
CHAPTER 1 

Abstract Group Theory 

The concept of groups had its origin more than 150 years ago, 
in the beginning of the nineteenth century. The early development 
of the theory of groups was due to the famous mathematicians Gauss. 
Cauchy, Abel , Hamilton, Galois, Sylvester, Cayley, and many others.l 
However, till the advent of modern quantum mechanics in 1925, it 
did not find much use in physics. The advantages of group theory 
in physics were soon recognized and the new tooi was put to use in the 
calculations of the atomic structures and spectra by, to name only 
a few, H.A. Bethe, B.P. Wigner and others. Group theory has now be-
come indispensable in most branches of physics and physical chemistry. 

Although a mathematician is generally more interested in the 
formal 'development of abstract group theory, a physicist finds the 
representation theory of groups of direct use in quantum physics and 
other branches of physics. In this chapter, we shall discuss only those 
aspects of abstract group theory will be needed for under-
standing the representation theory; this will be taken up in Chapter 3 
for finite groups and in Chapter 4 for continuous groups. 

1.1 What is a Group? 

Consider the set lofall integer:s,l= { ... , -3, -2, -1,0,1,2, ... }, 
and consider the iollowing four properties of this set: (a) The sum of . 
any two elements of the set I is again an integer and henee belongs 

lBell (i965). 
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to the set 1. (b) The set contains an element 0, called zero, which has 
the property that for any element mEl, m + O=O+m=m. (c) For 
every element m of I, there exists a unique element n also belonging to 
I, suchthat m+n=n+m=O; evidentIY,n=-m. (d) Ifm,nandpare 
any three elements of I, m+(n+p)=(m+n)+p ; this means that the law 
of addition is associative. 

Consider another set, the set U(n) of all unitary matrices of order 
n, where n is a fixed finite positive integer. This set has the following 
four properties: (a) If U and V are any two unitary matrices of order 
n, their product UV is again a unitary matrix of order n and hence 
belongs to the set U(n). (b) The set contains the unit matrix / which 
has the property UI=/U=U for every UE U(n). (c) If U is an 
element of U(n), there exists a unique element V also in U(n) such 
that UV= VU=l. (d) If U, V and Ware any three elements of the 
set, U(VW)=(UV)w. 

It will be noticed that the. four properties satisfied by the above 
two sets are very much similar in nature. In fact, these properties 
define a group and both the sets discussed above are examples of a 
group. 

Abstractly, a group is a set of distinct elements, G={E, A. B, C, 
D, ... }, endowed with a law of compositIOn (such as addition, 
multiplication, matrix multiplication, etc.), such that the following 
properties are satisfied: 

(a) The composition of any two elements A and B of G under the 
given law results in an' element which also belongs to G. Thus, 

A 0 BEG, BoA E G, (1.1) 
where we have denoted the composition of two elements of G by the 
symbol o. Symbolically, 

A 0 BEG \f A, BEG. 
This property is known as the closure property of the group and the 
set is said to be closed under the given law of comQosition. 

(b) There exists an identity element EEG such that for all AEG, 
Eo A=A 0 E=A. (1.2) 

. Symbolically, 
3EE G3 EoA=AoE=A \f A E G. 

E is known as the identity element of G. 
(c) For any element AEG, there exists a unique element BEG 

such that 
AoB=BoA=E. (1.3) 

Symbolically, 
\f A E G 3 BEG 3 A 0 B = BoA ==E. 
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B is called the inverse of A, and vice versa. 
(d) The law of compositiop. of the group elements is associative, 

i.e. , for any A, B, CEG, ' 
A 0 (B 0 C)=(A 0 B) 0 C. (1.4) 

Symbolically, 
A 0 (B 0 C)= (A 0 B) 0 C 'V- A , B, C E G. 

The number of elements in a group is called its order . . A group . 
containing a finite number of .elements is called a finite group; a 
group containing an infinite number of elements is called an infinite 
group. An infinite group may further be either discrete or continuous: 
if the number of the elements in a group is denumerably infinite 
(such as the number of all integers), the group is discrete; if the 
number of the elements in a group is nondenumerably infinite (such 
as the number of all real numbers) , the group is continuous. 

Some more examples of a group are : 
(i) The group of order two consisting of the real numbers 1,-1, 

with ordinary multiplication as the law of composition. 
(ii) The group of order four consisting of the complex nll1!lbers 

1, i, -1, -i (where i 2=-I), under multiplication. . 
(iii) The discrete infinite group of all real integers discussed above. 

The law of composition is addition and the identity element is O. 
(iv) The set of all real numbers under addition. This is a 

continuous group with 0 as the identity element. The inverse of a 
number b is its negative -b. 

(v) The set of all positive (zero excluded) real numbers under 
multiplication. The identity element is 1 and the inverse of x is its 
reciprocalljx . 

. (vi) The single point set containing just the unity is a group of 
order one under multiplication . . 

(vii) The set of the two matrices J' and [- _ ] under 

matrix mUltiplication. 
(viii) The set of all nonsingular square matrices of order n (n 

a positive integer) under matrix multiplication. 
(ix) If k is a positive integer, the set 1, 2, ... , k-l) of k 

integers isa group under2 addition. modulo (k). The identity element is 
zero and the inverse of an element r is k-r. 

2A number n Illodulo (k) is defined as the remainder obtained on dividing 
n by k . Thus,10 modulo (6) =4, 3 modulo (3) =0, etc. Let k=6 in Example 
(ix) ; then 3+4=1, 5+1=0, etc. 
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(x) If p is a prime number greater than 1, the set (1, 2, . . . , p -':" l) 
of p-l integers is a group under muItipliCation3 modulo (p). 
The identity element is 1 and the inverse of an element r is (sp+ I)/r 
where s is the smallest positive integer which makes sp+ I an integral 
multiple of r in the ordinary sense. 

(xi) The set of all matrices of order m X n under matrix addition. 
The identity element is the null matrix of order m X n and the inverse 
of an element A is its negative - A . 

In the above examples, we come across two basic laws of 
composition- additioq and multiplication-each referring to scalars 
and matrices. When the law of composition of a group is addition , the 
inverse of an element is called the additive inverse; when it is 
multiplication, the inverse is called the multiplicative inverse. Thus, if 
x is a number, - x is its additive inverse and l/x the multiplicative 
inverse provided x :f: O. If A is a matrix,-A is its additive inverse and 
A-I the mUltiplicative inverse provided A is nonsingular. Similarly, in 
the case of a group of numbers , ° is the additive identity and I the 
mUltiplicative identity ; in the case of a group of matrices, the null 
matrix (of appropriate order) is the additive identity while the unit 
matrix (of appropriate order) is the multiplicative identity. 

Hereafter, the symbol 0 will be dropped and, for example, AB 
will be written for A 0 B. Similarly, Wf! shall often replace the word 
'composition' by 'multiplication' or 'product' of group elements. 

The product of the group elements is not necessarily commutative, 
i.e., in general, AB:f:BA. If all the elements of a group commute with 
each other, it is said to be an abelian group. Such groups have impor-
tant consequences as will be seen later. All the groups considered 
above, except the group U(n) of all unitary matrices of order nand 
the group of all nonsingular matrices of order n, are abelian groups. 

1.1.1 Group of transformations. The groups of particuinr 
interest to a physicist are the groups of transformations4 of 
physical systems. A transformation which leaves a physical system 
invariant is called a symmetry transformation of the system. Thus any 
rotation of a circle about an axis passing through its centre and per-
pendicular to the plane of the circle is a symmetry transformation for 
it. A permutation of two identical atoms III a molecule is a 
symmetry transformation for the molecule. 

3See footnote 2. In this Example, if p = 7, then 3.4=5, 2 .5=3, etc.; the 
inverse of 4 is 2, since 4.2= 1. 

'Such as rotations, reflections, permutations, translations, etc. 



ABSTRACT GROUP THEORY 5 

We shall now show that the set of all symmetry transformations of 
a system is a group. First we observe that if we perform two symmetry 
transformations of the system successively, the system remains 
invariant. Thus the composition of any two symmetry transformations 
of the system is again a symmetry transformation of the system, i.e. , 
the set considered is closed under the law of successive transformations. 
We can define an identity transformation which leaves the system 
unchanged; and this obviously belongs to the set. Given a symmetry 
transformation, we see that there exists an inverse transformation which 
also belongs to the set. Finally, the successive transformation )f the 
system obeys the associative law. This proves that the set consi.jered 
is a group. 

The group of aII symmetry transformations of a system is called 
the group of symmetry of the system. 

1.1.2 The group of symmetry of a square. Suppose we have 
a square cut out in . a piece of cardboard as shown in Fig. (1.1). 
Let us label the various points of the square as shown in the figure: 
the corners by a, b, c, d; the centres of the edges by e, g, h; and . 
the centre of the square by o. The points marked I, 2, ... ,8 are fixed 
on the paper (they are not marked on the square). Now suppose we 
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FIG URE 1.1 The axes and the planes of symmetry of a square 

rotate the square through a right angle about a line perpendicular to 
the square and passing through o. But for the labeling G, b, . ..• h. 
we would not notice any change in the square. Consider all such 
symmetry transformations of the square (such as rotating or reflecting 
it, without bending or stretching) which leave the position of 
the boundaries of the square unchanged but give a distinct labeling of 
the marked points a, b, ... , h. Before listing all such transfor-
mations, it would be proper to say .a few words about the notation we 
shall be using. 
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If a rotation through an angle 21t/n (n a positive integer) about 
some axis leaves the system invariant, the axis is known as an 
symmetry axis of the system and the corresponding operation is 
denoted by C". Its integral powers, which' will. also be symmetry 
transformations of the system, will be denoted by Cnk; this repre-
sents k successive operations of Cn on the system, or a rotation of 
21tk/n about the axis. A reflection in a plane will be denoted by 
m or (J with a subscript specifying the plane of reflection. The 
identity transformation will be denoted by E. . 

While enumerating all the symmetry transformations of a square, 
which are listed in Table (1. 1), we · shall use the shorthand notation 
'reflection in a line' to mean 'reflection in a plane perpendicular to the 
square passing through the line' . 

It can be seen that the operations listed in Table (1.1) exhaust 
the symmetry transformations of a square, i.e. ,- there is no other trans-
formation leaves the square in the same position and yet gives 
a distinct labeling for the points a, b . .. . , h. One may tbink of in-
version through the centre 0 ; but it can be readily verified that it is 
identical to C,2. 

cr. 

FIGURE 1.2 The cquivalance of the transformations of a square 
with those of a cartesian coordinate system 

It is interesting to note that these eight transformations correspond 
to the eight different ways in which we can choose a cartesian coordinate 
system with axes parallel. to the edges of the square. These are shown 
in Fig. (1 .2). We either consider that the coordinate system is held 
fixed while the square is transformed, which is known as tbe actil'e 
l'iewpoint, or that the square is neld fi xed while the coordinate 
system is transformed. which is known as the pafsil'c riellpoint. It 
should be noted that a transformation in the active viewpoint is 
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TABLE 1.1 SYMMETRY TRANSFORMATIONS 
OF A SQUARE 

Symbol Operation Result 

E The identity. '02 
4 d c 3 

C, A clockwise rotation through 900 about '02 
an axis normal to the square and passing 

4 c : 3 through o. 

'02 

C,2 A rotation through 1800 about the above 

4: • 3 
axis . 

C 4
3 A clockwise rotation through 

the same axis. 
2700 about '02 

4 • ; 3 

Reflection in the line 5-7. 0 mx 5 7 
a b 

6 

Reflection in the line 6-8. D my 
c d 

8 

Cu Reflection in the line 1- 3. '0 k '3 

a. Reflection in the line 2- 4. 0 2 

4 d a 
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equivalent to the inverse transformation in the passive viewpoint. 
Thus, if in the active viewpoint, we define C, as a clockwise rotation 
of the square, in the passive viewpoint, C, would mean an anticlockwise 
rotation of the coordinate system. lhis convention will be used 
throughout this book and is illustrated explicitly in Fig. (1.2). 

It can be readil¥ verified that the set of the eight transformations 
listed in Table (1.1) is a group which is the group of symmetry of a 
square. Thus, consider the operation of C4 followed by that of au on 
the square. This can be found as follows: 

D· b DaDe Db = . 
dec b a b de 

(1.5) 

In the operator notation, we can write this as 
a uC,=111x , . (1.6) 

meaning thereby thaI the operations of all C4 and of tnx on the square 
or in fact, on any system, give the same result. 

The inverse of an operator is that operator which nullifies the 
effect of the first. Thus, consider the successive operation C,3C, on 
the square: 

Db Da' C.3C. =C. 3 _ 

dec b Db Db = E • (1. 7) 
d cdc 

The same result would be obtained if we operate by C, and C,3 
in the reverse order. Thus, by (1.3), C, is the inverse of C,3 and vice 
versa. In the operator notation, we may write this as 

(C,)-1=C43 or C4C43=C,3C4 =E. (l.8) 
It is left as an exercise to verify that each of the eight symmetry trans-
formations has an inverse which is just one of these eight transfor-
mations. 

Finally, the transformations obey the associative law. Hence 
the set of the symmetry transformations of a square is. a grouP .. This 
symmetry group of a square of order eight is denoted by C,v in crys-
tallography5. 

SThe crystallographic point groups are dealt with in Chapter 7. If instead of 
the reflections, we consider rotations through 1t about the four lines of Fig. 
(1.1). we have the group D, which is also .the symmetry group of a square and 
has the eight elements (E, C" C,2, C,3, CS7' Cu. CI 3, Cz,) where C57 
denotes a twofold rotation about the line 5-7, etc. See Chapter 7 for more 
details. 
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1.2 The Multiplication Table 
Let us consider the following operations 

C, mx=au, au C,3=lny, 
Gu uv=C,2, and so on. 

