large that is the dominating term in (7). Hence the output is almost
a harmonic oscillation of five times the frequency of the driving force, a little distorted due to the term , whose
amplitude is about of that of . You could make the situation still more extreme by decreasing the damping
constant c. Try it. !

y525%
y1

y5C5C5

Dnn " 5

C1 " 0.0531 C3 " 0.0088 C5 " 0.2037 C7 " 0.0011 C9 " 0.0003

Cn " 2An
2 ! Bn

2 "
4

n2p2Dn

.

1Dn

r (t)
yn

y " y1 ! y3 ! y5 ! Á

Dn " (25 $ n2)2 ! (0.05n)2.An "
4(25 $ n2)

n2pDn
,  Bn "

0.2

npDn
,

yn " An cos nt ! Bn sin nt.

yn (t)

ys ! 0.05yr ! 25y "
4

n2p
 cos nt    (n " 1, 3, Á )

r (t) "
4

p
 acos t !

1

32 cos 3t !
1

52 cos 5t ! Á b
r (t)

y(t)

r (t) " e t !
p

2
if $p % t % 0,

$t !
p

2
if    0 % t % p,

 r (t ! 2p) " r (t).

g $ cm>sec2r (t)
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1. Coefficients . Derive the formula for from 
and 

2. Change of spring and damping. In Example 1, what
happens to the amplitudes if we take a stiffer spring,
say, of ? If we increase the damping?

3. Phase shift. Explain the role of the ’s. What happens
if we let ?

4. Differentiation of input. In Example 1, what happens
if we replace with its derivative, the rectangular wave?
What is the ratio of the new to the old ones?

5. Sign of coefficients. Some of the in Example 1 are
positive, some negative. All are positive. Is this
physically understandable?

6–11 GENERAL SOLUTION
Find a general solution of the ODE with

as given. Show the details of your work.
6.
7.
8. Rectifier. and

9. What kind of solution is excluded in Prob. 8 by
?

10. Rectifier. and

11.

12. CAS Program. Write a program for solving the ODE
just considered and for jointly graphing input and output
of an initial value problem involving that ODE. Apply

r (t) " b$1 if $p % t % 0

1 if 0 % t % p,
 ƒv ƒ & 1, 3, 5, Á

r (t ! 2p) " r (t), ƒv ƒ & 0, 2, 4, Á
r (t) " p/4 ƒ sin t ƒ  if 0 % t % 2p

ƒv ƒ & 0, 2, 4, Á

r (t ! 2p) " r (t), ƒv ƒ & 0, 2, 4, Á
r (t) " p/4 ƒ cos t ƒ  if $p % t % p

r (t) "  sin t, v " 0.5, 0.9, 1.1, 1.5, 10
r (t) " sin at ! sin bt, v2 & a2, b2

r (t)
ys ! v2y " r (t)

Bn

An

Cn

r (t)

c : 0
Bn

k " 49
Cn

Bn.
AnCnCn the program to Probs. 7 and 11 with initial values of your

choice.

13–16 STEADY-STATE DAMPED OSCILLATIONS
Find the steady-state oscillations of 
with and as given. Note that the spring constant
is . Show the details. In Probs. 14–16 sketch .

13.

14.

15.

16.

17–19 RLC-CIRCUIT
Find the steady-state current in the RLC-circuit in
Fig. 275, where F and with

V as follows and periodic with period . Graph or
sketch the first four partial sums. Note that the coefficients
of the solution decrease rapidly. Hint. Remember that the
ODE contains , not , cf. Sec. 2.9.

17. E (t) " b$50t 2 if $p % t % 0

50t 2 if 0 % t % p

E (t)Er(t)

2pE (t)
R " 10 *,  L " 1 H, C " 10!1

I (t)

e t if $p>2 % t % p>2
p $ t if p>2 % t % 3p>2 and r (t ! 2p) " r (t)

r (t) "

r (t ! 2p) " r (t)
r (t) " t (p2 $ t 2) if $p % t % p and

r (t) " b$1 if $p% t % 0

1 if 0 % t %p
 and r (t ! 2p) " r (t)

r (t) " a
N

n"1

(an cos nt ! bn sin nt)

r (t)k " 1
r (t)c ) 0

ys ! cyr ! y " r (t)

P R O B L E M  S E T 1 1 . 3

y

t0 1 2 3–1–2–3

0.1

–0.1

–0.2

0.2

0.3

Output

Input

Fig. 277. Input and steady-state output in Example 1 
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11.4 Approximation 
by Trigonometric Polynomials

Fourier series play a prominent role not only in differential equations but also in
approximation theory, an area that is concerned with approximating functions by
other functions—usually simpler functions. Here is how Fourier series come into the
picture.

Let be a function on the interval that can be represented on this
interval by a Fourier series. Then the Nth partial sum of the Fourier series

(1)

is an approximation of the given . In (1) we choose an arbitrary N and keep it fixed.
Then we ask whether (1) is the “best” approximation of f by a trigonometric polynomial
of the same degree N, that is, by a function of the form

(2) (N fixed).

Here, “best” means that the “error” of the approximation is as small as possible.
Of course we must first define what we mean by the error of such an approximation.

We could choose the maximum of . But in connection with Fourier series
it is better to choose a definition of error that measures the goodness of agreement between
f and F on the whole interval . This is preferable since the sum f of a Fourier
series may have jumps: F in Fig. 278 is a good overall approximation of f, but the maximum
of (more precisely, the supremum) is large. We choose

(3) E " !
p

!p

 (  f $ F )2 dx.

ƒ f (x) $ F (x) ƒ

$p ' x ' p

ƒ f (x) $ F (x) ƒ

F (x) " A0 ! a
N

n"1

(An cos nx ! Bn sin nx)

f (x)

f (x) " a0 ! a
N

n"1

(an cos nx ! bn sin nx)

$p ' x ' pf (x)

SEC. 11.4 Approximation by Trigonometric Polynomials 495

18.

19. E (t) " 200t (p2 $ t 2) ($p % t % p)

E (t) " b 

100 (t $ t 2) if $p % t % 0

100 (t ! t 2) if  0 % t % p

20. CAS EXPERIMENT. Maximum Output Term.
Graph and discuss outputs of with

as in Example 1 for various c and k with emphasis on
the maximum and its ratio to the second largest .ƒ Cn ƒCn

r (t)
ys ! cyr ! ky " r (t)

x0

f

F

x

Fig. 278. Error of approximation
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This is called the square error of F relative to the function f on the interval 
Clearly, 

N being fixed, we want to determine the coefficients in (2) such that E is minimum.
Since , we have

(4)

We square (2), insert it into the last integral in (4), and evaluate the occurring integrals.
This gives integrals of and , which equal , and integrals of

, and , which are zero (just as in Sec. 11.1). Thus

We now insert (2) into the integral of f F in (4). This gives integrals of as well
as , just as in Euler’s formulas, Sec. 11.1, for and (each multiplied by or

). Hence

With these expressions, (4) becomes

(5)

We now take and in (2). Then in (5) the second line cancels half of the
integral-free expression in the first line. Hence for this choice of the coefficients of F the
square error, call it is

(6)

We finally subtract (6) from (5). Then the integrals drop out and we get terms
and similar terms :

Since the sum of squares of real numbers on the right cannot be negative,

thus

and if and only if . This proves the following fundamental
minimum property of the partial sums of Fourier series.

A0 " a0, Á , BN " bNE " E*

E ( E*,E $ E* ( 0,

E $ E* " p e2(A0 $ a0)2 ! a
N

n"1

[(An $ an)2 ! (Bn $ bn)2] f .

(Bn $ bn)2An
2 $ 2Anan ! an

2 " (An $ an)2

E* " !
p

!p

 f 2 dx $ p c2a0
2 ! a

N

n"1

 (an
2 ! bn

2) d .
E*,

Bn " bnAn " an

! p c2A0
2 ! a

N

n"1

 (An
2 ! Bn

2) d .
E " !

p

!p

 f 2 dx $ 2p c2A0 a0 ! a
N

n"1

 (An an ! Bn bn) d
!
p

!p

 f F dx " p(2A0a0 ! A1a1 ! Á ! ANaN ! B1b1 ! Á ! BNbN).

Bn

Anbnanf sin nx
f cos nx

 " p(2A0
2 ! A1

2 ! Á ! AN
2 ! B1

2 ! Á ! BN
2).

 !
p

!p

 F2 dx " !
p

!p

 cA0 ! a
N

n"1

 (An cos nx ! Bn sin nx) d 2 

dx

(cos nx)(sin mx)cos nx, sin nx
psin2 nx (n ( 1)cos2 nx

E " !
p

!p

 f 2
 dx $ 2!

p

!p

 f F dx ! !
p

!p

 F2
 dx.

( f $ F )2 " f 2 $ 2fF ! F2

E ( 0.
$p ' x ' p.
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T H E O R E M  1 Minimum Square Error

The square error of F in (2) (with fixed N ) relative to f on the interval
is minimum if and only if the coefficients of F in (2) are the Fourier coefficients of f.
This minimum value is given by (6).E*

$p ' x ' p

From (6) we see that cannot increase as N increases, but may decrease. Hence with
increasing N the partial sums of the Fourier series of f yield better and better approxi-
mations to f, considered from the viewpoint of the square error.

Since and (6) holds for every N, we obtain from (6) the important Bessel’s
inequality

(7)

for the Fourier coefficients of any function f for which integral on the right exists. (For
F. W. Bessel see Sec. 5.5.)

It can be shown (see [C12] in App. 1) that for such a function f, Parseval’s theorem holds;
that is, formula (7) holds with the equality sign, so that it becomes Parseval’s identity3

(8)

E X A M P L E  1 Minimum Square Error for the Sawtooth Wave

Compute the minimum square error of with and 1000 relative to

on the interval 

Solution. by Example 3 in 

Sec. 11.3. From this and (6),

Numeric values are:

E* " !
p

!p

 (x ! p)2 dx $ p a2p2 ! 4a
N

n"1

 
1

n2
b .

F (x) " p ! 2 (sin x $
1

2
 sin 2x !

1

3
 sin 3x $ ! Á !

($1)N!1

N
 sin Nx)

$p ' x ' p.

f (x) " x ! p  ($p % x % p)

N " 1, 2, Á , 10, 20, Á , 100F (x)E*

2a0
2 ! a

"

n"1

 (an
2 ! bn

2) "
1
p !

p

!p

 f (x)2 dx.

2a0
2 ! a

"

n"1

 (an
2 ! bn

2) '
1
p !

p

!p

 f (x)2 dx

E* ( 0

E*

3MARC ANTOINE PARSEVAL (1755–1836), French mathematician. A physical interpretation of the identity
follows in the next section. 

N E* N E* N E* N E*

1 8.1045 6 1.9295 20 0.6129 70 0.1782
2 4.9629 7 1.6730 30 0.4120 80 0.1561
3 3.5666 8 1.4767 40 0.3103 90 0.1389
4 2.7812 9 1.3216 50 0.2488 100 0.1250
5 2.2786 10 1.1959 60 0.2077 1000 0.0126

x–

π

π

π0π

2

Fig. 279. F with 
N " 20 in Example 1
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11.5 Sturm–Liouville Problems. 
Orthogonal Functions

The idea of the Fourier series was to represent general periodic functions in terms of
cosines and sines. The latter formed a trigonometric system. This trigonometric system
has the desirable property of orthogonality which allows us to compute the coefficient of
the Fourier series by the Euler formulas.

The question then arises, can this approach be generalized? That is, can we replace the
trigonometric system of Sec. 11.1 by other orthogonal systems (sets of other orthogonal
functions)? The answer is “yes” and will lead to generalized Fourier series, including the
Fourier–Legendre series and the Fourier–Bessel series in Sec. 11.6.

To prepare for this generalization, we first have to introduce the concept of a Sturm–
Liouville Problem. (The motivation for this approach will become clear as you read on.)
Consider a second-order ODE of the form

are shown in Fig. 269 in Sec. 11.2, and is shown in Fig. 279. Although 
is large at (how large?), where f is discontinuous, F approximates f quite well on the whole interval, except
near , where “waves” remain owing to the “Gibbs phenomenon,” which we shall discuss in the next section.

Can you think of functions f for which E* decreases more quickly with increasing N? !
#p

#p
ƒ f (x) $ F (x) ƒF " S20F " S1, S2, S3

498 CHAP. 11 Fourier Analysis

1. CAS Problem. Do the numeric and graphic work in
Example 1 in the text.

2–5 MINIMUM SQUARE ERROR
Find the trigonometric polynomial of the form (2) for
which the square error with respect to the given on the
interval is minimum. Compute the minimum
value for (or also for larger values if you
have a CAS).
2.
3.
4.

5.

6. Why are the square errors in Prob. 5 substantially larger
than in Prob. 3?

7.
8. , full-wave rectifier
9. Monotonicity. Show that the minimum square error

(6) is a monotone decreasing function of N. How can
you use this in practice?

10. CAS EXPERIMENT. Size and Decrease of E*.
Compare the size of the minimum square error for
functions of your choice. Find experimentally the

E*

f (x) " ƒ sin x ƒ ($p % x % p)
f (x) " x3 ($p % x % p)

f (x) " b 

$1 if $p % x % 0

1 if 0 % x % p

f (x) " x2 ($p % x % p)
f (x) " ƒ x ƒ ($p % x % p)
f (x) " x ($p % x % p)

N " 1, 2, Á ,  5
$p % x % p

f (x)
F (x)

factors on which the decrease of with N depends.
For each function considered find the smallest N such
that .

11–15 PARSEVALS’S IDENTITY
Using (8), prove that the series has the indicated sum.
Compute the first few partial sums to see that the convergence
is rapid.

11.

Use Example 1 in Sec. 11.1.

12.

Use Prob. 14 in Sec. 11.1.

13.

Use Prob. 17 in Sec. 11.1.

14.

15. !
p

!p

 cos6 x dx "
5p

8

!
p

!p

cos4 x dx "
3p

4

1 !
1

34
!

1

54
!

1

74
! Á "

p4

96
" 1.014678032

1 !
1

24
!