All such products of the group elements can be represented by a table, 
known as the group mult iplication table. It is shown in Table (1 .2) for 
the symmetry group of a square, C4V • Note that in a successive 
operation such as ABC . .. , the order of operation is from right to left. 
Thus, in the product C,lnx, Inx is the first operation and C, the second 
operation. The entry for C,mxwould therefore be found in Table (1.2) 
in the column corresponding to mx and the row corresponding to C,. 

TABLE 1.2 THE MULTIPLICATION TABLE 
FOR THE GROUP C4• 

SECOND ,FIRST 
OPERATION OPERATION 

E C, C,2 C,3 nix my Gu G_ 

E E C, C,2 C,3 mx my Gu u_ 
C3 • C,3 E C, C,2 0_ au mx my 
C,2 C,2 C,s E C, my mx G. Gu 
C, C, C,2 C,3 E G" a_ my mx 

II1x III .. a v my Gu E C,2 C,3 C, 
my my Gu mx Gv C,2 E C, C,s 
Gu Gu IIIx a v my C, C,3 E cz , 
Gv Gv my au mx c.a C, C,2 E 

The ordering of the rows and the columns in writing down the 
multiplication table of a group is immaterial. We have chosen a diffe-
rent ordering for the rows and for the columns:the ordering is such 
that an element in the first column (second operation) is the inverse 
of the corresponding element in the first row (first operation). If the 
multiplication table is written in this way, the principal diagonal 
contains only the identity element E. The advantage of this arrange-
ment will be clear in Section 3.7. 

1.1.1 The rearrangement theorem. It will be noticed from the 
multir!ication Table (J.:n that each element of the grour once 
and only once in e;lch colu'mn. This is kno\\'n as the rellrra llg, 'II/c 'lIi 

" 
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theorem. The arrangement of elements in a row (column) is different 
from that in every other row (column). 

To prove this theorem, we first show that no element can occur 
more than once in a row or a column. For, suppose an element D 
occurs twice in a column corresponding to the element A. This means 
that there exist two elements, say Band C, such that 

BA=DandCA=D. 
MUltiplying from the right by A-I, we get 

B=DA-l, C=DA-I, 
showing that B=C, which is contrary to the hypothesis . that the 
group elements are distinct. The same line of argument can be used 
to show that no element can occur more than once in a row. 

The second part is now easy to prove: since no element can 
occur more than once in a row or in a column and since the number 
of places to be filled in each row or each column is equal to the 
order of the group, each element must occur once and only once in 
each row and in each column. This completes the proof. 

An important conseqhence of this theorem IS that if f is any 
function of the group elements, then 

f(A)= f(AB), (1.9) 
AEG AEG 

where B is an element of the finite group- G and the sum runs over 
all the group elements. 

1.2.2 Generators of a finite group. It is po.;sible to generate 
all the elements of a group by starting from a certain set of elements 
which are subject to some relations. Consider the smallest set of 
elements whose powers and products generate all the elements of the 
group. The elements of this set are called the generators of the group. 
We shall restrict ourselves here to finite groups only and illustrate by 
means of two examples. 

EXAMPLE 1. We wish to generate a group starting from an element 
A subject only to the relation A"=E such that n is the smallest 
positive integer satisfying this relation. 

Since A is an element of the group, all its integral powers must 
also be in the group. Thus, we generate new elements A2, A3, . .. , of 
the group and the process stops at An=E. The bigber powers of A do 
not give us new elements because A<,+k=Ak. The desired group is thus 
(A, AZ, A3, •. 0, An-I, An==E), whose order is n . 

. , 
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EXAMPLE 2. We wish to generate a group from two elements A 
and B subject only to the relations A2=B3=(AB)2=E. 

The group must contain the elements E. A, Band B2, since A2=E 
and B3=E. But then it must also contain all the products of A. B 
and B2 among themselves. Hence we get two new elements of the 
group, AB and BA. It can be shown that A and B do not commute, 
since if they do, then from the relation (AB)2=E, we have 

E=ABAB=A2B2=B2, 
which is not true. Therefore AB and BA are distinct elements. We 
have thus generated the six elements of the group E , A, B, B2, AB, 
BA. 

It can now be shown that this set is a group, i.e., it is closed 
under multiplication. Suppose we wish to show that the product 
(AB)B=AB2 belongs to this set. From the relation (AB)2=E, we 
have (AB)-l=AB or B-IA-l=AB or AB=B-IA since A2=E. But 
from B3=E, we have B-I=B2. Hence AB=B2A. Using this. we 
find that 

(AB)B=B2AB=B2B2A=BA, 
which indeed belongs to the set. Similarly, it can be verified that 
the inverse of each element of the set also belongs to the set. Hence 
the desired group is (E, A , B , B2, AB, BA) . whose order is six. 

The generators of a group are not unique; they can be chosen in a 
variety of ways. Thus, for example, the group of order six of 
Example 2 above may be generated by anyone of the following sets 
of generators: (A, B), (A , B2), (A, AB), (B. AB), etc. See Problem 
(I. ?oS) 

1.3 Conjugate Elements and Classes 

Consider a relation such as 
A-1BA=C. (1.10) 

where A, Band C are elements of a group. When such a relation 
exists between two eiements Band C. they are said to be cOlljugate 
elemeilts. The operation is called a similarity trallsformatioll of B by 
A. It is clear that 

(I . 11) 
It is not difficult to find such relationships among the element s of. 

the group C4v' Thus, 
C4-lmxC4 = lIIy. (1 . 12 1 

showing that IIIx and Illy are conjugate to each other. 
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It is a simple exercise to show 'that if B is conjugate to C and B 
is also conjugate to D , then C and D are conjugate elements ; or 
B, C and D are all conjugate to each other. 

It immediately follows that we can split a group into sets such 
that all the elements of a set are conjugate to each other but no 
two elements belonging to different sets are conjugate to each other. 
In fact, such sets of elements are called the conjugacy classes or simply 
the classes of a group. The identity element E always constitutes 
a class by itself in any group, since, for any element A of the 
group, A-IEA=E. It is left as an exercise to show that the classes 
of C4• are 

(1.13) 
In case we are dealing with groups of transformations consisting 

of rotations, reflections and inversion of a physical system, there are 
some simple rules which allow the determination of the classes of a 
group without having to perform explicit calculations for all the ele-
ments. These are: 

(i) Rotations through angles of different . magnitudes must 
belong to different classes. Thus C, and C,2 of C,v belong to different 
classes (see Problem 1. 17). 

(ii) Rotations through an angle in the, clockwise and in the 
anticlockwise sense' about an axis belong to a class if and only if 
there exists a transformation in the group which reverses the direction 
of the axis or which changes the sense of a cartesian coordinate 
system (i.e., takes a right-handed system into a left-handed one or 
vice versa). Thus, C, and C, 3 of C,v belong to the same class because 
a reflection (such as mx or C:;u) changes the sense of the coordinate 
system. 

(iii) Rotations through the same angle about two different axes 
or reflections in two distinct planes belong to the same class if and 
only if the two axes or the two planes can be brought into each other 
by some element of the group. Thus, mx and my belong to the same 
class since the line 5-7 of Fig. (1.1) can be brought into the line 6-8 
by the application of C,; au and mx do not belong to the same class 
since there is no operation in C4V which can bring the line 1-3 into 
the line 5-7. 

These simple criteria are very useful in obtaining the classes of 
the molecular and the crystallogarphic point groups simply by 
inspection. 
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1.3.1 Multiplication of classes. We now define the product of 
two classes Let Cj=(A 1, A 2 , • •• ,Am) and Cj=(B1 , B 2 , • •• , 

Bn) be two classes (same or distinct) of a group containing m and n 
elements, respectively. We define their product as a set containing all 
the elements obtained by taking the products of each element of Cj 
with every element of Cj. We keep each element as many times as it 
occurs in the product. Thus, 

C; Cj=(A1B1, A 1B 2 , • •• , A/Bk, . .. , AmBn). (1.14) 
We can easily show that the set C; Cj consists of complete classes. 

It would be enough to show that if an element A/Bk belongs te· the 
set C/ Cj, then any element conjugate to A/Bk also belongs L. the 
set. Consider an element conjugate to A/Bk with respect to some ele-
ment X of the group G: 

X-l(A.tBk)X=(X-lA/X) (X-IBkX) 
=ArB., say, (1.15) 

where, by the definition of a class, Ar belongs to Ci and B. belongs 
to Cj. Hence ArB. belongs to the set CiCj. 

We can then express the product of two classes of a group as 
a sum of complete classes of the group: 

C/ Cj="'L.aijk Ck, (1.16) 
k 

where ajjk are nonnegative integers giving the number of times the 
class Ck is contained in the product Ci Cj, and the sum is over all 
the classes of the group. 

1.4 Subgroups 

A set H is said to be a subgroup of a group G if H is itself a 
group under the same law of composition as that of G and jf all the 
elements of H are also in G. 

As an example, consider the four elements (E,C4 , C42, Cl) of 
C4V ' It is easy to see that this set satiGfies all the axioms defining a 
group; hence it is a subgroup of C4v' Some more examples of the 
subgroups of C4v are (E, C42, mx , my), (E, au), etc. 

Every group G has two trivial subgroups-the identity element 
and the group G itself. A subgroup H of G is called a proper sub-
group if H=i=G, i.e., if G has more elements than H. 

If we work out the classes of the two subgroups (E, C4 , C42, 

C43) and (E, C42, mx • my) , we find that in both of these groups every 
element constitutes a class by itself (see Problem J. 12). The 
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elements C, and C,J do not belong to the same class in the group 
(E, C" C£2, C43) because there is no operation in this group which 
changes the sense of the coordinate system. Similarly, mx and my 
do not belong to the same class in the group (E, C42, mx, my) because 
there is no operation in this group which can take the x axis into 
the y axis. It is therefore important to note that elements belonging 
to a class in a larger group may not belong to a class in a smaller 
subgroup. 

1.4.1 Cyclic groups. If A is an element of a group G, 
all integral powers of A such as A2, A3, ... , must also be in G. If G 
is a finite group there must exist a finite positive integer n such that 

An=E, (1.17) 
the identity element. The smallest positive (nonzero) integer satis-
fying (1.17) ;s called the order of the element A. 

The group (A, A2, A3, ... , An-E), which we have already 
discussed in Example 1 of Section 1.2.2, has the property that 
each of its elements is some power of one particular element. Such 
groups are called cyclic groups. A group generated by a single ele-
ment is a cyclic group. Clearly, cyclic groups are abelian, while the 
converse is not necessarily true. 

1.4.z1 Cosets. Consider a subgroup H=(H1=E, H2 , ••• , Hh) 
of h of a group G which is of order g. Let X be any element 
ofG. Construct all the products such as XE, XH2 , etc., and denote 
the set of these elements by6 

XH=(XE,XH2J XH3, •• • ,XHII)' (1.18) 
Now there arise two cases-X may be in the subgroup H or X may 
not be in H. If X is a member of H, the set X H must be identical 
to the group H by the definition of a group. In the set XH, we 
only have a rearrangement of the elements of H. We may denote 
this by writing 

XH=H if XEH. (1.19) 
On the other hand, if X does not belong to H, it can be shown that 
no element of the set X H belongs to H. This we do by starting 
from a contrary assumption. Thus, suppose that XHi for some 
value of i (1 S iS h) belongs to H. Now since H is a group, HI-l 
also belongs to H. Hence it follows that (XHj) Hj-l=X is in H, 

6This is the multiplication of a set by an element . We have previously 
discussed the product of two sets,in Section 1.3.1. 
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contrary to the hypothesis that X is not a member of H. This 
proves that Hand XH have no common element. We say that H 
and X H are disjoint sets and express it, in the set theoretic notation, 
by sayIng that the intersection of H and X H is the 'null set rp: 

H n (XH)=r/>. (1.20) 

The set XH is called the left coset of H in G with respect to X . 
Similarly, we can define the right coset of H in G with respect to X as 
the set of elements 

HX = (EX , H 2 X , H 3 X , .. . ,HhX), (1.21) 
which will also be disjoint 't o H if X is not in H. All the elements 
of the left coset and the right coset must of course belong to the 
bigger group G since X as well as H j belong to G. 

1.4.3 A theorem 00 subgroups. We are almost half-way through 
to prove an important theorem: If a group H of order h is a subgroup 
of a group G of order g , then g is an integral multiple of h. 

To prove this, let H=(E,H2 , H 3 , • • • ,HI!) be the subgroup of 
G. As before, form the left coset of H with respect to an element 
X EG which does not belong to H. All the elements XHj (1 <h) 
belong to G but none of them is a member of H , as already shown 
above. Thus, we have h new elements of the group G. We have so 
far generated the following 211 members of G: 

(1.22) 
If this does not exhaust the group G, then pick up an element Y 
from the remaining elements of G such that Y belongs neither to H 
nor to XH. Again, forming the left coset YH, we see by the pre-
vious argument that all the elements YH must belong to G, but that 
no element of YH can belong to H . That is, the sets H 
and ' YH are disjoint. We now prove that the sets YH and XH are 
a lso disjoint. For, if an element YHj were to be identical to an 
element, say, X Hj (l < i , j < h), then we have 

YHj=XHj, 
or Y=XHj Hj-l=XHk, say, (1.23) 
wi th I < k < h, showing that Y belongs to X H, contrary to the 
hypothesis. Thus we have a set of h new elements of G, making 
a ltogether the 3h elements ' 

H U XHU Y H 
= (E, H 2 , •• • , Hh, X, XH2 , ••• ,XHii, Y, YH2 , ••• ,YHh). (1.24) 
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If this still does not exhaust the group G, then we pick up one 
of the remaining elements of G and continue the process. Every 
time we generate h new elements, they must all belong to G and 
hence the order of G must be an integral multiple of h. 