1

34
! Á "

p4

90
" 1.082323234

1 !
1

32
!

1

52
! Á "

p2

8
" 1.233700550

E* % 0.1

E*

P R O B L E M  S E T  1 1 . 4
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(1)

on some interval , satisfying conditions of the form

(2)
(a)

(b) .

Here is a parameter, and are given real constants. Furthermore, at least one
of each constant in each condition (2) must be different from zero. (We will see in Example
1 that, if and , then and satisfy (1) and constants
can be found to satisfy (2).) Equation (1) is known as a Sturm–Liouville equation.4

Together with conditions 2(a), 2(b) it is know as the Sturm–Liouville problem. It is an
example of a boundary value problem.

A boundary value problem consists of an ODE and given boundary conditions
referring to the two boundary points (endpoints) and of a given interval

.
The goal is to solve these type of problems. To do so, we have to consider

Eigenvalues, Eigenfunctions
Clearly, is a solution—the “trivial solution”—of the problem (1), (2) for any 
because (1) is homogeneous and (2) has zeros on the right. This is of no interest. We want
to find eigenfunctions , that is, solutions of (1) satisfying (2) without being identically
zero. We call a number for which an eigenfunction exists an eigenvalue of the Sturm–
Liouville problem (1), (2).

Many important ODEs in engineering can be written as Sturm–Liouville equations. The
following example serves as a case in point.

E X A M P L E  1 Trigonometric Functions as Eigenfunctions. Vibrating String

Find the eigenvalues and eigenfunctions of the Sturm–Liouville problem

(3)

This problem arises, for instance, if an elastic string (a violin string, for example) is stretched a little and fixed
at its ends and and then allowed to vibrate. Then is the “space function” of the deflection

of the string, assumed in the form , where t is time. (This model will be discussed in
great detail in Secs, 12.2–12.4.)

Solution. From (1) nad (2) we see that in (1), and 
in (2). For negative a general solution of the ODE in (3) is . From

the boundary conditions we obtain , so that , which is not an eigenfunction. For the
situation is similar. For positive a general solution is

y(x) " A cos +x ! B sin +x.

l " +2
l " 0y # 0c1 " c2 " 0

y (x) " c1e+x ! c2e!+xl " $+2k2 " l2 " 0
 k1 " l1 " 1,a " 0, b " p, p " 1, q " 0, r " 1

u (x, t) " y (x)w (t)u (x, t)
y (x)x " px " 0

ys ! ly " 0,  y (0) " 0, y(p) " 0.

l
y (x)

ly # 0

a ' x ' b
x " bx " a

cos 1lxsin 1lxq(x) " 0p (x) " r (x) " 1

k1, k2, l1, l2l

 l1 y ! l2 yr " 0  at x " b

 k1 y ! k2 yr " 0  at x " a

a ' x ' b

[ p (x)yr]r ! [ q (x) ! lr (x)]y " 0

4JACQUES CHARLES FRANÇOIS STURM (1803–1855) was born and studied in Switzerland and then
moved to Paris, where he later became the successor of Poisson in the chair of mechanics at the Sorbonne (the
University of Paris).

JOSEPH LIOUVILLE (1809–1882), French mathematician and professor in Paris, contributed to various
fields in mathematics and is particularly known by his important work in complex analysis (Liouville’s theorem;
Sec. 14.4), special functions, differential geometry, and number theory.
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From the first boundary condition we obtain . The second boundary condition then yields

For we have . For , taking , we obtain

Hence the eigenvalues of the problem are , where and corresponding eigenfunctions are
, where 

Note that the solution to this problem is precisely the trigonometric system of the Fourier
series considered earlier. It can be shown that, under rather general conditions on the
functions p, q, r in (1), the Sturm–Liouville problem (1), (2) has infinitely many eigenvalues.
The corresponding rather complicated theory can be found in Ref. [All] listed in App. 1.

Furthermore, if p, q, r, and in (1) are real-valued and continuous on the interval
and r is positive throughout that interval (or negative throughout that interval),

then all the eigenvalues of the Sturm–Liouville problem (1), (2) are real. (Proof in App. 4.)
This is what the engineer would expect since eigenvalues are often related to frequencies,
energies, or other physical quantities that must be real.

The most remarkable and important property of eigenfunctions of Sturm–Liouville
problems is their orthogonality, which will be crucial in series developments in terms of
eigenfunctions, as we shall see in the next section. This suggests that we should next
consider orthogonal functions.

Orthogonal Functions
Functions defined on some interval are called orthogonal on this
interval with respect to the weight function if for all m and all n different from m,

(4) .

is a standard notation for this integral. The norm of is defined by

(5)

Note that this is the square root of the integral in (4) with .
The functions are called orthonormal on if they are orthogonal

on this interval and all have norm 1. Then we can write (4), (5) jointly by using the
Kronecker symbol5 , namely,

( ym, yn ) " !
b

a

r (x) ym (x) yn (x) dx " dmn " e0 if m & n

1 if m " n.

dmn

a ' x ' by1, y2, Á
n " m

$ ym $ " 2(ym, ym) "G!
b

a

r (x)ym
2  (x) dx. 

ym$ym$(ym, yn)

(ym, yn) " !
b

a

r (x) ym (x) yn (x) dx " 0  (m & n)

r (x) ) 0
a ' x ' by1(x), y2 (x), Á

a ' x ' b
pr

!+ " 1, 2 Á .y(x) " sin +x
+ " 1, 2, Á ,l " +2

(+ " 2l " 1, 2, Á ).y (x) " sin +x

B " 1l " +2 " 1, 4, 9, 16, Áy # 0+ " 0

y (p) " B sin +p " 0,  thus  + " 0, # 1, # 2, Á .

y (0) " A " 0

5LEOPOLD KRONECKER (1823–1891). German mathematician at Berlin University, who made important
contributions to algebra, group theory, and number theory. 
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If , we more briefly call the functions orthogonal instead of orthogonal with
respect to ; similarly for orthognormality. Then

The next example serves as an illustration of the material on orthogonal functions just
discussed.

E X A M P L E  2 Orthogonal Functions. Orthonormal Functions. Notation

The functions form an orthogonal set on the interval , because for
we obtain by integration [see (11) in App. A3.1]

The norm 

Hence the corresponding orthonormal set, obtained by division by the norm, is

Theorem 1 shows that for any Sturm–Liouville problem, the eigenfunctions associated with
these problems are orthogonal. This means, in practice, if we can formulate a problem as a
Sturm–Liouville problem, then by this theorem we are guaranteed orthogonality.

T H E O R E M  1 Orthogonality of Eigenfunctions of Sturm–Liouville Problems

Suppose that the functions p, q, r, and in the Sturm–Liouville equation (1) are
real-valued and continuous and on the interval . Let and

be eigenfunctions of the Sturm–Liouville problem (1), (2) that correspond to
different eigenvalues and , respectively. Then , are orthogonal on that
interval with respect to the weight function r, that is,

(6)

If , then (2a) can be dropped from the problem. If , then (2b)
can be dropped. [It is then required that y and remain bounded at such a point,
and the problem is called singular, as opposed to a regular problem in which (2)
is used.]

If , then (2) can be replaced by the “periodic boundary conditions”

(7)

The boundary value problem consisting of the Sturm–Liouville equation (1) and the periodic
boundary conditions (7) is called a periodic Sturm–Liouville problem.

y(a) " y(b),  yr(a) " yr(b).

p(a) " p(b)

yr
p(b) " 0p (a) " 0

(m & n).(ym, yn) " !
b

a

r (x)ym (x)yn (x) dx " 0

ynymlnlm

yn (x)
ym (x)a ' x ' br (x) ) 0

pr

!
sin x1p ,  

sin 2x1p ,  
sin 3x1p ,  Á .

(m " 1, 2, Á )$ym $2 " (ym, ym) " !
p

!p

sin2 mx dx " p

$ ym $ " 1( ym, ym) equals 1p because

(ym, yn ) " !
p

!p

sin mx sin nx dx "
1

2 !
p

!p

cos (m $ n)x  dx $
1

2 !
p

!p

cos (m ! n)x dx " 0, (m & n).

m & n
$p ' x ' pym (x) " sin mx,  m " 1, 2, Á

$ym$ " 2(ym, yn) "G !
b

a

ym
2 (x) dx.(ym, yn) " !

b

a

ym (x) yn (x) dx " 0 (m & n),

r (x) " 1
r (x) " 1

SEC. 11.5 Sturm–Liouville Problems. Orthogonal Functions 501
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P R O O F By assumption, and satisfy the Sturm–Liouville equations

respectively. We multiply the first equation by , the second by , and add,

where the last equality can be readily verified by performing the indicated differentiation
of the last expression in brackets. This expression is continuous on since p and

are continuous by assumption and are solutions of (1). Integrating over x from
a to b, we thus obtain

(8)

The expression on the right equals the sum of the subsequent Lines 1 and 2,

(9)
(Line 1)

(Line 2).

Hence if (9) is zero, (8) with implies the orthogonality (6). Accordingly,
we have to show that (9) is zero, using the boundary conditions (2) as needed.

Case 1. . Clearly, (9) is zero, and (2) is not needed.
Case 2. . Line 1 of (9) is zero. Consider Line 2. From (2a) we have

.

Let . We multiply the first equation by , the last by and add,

This is times Line 2 of (9), which thus is zero since . If , then 
by assumption, and the argument of proof is similar.

Case 3. . Line 2 of (9) is zero. From (2b) it follows that Line 1 of (9)
is zero; this is similar to Case 2.
Case 4. . We use both (2a) and (2b) and proceed as in Cases 2 and 3.
Case 5. . Then (9) becomes

The expression in brackets is zero, either by (2) used as before, or more directly by
(7). Hence in this case, (7) can be used instead of (2), as claimed. This completes the
proof of Theorem 1.

E X A M P L E  3 Application of Theorem 1. Vibrating String

The ODE in Example 1 is a Sturm–Liouville equation with . From Theorem 1 it follows
that the eigenfunctions are orthogonal on the interval . !0 ' x ' pym " sin mx  (m " 1, 2, Á )

p " 1, q " 0, and r " 1

!

[ Á ]

p(b)[ ynr  (b)ym(b) $ ymr   (b)yn(b) $ ynr (a)ym (a) ! ymr (a)yn(a)].

p(a) % p(b)
p(a) & 0, p(b) & 0

p(a) % 0, p(b) & 0

k1 & 0k2 " 0k2 & 0k2

k2[ynr (a)ym(a) $ yrm(a)yn(a)] " 0.

$yn(a)ym (a)k2 & 0

k1ym(a) ! k2yrm(a) " 0

k1yn(a) ! k2ynr(a) " 0,

p (a) & 0, p (b) % 0
p (a) % p (b) % 0

lm $ ln & 0

$p (a)[ yrn(a)ym(a) $ yrm(a)yn(a)]

p(b)[yrn(b)ym(b) $ yrm(b)yn(b)]

(a % b).(lm $ ln)!
b

a
rymyn dx " [ p(yrnym $ yrmyn)]a

b

ym, ynpr
a ' x ' b

[(pyrn) ym $ [( pyrm) yn]r(lm $ ln)rym yn " ym( pynr )r $ yn( pyrm)r "

$ymyn

 (pyrn)r !  (q ! lnr)yn " 0

 ( pymr )r !  (q ! lmr)ym " 0

ynym

502 CHAP. 11 Fourier Analysis
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Example 3 confirms, from this new perspective, that the trigonometric system underlying
the Fourier series is orthogonal, as we knew from Sec. 11.1.

E X A M P L E  4 Application of Theorem 1. Orthogonlity of the Legendre Polynomials

Legendre’s equation may be written

Hence, this is a Sturm–Liouville equation (1) with . Since , we
need no boundary conditions, but have a “singular” Sturm–Liouville problem on the interval . We
know that for , hence , the Legendre polynomials are solutions of the
problem. Hence these are the eigenfunctions. From Theorem 1 it follows that they are orthogonal on that interval,
that is,

(10)

What we have seen is that the trigonometric system, underlying the Fourier series, is
a solution to a Sturm–Liouville problem, as shown in Example 1, and that this
trigonometric system is orthogonal, which we knew from Sec. 11.1 and confirmed in
Example 3.

!(m & n).!
1

$1

Pm (x)Pn (x) dx " 0

Pn (x)l " 0, 1 # 2, 2 # 3, Án " 0, 1, Á
$1 ' x ' 1

p ($1) " p (1) " 0p " 1 $ x2, q " 0, and r " 1

l " n (n ! 1).[(1 $ x2) yr]r ! ly " 0

(1 $ x2) ys $ 2xyr ! n (n ! 1) y " 0

SEC. 11.5 Sturm–Liouville Problems. Orthogonal Functions 503

1. Proof of Theorem 1. Carry out the details in Cases 3
and 4.

2–6 ORTHOGONALITY

2. Normalization of eigenfunctions of (1), (2) means
that we multiply by a nonzero constant such that

has norm 1. Show that with any
is an eigenfunction for the eigenvalue corresponding 
to 

3. Change of x. Show that if the functions 
form an orthogonal set on an interval (with

), then the functions 
, form an orthogonal set on the interval

.
4. Change of x. Using Prob. 3, derive the orthogonality

of on
from that of 1, cos x, sin x, 

cos 2x, sin 2x, on .
5. Legendre polynomials. Show that the functions

from an orthogonal set on the
interval with respect to the weight function

.
6. Tranformation to Sturm–Liouville form. Show that

takes the form (1) if youys ! fyr ! (g ! lh) y " 0

sin u
0 ' u ' p

Pn(cos u), n " 0, 1, Á ,

$p ' x ' pÁ
(r (x) " 1)$1 ' x ' 1

Ásin 2px,cos 2px,sin px,cos px,1,

(a $ k)>c ' t ' (b $ k)>cÁ , c ) 0
y0 (ct ! k), y1 (ct ! k),r (x) " 1

a ' x ' b
y1 (x), Áy0 (x),

ym.

c & 0zm " cymcmym

cmym

ym

set . Why would you
do such a transformation?

7–15 STURM–LIOUVILLE PROBLEMS
Find the eigenvalues and eigenfunctions. Verify orthogo-
nality. Start by writing the ODE in the form (1), using 
Prob. 6. Show details of your work.

7.

8.

9.

10.

11.
(Set )

12.

13.

14. TEAM PROJECT. Special Functions. Orthogonal
polynomials play a great role in applications. For
this reason, Legendre polynomials and various other
orthogonal polynomials have been studied extensively;
see Refs. [GenRef1], [GenRef10] in App. 1. Consider
some of the most important ones as follows.

ys ! 8yr ! (l ! 16) y " 0, y (0) " 0, y (p) " 0

ys $ 2yr ! (l ! 1) y " 0, y (0) " 0, y (1) " 0

x " et.
( yr>x)r ! (l ! 1)y>x3 " 0, y (1) " 0, y (ep) " 0.

ys ! ly " 0, y (0) " y (1), yr(0) " yr(1)

ys ! ly " 0, y (0) " 0, yr(L) " 0

ys ! ly " 0, y (0) " 0, y (L) " 0

ys ! ly " 0, y (0) " 0, y (10) " 0

p " exp (%f dx), q " pg, r " hp
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11.6 Orthogonal Series. 
Generalized Fourier Series

Fourier series are made up of the trigonometric system (Sec. 11.1), which is orthogonal,
and orthogonality was essential in obtaining the Euler formulas for the Fourier coefficients.
Orthogonality will also give us coefficient formulas for the desired generalized Fourier
series, including the Fourier–Legendre series and the Fourier–Bessel series. This gener-
alization is as follows.

Let be orthogonal with respect to a weight function on an interval
, and let be a function that can be represented by a convergent series

(1)

This is called an orthogonal series, orthogonal expansion, or generalized Fourier series.
If the are the eigenfunctions of a Sturm–Liouville problem, we call (1) an eigenfunction
expansion. In (1) we use again m for summation since n will be used as a fixed order of
Bessel functions.

Given , we have to determine the coefficients in (1), called the Fourier constants
of with respect to . Because of the orthogonality, this is simple. Similarly
to Sec. 11.1, we multiply both sides of (1) by (n fixed ) and then integrate onr (x)yn (x)

y0, y1, Áf (x)
f (x)

ym

f (x) " a
,

m"0

 am ym (x) " a0 y0 (x) ! a1 y1 (x) ! Á .

f (x)a ' x ' b
r (x)y0, y1, y2, Á

(a) Chebyshev polynomials6 of the first and second
kind are defined by

respectively, where . Show that

.

Show that the Chebyshev polynomials are
orthogonal on the interval with respect
to the weight function . (Hint.
To evaluate the integral, set .) Verifyarccos x " u

r (x) " 1>21 $ x2
$1 ' x ' 1

Tn(x)

U3(x) " 8x3 $ 4x.

U2(x) " 4x2 $ 1,U1(x) " 2x,U0 " 1,

T3(x) " 4x3 $ 3x,

T2(x) " 2x2 $ 1T1(x) " x,T0 " 1,

n " 0, 1, Á

 Un (x) "
sin [(n ! 1) arccos x]21 $ x2

 Tn (x) " cos (n arccos x)

504 CHAP. 11 Fourier Analysis

that , satisfy the Chebyshev
equation

.

(b) Orthogonality on an infinite interval: Laguerre
polynomials7 are defined by , and

Show that

,

.

Prove that the Laguerre polynomials are orthogonal on
the positive axis with respect to the weight
function . Hint. Since the highest power in

is , it suffices to show that 
for . Do this by k integrations by parts.k % n

%e!xxkLn dx " 0xmLm

r (x) " e!x
0 ' x % ,

L3 (x) " 1 $ 3x ! 3x2>2 $ x3>6L2 (x) " 1 $ 2x ! x2>2Ln(x) " 1 $ x,

Ln(x) "
ex

n!
 
dn (xne!x)

dxn ,  n " 1, 2, Á .

L0 " 1

(1 $ x2)ys $ xyr ! n2y " 0

n " 0, 1, 2, 3Tn (x),

6PAFNUTI CHEBYSHEV (1821–1894), Russian mathematician, is known for his work in approximation
theory and the theory of numbers. Another transliteration of the name is TCHEBICHEF.

7EDMOND LAGUERRE (1834–1886), French mathematician, who did research work in geometry and in
the theory of infinite series.
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both sides from a to b. We assume that term-by-term integration is permissible. (This is
justified, for instance, in the case of “uniform convergence,” as is shown in Sec. 15.5.)
Then we obtain

Because of the orthogonality all the integrals on the right are zero, except when .
Hence the whole infinite series reduces to the single term

. Thus .

Assuming that all the functions have nonzero norm, we can divide by ; writing again
m for n, to be in agreement with (1), we get the desired formula for the Fourier constants

(2)

This formula generalizes the Euler formulas (6) in Sec. 11.1 as well as the principle of
their derivation, namely, by orthogonality.

E X A M P L E  1 Fourier–Legendre Series

A Fourier–Legendre series is an eigenfunction expansion

in terms of Legendre polynomials (Sec. 5.3). The latter are the eigenfunctions of the Sturm–Liouville problem
in Example 4 of Sec. 11.5 on the interval . We have for Legendre’s equation, and (2)
gives

(3)

because the norm is

(4)

as we state without proof. The proof of (4) is tricky; it uses Rodrigues’s formula in Problem Set 5.2 and a
reduction of the resulting integral to a quotient of gamma functions.

For instance, let . Then we obtain the coefficients

, thus , etc.a1 "
3

2
 !

1

!1

x sin px dx "
3
p

" 0.95493am "
2m ! 1

2
 !

1

!1

(sin px)Pm (x) dx

f (x) " sin px

(m " 0, 1, Á )$ Pm $ "G !
1

!1

Pm (x)2 dx " B 2

2m ! 1

m " 0, 1, Áam "
2m ! 1

2 !
1

$1

f (x)Pm (x) dx,

r (x) " 1$1 ' x ' 1

f (x) " a
"

m"0

amPm (x) " a0P0 ! a1P1 (x) ! a2P2 (x) ! Á " a0 ! a1x ! a2 (3
2 x2 $ 1

2) ! Á

(n " 0, 1, Á ).am "
(  f, ym)

$ ym $2
"

1

$ ym $2
 !

b

a

r (x) f (x)ym (x) dx

$yn$2yn

( f, yn) " an $ yn $2an (yn, yn) " an $ yn  $2

m " n

( f, yn) " !
b

a

r fyn dx " !
b

a

r a a,
m"0

amymb
 

yn dx " a,
m"0

am!
b

a

rym yn dx " a
,

m"0

am (ym, yn).
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Hence the Fourier–Legendre series of is

The coefficient of is about . The sum of the first three nonzero terms gives a curve that practically
coincides with the sine curve. Can you see why the even-numbered coefficients are zero? Why is the absolutely
biggest coefficient?

E X A M P L E  2 Fourier–Bessel Series

These series model vibrating membranes (Sec. 12.9) and other physical systems of circular symmetry. We derive
these series in three steps.

Step 1. Bessel’s equation as a Sturm–Liouville equation. The Bessel function with fixed integer 
satisfies Bessel’s equation (Sec. 5.5)

where and . We set . Then and by the chain rule, 
and . In the first two terms of Bessel’s equation, and k drop out and we obtain

Dividing by x and using gives the Sturm–Liouville equation

(5)

with and parameter . Since Theorem 1 in Sec. 11.5
implies orthogonality on an interval (R given, fixed) of those solutions that are zero at

, that is,

(6) (n fixed).

Note that is discontinuous at 0, but this does not affect the proof of Theorem 1.

Step 2. Orthogonality. It can be shown (see Ref. [A13]) that has infinitely many zeros, say, 
(see Fig. 110 in Sec. 5.4 for and 1). Hence we must have

(7) thus

This proves the following orthogonality property.

T H E O R E M  1 Orthogonality of Bessel Functions

For each fixed nonnegative integer n the sequence of Bessel functions of the first
kind with as in (7) forms an orthogonal set on the
interval with respect to the weight function that is,

(8) , n fixed).

Hence we have obtained infinitely many orthogonal sets of Bessel functions, one for each of 
Each set is orthogonal on an interval with a fixed positive R of our choice and with respect to
the weight x. The orthogonal set for , where n is fixed and is
given by (7).

kn,mJn is Jn(kn,1x), Jn(kn,2x), Jn(kn,3x), Á
0 ! x ! R

J0, J1, J2, Á .

(  j " m!
R

0

 xJn (kn,mx)Jn(kn, jx) dx # 0

r (x) # x,0 ! x ! R
kn,mJn(kn,1x),  Jn(kn,2x), Á

(m # 1, 2, Á ).kn,m # an,m>RkR # an,m

n # 0!x # an,1 $ an,2 $ Á
Jn(x")

q (x) # %n2>x Jn(kR) # 0

x # R
Jn(kx)0 ! x ! R

p (0) # 0,l # k2p (x) # x, q (x) # %n2>x, r (x) # x,

l # k2[xJnr(kx)]r & a% 
n2

x & lxb Jn(kx) # 0

(xJnr(kx))r # xJsn (kx) & Jnr (kx)

x2Jns(kx) & xJ rn (kx) & (k2x2 % n2)Jn(kx) # 0.

k2J
# #
n # Jns>k2(dJn>dx)/k

J
#
n # dJn>d "x #x # x">k"x # kxJ

# #
n # d2Jn>d "x 2J

#
n # dJn>d "x

"x 2J
# #

n (
"x ) & "xJ

#
n ("x ) & ("x 2 % n2)Jn("x ) # 0

n ' 0Jn (x)

!
a3

3 # 10!7P13

 % 0.00002P11 (x) & Á .
 sin px # 0.95493P1 (x) % 1.15824P3 (x) & 0.21929P5 (x) % 0.01664P7 (x) & 0.00068P9 (x)

sin px 
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Step 3. Fourier–Bessel series. The Fourier–Bessel series corresponding to (n fixed) is

(9) (n fixed).

The coefficients are (with )

(10)

because the square of the norm is

(11) 

as we state without proof (which is tricky; see the discussion beginning on p. 576 of [A13]).

E X A M P L E  3 Special Fourier–Bessel Series

For instance, let us consider and take and in the series (9), simply writing for
. Then , etc. (use a CAS or Table A1 in App. 5). Next we

calculate the coefficients by (10)

This can be integrated by a CAS or by formulas as follows. First use from Theorem 1 in
Sec. 5.4 and then integration by parts,

The integral-free part is zero. The remaining integral can be evaluated by from Theorem 1
in Sec. 5.4. This gives

Numeric values can be obtained from a CAS (or from the table on p. 409 of Ref. [GenRef1] in App. 1, together
with the formula in Theorem 1 of Sec. 5.4). This gives the eigenfunction expansion of 
in terms of Bessel functions , that is,

A graph would show that the curve of and that of the sum of first three terms practically coincide.

Mean Square Convergence. Completeness
Ideas on approximation in the last section generalize from Fourier series to orthogonal series
(1) that are made up of an orthonormal set that is “complete,” that is, consists of “sufficiently
many” functions so that (1) can represent large classes of other functions (definition below).

In this connection, convergence is convergence in the norm, also called mean-square
convergence; that is, a sequence of functions is called convergent with the limit f if

lim
k:,  

$ f
k

$ f $ " 0;(12*)

fk

!1 $ x2

1 $ x2 " 1.1081J0(2.405x) $ 0.1398J0(5.520x) ! 0.0455J0(8.654x) $ 0.0210J0(11.792x) ! Á.

J0

1 $ x2J2 " 2x!1J1 $ J0

(l " a0,m).am "
4J2 (l)

l2J1
2

 (l)

[x2J2(lx)]r " lx2J1(lx)

am "
2

J1
2(l)

!
1

0

 x(1 $ x2)J0(lx) dx "
2

J1
2

 (l)
 c 1
l

 (1 $ x2)xJ1(lx) `
0

1

$
1
l

 !
1

0

 xJ1(lx)($2x) dx d .
[xJ1(lx)]r " lxJ0(lx)

am "
2

J1
2(l)

 !
1

0

 x(1 $ x2)J0(lx) dx.

am

kn,m " a0,m " l " 2.405, 5.520, 8.654, 11.792a0,m

ln " 0R " 1f (x) " 1 $ x2

!

$ Jn(kn,mx) $2 " !
R

0

 xJn
2 (kn,mx) dx "

R2

2
 J n!1

2  (kn,mR)

m " 1, 2, Áam "
2

R2J 2
n!1(an,m)

!
R

0

 x f (x)  Jn(kn,mx) dx,

an,m " kn,mR

f (x) " a
"

m"1

amJn(kn,mx) " a1Jn(kn,1x) ! a2Jn(kn,2x) ! a3Jn(kn,3x) ! Á

Jn
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written out by (5) in Sec. 11.5 (where we can drop the square root, as this does not affect
the limit)

(12)

Accordingly, the series (1) converges and represents f if

(13)

where is the kth partial sum of (1).

(14) 

Note that the integral in (13) generalizes (3) in Sec. 11.4.
We now define completeness. An orthonormal set on an interval 

is complete in a set of functions S defined on if we can approximate every
f belonging to S arbitrarily closely in the norm by a linear combination 

, that is, technically, if for every we can find constants 
(with k large enough) such that

(15)

Ref. [GenRef7] in App. 1 uses the more modern term total for complete.
We can now extend the ideas in Sec. 11.4 that guided us from (3) in Sec. 11.4 to Bessel’s

and Parseval’s formulas (7) and (8) in that section. Performing the square in (13) and
using (14), we first have (analog of (4) in Sec. 11.4)

The first integral on the right equals because for , and
. In the second sum on the right, the integral equals by (2) with 

Hence the first term on the right cancels half of the second term, so that the right side
reduces to (analog of (6) in Sec. 11.4)

This is nonnegative because in the previous formula the integrand on the left is nonnegative
(recall that the weight is positive!) and so is the integral on the left. This proves the
important Bessel’s inequality (analog of (7) in Sec. 11.4)

(16) (k " 1, 2, Á ),a
k

m"0

 am
2 ' $  f $2 " !

b

a

 r (x) f (x)2 dx

r (x)

$ a
k

m"0

 am
2 ! !

b

a

 rf 2 dx.