The integer g/h is called the index of the subgroup H in G. 
If an element A of a finite group G is of order n, we have 

seen that the set (A, A2, ... , An _E) is a subgroup of G. Hence it 
follows that the order of every element of a finite group must be"an 
integral divisor of the order of the group. 

1.4.4 Normal subgroups and factor gro-ups. If the left and 
the right cosets of a subgroup H with respect to all the elements 
X E G are the same, then H is called a normal subgroup or an inva-
riant subgroup of G. This condition can be written as 

XH=HX, 
or X-IHX=Hfurall XEG. (1.25) 

We can also express this condition alternatively by requiring that 
every element of XH be equal to some element of HX, or 

XH/=HjX, ' " 
which gives 

(1.26) 
But this is just the conjugation rdation between the e ents H, 
and Hj and shows that if an element H, belongs to a normal s bgroup 
H of G, then all the elements conjugate to H, also belong " to H. 
This is often expressed by saying that a normal subgroup consists of 
complete classes of the bigger group. The converse also holds, i.e., jf 
a subgroup H consists of complete classes of G, then H is a normal 
subgroup of G (see Problem 1.26). This may therefore be taken as 
an alternative definition of a normal subgroup. For example, (E, C42, 

mx , my) is a normal subgroup of C,. whereas (E, mx ) is not. 
We now introduce another important concept, that of a factor 

group. We shall illustrate this first by an example and then follow 
with a general discussion. 

Consider a normal subgroup of C4., say K 1=(E, C42), and form 
aJl its distinct cosets with respect to various elements of C41>' There 
are four such distinct co sets including K t : 

K1=(E, Cl), K 2=(C" C,3), 
K3=(mX' my), K,=(l1u, cr.). (1.27) 

We can make this set of cosets a group if we define the product of 
two cosets as follows: The multiplication of two co sets is a set 
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obtained by multiplying each element of the first coset with every 
element of the other, repeated elements being taken only once. 7 In 
general, the product of two cosets will depend on the order of 
multiplication. Thus, we consider 

K 2 K3=(C4 , C.3) (m;x, my) 
(1.28) 

It can then be seen that the set K=(K1 , K2 , Ka, K4) is closed under 
coset multiplication defined above. Similarly, it can be verified that 
this set also satisfies all the other requirements for being a 
Hence it follows that the set K, where each coset K, is considered an 
'element' on a higher plane of abstraction, is a group under the given 
law of composition. This group K is called the factor group ofG with 
respect to the normal subgroup K1 • 

Quite generally, if H is a normal subgroup of G, the set of all 
the distinct cosets of H in G, together with the coset multiplication 
defined above, is called the factor group or the quotient group of G 
with respect to H and is denoted by 

K=G/H. (1.29) 
If g is the order of G and h that of H, then it is easy to see that the 
order of K is g/h, the index of H in G. 

1.5 Direct Product of Groups 

The direct product of two groups H=(Hl=E, HI, H s,"" H,,) 
of order hand K=(K1_E, K 2 • K3, . .. , Kt ) of order k is defined as a 
group G of order g=hk consisting of elements obtained by taking 
the prod ucts of each element of H with every element of K, provided 
(i) that Hand K have no common element except the identity E and 
(ii) that each element of H commutes with every element of K. 
The direct-product group is denoted by 

G=H(f!)K=(E, EK2 , EK3,·.·, EKk, H 2Ks,"" 
H 2Kk, . .. , HhKk). (1.30) 

Clearly, both Hand K are normal subgroups of G. The subgroups of 
C.v afford a simple example of this concept. Thus, 

(E, m;x)(f!)(E, my)=(E, C42,m;x, my). (1.31) 
Taking the direct product of groups provides the simplest 

method of enlarging a group. This concept finds .its immediate use 
in the study of symmetry of physical systems such as atoms, molecules, 

7Note that this is different from the class multiplication defined earlier. 
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crystals, nuclei and elementary particles. To take an example, 
suppose G is a group of symmetry (of a system) consisting of proper 
rotations only. Suppose we later discover that the inversion, J, is 
also a symmetry transformation of the system. The inversion ope-
rator J along with the identity E constitutes a group of order 2, 
(E, J). Since the inversion commutes with all the rotations, we can 
take the direct product of G with (E, J) to obtain a bigger symmetry 
group for the system which is now G® (E, J). Although it is not 
possible in reality to tell whether we have found all the symmetries of 
a given system, it is naturally desirable to know as many of them 
as possible. We shall discuss this concept in more detail when we 
come to the applications of group theory to quantum mechanics 
in Chapters 5 and 6. 

1.6 Isomorphism aDd Homomorphism 

A group multiplication table, such as that shown in Table (1.2) 
for the group of a square, characterizes the group completely and 
contains all the information about the analytical structure of the 
group. Ail groups having similar multiplication tables have the same 
structure-they are said to be isomorphic to each other. 

Mathematically, there is an isomorphism between two groups 
G={E, A, B, C, ... } and G'={E', A', B', C', .. . }, both of the same 
order g. if there exists a one-to-one correspondence between the elements 
of G and G'. In other words. if the one-to-one correspondence is 
denoted by A_A', B_B', C-C', etc. , then a multiplication such as 
AB=C in the group G implies that A' B' = C' in the group G'. The 
multiplication table of G' can thus be obtained from that of G simply 
by replacing the elements of G by the corresponding elements of G'. 
It should be noted that the identity eloment of one group corresponds 
to the identity element of the other group under isomorphic mapping. 

As an example, it can be seen that the group {I , i, -1, -i} of 
numbers is isomorphic to the group {E, C" C,2, C,3} of rotations 
under the mapping 

l_E, i_C,,-I_C,2,-i_C,3. 
Thus, for example, the product (-1) (-i)=i in one group 
corresponds to the product Cl C,3=C, in the other. We shall come 
across many other examples of isomorphism later. 

Very often we come across a many-to-one correspondence or 
mapping from one group to another (or one set to another, in 



ABSTRACT GROUP THEORY 19 

genera]). We say that ther'e is a homomorphism from a group G1 to 
another G2 if to each element A in G1 there corresponds a unique 
clement 4> (A) of G2 such that 4> (AB)=4> (A) 4> (B). The mapping 4> must 
be defined for all elements of G1• The element 4> (A) of G2 is called the 
image or map of the element A of G1 under the homomorphism. 
Although each element A of G1 is mapped onto a unique element 
4>(A) of G2, several elements of G1 may be mapped onto the same 
element in G2• Thus it may happen that 4> (A)=4> (B) even jf A-::j::B. IT 
n elements of G1 are mapped onto each element of Gz, we say that 
there is an n-to-l mapping or homomorphism from G1 to Gz• It is 
evident that if n= l, the mapping reduces to isomorphism. 

Let us develop a slightly different notation to make the concepts 
more clear. Let G={E, A, B, C, ... } be a group of order g and let 
G' = {E1• E2, ••• , En, AI' Az, •.• , An, •.. } be a group of order 1Ig 
(note that only one element, say E1, is the identity of G'). Suppose 
that it is possible to split the group G' into g sets (E,), (A,), 
etc., each containing n elements such that the elements of G' can be 
mapped onto the elements of G according to the scheme 

E1, E2, ••• , En-E; 
AI' Az, •.• , A; etc. (1. 32) 

Then the group G' is said to be homomorphic to G if the mapping is 
such that the product 

(1. 33) 
in G' implies AB = C in G, and vice versa, where C is the image in G 
of the elements Ch Cl ••.• Cn of G'. We say that there is an n-to-I 
homomorphism or mapping from G' to G. 

Again the subgroups of C,'1 provide a simple example of 
homomorphism. Thus, the group (E, C,2, m;x, my) is hop:lOmorphic to 
the group (E, m(t) with the following two-ta-one mapping: 

(1.34) 

1.6.1 The set (E,) is a normal subgroup of G'. It can be shown; 
quite generally that the set (E,) of G', whose elements E1 , Es, ... , E,. 
are mapped onto the identity element E-of G, is a normal subgroup 
of G'. To prove this, we first show that the set (E,) is a group. In the 
group G, we have EE=E; therefore, by the definition of homomorphism,,; 
the product of any two elements E, and EJ of G' must belong to 
the same set (E,). Thus, the set (E,) is closed under multiplication. 
Now we must show that the identity element, which we denote by 
/;. , for a moment, belongs to the set (E,). Suppose E' belongs to 
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some other set of G', say, E' E (AI); then for any element B,. E G', 
we must have E'B,.=B". ' By homomorphism, we must then have 
AB=B in G, which is possible only if A=E, i.e., only if E' E (E/). 
It is now almost trivial to show that if Ej E (E,), then Erl also 
belongs to the set (EI). Thus we have proved that (EI) is a group. 

To prove the second , part, that (EI) is a normal subgroup of 
G', we consider its left and right co sets with any other element, say 
A, ,E G', i.e., we consider Aj(E)) and (Ej)A j. Because EA=AE=A 
in G, any product element such as EjAI or AjEj of G' must belong 
to the set (Aj). Moreover, the products of AI with all the n elements 
EJ of the set (Ej) tre set (AI). To put it briefly, evcry element 
of (AI) must occur once ahd only once in the product AI (Ej); the 
same will clearly be true for (Ej) A j • Thus, we have 

J AI (Ej)=(Aj), 
I (Ej) Aj=(A j ), (1. 35) 

showing that (EI) is a normal subgroup of G'. 
The set (E,) of G' which is mapped onto E of G is called the kernel 

,of homomorphism. The above theorem can therefore be stated briefly 
by saying that the kernel of homomorphism from G' to G is a normal 
subgroup of G' . 

The identity element furnishes a trivial example of homomorphism. 
There is a homomorphism from any group G onto the group 
order one containing only the identity element, which, in turn, a 
normal subgroup of any group. 

1.7 Permutation Groups 

These groups /are of considerable importance in the quantum 
mechanics of identical particles. Consider a system of n identical 
objects. If we interchange any two or more of these objects, the 
resulting configuration is indistinguishable from the original one. 
We can consider each interchange as a transformation of the system 
and then all such possible transformations form a group under which 
the system is.invariant. Since there are altogether n! permutations on 
II objects, the group has order n!. It is known as the permutation 
group of n objects or the symmetric group of degree n and is usually 
denoted by S".. 

Taking a specific example of three identical objects, we see that 
there are six. possible which may be denoted as: 
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E_(1 2 n· A=(; 2 D· B=G 2 
- 1 2 3 1 

;). 
(1.36) 

C=G 
2 

D=G 
2 F-C 2 

1 2 - I 3 

The labels 1, 2 and 3 refer to the positions of the three objects rather 
than to the objects themselves.s The system itself has six possible 
'states' which may be denoted by 

Ih =(1 2 3), 1)12=(2 3 1), 1)13=(3 1 2) •. 
(1.37) 

1)1,=(2 3), 1)15=(3 2 I), tjI.=(1 3 2). 
The six operators of (1. 36) tl-: · n act on any of the above six states 
and their operations are to be .nterpreted as follows. The operation 
of A, for example, on any state tjI/ means that the object in position 
2 is to be put in position I, that in position 3 to be put in position 2, 
and that in position 1 to be brought to position 3. Thus, 

Al)ll=G i) (I 2 3)=(2 3 1)=tjl2; (1. 38a) 

Ctjl2=G 2 . D (2 3 1)=(3 2 1 )=tjl6' (1.38b) 

It can be readily shown that the set of the six permutations of 
(1 . 36) is a group. The successive operation of two permutations OD 
a state can be easily worked out. Thus,operatingon (1. 38b) from the 
left. say. by A, we find -

A (Cl)IlI>=G ; n (.3 2 )=(2 1 (1.39) 
But we also have . 

; D (2 3 1)=(2 1 3)=1)1,. (1.40) 

Thus, we have 
ACI)I2=FI)I.. (1.41) 

It will be seen that if we start from any other state, the result is the 
same, i.e., 

ACtjI,=FI)I/, (1.42) 
Therefore. in the operator. notation, we can write 

AC=F. (1.43) 
It is left as an, exercise in Problem (1.19) to work out the mul-

tiplication table of Ss ' 

lin quantum mechanics it is futile to try to· label identical particles! 
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Coming back to the general case of n identical objects, we see, 
tbaJ each permutation of these objects can be expressed as the 
succelssive interchange or transposition of two objects taken at a 
time. We define a transposition (mk) on n identical objects as 
the operation in which the objects in the positions m and k are to 
be interchanged leaving all the other objects where they are. It 
can then be verified that the symmetric group Sn of degree n (n 
finite) can be generated by the n-l transpositions (12), (13), ... , (In). 

As an example, a set of generators of Sa are the two transpo-
sitions (12) and (13). All the elements of can be written as 
suitable products of these generators. Thus, B=(13)(12), F=(13) 
(12)(13), C=(12), etc., where, as per the convention, the order, of 
operation is from right to left. 

If a permutation consists of an even number of transpositions, 
it is called an even permutation; if it consists of an odd number of 
transpositions, it is called an odd permutation. Thus, the operators 
E, A B of (1.36) are even permutations, while C, D and Fare 
odd pernhltations. 

The Iproduct of two even or of two odd permutations is an 
even permutation, whereas the product of an even permutation with 
an odd permutation is an odd permutation. It then immediately 
follo,,"s that the set of all even permutations among the group S,. 
is a subgroup,8 This is known as the alternating group of degree nand 
is usually denoted by A". Its order is clearly n !/2. Thus, the 
alternating group of degree 3 is As=(E, A, B), where the elements 
have been defined in (1.36). 