$ ym $2 " 1.am,%rym
2 dx " 1

m &  l%rymyl dx "  0gam
2

 " !
b

a

 r c ak
m"0

 am ym d 2dx $ 2 a
k

m"0

 am!
b

a

 rfym dx ! !
b

a

 rf 2 dx.

 !
b

a

r (x)[sk (x) $ f (x)]2 dx " !
b

a

rsk
2 dx $ 2!

b

a

rfsk dx ! !
b

a

rf 2 dx

$ f $ (a0y0 ! Á ! akyk)$ % P.

a0, Á , akP ) 0a1y1 ! Á ! akyk

a0y0 !
a ' x ' b

a ' x ' by0, y1, Á

sk(x) " a
k

m"0

 am ym(x).

sk

lim
k:,!

b

a

r (x)[sk (x) $ f (x)]2 dx " 0

lim
k:,!

b

a

r (x)[ fk (x) $ f (x)]2 dx " 0.
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Here we can let , because the left sides form a monotone increasing sequence that
is bounded by the right side, so that we have convergence by the familiar Theorem 1 in
App. A.3.3 Hence

(17)

Furthermore, if is complete in a set of functions S, then (13) holds for every f
belonging to S. By (13) this implies equality in (16) with . Hence in the case of
completeness every f in S saisfies the so-called Parseval equality (analog of (8) in Sec. 11.4)

(18)

As a consequence of (18) we prove that in the case of completeness there is no function
orthogonal to every function of the orthonormal set, with the trivial exception of a function
of zero norm:

T H E O R E M  2 Completeness

Let be a complete orthonormal set on in a set of functions S.
Then if a function f belongs to S and is orthogonal to every , it must have norm
zero. In particular, if f is continuous, then f must be identically zero.

P R O O F Since f is orthogonal to every the left side of (18) must be zero. If f is continuous,
then implies , as can be seen directly from (5) in Sec. 11.5 with f instead
of because by assumption. !r (x) ) 0ym

f  (x) # 0$ f $ " 0
ym,

ym

a ' x ' by0, y1, Á

a
"

m"0

 am
2 " $ f $2 " !

b

a

 r (x) f (x)2 dx.

k : ,
y0, y1, Á

a
"

m"0

 am
2 ' $ f $2.

k : ,
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1–7 FOURIER–LEGENDRE SERIES
Showing the details, develop

1.
2.
3.
4.
5. Prove that if is even (is odd, respectively), its

Fourier–Legendre series contains only with even
m (only with odd m, respectively). Give examples.

6. What can you say about the coefficients of the Fourier–
Legendre series of if the Maclaurin series of 
contains only powers ?

7. What happens to the Fourier–Legendre series of a
polynomial if you change a coefficient of ?
Experiment. Try to prove your answer.

f (x)f (x)

x4m (m " 0, 1, 2, Á )
f (x)f (x)

Pm (x)
Pm (x)

f (x)
1, x, x2, x3, x4

1 $ x4

(x ! 1)2

63x5 $ 90x3 ! 35x

8–13 CAS EXPERIMENT 
FOURIER–LEGENDRE SERIES. Find and graph (on
common axes) the partial sums up to whose graph
practically coincides with that of within graphical
accuracy. State . On what does the size of seem to
depend?

8.

9.

10.

11.

12.

13. the second positive zero
of J0(x)
f (x) " J0(a0,2 x), a0,2 "

of J0(x)
f (x) " J0(a0,1 x), a0,1 " the first positive zero

f (x) " (1 ! x2)!1

f (x) " e!x2

f (x) " sin 2px

f (x) " sin px

m0m0

f (x)
Sm0

P R O B L E M  S E T  1 1 . 6
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11.7 Fourier Integral
Fourier series are powerful tools for problems involving functions that are periodic or are of
interest on a finite interval only. Sections 11.2 and 11.3 first illustrated this, and various further
applications follow in Chap. 12. Since, of course, many problems involve functions that are
nonperiodic and are of interest on the whole x-axis, we ask what can be done to extend the
method of Fourier series to such functions. This idea will lead to “Fourier integrals.”

In Example 1 we start from a special function of period 2L and see what happens to
its Fourier series if we let Then we do the same for an arbitrary function of
period 2L. This will motivate and suggest the main result of this section, which is an
integral representation given in Theorem 1 below.

fLL : ,.
fL

510 CHAP. 11 Fourier Analysis

14. TEAM PROJECT. Orthogonality on the Entire Real
Axis. Hermite Polynomials.8 These orthogonal polyno-
mials are defined by and

(19)

REMARK. As is true for many special functions, the
literature contains more than one notation, and one some-
times defines as Hermite polynomials the functions

This differs from our definition, which is preferred in
applications.
(a) Small Values of n. Show that

(b) Generating Function. A generating function of the
Hermite polynomials is

(20)

because Prove this. Hint: Use the
formula for the coefficients of a Maclaurin series and
note that 
(c) Derivative. Differentiating the generating func-
tion with respect to x, show that

(21)

(d) Orthogonality on the x-Axis needs a weight function
that goes to zero sufficiently fast as (Why?)x : #,,

Henr  (x) " nHen$1 (x).

tx $ 1
2 t 2 " 1

2 x2 $ 1
2 (x $ t)2.

Hen (x) " n! an(x).

etx!t2>2 " a
"

n"0

an (x) t n

He4 (x) " x4 $ 6x2 ! 3.He3 (x) " x3 $ 3x,
He2 (x) " x2 $ 1,He1 (x) " x,

H0* " 1,   Hn*(x) " ($1)nex2 d
ne!x2

dxn
.

n " 1, 2, Á .Hen (x) " ($1)nex2>2 
dn

dxn
 (e!x2>2),

He0 (1) " 1

Show that the Hermite polynomials are orthogonal on
with respect to the weight function
Hint. Use integration by parts and (21).

(e) ODEs. Show that

(22)

Using this with instead of n and (21), show that
satisfies the ODE

(23)

Show that is a solution of Weber’s
equation

(24)

15. CAS EXPERIMENT. Fourier–Bessel Series. Use
Example 2 and so that you get the series

(25)

With the zeros from your CAS (see also
Table A1 in App. 5).
(a) Graph the terms for

on common axes.
(b) Write a program for calculating partial sums of (25).
Find out for what f (x) your CAS can evaluate the
integrals. Take two such f (x) and comment empirically
on the speed of convergence by observing the decrease
of the coefficients.
(c) Take in (25) and evaluate the integrals
for the coefficients analytically by (21a), Sec. 5.4, with

Graph the first few partial sums on common
axes.
v " 1.

f (x) " 1

0 ' x ' 1
J0 (a0,1x), Á , J0 (a0,10x)

a0,1 a0,2, Á

! Á! a3J0 (a0,3x)
f (x) " a1J0 (a0,1x) ! a2J0 (a0,2x)

R " 1,

(n " 0, 1, Á ).ws ! (n ! 1
2 $ 1

4 x2) w " 0

w " e!x2>4y

ys " xyr ! ny " 0.

y " Hen(x)
n $ 1

Hern(x) " xHen(x) $ Hen!1 (x).

r (x) " e!x2>2.
$, % x % ,

8CHARLES HERMITE (1822–1901), French mathematician, is known for his work in algebra and number
theory. The great HENRI POINCARÉ (1854–1912) was one of his students. 
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E X A M P L E  1 Rectangular Wave

Consider the periodic rectangular wave of period given by

The left part of Fig. 280 shows this function for as well as the nonperiodic function f(x), which
we obtain from if we let 

We now explore what happens to the Fourier coefficients of as L increases. Since is even, for
all n. For the Euler formulas (6), Sec. 11.2, give

This sequence of Fourier coefficients is called the amplitude spectrum of because is the maximum
amplitude of the wave Figure 280 shows this spectrum for the periods We see
that for increasing L these amplitudes become more and more dense on the positive -axis, where 
Indeed, for we have 1, 3, 7 amplitudes per “half-wave” of the function (dashed
in the figure). Hence for we have amplitudes per half-wave, so that these amplitudes will
eventually be everywhere dense on the positive -axis (and will decrease to zero).

The outcome of this example gives an intuitive impression of what about to expect if we turn from our special
function to an arbitrary one, as we shall do next. !

wn

2k!1 $ 12L " 2k
(2 sin wn)>(Lwn)2L " 4, 8, 16

wn " np>L.wn

2L " 4, 8, 16.an cos (npx>L).
ƒ an ƒfL

a0 "
1

2L
 !

1

!1
dx "

1

L
 ,  an "

1

L
 !

1

!1
cos 

npx

L
  dx "

2

L
 !

1

0

cos 
npx

L
 dx "

2

L
 
sin (np>L)

np>L .

an

bn " 0fLfL

f (x) " lim
L:"  

fL (x) " e1 if $1 % x % 1

0 otherwise.

L : ,,fL
2L " 4, 8, 16

fL (x) " d 0 if $L % x % $1

1 if $1 % x % 1

0 if  1 % x % L.

2L ) 2fL (x)
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Fig. 280. Waveforms and amplitude spectra in Example 1 

x

fL(x)

2L = 4

n = 1

1
wn = nπ/L

Amplitude spectrum an(wn)Waveform fL(x)

π

0–2 2

x

fL(x)

0 4–4

2L = 8

x

fL(x)

wn

wn

wn0 8–8

2L = 16

x

f (x)

0–1 1

n = 2

n = 5

n = 10

n = 7

n = 4
n = 20

n = 6 n = 14

1_
2

1_
4

n = 3

n = 28n = 12
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From Fourier Series to Fourier Integral
We now consider any periodic function of period 2L that can be represented by a
Fourier series

and find out what happens if we let Together with Example 1 the present
calculation will suggest that we should expect an integral (instead of a series) involving
cos wx and sin wx with w no longer restricted to integer multiples 
of but taking all values. We shall also see what form such an integral might 
have.

If we insert and from the Euler formulas (6), Sec. 11.2, and denote the variable
of integration by the Fourier series of becomes

We now set

Then and we may write the Fourier series in the form

(1)

This representation is valid for any fixed L, arbitrarily large, but finite.
We now let and assume that the resulting nonperiodic function

is absolutely integrable on the x-axis; that is, the following (finite!) limits exist:

(2)

Then and the value of the first term on the right side of (1) approaches zero.
Also and it seems plausible that the infinite series in (1) becomes an¢w " p>L : 0

1>L : 0,

lim
a:$,

 !
0

a

ƒ f (x) ƒ  dx ! lim
b:,

 !
b

0

ƒ f (x) ƒ  dx awritten !
"

!"

ƒ f (x) ƒ  dxb .

f (x) " lim
L:,   

fL (x)

L : ,

! (sin wnx)¢w!
L

!L

fL (v) sin wnv
 
dvd .

fL (x) "
1

2L
 !

L

!L
fL (v) dv ! 1

p
 a

"

n"1

 c (cos wnx) ¢w!
L

!L
fL (v) cos wnv

 
dv

1>L " ¢w>p,

¢w " wn!1 $ wn "
(n ! 1)p

L
 $

np
L

 "
p
L

.

! sin wnx!
L

!L

fL (v) sin wnv
 
dv d .

fL (x) "
1

2L
 !

L

!L

fL (v) dv !
1
L

 a
"

n"1

 c cos wnx!
L

!L

fL (v) cos wnv
 
dv

fL (x)v,
bnan

p>L w " wn " np>LL : ,.

 wn "
np
L

fL (x) " a0 ! a
"

n"1

 (an cos wnx ! bn sin wnx),

fL (x)
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integral from 0 to which represents f(x), namely,

(3)

If we introduce the notations

(4)

we can write this in the form

(5)

This is called a representation of f (x) by a Fourier integral.
It is clear that our naive approach merely suggests the representation (5), but by no

means establishes it; in fact, the limit of the series in (1) as approaches zero is not
the definition of the integral (3). Sufficient conditions for the validity of (5) are as follows.

T H E O R E M  1 Fourier Integral

If f (x) is piecewise continuous (see Sec. 6.1) in every finite interval and has a right-
hand derivative and a left-hand derivative at every point (see Sec 11.1) and if the
integral (2) exists, then f (x) can be represented by a Fourier integral (5) with A and
B given by (4). At a point where f (x) is discontinuous the value of the Fourier integral
equals the average of the left- and right-hand limits of f (x) at that point (see Sec. 11.1).
(Proof in Ref. [C12]; see App. 1.)

Applications of Fourier Integrals
The main application of Fourier integrals is in solving ODEs and PDEs, as we shall see
for PDEs in Sec. 12.6. However, we can also use Fourier integrals in integration and in
discussing functions defined by integrals, as the next example.

E X A M P L E  2 Single Pulse, Sine Integral. Dirichlet’s Discontinuous Factor. Gibbs Phenomenon

Find the Fourier integral representation of the function

(Fig. 281)f (x) " e1 if ƒ x ƒ % 1

0 if ƒ x ƒ ) 1

¢w

f (x) " !
"

0

[A (w) cos wx ! B (w) sin wx] dw.

A (w) "
1
p  !

"

!"

f (v) cos wv dv,  B (w) "
1
p !

"

!"

f (v) sin wv dv

f (x) "
1
p  !

"

0

c cos wx!
"

!"

f (v) cos wv dv ! sin wx!
"

!"

f (v) sin wv dv d dw.

,,
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Fig. 281. Example 2 

x

f (x)

0–1 1

1
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Solution. From (4) we obtain

and (5) gives the answer

(6)

The average of the left- and right-hand limits of at is equal to , that is, .
Furthermore, from (6) and Theorem 1 we obtain (multiply by )

(7)

We mention that this integral is called Dirichlet’s discontinous factor. (For P. L. Dirichlet see Sec. 10.8.)
The case is of particular interest. If , then (7) gives

(8*)

We see that this integral is the limit of the so-called sine integral

(8)

as . The graphs of and of the integrand are shown in Fig. 282.
In the case of a Fourier series the graphs of the partial sums are approximation curves of the curve of the

periodic function represented by the series. Similarly, in the case of the Fourier integral (5), approximations are
obtained by replacing by numbers a. Hence the integral

(9)

approximates the right side in (6) and therefore .f (x)

2
p

 !
a

0

 cos wx sin w
w  dw

,

Si(u)u : ,

Si(u) " !
u

0

 
sin w

w  dw

!
,

0

 
sin w

w
 dw "

p

2
.

x " 0x " 0

!
,

0
 
cos wx sin w

w  dw " dp>2 if 0 ' x % 1,

p>4 if x " 1,

0 if x ) 1.

p>2 1
2(1 ! 0)>2x " 1f (x)

f (x) "
2
p

 !
,

0

 
cos wx sin w

w  dw.

B (w) "
1
p

 !
1

!1
 sin wv dv " 0

A (w) "
1
p

 !
,

!,

f (v) cos wv dv "
1
p

 !
1

!1 
cos wv dv "

sin wv
pw ` 1

!1

"
2 sin w
pw
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Fig. 282. Sine integral Si(u) and integrand 

y

u0 1 2 3 4–1–2–3–4

0.5

–0.5

–1

1

–
2

πππππ π π

π

–
2

– π

π

Integrand

Si(u) 
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y

x0 21–1–2

a = 8

y

x0 21–1–2

a = 16

y

x0 21–1–2

a = 32

Fig. 283. The integral (9) for , and 32, illustrating 
the development of the Gibbs phenomenon 

a % 8, 16

Figure 283 shows oscillations near the points of discontinuity of . We might expect that these oscillations
disappear as a approaches infinity. But this is not true; with increasing a, they are shifted closer to the points

. This unexpected behavior, which also occurs in connection with Fourier series (see Sec. 11.2), is known
as the Gibbs phenomenon. We can explain it by representing (9) in terms of sine integrals as follows. Using
(11) in App. A3.1, we have

In the first integral on the right we set . Then , and corresponds to
. In the last integral we set . Then , and corresponds to
. Since , we thus obtain

From this and (8) we see that our integral (9) equals

and the oscillations in Fig. 283 result from those in Fig. 282. The increase of a amounts to a transformation
of the scale on the axis and causes the shift of the oscillations (the waves) toward the points of discontinuity

and 1.

Fourier Cosine Integral and Fourier Sine Integral
Just as Fourier series simplify if a function is even or odd (see Sec. 11.2), so do Fourier
integrals, and you can save work. Indeed, if f has a Fourier integral representation and is
even, then in (4). This holds because the integrand of is odd. Then (5)
reduces to a Fourier cosine integral

(10) where

Note the change in : for even f the integrand is even, hence the integral from to
equals twice the integral from 0 to , just as in (7a) of Sec. 11.2.
Similarly, if f has a Fourier integral representation and is odd, then in (4). This

is true because the integrand of is odd. Then (5) becomes a Fourier sine integral

(11) where B (w) "
2
p !

,

0

 f (v) sin wv dv.f (x) " !
,

0

 B (w) sin wx dw

A (w)
A (w) " 0

,,
$,A (w)

A (w) "
2
p !

,

0

 f (v) cos wv dv.f (x) " !
,

0

 A (w) cos wx dw

B (w)B (w) " 0

!$1

1
p

 Si(a[x ! 1]) $
1
p

 Si(a[x $ 1])

2
p

 !
a

0

 
cos wx sin w

w  dw "
1
p

 !
(x!1) a

0

  
sin t

t  dt $
1
p

 !
(x!1) a

0

 
sin t

t  dt.

sin ($t) " $sin t0 ' t ' (x $ 1) a
0 ' w ' adw>w " dt>tw $ wx " $t0 ' t ' (x ! 1) a

0 ' w ' adw>w " dt>tw ! wx " t

2
p

 !
a

0

 
cos wx sin w

w  dw "
1
p

 !
a

0

 
sin (w ! wx)

w  dw !
1
p

 !
a

0

 
sin (w $ wx)

w  dw.

x " #1

f (x)
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Note the change of to an integral from 0 to because is even (odd times odd
is even).

Earlier in this section we pointed out that the main application of the Fourier integral
representation is in differential equations. However, these representations also help in
evaluating integrals, as the following example shows for integrals from 0 to .

E X A M P L E  3 Laplace Integrals

We shall derive the Fourier cosine and Fourier sine integrals of , where and (Fig. 284).
The result will be used to evaluate the so-called Laplace integrals.

Solution. (a) From (10) we have . Now, by integration by parts,

If , the expression on the right equals . If v approaches infinity, that expression approaches
zero because of the exponential factor. Thus times the integral from 0 to gives

(12)

By substituting this into the first integral in (10) we thus obtain the Fourier cosine integral representation

From this representation we see that

(13) .

(b) Similarly, from (11) we have . By integration by parts,

This equals if , and approaches 0 as . Thus

(14)

From (14) we thus obtain the Fourier sine integral representation

From this we see that

(15)

The integrals (13) and (15) are called the Laplace integrals. !

(x ) 0, k ) 0).!
,

0

w sin wx

k2 ! w2
 dw "

p

2
 e!kx

f (x) " e!kx "
2
p !

,

0

w sin wx

k2 ! w2
 dw.

B (w) "
2w>p

k2 ! w2
.

v : ,v " 0$w>(k2 ! w2)

! e!kv sin wv dv " $
w

k2 ! w2 e!kv a k

w
 sin wv ! cos wvb .

B (w) "
2
p !

,

0

 e!kv sin wv dv

(x ) 0, k ) 0)!
,

0

cos wx

k2 ! w2
 dw "

p

2k
 e!kx

(x ) 0, k ) 0).f (x) " e!kx "
2k

p !
,

0

cos wx

k2 ! w2 dw

A (w) "
2k>p

k2 ! w2
.

,2>p$k>(k2 ! w2)v " 0

!e!kv cos wv dv " $
k

k2 ! w2 e!kv a$ 
w

k
 sin wv ! cos wvb .

A (w) "
2
p !

,

0

 e!kv cos wv dv

k ) 0x ) 0f (x) " e!kx

,

B (w),B (w)
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Fig. 284. f(x)
in Example 3

1

0
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1–6 EVALUATION OF INTEGRALS
Show that the integral represents the indicated function.
Hint. Use (5), (10), or (11); the integral tells you which one,
and its value tells you what function to consider. Show your
work in detail.

1.

2.

3.

4.

5.

6.

7–12 FOURIER COSINE INTEGRAL
REPRESENTATIONS

Represent as an integral (10).

7.

8.

9. . Hint. See (13).]

10.

11.

12.

13. CAS EXPERIMENT. Approximate Fourier Cosine
Integrals. Graph the integrals in Prob. 7, 9, and 11 as

f (x) " b 

e!x if 0 % x % a

0 if x ) a

f (x) " b 

sin x if 0 % x % p

0 if x ) p

f (x) " b a2 $ x2 if 0 % x % a

0           if         x ) a

[x ) 0f (x) " 1>(1 ! x2)

f (x) " b  
x2 if 0 % x % 1

0 if x ) 1

f (x) " b 

1 if 0 % x % 1

0 if x ) 1

f (x)

!
"

0

w3 sin xw

w4 ! 4
 dw " 1

2 pe!x cos x if x ) 0

!
,

0

sin w $ w cos w

w2
 sin xw dw " d 12px if 0 % x % 1

1
4p  if         x " 1

0       if        x ) 1

 !
,

0
 
cos 12 pw

1 $ w2
 cos xw dw " b 12p cos x if 0 % ƒ x ƒ % 1

2p

      0      if ƒ x ƒ ( 1
2p

 !
,

0
 
1 $ cos pw

w  sin xw dw " b 

1
2p if 0 % x % p

0 if x ) p

!
,

0
 
sin pw sin xw

1 $ w2
 dw " b 

p
2  sin x if 0 ' x ' p

0 if x )  p

!
,

0

cos xw ! w sin xw

1 ! w2
 dx " d 0 if x % 0

p/2 if x " 0

pe!x if x ) 0

functions of x. Graph approximations obtained by
replacing with finite upper limits of your choice.
Compare the quality of the approximations. Write a
short report on your empirical results and observations.

14. PROJECT. Properties of Fourier Integrals
(a) Fourier cosine integral. Show that implies

(a1)

(Scale change)

(a2)

A as in (10)

(a3)

(b) Solve Prob. 8 by applying (a3) to the result of  Prob. 7.
(c) Verify (a2) for and

(d) Fourier sine integral. Find formulas for the Fourier
sine integral similar to those in (a).

15. CAS EXPERIMENT. Sine Integral. Plot for
positive u. Does the sequence of the maximum and
minimum values give the impression that it converges
and has the limit ? Investigate the Gibbs phenomenon
graphically.

16–20 FOURIER SINE INTEGRAL
REPRESENTATIONS

Represent f (x) as an integral (11).

16.

17.

18.

19.

20. f (x) " b e!x if 0 % x % 1

0     if         x ) 1

f (x) " b ex if 0 % x % 1

0   if         x ) 1

f (x) " b 

cos x if 0 % x % p

0 if x ) p

f (x) " b 

1 if 0 % x % 1

0 if x ) 1

f (x) " b 

x if 0 % x % a

0 if        x ) a

p>2
Si(u)

f (x) " 0 if x ) a.
f (x) " 1  if  0 % x % a

A* " $
d2A

dw2
. 

x2f (x) " !
,

0

A*(w) cos  xw dw,

B* " $
dA

dw
,

xf (x) " !
,

0

B*(w) sin xw dw,

(a ) 0)

f (ax) "
1
a  !

"

0

A aw
a b cos xw dw

(10)

,

P R O B L E M  S E T  1 1 . 7
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11.8 Fourier Cosine and Sine Transforms
An integral transform is a transformation in the form of an integral that produces from
given functions new functions depending on a different variable. One is mainly interested
in these transforms because they can be used as tools in solving ODEs, PDEs, and integral
equations and can often be of help in handling and applying special functions. The Laplace
transform of Chap. 6 serves as an example and is by far the most important integral
transform in engineering.

Next in order of importance are Fourier transforms. They can be obtained from the
Fourier integral in Sec. 11.7 in a straightforward way. In this section we derive two such
transforms that are real, and in Sec. 11.9 a complex one.

Fourier Cosine Transform
The Fourier cosine transform concerns even functions We obtain it from the Fourier
cosine integral [(10) in Sec. 10.7]

.

Namely, we set , where c suggests “cosine.” Then, writing in
the formula for A(w), we have

(1a)

and

(1b)

Formula (1a) gives from a new function , called the Fourier cosine transform
of f (x). Formula (1b) gives us back from and we therefore call the inverse
Fourier cosine transform of 

The process of obtaining the transform from a given f is also called the Fourier
cosine transform or the Fourier cosine transform method.

Fourier Sine Transform
Similarly, in (11), Sec. 11.7, we set where s suggests “sine.” Then,
writing we have from (11), Sec. 11.7, the Fourier sine transform, of given by

(2a) f̂s(w) ! B 2
p !

!

0

f (x) sin wx  dx,

f (x)v ! x,
B (w) ! 22>p f̂s(w),

f̂c
f̂c(w).

f (x)f̂c(w),f (x)
f̂c(w)f (x)

f (x) ! B 2
p !

!

0

f̂c (w) cos wx dw.

f̂c(w) ! B 2
p !

!

0

f (x) cos wx dx

v ! xA(w) ! 22>p f̂c (w)

A (w) !
2
p !

!

0

f (v) cos  wv dvf (x) ! !
!

0

A(w) cos  wx dw,  where  

f (x).
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Fig. 285. ƒ(x) in
Example 1

and the inverse Fourier sine transform of given by

(2b)

The process of obtaining from is also called the Fourier sine transform or
the Fourier sine transform method.

Other notations are

and and for the inverses of and , respectively.

E X A M P L E  1 Fourier Cosine and Fourier Sine Transforms

Find the Fourier cosine and Fourier sine transforms of the function

(Fig. 285).

Solution. From the definitions (1a) and (2a) we obtain by integration

This agrees with formulas 1 in the first two tables in Sec. 11.10 (where ).
Note that for  these transforms do not exist. (Why?)

E X A M P L E  2 Fourier Cosine Transform of the Exponential Function

Find .

Solution. By integration by parts and recursion,

.

This agrees with formula 3 in Table I, Sec. 11.10, with See also the next example.

What did we do to introduce the two integral transforms under consideration? Actually
not much: We changed the notations A and B to get a “symmetric” distribution of the
constant in the original formulas (1) and (2). This redistribution is a standard con-
venience, but it is not essential. One could do without it.

What have we gained? We show next that these transforms have operational properties
that permit them to convert differentiations into algebraic operations (just as the Laplace
transform does). This is the key to their application in solving differential equations.

2>p
!a ! 1.

fc(e"x) ! B 2

p
 !

!

0

e"x cos wx dx ! B 2

p
 

e"x

1 " w2 (#cos wx " w sin wx) `!
0

!
22>p
1 " w2

fc(e"x)

!f (x) ! k ! const (0 $ x $ %),
k ! 1

 f̂s (w) ! B 2
p

 k!
a

0

sin wx dx ! B 2
p

 k a1 # cos aw
w b .

 f̂c (w) ! B 2
p

 k!
a

0

cos wx dx ! B 2
p

 k asin aw
w b

f (x) ! b k if  0 $ x $ a

0 if  x & a

fsfcf"1
sf"1

c

fc ( f ) ! f̂c,  fs ( f ) ! f̂s

f (x)fs (w)

f (x) ! B 2
p !

!

0

f̂s (w) sin wx dw.

f̂s (w),

SEC. 11.8 Fourier Cosine and Sine Transforms 519

k

a x
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Linearity, Transforms of Derivatives
If is absolutely integrable (see Sec. 11.7) on the positive x-axis and piecewise
continuous (see Sec. 6.1) on every finite interval, then the Fourier cosine and sine
transforms of f exist.