Some more discussion of the permutation group and its classes is 
given in Section 6.1.3. 

U Distinct Groups of a GiYeD Order 

We have already mentioned that isomorphic groups have 
identical analytical structures. A number of isomorphic groups 
may stand for altogether different physical situations, but it is 
luf6cient to study only one of them mathematically. The elements 
of a number of isomorphic groups may be matrices or permutations 
or coordinate transformations; it suffices to study a group which is 
isomorphic to all of these and its ' elements need not have any 

IA similar result does not hold for the set of aU odd perml.tations. Why? 
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'meaning' and may be treated in the abstract sense. Notice that 
the whole theory is based on the four fundamental group axioms 
which are quite independent of any particular interpretation given 
to the group elements. This part of the theory is therefore called 
abstract group theory. We may 'put in' any interpretation for the 
group elements demanded by the physical situation at hand and 
'take out' the corresponding results. 

It is therefore desirable to enumerate the distinct (nonisomorphic) 
groups of a given order ". It is particularly easy to do so for 
small values of n. We list below the possible structures of groups 
of orders upto n=6. 

(i) n = l. There is only one distinct structure: a group having 
only the identity element E. 

(ii) n=2. Again, there is only one distinct structure: a group 
(E, tf), where, because the group is of order two, At must equal E. 

, Any, group of order 2 must be isomorphic to (E, A). Examples are 
(E, mx), (E, au), (1,- 1), etc. 

(iii) n=3. This case also has only one structure: a group 
generated by an element A of order 3, i.e., (A, AI, AS=E.). 

(iv) n=4. This is the lowest order for which there are two non-
isomorphic groups. If we denote the group by (E, A, B, C), then 
the two possible structures are discussed below. 

As discussed at the end of Section 1.4.3, the elements A, B 
and C can be of order 2 or 4. If anyone element, say A, is of 
order 4, it follows that the remaining three elements must be equal 
to the powers of A and we get the structure 

(1.44) 
This gives us the cyclic group of order 4. (A, AI, AI, A'=E). 

In the second case, when no element is of order 4, it follows 
that all the elements (excluding the identity) are of order 2; henc:o 

A2=B2=CI=E. (1.45) 
The result of Problem (1.11) then shows that the group must be 
abelian. Now consider the produc,t AB; the two possibilities arc 
AB=£ and AB=C. AB-E implies that B is the inverse of 
A, wliereas, from (t. 45). we see that A is its own inverse. In 
other words, AB=E 9$uld imply B=A; therefore the only possibility 
is 

The two nonisomorphic are then 
(a) a ,?yclic group of order 4, (A, AI, AS, A'=E); 
(b) a' noncyclic abelian IrouP o( o!der (E, A, B; C) with 
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the structure A2=B2=C2=E, 'ABd:C, BC=A, CA=B. This is the 
lowest order noncyclic group. 

Any group of order 4 must be isomorphic to one of these two 
groups. 

(v) n=5. Only one distinct structure is possible in this case: 
the cyclic group of order 5, (A, At, A3, A', AS=E). 

(vi) n=6. There are again two distinct (nonisomorphic) 
groups. We shall prove only a part of this statement to illustrate 
the argument involved. 

Let us denote the group by (E, A, B, C, D, F) . As before, we 
note that the orders of all the elements except E must be 2, 3 or 6. 
If the order of anyone elements is 6, it follow that we have a cyclic 
group of order 6, (A, A2, AS, A', AS, A6=E). Therefore, to find the 
second possible structure we exclude this case. 

Now we shall show that not all the elements A, B, C, D and 
F can be of order 2. For if they are, then by Problem (1.11), the 
group is abelian. Then consider any two elements, say A and B 
with A2=Bz=E, and let AB=BA=C. It is clear that the set 
(E, A, B, C) of four elements is a subgroup of order 4. But this 
is not possible, because it violates the fundamental theorem on 
subgroups that the order of a subgroup must be an integral divisor 
of the order of the group. Hence we conclude that at least one 
element is of order 3. 

The remaining part of the proof is left to the reader. The two 
resulting structures are: 

(a) a cyclic group (A, A2, AS, A', AS, A6= E) ; 
(b) a noncyclic group (E, A, B, C, D, F) which is also nonabelian 

and has the structure A3=B3= E, C2=D2=P=E, B=A·, 
AC=F, CA=D, BC=D, etc. This is the lowest order nonabelian 
group and is isomorphic to S3' 

It is not easy, although possible in principle, to go on in this 
way to higher values of n. The number of nonisomorphic groups 
would increase, in general, with increasing n. However, two comments 
are worthy of note: 

(i) For every finite value of n, there is always a cyclic group 
generated by an element of order n, i. e., (A , A2, A3, . .. , Ah=E). 

(li) If the order n of a group is a prime number, there is only 
one possible structure, i . e., the cyclic group of order n. 

We conclude this chapter with one solved example. 
I 

EXAMPLE. Prove that a set of a group G is a system of generators of 
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G if and only if no proper su bgroup of G exists which contains all 
the elements of the set S. 

Choose a subset of the group G such that S is a system of 
generators of G. To begin with, let us assume that there exists a 
proper subgroup H of G such that SC.HC.C. H is a group · 
and S is contained in H , the ·powers and products of the elements of 
S give dements belonging to the group H alone, not G, which 
contradicts the assumption that S is a system of generators. of G. 
Hence, if S is a system of generators of G, lhere ex ists no proper 
subgroup of G which contains S. 

Now, assume that there exists no proper subgroup of G which 
contains S. Let us generate a group by taking all powers and products 
of the elements of S. Suppose this gives rise to the group K; evidently, 
KC. G. But, by assumption , G contains no proper subgroup which 
contains S. Hence it follows that K=G, showing that S is a: system of 
generators of G. Thus if no proper subgroup of G exists which contains 
S, then S is a system of generators of G. 

The desired result follows immediately on combining the above 
two results. 

PROBLEMS ON CHAPTER 1 

(1 .1) Show that the following sets are groups under the given laws of com-
position and classify them according to their properties: 

(i) the set of all rational numberslO under addition ; 
(ii) the set of all nonzero rational numbers under scalar multiplication; 

(iii) the set of all complex numbers under addition; 
fiv) the set of all nonzero complex numbers under scalar multiplication ; 
(v) tho set of the eight matrices 

{[I 0] [ 0 I] [-1 OJ [0 -1] [I 0] [-10] [ 0-1] o 1 . -1 O. 0-1. 1 O. ° -1. ° 1. -1 o· 

under matrix multiplication ; 
(vi) the set of all unitary matrices of order" under matrix multiplication; 
(vii) the set of all even integers under addition; 

(viii) the set of all complex numbers of unit magnitude under scalar multipli-
cation. 

(1 .2) Show that the following sets are not groups under the given laws of' 
composition. Which of the group axioms do they fail to satisfy? 

(i) The set of all real numbers under multiplication; 

lOA rational number is one which can be expressed as the ratio of two 
integers, p/q. A real number which cannot be expressed as the ratio of two 
integers (such as ";2) is called an irrational number. 
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(ii) the set of all nonnegative real numbers under addition; 
(iii) the set of all odd integers under (a) mult iplication, (b) addition; 
(iv) the set (1,2, ... , p-1) of p-1 integers under multiplication modulo (p) 

where p is not a prime number. 
(l .3) (a) Do the three matrices 

E=[l 0 0 OJ' A=[O 0 0 1J' B=[O 0 1 OJ o 1 0 0 1 000 000 1 
0010 0100 1000 
000 1 001 0 0 1 0 0 

form a group (under matrix multiplication)? Add a minimum number of 
matrices this set to make it a group. Find these necessary additional matrices 
and write down the multiplication tablo and classes. Is tbis aroup isomorphic to 
(E, C" C,2, C,3) or to (E, C,2, "'v).pr to both? 

(b) To tbD group obtained in the above problem, one more matrix i, 
added: 

[H! n 
1 0 0 0-

Again, add to tbis set of matrices a minimum number of matrices to make it a 
group. Show that the resulting group has order eight and that it is isomorphic 
to C, •. (This fact will be used in Section (3.9) 

(1.4) Show that the n lI-th roots of unity, i.e., exp (ihkln ) for ] <n, 
form a cyclic group of order 11 under multiplication. Show that if m is aD 
integral divisor of n, then the said aroup has a subaroup of order m' 

(1.5) Construct the group multiplication tables for the groups of 
Examplo (ix) of Section 1.1 for k-4 and 5, and for those of Example (x) for 
p-5llnd 7. 

(1.6) Write down the multiplication table for the group of the eight matrices 
of 1.1 (v). Obtain the classes and all the subgroups, Which of 
them arc normal subgroups? Show that tbis group is isomorphic to the group 
C, •. treated in this j:baptor by finding a suitable one-to-one correspondence. 

(1.7) Generate the matrix group two of whose clements arc 

and 
Show that the group of order 8 and bas 5 classes, but is not isomorphic to 
C, .. (Hint: Sbow matrix group here has six dements of 
order 4 whereas Ct. lias only two such elements. The multiplication tables caD 
tberclorc not be identicat.) (This shows that lwo groups 0/ 1M MIIM ord" /un..,.. 
lite MImI! number 0/ c1aues are ltOl neceuorily Iwmorphic.) 

(1.8) Obtain the prodUcts of the various classes of the aroup C,. and 
express them as su,ms of c1a5S0S in accordance with Eq. (1,16). 

(1.9) Generate a aroup from two olements A and B subject only to tbe 
rolatiODS AI_Bi_(AB)z.,.E. where k is a finite integer greater than 1, and find 
out its (Sqch groups arc known as the diltedral groups and arc denoted 
by D •• ) . \. \ 
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(1.10) What are the generators of the groups C,,, and Sa? What are the 
gene(ators of the matrix group of Problem 1.1 (v)? 

(1.11) Show that a group in which each element except the identity is of 
order 2 is abelian. 

(1.12) Show that an element of a group G constitutes a class by itself if and 
only ifit commutes with aU the elements of G. Hence show that in an abelian 
group every element is a class. f 

(1.13) Let H be a subgroup of a group G and let S be an arbitrary 
ofG. 

(i) Let C (,)" ; H) be the set of elements of H each of which commutes with 
overy element of S. i.e., 

C(S; H)=(X e HI XA=AX ¥ A e S). 
Show that C (S ; H) is a group. (This group is known as -the centralizer of S 
in H.) 

(ii) Let N(S; H) be the set of elements of H such that for all X e H. X-I 
SX=S, i.e .• 

N(S ; H)=(X e H I X-I SX=S). 
Show that N(S ; H) is a group. (This group is known as the normalizer of 
S in H). 

(1.14) Show that the group generated by two commuting elements A and B 
such that A2=-B3=E is cyclic. What is its order? 

(1.15) Let H be a subgroup of G and let XH be a coset of H which is 
disjoint to H. Let Y be an element of G belonging neither to ,H nor to XH. 
Show that the set YXH need not be disjoint to both Hand XH. (Hint: Show 
that if YXH were disjoint to both Hand XH. then in the proof of the theorem 
in Section 1.4.3, we would arrive at the erroneous result that the integer 
g/h must be an integral power of 2.) 

(I.16) Show that every subgroup of index 2 is a normal subgroup . . 
(1.11) Show that all the elements belonging to a class of a group have the 

same order. Show, by giving a contrary that the converse is not 
necessarily true. 

(I .18) Let c, be a class of a group and let Co· be the set of elements which 
are the inverses of those of C,. Show that C,· is also a class. (The class C,· is 
usually called the inverse of the class C,.) 

(1.19) Construct the multiplication table of the symmetric group Sa and 
obtain its classes. 

(1.20) Show that the symmetric group S,. of degree n is homomorphic to 
the symmetric group S. of degreo 2. 

(1.21) Construct the symmetry group of an equilateral triangle (tnls group 
is denoted by C8tl in crystallography). Write down its multiplication table, 
classes. subgroups and normal subgroups. Show that Ca" is isomorphic to Sa. 

(1.22) Construct the alternating group of degree 4, A,. Write down its 
multiplication table and obtain its classes.ll 

(1.23) If G-H ® K, show 
(i) both Hand K are normal subgroups of G; 

(ii) the factor group GrH il isomorphic to K; 

lISco Falicov (1967), p.14. 
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(iii) G is homomorphic to both Hand K; 
(iv) the number of classes in G is equal to the product o f the numbers of c1alses 

inHandK. 
(1.24) Show that the group C.., is homomorphic to the group (1, -I) 

undor multiplication. Also show that this 4-to-l homomorphic mapping can be 
established in three distinct ways. 

(1.25) Given that A2=B3=(AB)2=E, . generate groups starting from the ele-
ments (i) (A. AB), (ii) (B2. BA). Show that in both the cases, you get the same 
group as that obtained in Example 2 of Section 1.2.2. 

0.26) If a subgroup H of a bigger group G consists of complete c1asres of 
G, show that H is a normal subgroup of G, that is, the left and tho right 
cosets of H with respect to any element of G are the same. 

0.27) Consider the symmetric group S, of degree 4 with generators (12), 

(13) and (14). In the notation of the text, thismeans that(12)=(; i !). etc. 

(a) Express the two permutations 

(I 2 3 4) (I 2 3 4) 
A= 4 3 2 1 and B= 3 1 4 2 

.as products of the generators. 
(b) What is the order of each of the two elements A and B? Find the 

number of transpositions in each of these elements. 
(c) Obtain both the products AB and BA of these two elements. 
(d) Obtain the invorse of each of the two elements. 
(1.28) Find the subgroup of the symmetric group S, which leaves the 

polynomial x1x2+x3+x, invariant. (Such a group is called the group of the 
given polynomial.) . 