Furthermore, if f and g have Fourier cosine and sine transforms, so does for
any constants a and b, and by (1a)

The right side is . Similarly for by (2). This shows that the Fourier
cosine and sine transforms are linear operations,

(3)
(a)

(b)

T H E O R E M  1 Cosine and Sine Transforms of Derivatives

Let be continuous and absolutely integrable on the x-axis, let be piecewise
continuous on every finite interval, and let as Then

(4)
(a)

(b) .

P R O O F This follows from the definitions and by using integration by parts, namely,

and similarly,

! ! 0 # wfc{ f(x)}.

 ! B 2
p

 c f (x) sin wx `
0

!

# w!
!

0

f (x) cos wx dx d
 fs{ f r(x)} ! B 2

p !
!

0

f r(x) sin wx dx

 ! #B 2
p f (0) " w˛fs{ f (x)};

 ! B 2
p c f (x) cos wx `

0

!

" w!
!

0

f (x) sin wx dx d
 fc{ f r(x)} ! B 2

p !
!

0

f r(x) cos wx dx

fs{ f r(x)} ! #wfc{ f (x)}

fc{ f r(x)} ! w fs{ f (x)} # B 2
p f (0),

x : %.f (x) : 0
f r(x)f (x)

fs(af " bg) ! afs( f ) " bfs(g).

fc(af " bg) ! afc( f ) " bfc(g),

fs,afc( f ) " bfc(g)

 ! a B 2
p !

!

0

f (x) cos wx dx " b B 2
p !

!

0

g (x) cos wx dx.

 fc (af " bg) ! B 2
p !

!

0

[af (x) " bg (x)] cos wx dx

af " bg

f (x)
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Formula (4a) with instead of f gives (when , satisfy the respective assumptions
for f, in Theorem 1)

hence by (4b)

(5a)

Similarly,

(5b)

A basic application of (5) to PDEs will be given in Sec. 12.7. For the time being we
show how (5) can be used for deriving transforms.

E X A M P L E  3 An Application of the Operational Formula (5)

Find the Fourier cosine transform of , where .

Solution. By differentiation, ; thus

From this, (5a), and the linearity (3a),

Hence

The answer is (see Table I, Sec. 11.10)

.

Tables of Fourier cosine and sine transforms are included in Sec. 11.10.

!(a & 0)fc(e"ax) ! B 2

p
 a a

a2 " w2
b

(a2 " w2)fc( f ) ! a22>p.

 ! #w2 fc( f ) " a B 2
p

.

 ! #w2 fc( f ) # B 2
p

 f r(0)

 a2 fc( f ) ! fc( f s)

a2f (x) ! f s(x).

(e"ax)s ! a2e"ax

a & 0f (x) ! e"axfc(e"ax)

fs{ f s(x)} ! #w2 fs{ f (x)} " B 2
p

 wf (0).

fc{ f s(x)} ! #w2 fc{ f (x)} # B 2
p

 f r(0).

fc{ f s(x)} ! w˛fs{ f r(x)} # B 2
p

 f r(0);

f r
f sf rf r
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522 CHAP. 11 Fourier Analysis

1–8 FOURIER COSINE TRANSFORM

1. Find the cosine transform of if
if if

2. Find f in Prob. 1 from the answer .
3. Find for if if

4. Derive formula 3 in Table I of Sec. 11.10 by integration.
5. Find for if if 
6. Continuity assumptions. Find for if

if . Try to obtain from it
for in Prob. 5 by using (5a).

7. Existence? Does the Fourier cosine transform of
exist? Of ? Give

reasons.
8. Existence? Does the Fourier cosine transform of

exist? The Fourier sine
transform?
f (x) ! k ! const (0 $ x $ %)

x"1 cos xx"1 sin x (0 $ x $ %)

f (x)f̂c(w)
x & 10 $ x $ 1, g (x) ! 0

g (x) ! 2ĝc(w)
x & 1.0 $ x $ 1, f (x) ! 0f (x) ! x2f̂c(w)

x & 2.
0 $ x $ 2, f (x) ! 0f (x) ! xf̂c(w)

f̂c

x & 2.
1 $ x $ 2, f (x) ! 00 $ x $ 1, f (x) ! #1

f (x) ! 1f̂c(w)

9–15 FOURIER SINE TRANSFORM

9. Find , by integration.

10. Obtain the answer to Prob. 9 from (5b).

11. Find for if if

12. Find from (4b) and a suitable formula in
Table I of Sec. 11.10.

13. Find from (4a) and formula 3 of Table I in
Sec. 11.10.

14. Gamma function. Using formulas 2 and 4 in Table II
of Sec. 11.10, prove in App. A3.1],
a value needed for Bessel functions and other
applications.

15. WRITING PROJECT. Finding Fourier Cosine and
Sine Transforms. Write a short report on ways of
obtaining these transforms, with illustrations by
examples of your own.

'(1
2) ! 1p [(30)

fs(e
"x)

fs(xe"x2>2)

x & 1.
0 $ x $ 1, f (x) ! 0f (x) ! x2fs(w)

fs(e
"ax), a & 0

P R O B L E M  S E T  1 1 . 8

11.9 Fourier Transform. 
Discrete and Fast Fourier Transforms

In Sec. 11.8 we derived two real transforms. Now we want to derive a complex transform
that is called the Fourier transform. It will be obtained from the complex Fourier integral,
which will be discussed next.

Complex Form of the Fourier Integral
The (real) Fourier integral is [see (4), (5), Sec. 11.7]

where

Substituting A and B into the integral for f, we have

f (x) !
1
p  !

!

0

 !
!

"!

 f (v)[cos wv cos wx " sin wv sin wx] dv dw.

A(w) !
1
p  !

!

"!

 f (v) cos wv dv,  B(w) !
1
p  !

!

"!

 f (v) sin wv dv.

f (x) ! !
!

0

[A(w) cos wx " B(w) sin wx] dw
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By the addition formula for the cosine [(6) in App. A3.1] the expression in the brackets
equals or, since the cosine is even, . We thus obtain

The integral in brackets is an even function of w, call it , because is
an even function of w, the function f does not depend on w, and we integrate with respect
to v (not w). Hence the integral of from to is times the integral of 
from to . Thus (note the change of the integration limit!)

(1)

We claim that the integral of the form (1) with sin instead of cos is zero:

(2)

This is true since is an odd function of w, which makes the integral in
brackets an odd function of w, call it . Hence the integral of from to 
is zero, as claimed.

We now take the integrand of (1) plus times the integrand of (2) and use
the Euler formula [(11) in Sec. 2.2]

(3)

Taking instead of x in (3) and multiplying by gives

Hence the result of adding (1) plus i times (2), called the complex Fourier integral, is

(4)

To obtain the desired Fourier transform will take only a very short step from here.

Fourier Transform and Its Inverse
Writing the exponential function in (4) as a product of exponential functions, we have

(5)

The expression in brackets is a function of w, is denoted by , and is called the Fourier
transform of f ; writing , we have

(6) f̂ (w) !
122p

 !
!

"!

 f (x)e"iwx dx.

v ! x
f̂ (w)

f (x) !
122p

 !
!

"!

 B 122p
 !

!

"!

 f (v)e"iwv dvR eiwx dw.

(i ! 1#1).f (x) !
1

2p
 !

!

"!

 !
!

"!

 f (v)eiw(x"v) dv dw

f (v) cos (wx # wv) " if (v) sin (wx # wv) ! f (v)ei(wx"wv).

f (v)wx # wv

eix ! cos x " i sin x.

i (! 1#1)

%#%G (w)G (w)
sin (wx # wv)

1
2p

 !
!

"!

 B!!

"!

 f (v) sin (wx # wv) dvR dw ! 0.

f (x) !
1

2p
 !

!

"!

 B!!

"!

 f (v) cos (wx # wv) dvR dw.

%#%
F (w)1

2%w ! 0F (w)

cos (wx # wv)F (w)

f (x) !
1
p  !

!

0

 B!!

"!

 f (v) cos (wx # wv)dvR dw.(1*)

cos (wx # wv)cos (wv # wx)[ Á ]
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524 CHAP. 11 Fourier Analysis

With this, (5) becomes

(7)

and is called the inverse Fourier transform of .
Another notation for the Fourier transform is

so that

The process of obtaining the Fourier transform from a given f is also called
the Fourier transform or the Fourier transform method.

Using concepts defined in Secs. 6.1 and 11.7 we now state (without proof) conditions
that are sufficient for the existence of the Fourier transform.

T H E O R E M  1 Existence of the Fourier Transform

If is absolutely integrable on the x-axis and piecewise continuous on every finite
interval, then the Fourier transform of given by (6) exists.

E X A M P L E  1 Fourier Transform

Find the Fourier transform of if and otherwise.

Solution. Using (6) and integrating, we obtain

As in (3) we have and by subtraction

Substituting this in the previous formula on the right, we see that i drops out and we obtain the answer

E X A M P L E  2 Fourier Transform

Find the Fourier transform of if and if here 

Solution. From the definition (6) we obtain by integration

This proves formula 5 of Table III in Sec. 11.10. !

 !
122p

 
e"(a"iw)x

#(a " iw)
`!
x!0

!
112p(a " iw)

.

 f (e"ax) !
112p

 !
!

0

e"axe"iwx dx

a & 0.x $ 0;f (x) ! 0x & 0f (x) ! e"axf (e"ax)

!f̂ (w) ! Bp2  
sin w

w
.

eiw # e"iw ! 2i sin w.

eiw ! cos w " i sin w, e"iw ! cos w # i sin w,

f̂(w) !
112p

 !
1

"1

e"iwx dx !
112p

 # e"iwx

#iw
`
"1

1

!
1

#iw12p
 (e"iw # eiw).

f (x) ! 0ƒ x ƒ $ 1f (x) ! 1

f (x)f̂ (w)
f (x)

f( f ) ! f̂

f ! f"1( f̂ ).

f̂ ! f( f ),

f̂ (w)

f (x) !
122p

 !
!

"!

 f̂ (w)eiwx dw

c11-b.qxd  10/30/10  1:31 PM  Page 524



Physical Interpretation: Spectrum
The nature of the representation (7) of becomes clear if we think of it as a superposition
of sinusoidal oscillations of all possible frequencies, called a spectral representation.
This name is suggested by optics, where light is such a superposition of colors
(frequencies). In (7), the “spectral density” measures the intensity of in the
frequency interval between w and ( small, fixed). We claim that, in connection
with vibrations, the integral

can be interpreted as the total energy of the physical system. Hence an integral of 
from a to b gives the contribution of the frequencies w between a and b to the total energy.

To make this plausible, we begin with a mechanical system giving a single frequency,
namely, the harmonic oscillator (mass on a spring, Sec. 2.4)

Here we denote time t by x. Multiplication by gives By integration,

where is the velocity. The first term is the kinetic energy, the second the potential
energy, and the total energy of the system. Now a general solution is (use (3) in
Sec. 11.4 with )

where We write simply 
Then By differentiation, 

Substitution of v and y on the left side of the equation for gives

Here as just stated; hence Also so that

Hence the energy is proportional to the square of the amplitude
As the next step, if a more complicated system leads to a periodic solution 

that can be represented by a Fourier series, then instead of the single energy term 
we get a series of squares of Fourier coefficients given by (6), Sec. 11.4. In this
case we have a “discrete spectrum” (or “point spectrum”) consisting of countably many
isolated frequencies (infinitely many, in general), the corresponding being the
contributions to the total energy.

Finally, a system whose solution can be represented by an integral (7) leads to the above
integral for the energy, as is plausible from the cases just discussed.

ƒ cn ƒ 2

cnƒ cn ƒ 2
ƒ c1 ƒ 2

y ! f (x)
ƒ c1 ƒ .

E0 ! 1
2 k[#(A # B)2 " (A " B)2] ! 2kAB ! 2kc1eiw0xc"1e"iw0x ! 2kc1c"1 ! 2k ƒ c1 ƒ 2.

i2 ! #1,mw0
2 ! k.w0

2 ! k>m,

E0 ! 1
2 mv2 " 1

2 ky2 ! 1
2 m(iw0)2(A # B)2 " 1

2 k(A " B)2.

E0

v ! yr ! Ar " Br ! iw0 (A # B).y ! A " B.B ! c"1e"iw0x.
A ! c1eiw0x,c1 ! (a1 # ib1)>2, c"1 ! c1 ! (a1 " ib1)>2.

y ! a1 cos w0 x " b1 sin w0 x ! c1eiw0x " c"1e"iw0x,  w0
2 ! k>mt ! x

E0

v ! yr

1
2 mv2 " 1

2 ky2 ! E0 ! const

myrys " kyry ! 0.yr

mys " ky ! 0.

ƒ f̂ (w) ƒ 2

!
!

"!

ƒ f̂ (w) ƒ 2 dw

¢ww " ¢w
f (x)f̂ (w)

f (x)
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526 CHAP. 11 Fourier Analysis

Linearity. Fourier Transform of Derivatives
New transforms can be obtained from given ones by using

T H E O R E M  2 Linearity of the Fourier Transform

The Fourier transform is a linear operation; that is, for any functions and g(x)
whose Fourier transforms exist and any constants a and b, the Fourier transform
of exists, and

(8)

P R O O F This is true because integration is a linear operation, so that (6) gives

In applying the Fourier transform to differential equations, the key property is that
differentiation of functions corresponds to multiplication of transforms by iw:

T H E O R E M  3 Fourier Transform of the Derivative of f (x)

Let be continuous on the x-axis and as . Furthermore, let 
be absolutely integrable on the x-axis. Then

(9)

P R O O F From the definition of the Fourier transform we have

Integrating by parts, we obtain

Since as the desired result follows, namely,

!f{ f r(x)} ! 0 " iw f{ f (x)}.

ƒ x ƒ : %,f (x) : 0

f{ f r(x)} !
112p

  Bf (x)e"iwx `!
"!

# (#iw)!
!

"!

f (x)e"iwx dxR .

f{ f r(x)} !
112p

 !
!

"!

f r(x)e"iwx dx.

f { f r(x)} ! iwf { f (x)}.

f r(x)ƒ x ƒ : %f (x) : 0f (x)

! ! af{ f (x)} " bf{g (x)}.

 ! a 
112p

 !
!

"!

f (x)e"iwx dx " b 
112p

 !
!

"!

g (x)e"iwx dx

 f{af (x) " bg (x)} !
112p

 !
!

"!

[af (x) " bg (x)] e"iwx dx

f(af " bg) ! af ( f ) " bf (g).

af " bg

f (x)
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Two successive applications of (9) give

Since we have for the transform of the second derivative of f

(10)

Similarly for higher derivatives.
An application of (10) to differential equations will be given in Sec. 12.6. For the time

being we show how (9) can be used to derive transforms.

E X A M P L E  3 Application of the Operational Formula (9)

Find the Fourier transform of from Table III, Sec 11.10.

Solution. We use (9). By formula 9 in Table III

Convolution
The convolution of functions f and g is defined by

(11)

The purpose is the same as in the case of Laplace transforms (Sec. 6.5): taking the
convolution of two functions and then taking the transform of the convolution is the same
as multiplying the transforms of these functions (and multiplying them by ):

T H E O R E M  4 Convolution Theorem

Suppose that and g(x) are piecewise continuous, bounded, and absolutely
integrable on the x-axis. Then

(12) f ( f * g) ! 12p f ( f ) f (g).

f (x)

12p

h (x) ! ( f * g) (x) ! !
!

"!

f (p) g (x " p) dp ! !
!

"!

f (x " p)g (p) dp.

f * g

! ! " 
iw

212
 e"w2>4.

 ! " 
1

2
 iw 

112
 e"w2>4

 ! " 
1
2 iwf(e"x2

)

 ! " 
1
2 f{(e"x2

)r}

 f (xe"x2

) ! f{" 
1
2 (e"x2

)r}

xe"x2

f{ f s(x)} ! "w2f{ f (x)}.

(iw)2 ! "w2,

f ( f s) ! iwf ( f r) ! (iw)2f ( f ).
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528 CHAP. 11 Fourier Analysis

P R O O F By the definition,

An interchange of the order of integration gives

Instead of x we now take as a new variable of integration. Then 
and

This double integral can be written as a product of two integrals and gives the desired
result

By taking the inverse Fourier transform on both sides of (12), writing and
as before, and noting that and in (12) and (7) cancel each other,

we obtain

(13)

a formula that will help us in solving partial differential equations (Sec. 12.6).

Discrete Fourier Transform (DFT), 
Fast Fourier Transform (FFT)
In using Fourier series, Fourier transforms, and trigonometric approximations (Sec. 11.6)
we have to assume that a function to be developed or transformed, is given on some
interval, over which we integrate in the Euler formulas, etc. Now very often a function 
is given only in terms of values at finitely many points, and one is interested in extending
Fourier analysis to this case. The main application of such a “discrete Fourier analysis”
concerns large amounts of equally spaced data, as they occur in telecommunication, time
series analysis, and various simulation problems. In these situations, dealing with sampled
values rather than with functions, we can replace the Fourier transform by the so-called
discrete Fourier transform (DFT) as follows.

f (x)
f (x),

( f * g) (x) ! !
!

"!

f̂ (w)ĝ (w)eiwx dw,

1>12p12pĝ !f (g)
f̂ ! f ( f )

! !
112p

 [12p f ( f )][12p f (g)] ! 12p f ( f ) f (g).

 f ( f * g) !
112p

  !
!

"!

f (p)e"iwp dp !
!

"!

g (q) e"iwq dq

f ( f * g) !
112p

 !
!

"!

!
!

"!

f (p) g (q) e"iw (p"q) dq dp.

x ! p " qx # p ! q

f ( f * g) !
112p

 !
!

"!

!
!

"!

f (p) g (x # p) e"iwx dx dp.

f ( f * g) !
112p

 !
!

"!

!
!

"!

f (p) g (x # p) dp e"iwx dx.
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Let be periodic, for simplicity of period . We assume that N measurements of
are taken over the interval at regularly spaced points

(14)

We also say that is being sampled at these points. We now want to determine a
complex trigonometric polynomial

(15)

that interpolates at the nodes (14), that is, written out, with denoting

(16)

Hence we must determine the coefficients such that (16) holds. We do this
by an idea similar to that in Sec. 11.1 for deriving the Fourier coefficients by using the
orthogonality of the trigonometric system. Instead of integrals we now take sums. Namely,
we multiply (16) by (note the minus!) and sum over k from 0 to Then we
interchange the order of the two summations and insert from (14). This gives

(17)

Now

We donote by r. For we have The sum of these terms over k
equals N, the number of these terms. For we have and by the formula for a
geometric sum [(6) in Sec. 15.1 with and ]

because ; indeed, since k, m, and n are integers,

This shows that the right side of (17) equals . Writing n for m and dividing by N, we
thus obtain the desired coefficient formula

Since computation of the (by the fast Fourier transform, below) involves successive
halfing of the problem size N, it is practical to drop the factor from and define thecn1>Ncn

fk ! f (xk), n ! 0, 1, Á , N # 1.cn !
1
N

 aN#1

k!0
  fke"inxk(18*)

cmN

r N ! ei(n"m)2pk ! cos 2pk(n # m) " i sin 2pk(n # m) ! 1 " 0 ! 1.

r N ! 1

aN#1

k!0
r k !

1 # r N

1 # r
! 0

n ! N # 1q ! r
r ( 1n ( m

r ! e0 ! 1.n ! m[ Á ]

ei (n"m)2pk>N ! [ei (n"m)2p>N]k.

aN#1

k!0
fke"imxk ! aN#1

k!0
 aN#1

n!0
cnei(n"m)xk ! aN#1

n!0
cnaN#1

k!0
ei (n"m) 2pk>N.

xk

N # 1.e"imxk

c0, Á , cN"1

k ! 0, 1, Á , N # 1.fk ! f (xk) ! q (xk) ! a
N#1

n!0
cneinxk,

f (xk),
fkq (xk) ! f (xk),f (x)

q (x) ! a
N#1

n!0
cneinxk

f (x)

k ! 0, 1, Á , N # 1.xk !
2pk

N
 ,

0 ) x ) 2pf (x)
2pf (x)
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530 CHAP. 11 Fourier Analysis

discrete Fourier transform of the given signal to be the vector
with components

(18)

This is the frequency spectrum of the signal.
In vector notation, , where the Fourier matrix has the

entries [given in (18)]

(19)

E X A M P L E  4 Discrete Fourier Transform (DFT). Sample of Values

Let measurements (sample values) be given. Then and thus 
Let the sample values be, say . Then by (18) and (19),

(20) .

From the first matrix in (20) it is easy to infer what looks like for arbitrary N, which in practice may be
1000 or more, for reasons given below.

From the DFT (the frequency spectrum) we can recreate the given signal 

, as we shall now prove. Here and its complex conjugate 
satisfy

(21a)

where I is the unit matrix; hence has the inverse

(21b)

P R O O F We prove (21). By the multiplication rule (row times column) the product matrix
in (21a) has the entries times Column k of .

That is, writing , we prove that

 ! W0 " W1 " Á "WN"1 ! b0 if j ( k

N if j ! k.

 gjk ! (w jwk)0 " (w jwk)1 " Á " (w jwk
)
N"1

W ! w jwk
FNgjk ! Row j of FNGN ! FNFN ! [gjk]

FN
"1 !

1
N

 FN.

FNN * N

FNFN ! FNFN ! NI

FN !
1
N

 [wnk]FNf̂ ! FN
"1f

f̂ ! FNf

!
FN

f̂ ! F4f ! Ew0 w0 w0 w0

w0 w1 w2 w3

w0 w2 w4 w6

w0 w3 w6 w9

U f ! E1 1 1 1

1 #i #1 i

1 #1 1 #1

1 i #1 #i

U E01
4

9

U ! E 14

#4 " 8i

#6

#4 # 8i

U  

f ! [0 1 4 9]T
wnk ! (#i)nk.w !  e"2pi>N ! e"pi>2 ! #iN ! 4

N # 4

where n, k ! 0, Á , N # 1.

enk ! e"inxk ! e"2pink>N ! wnk,  w ! wN !  e"2pi>N,

FN ! [enk]N * Nf̂ ! FNf

fk ! f (xk), n ! 0, Á , N # 1.f̂ n ! Ncn ! a
N#1

k!0
  fke"inxk,

f̂ ! [ f̂ 0 Á  f̂ N"1]
f ! [ f0 Á  fN"1]T
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Indeed, when , then , so that the sum
of these N terms equals N; these are the diagonal entries of . Also, when , then

and we have a geometric sum (whose value is given by (6) in Sec. 15.1 with 
and )

because 

We have seen that is the frequency spectrum of the signal . Thus the components
of give a resolution of the -periodic function into simple (complex) harmonics.

Here one should use only n’s that are much smaller than , to avoid aliasing. By this
we mean the effect caused by sampling at too few (equally spaced) points, so that, for
instance, in a motion picture, rotating wheels appear as rotating too slowly or even in the
wrong sense. Hence in applications, N is usually large. But this poses a problem. Eq. (18)
requires operations for any particular n, hence operations for, say, all 

. Thus, already for 1000 sample points the straightforward calculation would
involve millions of operations. However, this difficulty can be overcome by the so-called
fast Fourier transform (FFT), for which codes are readily available (e.g., in Maple). The
FFT is a computational method for the DFT that needs only operations
instead of . It makes the DFT a practical tool for large N. Here one chooses 
( p integer) and uses the special form of the Fourier matrix to break down the given problem
into smaller problems. For instance, when , those operations are reduced by a
factor 

The breakdown produces two problems of size . This breakdown is possible
because for we have in (19)

.

The given vector is split into two vectors with M components each,
namely, containing the even components of f, and 

containing the odd components of f. For and we determine
the DFTs

and

involving the same matrix . From these vectors we obtain the components of
the DFT of the given vector f by the formulas

(22)
(a)

(b)  f̂n"M ! f̂ev,n # wN
n f̂od,n  n ! 0, Á , M # 1.

 f̂n ! f̂ev,n " wN
n f̂od,n  n ! 0, Á , M # 1

FMM * M

f̂od ! [ f̂od,1 f̂od,3 Á  f̂od,N"1]T ! FM fod

f̂ev ! [ f̂ev,0 f̂ev,2 Á  f̂ev,N"2]T ! FM fev

fodfev[ f1 f3 Á  fN"1]T
fod !fev ! [ f0 f2 Á fN"2]T

f ! [ f0 Á  fN"1]T

wN
2 ! w2M

2 ! (e"2pi>N)2 ! e"4pi>(2M) ! e"2pi>(M) ! wM

N ! 2M
M ! N>21000>log2 1000 " 100.

N ! 1000

N ! 2pO (N 2)
O (N) log2 N

n $ N>2 O (N 2)O (N)

N>2f (x)2pf̂f̂n
f (x)f̂

!WN ! (w jwk)N ! (e2pi)j(e"2pi)k ! 1j # 1k ! 1.

W0 " W1 " Á "WN"1 !
1 # WN

1 # W
! 0

n ! N #1
q ! WW ( 1

j ( kGN

wkwk ! (ww)k ! (e2pi>Ne"2pi>N)k ! 1k ! 1j ! k
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532 CHAP. 11 Fourier Analysis

For this breakdown can be repeated times in order to finally arrive at 
problems of size 2 each, so that the number of multiplications is reduced as indicated
above.

We show the reduction from and then prove (22).

E X A M P L E  5 Fast Fourier Transform (FFT). Sample of Values

When , then as in Example 4 and , hence 
Consequently,

.

From this and (22a) we obtain

Similarly, by (22b),

This agrees with Example 4, as can be seen by replacing 0, 1, 4, 9 with 

We prove (22). From (18) and (19) we have for the components of the DFT

Splitting into two sums of terms each gives

We now use and pull out from under the second sum, obtaining

(23)

The two sums are and the components of the “half-size” transforms and
.

Formula (22a) is the same as (23). In (22b) we have instead of n. This causes
a sign changes in (23), namely before the second sum because

.

This gives the minus in (22b) and completes the proof. !

wN
M ! e"2piM>N ! e"2pi>2 ! e"pi ! #1

#wN
n

n " M
Ffod

Ffevfod,n,fev,n

f̂n ! aM"1

k!0
wM

knfev,k " wN
naM"1

k!0
wM

knfod,k.

wN
nwN

2 ! wM

f̂n ! aM"1

k!0
wN

2knf2k " aM"1

k!0
wN

(2k"1)nf2k"1.

M ! N>2
f̂n ! aN"1

k!0
wN

knfk.

!f0, f1, f2, f3.

 f̂ 3 ! f̂ ev,1 # wN
1 f̂ od,1 ! ( f0 # f2) # (#i)( f1 # f3) ! f0 " if1 # f2 # if3.

 f̂ 2 ! f̂ ev,0 # wN
0 f̂ od,0 ! ( f0 " f2) # ( f1 " f3) ! f0 # f1 " f2 #  f3

 f̂ 1 ! f̂ ev,1 " wN
1 f̂ od,1 ! ( f0 # f2) # i( f1 " f3) ! f0 # if1 # f2 "  if3.

 f̂ 0 ! f̂ ev,0 " wN
0 f̂ od,0 ! ( f0 " f2) " ( f1 " f3) ! f0 "  f1 " f2 "  f3

f̂ od ! c f̂ 1

f̂ 3

d ! F2fod ! c1 1

1 #1
d c f1

f3
d ! c f1 " f3

f1 # f3
d

f̂ ev ! c f̂ 0

f̂ 2

d ! F2fev ! c1 1

1 #1
d c f0

f2
d ! c f0 " f2

f0 # f2
d

w ! wM ! e"2pi>2 ! e"pi ! #1.M ! N>2 ! 2w ! wN ! #iN ! 4

N # 4

N ! 4 to M ! N>2 ! 2

N>2p # 1N ! 2p
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1. Review in complex. Show that 

2–11 FOURIER TRANSFORMS BY
INTEGRATION
Find the Fourier transform of (without using Table
III in Sec. 11.10). Show details.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. f (x) ! µ#1 if #1 $ x $ 0

1 if    0 $ x $ 1

0 otherwise 

f (x) ! e x if #1 $ x $ 1

0 otherwise

f (x) ! e ƒ  x ƒ if #1 $ x $ 1

0 otherwise

f (x) ! e xe"x if #1 $ x $ 0

0 otherwise

f (x) ! e x if 0 $ x $ a

0 otherwise

f (x) ! e" ƒ
 
x ƒ (#% $ x $ %)

f (x) ! e ex if #a $ x $ a

0 otherwise

f (x) ! e ekx if x $ 0 (k & 0)

0  if x & 0

f (x) ! e1 if a $ x $ b

0 otherwise

f (x) ! e e2ix if #1 $ x $ 1

0 otherwise

f (x)

eikx ! cos kx " i sin kx.2i sin x,
eix # e"ix !eix " e"ix ! 2 cos x,cos x # i sin x,

e"ix !1>i ! #i, 12–17 USE OF TABLE III IN SEC. 11.10. 
OTHER METHODS

12. Find for if if
by (9) in the text and formula 5 in Table III

(with Hint. Consider and 
13. Obtain from Table III.
14. In Table III obtain formula 7 from formula 8.
15. In Table III obtain formula 1 from formula 2.
16. TEAM PROJECT. Shifting (a) Show that if 

has a Fourier transform, so does , and

(b) Using (a), obtain formula 1 in Table III, Sec. 11.10,
from formula 2.
(c) Shifting on the w-Axis. Show that if is the
Fourier transform of , then is the Fourier
transform of 
(d) Using (c), obtain formula 7 in Table III from 1 and
formula 8 from 2.