(1.29) Find the group of the polynomial X1Xz+XaX, and verify that it 
contains as a subgroup the group obtained in Problem 0 . 28). 

(1.30) Prove that the group of all positive numbers under multiplication is 
isomorphic to tho group of all real numbers under addition. (Hint: The 
isomorphic mapping is set up by taking logarithms.) 

0.31) Let G denote a cyclic group of order 12 generated by an element A 
and lot H be a subgroup generated by the element A3. Find all the cosets of H 
in G and obtain the multiplication table for the factor group G/H. 

(I. 32) Consider the set of the following six functions: 
/1 (x)=x, II (x)=l-x, 13 (x)=x/(x-l). 
I, (x)=l/x, 15 (x)=l/<I-x), I. (x)=(x-I)/x. 

Let the operation of composition of two functions be defined as the substitution 
of a function into another (that is, 'function of a .function'). Thus for example. 

(/5fa)(x)=f5(/S (X» =/5 (x/(x-l})-= 1/(1-x/(x-l» 
= l-x!!!/2(x), 

so that/s f3=/1' etc. Show that the set is a group under this law of composi-
tion. 3how that 

(/5)-1=1 •• and (/i)-1=11 for ;=2, 3,4. 
Finally, show that the group is isomorphic to Sa or Ca... 
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(1.33) Determine the symmetry groups of a regular and a regular 
hexagon. Also find their classes. 

Blblloarapby for Chapter 1 
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CHAPTER 2 

Hilbert Spaces and Operators-

It is an axiom of quantum mechanics that to every physical 
observable, there corresponds a hermitian operator and that the-
set of all eigenfunctions of a hermitian operator is a complete set. 
The Hilbert space of the operator is the set of all linear combinations 
of the eigenfunctions. Each state of the system is represented 
by a vector of the Hilbert space on which the operator acts . We then 
proceed to expand 'any' function as a linear combination of all the 
eigenfunctions. Sometimes this can be dangerous and misleading 
unless we know that the function under consideration belongs to 
the Hilbert space and the conditions under which such an expansion 
is possible. In this chapter, we shall develop the concepts of 
Hilbert spaces and operators and prepare the ground for the appli· 
cations of group theory in quantum mechanics. In most respects, 
this chapter is independent of the first one. None the less, these two 
chapters will form the basis of all the remaining chapters. 

2.1 Vector Spaces and Hilbert Spaces 

In this section, we shall introduce the idea of Hilbert spaces. 
Some of their important properties will be described in the next 
section. We are very familiar with the ordinary three·dimensional 
vector algebra. To a mathematician, however. the familiar three-
dimensional space is just a particular example of the generalized 
concept of a vector space of arbitrary dimensions This purely abs-
t ract concept of II-dimensional spaces (II a fiJllte real positive 
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integer or infini t'!j indeed becomes essential in many problems in 
modem physics and mathematics. 

Bdore we begin, it will not be out of place to define in brief 
a field. Let F be a set of elements (a, b, c, d, .•. ) and suppose that 
two binary operations are defined for the elements of F: an operation 
denoted by + (called addition) and an operation denoted by. 
(called multiplication). Then F is afield if 

(i) F is an abelian group under addition, with an identity 
element denoted by 0 and called zero, and 

(ii) the set of the nonzero elements of F also is an abelian 
group under multiplication. The identity element of this group is 
dc!noted by 1 and is called the unity. 

We shall quote only three examples of a field to which we shall 
frequently refer: -

(a) The set of all real numbers, commonly denoted by R; 
(b) The set of all complex numbers, commonly denoted by C; 
(c) The set of all rational numbers, commonly denoted by Q. 
Loosely speaking, the fields are the number systems of mathe-

matics. An example of a finite field is given in Problem 2 . 12. 
The elements of a field are called scalars. 
We shall now define a vector space and the subsequent subsections 

will be ste.ps towards defining a Hilbert space. 

2.1.1 Vector space. A set L of elements u. v. w, .. . is called 
a vector spacel over a field F if the following two conditions are 
fulfilled: 

(a) An operation of addition is defined in L. which 'we 
denote by +. such that L is an abelian · group under addition. The 
identity element of this group will be denoted by O. 

(b) Any scalar of the field F and any element of L can be 
combined by an operation called scalar multiplication to give an 
element of L such that for every u. vEL and a, bEF, we have 

a(u+,v)=au+avE L, 
(a+b)u=au+buEL, 

a(bu)=(a.b)u, 
lu=u,Ou=O. (2.1) 

Note here that 0 is an element of the field F, whereas 0 is the 'null' 
element of L. 

lThe names vector space, linear vector space and linear space are all synoni. 
mous. 
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The elements of a vector space are cal1ed vectors. The 'multi-
plication' of two elements of a vector space is not necessarily defined.2 

Henceforth, we shall not distinguish between the two zeros 0 
and O. 

Examples of a vector space are: 
(i) The familiar three-dimensional space of position vectors 

over the. field of real numbers. In the sophisticated mathematical 
language, this should now be described as 'the set of all position 
vectors together with the operations of ordinary vector addition and 
multiplication of a scalar by a vector'. 

(ii) The set of all n-tupJets of numbers such as u_(uI , U2, u3' 

••• ,Un) over a field to which the scalars Uj belong. Thus, the set of 
all n-tuplets of complex numbers is a vector space over C; the set of 
all n-tuplets of real numbers is a vector space over R; the set of all 
n-tuplets of rational numbers is a vector space ove! Q. Two 
elements u and w=(wI , W 2 , ••• , wn) of this set are said to be equal if 
and only if U/=W/ for alll< i< n. We denote this by writing U=W • 

. The addition of two vectors u and v-(vl' \'2" •• , vn) of this space and 
scalar multiplication are defined by 

(UI ' u2,· •• ,Un)+(v1, 1'2'" .,Vn)=(U1+V1, U2+1'2'" .,Un+Vn), 

C(1I1' U2,. •• ,UIl)=(CUI , CU2' ••• ,cun). 

Moreover, if llj=O for ] < i<n, we say that u=O. 

(2.2) 

Example (i) above is clearly a special case of the example at 
hand-it is the set of all triplets of real numbers. 

(iii) The set of all real numbers. 
(iv) The set of all complex numbers. 
(v) The set of all rational numbers. 
]n the last three examples above the scalars and the vectors are 

the same. If a vector space is defined over the field of re.al numbers, 
it is called a rcal vector space; a vector space defined over the field 
of complex numbers is called a complex vector space. 

2.1.2 Inner product space. A vector space L defined over a 
field F, where F refers to the field of complex numbers or of real 
Bum bers, is further called an inner product svace if its elements satisfy 
one more condition: 

(c) With every pair of elements u, vEL, there is associated 
a unique number belonging to the field F-denoted by (u, v) and 

'If the composition of two elements of a vector space is defined and also belongs 
to the space (with a few more conditions ·on the product). we have an algebra. 
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called the inner product or the scalar product of u and v-for which 
the following properties hold. 

(u, v)=(v, u)*, 
(au, bv)=a*b (u, v), (2.3) 

Cw, au+bv)=a(w, u)+b(w, v), 
where the asterisk denotes the complex conjugate. 

The linear space of all n-tuplets of complex numbers becomes 
an inner product space if we define the scalar product of two elements · 
u and v as the complex number given by 

n 
(u, v)= U;*l 'i' (2.4) 

i=1 
The ordinary three-dimensional space of positIOn vectors is 

also an inner product space with the familiar rule for taking the 
scalar product of two vectors. The vector spaces mentioned as 
examples after (2.2) are all, in fact, inner product spaces with suit-
able rules for taking the inner product. 

Taking the inner product of an element with itself, we find, 
from (2.4) 

n 
(u, u)= I u112, 

[=1 
(2.5) 

where II denotes the absolute magnitude of the .number enclosed. We 
introduce the notation 

IIuW = (u, u). (2.6) 
and the nonnegative square root of this real number, denoted by 
IIull, is called the norm of the vector 1I. Clearly, in the familiar lan-
guage, this corresponds to the length of a vector. It is easy to see -
that the norm has the following properties: 

(i) [lull> 0, and IIull=O if and only if Il=O; 
(ii) IIu+vll :S:; IIull+llvll; this is the usual triangular inequality; 

(iii) lIaull=lal IIull· 
Before we go a step further and define a Hilbert space, we must 

consider what a Cauchy sequence is. 

2.1.3 Cauchy sequence. lf with each positive integer n we can 
associate a number Cn (in general, complex), then these numbers 
cI , c2' c3' ••• , Cn, ••• are said to form an infinite sequence or, simply, 
a sequence. 

A sequence cI ' cz, ... , Cn , ••• is said to converge to a number c, 
or to be convergent with the limit c, if for every real positive number 
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_, however smaU, there exists a positive (fiDite) inteaer N such that for 
every integer n>N, 

I C,,-c I < f. (2 .7) 
The number c is called the limit of the sequence. 

A sequence cl' c2•••• is said to be a Cauchy sequence if for 
ewry real posit ive number f . however small, we can find a finite 
positive integer N such that for any two integers n>N and m>N, 

I Cn-Cm I < f. (2.8) 
Examples of convergent, and therefore Cauchy, sequences are: 
til the sequence of the real numbers whose terms are 

cn= 2+S/n, i.e. , 
7, 9/2, 11 /3, 13(4, 3, 17/6, .. . , (2n'+ S)/n, . .. , with the limit 

c=2; 
(ii) I, 1/2, 1/3, .. . , l/n, ... , with the limitc=O; 

(iii) 1.9, 1.99, 1.999, 1.9999, • .. , with the limit 2.0 ; 
(iv) the sequence of the complex numbers whose terms are 

cn=(Sn+3)/4n+i (2n-8)/3n with the limit c=S/4+ i 2/3; 
The following sequences are divergent: 
(i) the sequence of numbers whose terms are cn=pn for p> 1, 

(ii) the sequence of positive integers, 1, 2, 3, 4, ... , n,... . 
Although, in the above discussion, we have defined a sequence 

with reference to numbers (real or complex), it should be clear that 
we can easily extend the idea to sequences of arbitrary entities 
provided they are all of the same nature. Thus, we may speak of a 
sequence of vectors in a two- or a three-dimensional space, a sequence 
of n-tuplets in their vector space, etc. Of course, in each case, we 
must suitably interpret the quantities Icn-ci and Icn-cml while stu-
dying their convergence. This will be illustrated with reference to a 
sequence of n-tuplets because all the other examples follow as special 
cases of this one. 

Consider a sequence of elements in the vector space of all n-tup-
lets (real Qr complex) whose terms are denoted by u(ll, U(2), ••• , u lk ), • •• , 

where 
ulkl-(U1(k), U2

Ik ), ..• , Unlk». (2.9) 
We 'say that tbis is a Cauchy sequence if for every positive number 
E there exists a positive integer N such that for any two integers 
k>N and m>N, 

I U(k) _u lm ) I < f (2.10) 
in the sense that 

1"/kl_U/ml I < f for l::;:i::;:n. 
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Similarly, the sequence is said to converge to a limit u=(u1, Ut , ... , Un) 

if for every real positive number E, we can find a positive integer N 
such that for all integers m>N, 

I uCmJ_ul < E (2.11) 
in the sense that 

2.1.4 Hilbert space. We are now ready to define a Hilbert 
space. We shall restrict ourselves to the field of real or complex 
numbers. Consider an inner product space L. If every Cauchy sequence 
of elements belonging to L has a limit which also belongs to L, 
the space L is said to be complete. A complete inner product space 
is called a Hi/bert space. 

Examples of Hilbert spaces, as well as contrary examples, are 
easy to construct. All the inner product spaces discussed above, 
except the vector space of all n-tuplets of rational numbers 
(which includes, as a special case for n= 1, the set of all rational 
numbers), are also Hilbert spaces. The space of all rational numbers 
is not complete because we can construct a Cauchy sequence in this 
space whose limit is an irrational number, which does not belong to 
this space. For example, the sequence of the successive approxima-
tions to the square root of 2, i.e. , 1.414, 1.4142, 1.4142 1, 1.414213, .. . , 
is a Cauchy sequence whose limit '\12 does not belong to the set of 
rational numbers. A similar argument shows that the set of all n-tup-
lets of rational numbers is not a Hilbert space. 

2 .2 Coordinate Geometry and Vector Algebra in a New Notation 

In what follows, we shall treat Hilbert spaces in general. We 
shall denote a Hilbert space of n-dimensions (the dimensionality 
is defined below) by Ln. Although drawing pictures or diagrams [or the 
sake of understanding an argument sho uld- not be encouraged in 
modern pure physics and mathematics, it may be advisable to take 
some specific examples wIth n=2 or n=3 to make the ideas clear. 
Some important concepts and properties are enumerated below. 

(i) In the ordinary three-dimensional space of position vectors, 
we need a set of three axes, and any point in this space can then be 
located by means of three coordinates measured along the three axes. 
Similarly, in an II-dimensional vector space, we would need a set of 
n 'independent' vectors '1' r2,. •• , rn to 'span' the whole space. . 
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Two vectors r, and rJ of L" are said to be linearly independent of each 
other if one is not a constant mUltiple of the other, i.e. , it is impossible 
to find a scalar c such that r,=cr). In the familiar language, this means 
that r, and r) are not 'parallel'vectors. In general, m vectors of Ln are 
said to be a set of linearly independent vectors if and only if the equation 

m 
k a,rt=O (2.12) 

i=1 
is satisfied only when all the scalars QI=O for l:::;;;i:::;;;m. In other words, 
the m vectors are linearly independent if it is impossible to construct 
the null element of the space by a linear combination of the vectors 
with at least one nonzero coefficient. Or again, the set of m vectors 
is linearly independent if none of them .can be expressed as a linear 
combination of the remaining m-l vectors. A simple test for the 
linear independence of a set of vectors is to construct the determinant 
of their scalar products with each other as 

(rl' r1) (rl ' r2) ... (rl' rm) 
r= (r2' r1 ) (r2' r2) ••• (rl' rm) 

I('m: ',) ('m-'.J ... ('m. 'm) 
known as the Gram determinant. If r=o, it follows that one of the 
vectors can be expressed as a linear combination of the remaining m-l 
vectors, so that the vectors are linearly dependent; if r*o, the vectors 
are linearly independent. 