17. What could give you the idea to solve Prob. 11 by using
the solution of Prob. 9 and formula (9) in the text?
Would this work?

18–25 DISCRETE FOURIER TRANSFORM

18. Verify the calculations in Example 4 of the text.
19. Find the transform of a general signal

of four values.
20. Find the inverse matrix in Example 4 of the text and

use it to recover the given signal.
21. Find the transform (the frequency spectrum) of a

general signal of two values 
22. Recreate the given signal in Prob. 21 from the

frequency spectrum obtained.
23. Show that for a signal of eight sample values,

Check by squaring.
24. Write the Fourier matrix F for a sample of eight values

explicitly.
25. CAS Problem. Calculate the inverse of the 

Fourier matrix. Transform a general sample of eight
values and transform it back to the given data.

8 * 8

w ! e"i>4 ! (1 # i)>12.

[ f1 f2]T.

f ! [ f1 f2 f3 f4]T

eiaxf (x).
f̂  (w # a)f (x)

f̂  (w)

f{ f (x # a)} ! e"iwaf{ f (x)}.
f (x # a)

f (x)

f(e"x2>2)
e"x.xe"xa ! 1).

x $ 0,
x & 0, f (x) ! 0f (x) ! xe"xf ( f (x))

P R O B L E M  S E T  1 1 . 9
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534 CHAP. 11 Fourier Analysis

11.10 Tables of Transforms
Table I. Fourier Cosine Transforms

See (2) in Sec. 11.8.

1

2 ('(a) see App. A3.1.)

3

4

5

6
Re !
Real part

7

8

9

10 (See Sec. 6.3.)

11

12 (See Secs. 5.5, 6.3.)B 2

p
 12a2 # w2

 (1 # u(w # a))J0(ax) (a & 0)

112p
 arctan 

2

w2

e"x sin x
x

Bp2  (1 # u(w # a))
sin ax

x (a & 0)

112a
 cos aw2

4a
"
p

4
bsin (ax2) (a & 0)

112a
 cos aw2

4a
#
p

4
bcos (ax2) (a & 0)

112p
c sin a(1 # w)

1 # w
"

sin a(1 " w)

1 " w
de cos x if 0 $ x $ a

0 otherwise

B 2
p

 n!
(a2 " w2)n"1 Re (a " iw)n"1xne"ax (a & 0)

112a
 e"w2>(4a)e"ax2

 (a & 0)

e"w2>2e"x2>2
B 2
p

 a a
a2 " w2be"ax (a & 0)

B 2
p

 
' (a)

wa  cos 
ap
2

xa"1 (0 $ a $ 1)

B 2
p

 sin aw
we1 if 0 $ x $ a

0 otherwise

f̂ c (w) !  fc ( f )f (x)
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Table II. Fourier Sine Transforms

See (5) in Sec. 11.8.

1

2

3

4 ('(a) see App. A3.1.)

5

6

7
Im !
Imaginary part

8

9

10

11 (See Sec. 6.3.)

12 12p 
sin aw

w  e"awarctan 
2a
x  (a & 0)

Bp2  u (w # a)
cos ax

x  (a & 0)

122p c sin a(1 # w)

1 # w
#

sin a(1 " w)

1 " w
de sin x if 0 $ x $ a

   0 otherwise

w

(2a)3>2 e"w2>4axe"ax2

 (a & 0)

we"w2>2xe"x2>2
B 2
p

 n!
(a2 " w2)n"1 Im (a " iw)n"1xne"ax (a & 0)

B 2
p arctan 

w
a

e"ax

x  (a & 0)

B 2
p

 a w
a2 " w2be"ax (a & 0)

B 2
p

 
' (a)

wa  sin 
ap
2

xa"1 (0 $ a $ 1)

21w1>x3>2
1>1w1>1x

B 2
p

 c 1 # cos aw
w de 1 if 0 $ x $ a

0 otherwise

f̂ s (w) !  fs ( f )f (x)

SEC. 11.10 Tables of Transforms 535
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536 CHAP. 11 Fourier Analysis

Table III. Fourier Transforms

See (6) in Sec. 11.9.

1

2

3

4

5

6

7

8

9

10 Bp2  if ƒ w ƒ $ a; 0 if ƒ w ƒ & a
sin ax

x  (a & 0)

112a
 e"w2>4ae"ax2

 (a & 0)

i22p
 
eib(a"w) # eic(a"w)

a # w
e eiax if b $ x $ c

 0 otherwise

B 2
p

 
sin b(w # a)

w # ae eiax if #b $ x $ b

 0 otherwise

e(a"iw)c # e(a"iw)b12p(a # iw)
e eax if b $ x $ c

 0 otherwise

112p(a " iw)
e e"ax if x & 0

  0       otherwise
 (a & 0)

#1 " 2eibw # e"2ibw12pw2
µ x if 0 $ x $ b

2x # b if b $ x $ 2b

0 otherwise

Bp2  
e"a ƒw ƒ

a
1

x2 " a2
 (a & 0)

e"ibw # e"icw

iw12p
e1 if b $ x $ c

0 otherwise

B 2
p

 sin bw
we1 if #b $ x $ b

0 otherwise

f̂ (w) !  f( f )f (x)
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Chapter 11 Review Questions and Problems 537

1. What is a Fourier series? A Fourier cosine series? A
half-range expansion? Answer from memory.

2. What are the Euler formulas? By what very important
idea did we obtain them?

3. How did we proceed from -periodic to general-
periodic functions?

4. Can a discontinuous function have a Fourier series? A
Taylor series? Why are such functions of interest to the
engineer?

5. What do you know about convergence of a Fourier
series? About the Gibbs phenomenon?

6. The output of an ODE can oscillate several times as
fast as the input. How come?

7. What is approximation by trigonometric polynomials?
What is the minimum square error?

8. What is a Fourier integral? A Fourier sine integral?
Give simple examples.

9. What is the Fourier transform? The discrete Fourier
transform?

10. What are Sturm–Liouville problems? By what idea are
they related to Fourier series?

11–20 FOURIER SERIES. In Probs. 11, 13, 16, 20 find
the Fourier series of as given over one period and
sketch and partial sums. In Probs. 12, 14, 15, 17–19
give answers, with reasons. Show your work detail.

11.

12. Why does the series in Prob. 11 have no cosine terms?

13.

14. What function does the series of the cosine terms in
Prob. 13 represent? The series of the sine terms?

15. What function do the series of the cosine terms and the
series of the sine terms in the Fourier series of

represent?
16. f (x) ! ƒ x ƒ (#p $ x $ p)

ex (#5 $ x $ 5)

f (x) ! e0 if #1 $ x $ 0

x if 0 $ x $ 1

f (x) ! e0 if #2 $ x $ 0

2 if 0 $ x $ 2

f (x)
f (x)

2p

17. Find a Fourier series from which you can conclude that 
.

18. What function and series do you obtain in Prob. 16 by
(termwise) differentiation?

19. Find the half-range expansions of 

20.

21–22 GENERAL SOLUTION
Solve, , where is

-periodic and
21.
22.

23–25 MINIMUM SQUARE ERROR
23. Compute the minimum square error for 

and trigonometric polynomials of
degree .

24. How does the minimum square error change if you
multiply by a constant k?

25. Same task as in Prob. 23, for 
Why is now much smaller (by a

factor 100, approximately!)?

26–30 FOURIER INTEGRALS AND TRANSFORMS
Sketch the given function and represent it as indicated. If you
have a CAS, graph approximate curves obtained by replacing

with finite limits; also look for Gibbs phenomena.

26. and 0 otherwise; by the
Fourier sine transform

27. and 0 otherwise; by the Fourier
integral

28. and 0 otherwise; by the Fourier
transform

29. and 0 otherwise; by the Fourier
cosine transform

30. and 0 otherwise; by the Fourier
transform
f (x) ! e"2x if x & 0

f (x) ! x if 1 $ x $ a

f (x) ! kx if a $ x $ b

f (x) ! x if 0 $ x $ 1

f (x) ! x " 1 if 0 $ x $ 1

%

E*(#p$ x $ p).
f (x) ! ƒ x ƒ >pf (x)

N ! 1, Á , 5
(#p $ x $ p)

f (x) ! x>p
r (t) ! ƒ t ƒ  (#p $ t $ p)
r (t) ! 3t 2 (#p $ t $ p)

2p
ƒv ƒ ( 0, 1, 2, Á , r (t)ys " v2y ! r (t)

f (x) ! 3x2 (#p $ x $ p)
(0 $ x $ 1).

f (x) ! x

1 # 1/3 " 1/5 # 1/7 " # Á ! p/4

C H A P T E R  1 1  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S
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538 CHAP. 11 Fourier Analysis

Fourier series concern periodic functions of period , that is, by
definition for all x and some fixed ; thus, 
for any integer n. These series are of the form

(1) (Sec. 11.2)

with coefficients, called the Fourier coefficients of , given by the Euler formulas
(Sec. 11.2)

(2)

,

where . For period we simply have (Sec. 11.1)

with the Fourier coefficients of (Sec. 11.1)

Fourier series are fundamental in connection with periodic phenomena, particularly
in models involving differential equations (Sec. 11.3, Chap, 12). If is even

or odd , they reduce to Fourier cosine or Fourier
sine series, respectively (Sec. 11.2). If is given for only, it has two
half-range expansions of period 2L, namely, a cosine and a sine series (Sec. 11.2).

The set of cosine and sine functions in (1) is called the trigonometric system.
Its most basic property is its orthogonality on an interval of length 2L; that is, for
all integers m and we have

,

and for all integers m and n,

This orthogonality was crucial in deriving the Euler formulas (2).

!
L

"L

cos 
mpx

L
 sin 

npx
L

 dx ! 0.

!
L

"L

sin 
mpx

L
 sin 

npx
L

 dx ! 0!
L

"L

cos 
mpx

L
 cos 

npx
L

 dx ! 0

n ( m

0 ) x ) Lf (x)
[ f (#x) ! #f (x)][ f (#x) ! f (x)]

f (x)

a0 !
1

2p
 !
p

"p

f (x) dx, an !
1
p

 !
p

"p

f (x) cos nx dx, bn !
1
p

 !
p

"p

f (x) sin nx dx.

f (x)

f (x) ! a0 " a!
n!1

 (an cos nx " bn sin nx)(1*)

2pn ! 1, 2, Á

bn !
1
L

 !
L

"L

f (x) sin 
npx

L
 dx

an !
1
L

 !
L

"L

f (x) cos 
npx

L
 dxa0 !

1
2L

 !
L

"L

f (x) dx

f (x)

f (x) ! a0 " a!
n!1

 aan cos 
np
L

 x " bn sin 
np
L

 xb
f (x " np) ! f (x)p & 0f (x " p) ! f (x)

p ! 2Lf (x)

SUMMARY OF CHAPTER 1 1
Fourier Analysis. Partial Differential Equations (PDEs)
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Summary of Chapter 11 539

Partial sums of Fourier series minimize the square error (Sec. 11.4).
Replacing the trigonometric system in (1) by other orthogonal systems first leads

to Sturm–Liouville problems (Sec. 11.5), which are boundary value problems for
ODEs. These problems are eigenvalue problems and as such involve a parameter

that is often related to frequencies and energies. The solutions to Sturm–Liouville
problems are called eigenfunctions. Similar considerations lead to other orthogonal
series such as Fourier–Legendre series and Fourier–Bessel series classified as
generalized Fourier series (Sec. 11.6). 

Ideas and techniques of Fourier series extend to nonperiodic functions defined
on the entire real line; this leads to the Fourier integral

(3) (Sec. 11.7)

where

(4)

or, in complex form (Sec. 11.9),

(5)

where

(6)

Formula (6) transforms into its Fourier transform , and (5) is the inverse
transform.

Related to this are the Fourier cosine transform (Sec. 11.8)

(7)

and the Fourier sine transform (Sec. 11.8)

(8) .

The discrete Fourier transform (DFT) and a practical method of computing it,
called the fast Fourier transform (FFT), are discussed in Sec. 11.9.

f̂ s(w) ! B 2
p !

!

0

f (x) sin wx dx

f̂ c (w) ! B 2
p !

!

0

f (x) cos wx dx

f̂  (w)f (x)

f̂  (w) !
112p !

!

"!

f (x)e"iwx dx.

(i ! 1"1)f (x) !
112p !

!

"!

f̂  (w)eiwx dw

A (w) !
1
p !

!

"!

f (v) cos wv dv,  B (w) !
1
p !

!

"!

f (v) sin wv dv

f (x) ! !
!

0

[ A (w) cos wx # B (w) sin wx] dw

f (x)

l
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