(ii) In an n-dimensional complete space, or Hilbert space, 
Ln, a set of n linearly independent vectors is called a complete set in Ln. 
If the number of vectors chosen is less than n, they are called an incom-
plete set in Ln; clearly they are not enough to span the full space. On 
the other hand, ifmore than n vectors are chosen in L n , they form an 
overcomplete or redundant set in Ln. They cannot all be linearly 
independent and it is possible to find at least two nonvanishing scalars 
a, such that 

m 
k alrl=O, m>n. (2.13) 

i=1 
(iii) . The dimension of a vector space is the maximum number 

of linearly independent vectors in the space or the minimum number 
of vectors required to span the space. In other words, the dimension 
is the number of linearly independent vectors which are both necessary 
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and sufficient to span the full space. Thus, in the ordinary three-
dimensional space of position vectors, we can find at most three 
linearly independent vectors; three is also the minimum number of 
linearly independent vectors required to span the space. 

A set of n linearly independent vectors in an n-dimensional vector 
space is called a basis, and the vectors a re called the basis vectors. 
Clearly, the choice of the basis vectors is not unique; they can be 
chosen in an infinite number of ways. 

(iv) Any vector u in Ln can now be expanded in terms of a 
complete set of basis vectors rj, i.e., 

n 
u= l: Uiri, 

i=! 
(2.14) 

where u/ is the component of 1I along rj. We say that the space Ln 
can be fully spanned by the basis vectors. This result holds only if 
{rl} is a complete set. The scalars u/ are also called the Fourier 
coefficients of u and (2.14) is called the Fourier expansion of u. 

(v) We choose a unit for the norm of the vectors in the space 
Ln (in the familiar language, a unit for the 'length' of the vectors). 
A vector 'Of unit norm is called a unit vector or normalized vector. 
Rather than choosing the basis vectors rj of arbitrary norm, we then 
choose a basis consisting of the unit vectors e1, e2 , • •• , en in Ln. 

(vi) So far, we have not assumed any relationship among 'the 
basis vectors except their linear independence. But now, for the sake 
of convenience and to make our algebra simpler, we will choose a com-
plete set of orthogonal basis vectors , without loss of generality. In the 
ordinary three-dimensional space, this means that we choose cartesian · 
coordinate axes rather than oblique ones. If ej are the orthonormal 
basis vectors, we have 

(el' e,)=a/j, 
where ali is the Kronecker delta given by 

a. _{I ifi=j, 
,j- 0 if i=lI 

(vii) The scalar product of two vectors 
n n 

u= ule/ and 
i=l 

1'= l: Vlej 
i=l 

is then easily found to be 
n 

(u, V)=(I', u)*= l: u/* 1'/. 
. i=l 

(2.15) 

(2.16) 

(2. 17a) 

(2. 17b) 
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,. 
Also II u IIt ={u, u)= E I u,I'. 

1=1 
(2.17c) 

(viii) A linear transformation in the space can be defined by 
an operator T such that T acting on a vector uE L" gives a vector J', 

also belonging to Ln. The operation is denoted by 
. Tu=v. (2.18) 

When this happens, that is, when Tu E Ln for all u E Ln, the space 
L .. is said to be closed under the action of T. 

Note that tbis is the active view point of transformations dis-
cussed in Section 1.1.2. 

If the vector Til is unique for all ' u E Ln and if the inverse trans-
formation is also uniquely defined, Tis said to be a one-to-one mapping 
of the space Ln onto itself. 

We shall be mainly concerned with transformations which pre-
serve the Euclidean properties of the space L", such as the norms of 
the vectors and the scalar product of -two vectors. Rotations, reflec-
tions and inversion are obvious examples of such transformations. 

(ix) In the passive view point, we can define transformations of 
the basis vectors e, (keeping everything else fixed) resulting in a new 
set of basis vectors e/ as follows: 

n 
ei-e/=Te,= I ej Til, (2.19) 

}=1 
where Tjl is a scalar denoting the component of ej along ej. Trims-
formations which take one orthonormal set of basis vectors into an-
other orthonormal set are called unitary the operators 
associated with them are caIled unitary operators'. Hcan be seen that 
tbis definition amounts to preserving the norms and the scalar products 
of vectors, 

(x) Eq. (2.19) is in fact a set of n linear equations which can be 
written explicitly as 

T(e1,e2 , ••• ,eH)=(e1'.e2', ... , e,,') 
=(e1 , e2 ,· •• , en) r 

I 
I 
L 

(2.20) 

3 If the vectors of the space Ln are real, i.e., if Ln is defined over the field of 
real numbers, these reduce to orthogonal transformations and orthogonal 
operators, respectively. 
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The square matrix4 [T/j]=T of order n on the right hand side is called 
a representation of the operator T in the basis (ei). 

(xi) Consider a vector e;' of (2 . J 9). If we take its scalar pro-
duct with any of the original basis vectors, say ek, we get 

11 

(ek' e;')= (e,,, Tei) = (ek, ej T ji), 
j=l 

or (ek' Tei)=Tki (2.21) 
by We call this the matrix element of the operator T 
betwee'1 the basis vectors ek and ('j. It means that if the operator T is 
applied on ej, the resulting vector has a projection Tk/ alon! the 
vector (:k' 

(xii) The scalar product of any two vectors 1I and TI' of L n , 

where u and I' are the vectors of (2 . 17a), is given by5 

(u, Ukek , riei) 
k i 

l'/ej Tji) 
k i,j 

= Uk*ri Tji (ek, ej) 
i,j,k 

= tik*I'1 Tki. 
i, k 

(2.22) 

(xiii) Since, by assumption, the transformed basis vectors c;' 
are each of unit length and orthogonal to each other, we have 

(e;', e/)=8;j. (2.23) 
It immediately follows that the matrix T has the following properties 
(see Problem 2.2): 

(2.24a) 

(2.24b) 

I det TI=1. (2. 24c) 
These are the well· known conditions for a unitary matrix. It is 

4 The matrix T;a[T;;l should not be confused with the operator T appearing on 
the left hand side of (2.20). We shall often use the same symbol for an 
operator and a matrix representing it. 

5 Although /I and v are not elements of a complete set of basis vectors and there 
is no apparent matrix for There, (/I, Tv) is called the 'matrix element' of T 
between /I and v in quantum mechanics. 
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often said that all the rows (columns) of a unitary matrix are orthogo-
nal to each other and normalized, which is just what Eqs. (2.24) tell. 
In the matrix notation, (2.24) can be written concisely as 

Tt =T-1 or TTt =Tt T=E, (2.25) 

where E is the un it matri x of order 'n and Tt denotes the hermitian 
conjugate of T. 

(xiv) The scalar product of two vectors in Ln is invariant under 
a unitary transformation: Let 1I and v be any two vectors of Ln and 
T be a unitary operator, then 

Tu 

Tv 

u 

FIGURE 2.1 The scalar product of two vectors is invariant 
under a unitary transformation 

(2.26) 

Leaving the proof of (2.26) to Problem (2.3), we show the simple 
physical interpretation of this result in a two-dimensional space. In Fig 
(2 . 1), we have shown the four vectors lI , 1', Ttl and Tr, assuming that T 
.is an anticlockwise rotation through an angle 0 about an axis normal 
to the plane of the paper. The validity of (2.26) for the particular 
case considered in this figure should be obvious. 

(xv) An important operator is the projection operator. This is 
an operator which, when it operates on a vector u E L n, gives the pro-
jection 'of u along a given basis vector. It can be written in the form 

Pj=ej (el' ), (2 .27) 
where the notation means that the scalar product is to be taken with 
the' vector on which PI operates. Thus, if u is the vector of (2 . 17a), 
then 

P/lI=ei. (ej, u) 
=u/e/ 
=the projection of u along e/. (2.28) 
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It should be noted that P, is not a unitary operator. 
If we apply the operator P, once more on the resulting vector 

u,e, of (2.28), clearly, the result is the same vector u,e/ again, i.e., 
Pi (PiU) = Pt (Uje,)=Ujej=Pt (u). (2.29) 

Since this is true for all u E L n , we can write in the operator notation, 
Pi2=Pt, (2.30) 

which is· an important property of projection operators. In fact, any 
operator P, acting on a Hilbert space L n, for which P2=P, (i.e., p 2u 
=Pu VuE Ln) is called a projection operator. It can be readily 
verified that 

n 
}; Pj=E, (2.31) 

;=1 
where E is the identity operator. 

(xvi) We now introduce the concept of the direct sum of two or 
more spaces. Consider a vector space Ln ofn dimensions with a coor-
dinate system (e l , e2 , ••• , en), and a vector space Lm of m dimensions 
with the basis vectors (iI' i2, ... , im ). Provided that the two spaces have · 
no common vector except the null vector, the direct-sum space L t is the 
vector space defined by the t=m+n basis vectC'fs (PI' e2, • • " en, iI' i2, 
... ,im). These may be relabeled by the t vectors (kl' k 2 , • •• , k t). If L,. 
and Lm are complete spaces, so is L" and any vector u in L t can be 
expanded as 

(2.32) 

where Ui are scalars. 
As a simple example, consider a two-dimensional vector space 

(a plane) with the basis vectors (x, y) and a one-dimensional vector 
space (a line) with the basis vector (z), which does not lie in the plane 
(x, y). If the null element is common to both the spaces, the direct-
sum space is the three-dimensional vector space with the basis vectors 
(x, y, z). 

(xvii) Finally, we consider the direct product (also known as the 
Kronecker product) of two vector spaces. Consider, again, the two 
spaces Ln and Lm defined above. The direct-product space "is a space 
L. of dimensions p=nm defined by the p basis vectors (elil , e1i2, " ., 
eli., eli), •.. , e,';m). At the first thought, ej ik seems to be a tensor 
rather than a vector; but it can be seen, without much difficulty, that 
we can identify it with a vector in the p-dimensional space. If we 
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maJcc this identification and denote the resulting basis vectors by the 
new labels (/1' 12", ., I,), then, as before, they form a complete set 
in L, if Ln and Lm are complete spaces. Any vector v E Lp can then 
be expressed as 

2.3 Function Spaces 

p 
V= Vj Ij. 

j = l 
(2.33) 

Consider the set of all continuous, 'square integrable' functions / 
f, g, h, .. . ), each of which is a function of one independent 
lariable x on the interval [a , b). We define the equality of two functions 
lS follows: Two functions I and g are said to be equal on [a, b), 
lenoted by writingf=g, if and only if fex )=g(x) for all values of x 
>n the interval [a, b). 

Referring to the definition of vector spaces in Section (2.1.1) , 
"Ie then see that the set of functions considered above is a vector space 
)Ver a field F if we define the addition of two functions and scalar 
nultiplication by 

(/+g) (x)=/(x)+g(x) , 

(c/) (x)=c/(x). 

(2. 34a) 
(2. 34b) 

Eq. (2. 34a) is called the operation of pointl1:ise addition of two 
functions. If the functions of the set considered are real, we have a 
vector space over the field of real n urn bers ; if they are complex, we 
have a vector space over the field of complex numbers. The identity 
in either case is a function which is identically zero for all values of x 
on [a, bJ and the inverse of a function I is the function -f with the 
property (-f)(x )=-/(x)(i.e., the value of the function -I at a point 
x is the negative of the value of I at x). 

As a concrete example, consider the set {Ie (x)} of all continu-
ous, square integrable, even, periodic functions of x of period 21. We 
shall allow, in general, complex functions to be included in the set. 
The sum of two functions of this set is also a continuous, square integ." 
rabIe, even periodic function of period 2/, and hence belongs to the 
set. In fact, it is easy to verify that the set is an abelian group under ' 
the rule of pointwise addition. Moreover, scalar multiplication by com-
plex numbers as defined in (2. 34b) satisfies the conditions (2. I). Hence 
it follows that the set {Ie(x) } is a vector space, which we shall denote 
by L •. 
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A vector space whose elements are functions is also caned a fwtC-
tion space. 

All the concepts developed in Sections (2. 1) and (2.2) can then 
be applied to function spaces, because, as emphasized in Section 1.8 
in connection with groups, the mathematical definition of a vector space 
is quite independent of the exact nature of its elements. This gives us 
considerable freedom in handling different vector spaces by the same 
abstract methods. 

Thus, a function space can be made an inner product space if we 
associate with any two functions a scalar such that the conditions (2.3) 
are satisfied. This can be easily done if we define the inner product of 
two functions I and g by 

(j, g)= J: I*(x) g(x) dx, (2.35) 

where the integral is over the range [a, b] of xon which the functions 
o,f the space are defined. The norm III II of a function I is given by· . 

II/W=U:!)= J: I/(x) /12 dx. (2.36) 

A Cauchy sequence of functions is defined as follows: A seque-
nce It, h, ... , In , . . , of function,s of one variable x is said to be a 
Cauchy sequence on [a, b] if for every real positive number E, we can 
find a positive integer N such that for all integers n>N and m>N, 

II/n-Imll<E (2.37) . 
in the sense that 

J: I/n(x)-f,n(x)12 dx<f. 

In a similar way (cf. Section 2 . 1 .3), we can define a convergent 
sequence and its limit. The definition of a Hilbert space of functions 
follows immediately. 

A set of n functions 11> 12" . . , f" of a vector space is said to be 
a set of linearly independent functions on [a, b] if and only if the 
equation · 

n 
at!i(x)=O 

i=l 
for all x on [a, b] implies that all the scalars a/ = O for l::;:i< n. 

(2.38) 

Coming back to the vector space Le of all continuous square 
integrable even periodic functions of period 2/, we see that any func-

.If the norm of a function is finite, the function is said to be square integrable. 
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I tion of this space can be expanded in the well-known Fourier cosine 
series 

00 _ 

f (x)= a(I1)(I/";/) cos(mtx/l). 
n=O 

(2 . 39) 

The infinite set of functions (1/..;7) cos(l11tx/l) for O< n<oo clearly 
serves as an orthonormal basis in this space, for the functions of this 
set satisfy the relations 

I f' T -1 cos(l11tx/l) cos(mrrx/l) dx='I5mn . (2.40) 

Thus the vector space under consideration is denumerably infinite 
dimensional. 

2.3.1 The dual space. For each function f in the space L ., we 
have a set of coefficients a(l1) for Os n<:oo as in (2.39). These can be 
obtained very easily by Fourier inversion of (2.39), which gives 

a(l1) = [leX) (I/..;I) cos(nrrx/l) dx.· (2.4la) 

These Fourier coefficients are unique, i.e., if we have another function 
gELe whose Fourier coefficients are 

b(II)= g(x)(l/";l)cos(nrrx/l)dx, (2.4Ib) 

then aCn)= b(n) for all Osn <oo if and only iff=g on [-1,1] . . 
Now we may treat a as a function of the discrete variable 11. It 

is easy to see that the function corresponding to f+g would be a+b, 
and that corresponding to -fwould be -a. In fact, it can be readily 
verified that the set of functions (a, b, ... ) is a veetor space which is 
defined over the same field as the space Le. This is known as the dual 
space of Le and its vectors have a one-to-one correspondence with the 
vectors of Le. It therefore follows that the dual space is also denu-
merably infinite dimensional. 

It should be clear that this is similar to the space of all n-tuplets 
where n is, nc,w denumerably infinite. The scalar product of two func-
tions in this space is 

00 

(a, b)= a*(n) b(II). (2 . 42a) 
n=O 

By using Eqs. (2.41) in (2 .42a), we find 

(a , b)= L, r(x)g(x) dx=(J, g). (2.42b) 
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In the above equation, we have an important property of the Fourier 
transforms that the scalar product of I and g is the same as that of 
their transforms a and b. 

2.3.2 Direct sum of function spaces. Consider the set {/o (x)} 
of all continuous square integrable odd periodic functions of period 
2/, that is, the set of functions satisfying the relations 

10 (x+21)=lo (x) 
10 (-x)=-Io (x). (2.43) 

Once again, it can be verified that this set is a vector space7 

which we denote by Lo. Any function <fo(x) of Lo can be expanded in 
the well-known Fourier sine series 

CD 

q,(x) = «(n) (1/v'1; sin(mtX/I). (2.44) 
n=l 

The infinite set of functions (i/v'l)sin(mtXf/) for 1<n<00 can be 
<;hosen as the orthonormal basis functions in this space, because 

f, sin(mtX/l) sin(m7tx/l) dx=omm (2.45) 

We can now take the direct sum of the two function spaces L" 
and Lo since they have no common element except the function which 
is identically zero. We then have a space of all periodic functions with 
period 2/, The Fourier expansion for a function of this space is 

CD 

I(x) = uen) (I/v'/) cos(n7tx/I)+ «(n) (l/v'l) sin(n7tx/I). 
n= O n=l 

(2.46) 
The basis functions of this space chosen in (2.46) are clearly orthonor-
mal since, in addition to (2.40) and (2.45), they satisfy 

1 J' I T _, cos(n7tx/l) sin(m7tx/l) dx=O ¥ n, m. (2.47) 

The spaces Le. Lo and their direct-sum space arc all denumerably 
infinite dimensional. The dual space of Lo is the set all functions 
(<<, ... ), each element of which is the Fourier .ransform of an ele-
ment of Lo. 

It is a fairly easy matter to extend the concepts of this section to 
functions of more than one variables. . 

7 The function which is identically zero for all values of x is even as well as 
odd in x. It is therefore common to, and is the 'zero' element of, both the 
spaces {I. (x)} and {fo (x)}. 
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2.4 Operators 

In' this section, we shall use the symbols 4>n(X) for the orthonor-
mal basis functions of a Hilbert space L of functions,S which may be 
finite or infinite dimensional. 

An operator T is said to be defined on the space L if the action 
of T on any function! e: L results in a function which also belongs 
to L. Thus, 

T! (x)=g(x) where gEL. (2.48) 
To know the action of an operator on any function of L , it is 

enough to know its effect on the basis functions of L. Thus, when an 
operator T acts on a basis function 4>n(X), the result is some function 
of L, say 4>n'(x), which can be expanded in a linear combination of 
the original basis functions: . 

T 4>n(X) = 4>n'(X)=I 4>m(x)Tmn, n, m= ], 2, . . , . (2.49) 
m 

This. represents a system of linear equations, one for each value of 11. 
Written out in an expanded form, this becomes 

(4)1'' 4>2',· . " 4>n' , ... )= T (4)1' 4>2" .. , 4>n, ••. ) 

(2.50) 
Tnl Tn2 . .. Tnn .. 

L J 
The matrix [To] is the representation of the operator T with the 

basis {4>n}. It can be seen in analogy with (2,21) that a matrix element 
of T is given by 

Tmn=(4)m, 4>n') = (4)m , T4>n) 
=S4>m *(x) T4>n(x), (2,51) 

where S denotes summation over the discrete variables and integra-
tion over the continuous variables of the set x on which 4>'s depend 
(see footnote 8). 

If we introduce the following notation for row vectors 
¢=(4)1' 4>2,. .. , 4>n, .. ), 
¢' (4)1',4>2'''''' 4>n', .. ), (2.52) 

8 Here, x stands for the set of variables on which the functions of L may 
depend. 
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then (2.49) can be simply written in the matrix notation as 
cI>' =cI> T. (2.53) 

2.4.1 Special operators. We shall consider some special ope-
rators in this subsection. An operator T is said to be a linear operator 
if for every I and gin L, 

T (cl+dg) = cTI+dTg, (2.54) 
where c and d are any scalars of the field over which L is defined. On 
the other hand, T is called an antilinear operator if 

T (cl+dg)=c*TI+d*Tg ¥ f, gEL. (2.55) I . 

An obvious example of such an operator is the operator for t'm-
plex conjugation. If we denote it by K. it is defined by 

Kf ... -f*, K(c/)=c* KI c* 1*. (2.56) 
If two operators A and B satisfy the relation 

(f, Ag)=(BI. g) ¥ I, gEL, (2.57) 
A is said to be the hermitian conjugate of B, and vice versa, which is 
expressed by writing 

Let 
1='2: anrpn, g='2: bnr/>n. 

n n 
Then, on using the orthogonality of rpn, (2.57) becomes 

'2: a .. *bmAnm = '2: an*bmBmn*. 
n,m n,m 

(2.58) 

(2.59) 

(2.60) 

Since this must be true for all I and gin L, i.e., for all scalars a .. 
and b .. , it follows that 

(2.61) 
If the scalars of the space L are real numbers, (2.58) and (2. 6J 
reduce to 

A=B, A=B, Anm=Bmn. (2.62) 
and A is said to be the transpose of B, and vice versa. 

If an operator T is its own hermitian conjugate (adjoint), it is 
said to be hermitian or self-adjoint. From (2.57), we see that Tis 
hermitian if and only if 

(f, Tg)=(Tf, g) ¥ f, gEL. (2.63) 
With (2.59), this reduces to 

Tnm=Tmn*. (2.64) 



48 ELEMENTS OF GROUP THEORY FOR PHYSICISTS 

This is just the definition of a hermitian matrix-that is, a matrix 
which equals its own hermitian conjugate-and is written as 

T=Tt =(1)*=T*. (2.65) 
Thus a hermitian operator is represented by a hermitian matrix in a 
linear vector space. 

T is said to be a unitary operator if 
TTt =Tt T=E, (2.66) 

where E is the identity operator. It can be readily seen that if T is 
unitary, then 

(Tf, Tg)=(f, g) V f, gEL. (2.67) 
If the scalars of the space are real numbers, (2.66) reduces to 

TT= TT=E, (2.68) 
in which case T is said to be an orthogonal operator. 

2.4.2 The eigenvalue problem. We have already discussed the 
operation of an operator T on a basis function, which is 

T <pn=E <Pm Tmn. (2.49) 
m 

The choice of the set of basis functions {<pn} is not unique, and, as 
such, we would like to choose that set of orthonormal basis functions 
{t)in} in L which simplifies Eg. (2.49) as much as possible. Clearly, 
the simplest nontrivial case arises when the only nonvanishing term 
on the right-hand side is the n-th term, in which case we have 

TI}II= Tnn t)in Int)in, (2.69) 
which defines the scalars tn. A nonzero vector IjIn satisfying (2.69) is 
called an eigenvector or an eigenfunctioll of T corresponding to the 
eigenvalue I TI • The problem of obtaining the eigenvalues and the eigen-
functions of an operator (acting on a Hilbert space) is usually referred 
to as the eigen value problem, and (2.69) is often called the eigenvalue 
equation. 

The eigenvalues need not all be distinct, that is, two or more 
eigenvectors may correspond to the same eigenvalue; in this case, 
such eigenvectors are said to be degenerate. The niu!tiplicity of an 
eigenvalue is defined as the m:mber of linearly independent eigenvec-
tors which have the same eigenvalue under consideration. 

It is proper to ask whether each operator has eigenvalues and 
eigenvectors. If the vector space L is defined over the field of real 
numbers. every operator acting on L does not necessarily possess 
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eigenvalues and eigenvectors. Thus. consider the operation of a rota-
tion through 90° on a two-dimensional vector space of (real) position 
vectors. This operator has no eigenvectors since there is no nonzero 
vector in this space which transforms into a real mUltiple of itself. 

However, if L is a vector space over the field of complex num-
bers, every operator on L has eigenvectors. If We count each eigen-
value as many times as it occurs, then the number of eigenvalues is 
precisely equal to the dimension of the space L. 

The set of the eigenvalues of an operator is called its spectrum. 

2.4.3 DiagonaIization. We see from (2 .69) that if we choose 
the set {'.\In} as the basis in the space L, rather than the original set 
{</>n}, then the matrix representing the operator T is diagonal, i.e., 

Td= r tl l 
t2 0 

(2.70) 
0 tn 

L .J 
The eigenvalues' tn are the solutions of the N-th order equation 

det(T-tE)=O. (2.71) 

As we have said, N may be infinite, as is indeed the case in most phy-
sical problems. We are then faced with the problem of solving an 
infinite determinant. However, we are usually interested only in a 
few lowest eigenvalues in the spectrum of the operator and we can 
suitably reduce the determinant to a new determinant of a finite order 
N with small error if the subspace is properly chosen. 

Once the eigenvalues are determined in this way, the eigenfunc-
tions can be easily obtained. For this, we express an eigenfunction o/n 
corresponding to the eigenvalue tn as a linear combination of the 
original basis functions: 

N 
ljin= </>m Urnn . (2.72) 

m=l 

If both the sets and {.pn} are orthonormal, U will be a unitary 
matrix. Let us express ljin in the row vector notation as 1ji1l=(U1n, 
U2n , ... , UNn). The eigenvalue Eq. (2.69) then becomes 
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. 

TIjI .. =(U1", U2",.,., UN") [ Tn Til TNt 1 
Ttl Tn TNa 

TIN. T2N '" TNN J 
=/" (U1", U2", ••• , UN")' (2. 73a) 

where we have used (2. 69) in the last step: Note that the matrix of 
transformation which appears in (2. 73a) is the transpose of that 
appearing in (2.49). \ This is because in (2.49), T acts on the basis 
vectors tP" (the passive viewpoint). while in (2. 73a), it acts 
vectors of the space leaving the basis vectors unchanged (the active 
viewpoint). 

, Writing the m-th column of (2. 73a), we have 
N 
L UkrI Tmk=/" Um", 

k=l 
(2.73b) 

where 1 n sN. This is a system of N linear equations for the N 
unknowns Um" (1 S m S N, fixed n). However, these equations are 
not all independent due to the condition (2.71). If the eigenvalue In 
is k-fold degenerate, it can be shown that the matrix (T -I" E) has 
rank N-k and hence only N-k from (2.73) are indepen-
dent. This means that we can determine at most N-k components 
Um" (fixed n). The general method is then to fix arbitrarily, say, the 
first k components and to obtain the remaining N-k components in 
terms of them.' Thus there is a considerable arbitrariness which 
results from the fact that any linear combination of the degenerate 
eigenfunctions is also an eigenfunqtion with the same eigenv.alue. 
We may conveniently choose any k orthonormal functions in this 
k-dimensional subspace of the full space. 

Having obtained in this way a set of N orthonormal eigenfunc-
tions. we can show that the representation of Twith the basis {1jI .. } is a 
diagonal matrix. We write Eqs. (2.49) and (2.72) in the matrix 
notation as 

TcI>=cI> [T], 
'i"=cI> U, 

where cI> and 'i" stand for. the row vectors 
cI>=(tPt> rpt, .. ·, tPN). 
'i"=(h, h.· .. , IjIN), 

9Joshi (1984), Section 8; KreYlZia (1972), Section 6.9. 

(2.74a) 
(2. 74b) 
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and we have distinguished between the operator Tand the matrix [T]. 
From (2.72), it i) clear that the n-th column of the matrix U just 
contains the components of the eigenfunction ljin. i.e., 

U=r Un UI2 Uln UNl 1 
U21 U22 U2n . ... U2N (2.75) 

L UNl UN2 eNn . '. UN!>' J 
Multiplying (2. 74a) from the right. by U, we get 

T cI> U=cI> U U-I [T] U. . 
or T,¥='¥ (U-I [T] U). (2.76) 
Thus, the matrix U- l [T] U is the representation of the operator T 
with the basis {Iji .. }. Now it can be readily verified that, by the cons-
truction of U as in (-2.75), we have 

U-l [T] U = Td. 
This can be seen by taking the (I, n) element of the left-hand side of 
the above equation, which gives 

[U-I]'m TmJc Ukn = [U-l]'m Um" In [by (2. 73b)] 
m,k m 

= I" 8,,,, 
which is just the (I, n) element of Td. Eq. (2 .76) then finally gives 
us 

(2.77) 
which is the desired result. This process is called the diagonalizatioll 
of an operator.10 

1.4.4 The spectral Theory of operators. We shall restrict 
ourselves to the case when the Hilbert space of the operator T is finite 
dimensional. . Moreover, we shall consider T to be a hermitian opera-
tor or a unitary oparator.ll 

Let L" be the n-dimensional . (0 < n < 00) Hilbert space of T. 
We assume that L" is defined over the field of complex numbers, so 
that T has exactly n eigenvalues. Let '1' l a, •.• , 1m be the distinct 

IOSee also Joshi (1984), pp. 95-97 
lIThe discussion of this subsection is, in fact, valid for a more class 
of operators known as normal operators. An operator T is normal if it com-
mutes with its own hefmitiaQ cor\lupte, that is, jf TTt _rtT. Hermitian 
and unitary operators are clearly normal operators. 
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eigenvalues of T, If the eigenvalue I, is krfold degene-
rate, there are k, linearly- independent eigenvectors of T in L,. which 
have the sfUDe eigenvalue f,. These eigenvectors constitute the basis 
for a krdimensional subspace M, of L,.; M, is called the eigenspace 
of T corresponding to the eigenvalue f,. Any vector of M, is an 
eigenvector of T with the eigenvalue t,. 

We thus have the eigenspaces MIt Ma, .. .• M" . . . , Mm, corres-
ponding to the eigenvalues t1• t2, • • " 1,; ; . . , tm, respectively. If T is a 
hennitian or a unitary operator. then these subspaces are · pairwise 
orthogonal;li two spaces are said to be .orthogonal if every vector of 
one space is orthogonal to every vector of the other. In our case, this 
is denoted by writing M, 1. M J if i 1= i,. 

Any vector uEL" can now be expressed uniquely in the form 
., 

u=u1+",+ '" +Um• (2.78) 
where U, is in M,. The u,'s are therefore pairwise orthogonal. The 
operation of T on u then gives · 

Tu=Tu1+TulI+ .. • +Tum 
=t1U1+t2"a+ ... +tmulII' (t.79) 

This then determines uniquely the action ofT on any vector of the 
Hilbert space L,.. To express the above result in a more convenient 
form, we define the m projection operators P, on the eigenspaces M,. 
such that the action of P, on u gives the projection of u on M,. or 

P,U=U,. 
Eq. (2.79) then becomes 

TU=t1P1U+t.P2u+ ... +tmPmU Y U E L". 
so that we can write 

T-t1P1+t.P2+ •.. +tmPm. 

(2.80) 

(2 .81) 
This expression is known as the spectral resolution of T. For every 
hermitian or unitary operator acting on a finite-dimensional Hilbert 

j space, the spectral resolution exists and is unique. 
The concepts developed in this section are closely related to, and 

find useful applications in, the eigenvalue problem in physics, because 
in quantum mechanics, we are concerned with the eigenvalues and 
the eigenfunctions of hermitian operators. 

12Jn this subsection, we shall state the important results of the spectral 
theory without proofs. For proofs, the reader is referred to Simmons 
(1963) . . 
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15 Direct Sum and Direct Product or Matrices 
We now 'digress a little in this section and consider two important 

operations with matrices which are not normally treated in elementary 
books on matrix algebra. These are the direct sum and the direct 
product (also known as the outer product or the Kronecker product) 
of matrices. . 

2.5.1 sum of matrices. The direct sum of two square 
matrices A=[Ao] of order m and B=[BIJ] of order n is a square 
matrix C of order m+n defined by 
C=AffiB=[ A 0 J=I All o B . 

1 
• (2.82) 

o. 
L Bill Bnn J 

where 01 and 01 are null matrices of order m X nand n x m, respec-
tively. Here the symbol ffi stands for the direct sum. This idea can 
be easily extended to more than two matrices. For example, the 
direct sum of 

A=a, B=[ J 
is a matrix of order six given by 

I 

D=AffiBEBC= 1 0 0 0 0 0 (2.83) a I 
I ---T-------, 
I b 

I 
0 I C I 0 0 0 

I I 
I I 

0 I d e I 0 0 0 I I L ______ _________ 
I 

0 0 0 I g h 
I 
I 
I k 0 0 0 I I 
I 
I 

0 0 0 I I m n I 
I 
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Such 'a matrix, which has nonvanishing elements in square blocks 
along the main diagonal and zeros elsewhere, ' is said to be in the 
block.diogonalized form. It has the important properties: 

. det D=(det A) (det B) (det C), 
trace D=trace A+trace B+traceC, 

D-I = A-I EB B-1 EB C-I, 

(2. 84a) 
(2.84b) 
'(2.84c) 

which should be clear from (2.83). Also, if Al and At are square 
matrices of the same order, say n, and Bl and Ba are square matrice.q 

of the same order, say m, then!3 
' (AIEBBl) (AsEBB.)=(AIA7)Ef)(BIBa). (2.84d) 

2.5.2 Direct product of matrices. The direct product of two 
matrices A=[Alm] of order LxM and B=[B]pq of order PxQ ,is a 
matrixC of order IxJ whereI=LP and J=MQ. It can be written as 

C=A®B=[ AllB AlIB ..• AIMB ], (2.85) 
AuB AssB •.. AwB . 
• 

AuB AuB '/" AuiB 

where aU-'element' A,,,,B stands for a matrix of ordor P x Q given by 

AI",B= r A/mBn AlmBa . . • AlmBIQ ]. I AIr:BU AlmB2I ' " AlmBaQ 

L AlmBPl AlmBPI AlmBpQ ' 

(2.86) 

To obtain an element of C in terms of the elements of A and B, 
we use the notation C=[Clp, ",q] where a row of C is denoted by a 
dual symbol (Ip) and a column Of C by a dual symbol (mq), such that 

C/p, mq=Alm Bpq. (2.87) 
We may relabel the rows and the columns of C two new indices 
i andj (I j I, s;: J) so that 

C=[CIJ] = [Clp, .. q]. (2.88) 
This rather complicated notation can be made clear by an 

example. The direct product of 
(1) (2) (3) 

A=(I) [a b c J' 
(2) d e f 

(1) (2) 

B=(I) [ .h r ] (2) k s 
(3) I t 

laFor proofa of various results mentioned 'in thia and the following I!ubsections, 
see Joshi (1984), Section 13. 
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is the 6 X 6 matrix 
(II) (12) (21) (22) (1) (32) 

C=A®B=(Il) r ah ar bh br ch cr T . (2.89) 
(12) ak as bk bs ck cs 
(13) al at bI ht cl ct 
(21) dh dr eh er Jh Jr 
(22) dk ds ek es fk Js 
(23) L dl dt el et JI Jt J 

Note that the rows and the columns oj the matrix C are labeled by 
different schemes. Thus, while the third row of C is labeled as the 
(13) row, the third column is labeled as the (21) column. An element 
of C is, for example, 

C21 , 31 =fh=Az3Bll' 

which is consistent with (2 .87) . We now relabel the rows and the 
columns by identifying each dual symbol with one number, separately 
for the rows and for the columns. We ' then have the matrix 
[Cul = [Clp, mol] with (/p) -+ i, (mq) -+ j and 1 i, j::;: 6. Thus, in the 
above example, C2 t. 31 == C4S. 

In the general case, the identification. of the dual symbol with the 
single running index can be made by letting i=(/-l) P+p and 
j=(m-I) Q+q; thus,. 

Clp, mo=Cjj=C(/-I)P+l1, (m-I) Q+q. 

The concept can once again be extended to the direct product 
of more than two matrices. There is no restriction on the order of 
the matrices whose direct product is to be taken. 

If Ai, Az, BI and Bz are any matrices whose dimensions are such 
that the ordinary matrix products AIA2 and BIBz are defined, then 
the direct product has the important property 

(AI ® BI ) (A2 ® B2)=(AI A2) ® (BIB2)' (2; 9Oa) 
Further, if F is the direct product of a number of square matrices 
A, B, C, ...• that is, F = A (g)B®C® ... , then 

trace F=(trace A) (trace B) (trace C) . ... (2.90b) 
The operation of the direct product of matrices is associative, so that 

A (g)(B(g) C)=(A(g)B)(g) C=A(g)B(g) C. (2.91) 
The opera.tion is also distributive with respect to matrix addition. 
Thus; 

A(g)(C+D)=A®C+A(g)D. (2.92) 
Moreover. from (2. 90a), we have 
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(AB) ® (AB) ® (AB)=(AB) ® «A ® A)(B® B» 
=(A ®A® A)(B®B®B). 

Generalizing the above equation, we have 
(AB)[kl = (A)[kl (B)[kl, 

where 
A[kl=A ® A ® A ® ... ® A (k times). 

(2 .93) 

(2.94) 

(2.95) 
Finally, if A and B are square matrices with eigenvalues and eigen-
vectors AI, Xi and fLJ, Yh respectively, the eigenvalues of A ® Bare 
A/fLj and its eigenvectors are XI ® Y J. That is, if Axi=AIX/ and 
BYJ=fLjYj, then 

(A ® B)(XI ® YJ)=AlfLJ (Xi ® )'j). (2 .96) 
The proof follows directly from (2. 90a). 

We shall find these concepts very useful in the next chapter. 

PROBLEMS ON CHAPTER 2 

(2.1) Show that the following sets are vector spaces. Also indicate how 
you would choose a basis in each space. What is the dimension of each space? 
Which is the field over which each space is defined? 

(i) The set of all vectors denoting the possible velocities of a free 
in classical mechanics. 

(ii) The set of all vectors denoting the possible wave vectors of a free 
particle in classical or quantum mechanics (note that this is usually referred to 
as the k-space). 

(iii) The set of all continuous square integrable solutions. of an n-th order 
ordinary linear homogeneous differential equation. 

(iv) The set of all continuous square integrable functions which depend on 
a set of variables. 

(v) The set of all real square matrices of order n. 
(vi) The set of all complex square matrices of order n. 
(2 . 2). Prove Eq. (2 .24). 
(2.3) Pfove Eq. (2 . 26). [Hint: Use (2 . 24).J 
(2.4) State whether the following statements are true or false and explain 

your answer: 
(i) If all the vectors of a set are pairwise orthogonal, it necessarily follows 

that it is an orthogonal set. 
(ii) If all the vectors of a set are pairwise independent of each other, it 

necessarily follows that it is a set of linearly independent vectors. 
(2.5) Consider the projection operators P defined in (2·.28). ,Show that 

P,PI':'"O if iif6j. (This is expressed by saying that the projection operators are 
palrwiseorthogonal.) 

(2.6) Show that the eigenvalues of a hermitian operator are real and that 
those of a unitary operator have absolute magnitude equal to unity. 
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(2.7) Show that the functions Po(x)= 1 and are orthogonal on the 
Find scalars a' and b' such that P2(x)=I+a'x+b'x2 is 

orthogonal to both Po(x) and P1(x) on the same interval. In this way, r-nerate 
polynomials Pn(x)=I+ax+bxz+ ... +gx" such that Pn(x) is orthogonal to 

the interval [-1, I]. , [Note that these are the 
Legendre polynomials, apart from constant factors.] 

(2.8) Obtain the eigenvalUes and the eigenvectors of the following matrices : 

(i) [112 0 -3y3/2 J' (ii) [ Sin6]. o 1 0 -SID 6 cos e 
-3y3i2 0 -5/2 

(2.9) Obtain the direct sum and the direct product of the following 
matrices: 

(;) [ 2 
1 
3 

5 
4 
3 

and 

(ii) J and 'J. 
o 5 -I 4 2-2 

(2.10) Obtain the direct product of the two matrices: 

[-; -:] and U 1 
(2.11) In Probleql (2.9) verify Eqs. (2,84a), (2.84c) and (2.90b)· 
(2.12) Let p be a prime number and consider the set of the p integers 

(0, I, 2, ... , p-J). Show that this setis a field with addition mod (p) and 
multiplication mod (p)as the two binary operations. (A finite field is called 
a Galois/ield.) 

(2. 13) If T (A) is the matrix representing an operator T in the vector space 
La and T (B) that representing T in tho vector space Lb, show that the matrix 
representing T in the vector space La ® Lb is T (A) ® T (B). 

'Blbltograpby for Chapter 2 

Albert (1956), Chapter 3; Courant and Hilbert (1966), Chapter 1; Halmos 
(1958); Helmberi,(1969); Jackson (1962); Joshi (1984); Margenau and Murphy 
(1966) .. Chapter 10: Meijer and Bauer (1962), Chapter 1; Meschkowski (1968); von 
Neumann (1955); Newingand Cunningham (1967); Schmeidler (1965); Shilov 
(1965); SimmODS(1963). Chapters 10 and 11; Trigg (1964); Van der Waerden 
(1949). 


