CHAPTER 1

Abstract Group Theory

The concept of groups had its origin more than 150 years ago,
in the beginning of the nineteenth century. The early development
of the theory of groups was due to the famous mathematicians Gauss,
Cauchy, Abel, Hamilton, Galois, Sylvester, Cayley, and many others.}
However, till the advent of modern quantum mechanics in 1925, it
did not find much use in physics. The advantages of group theory
in physics were soon recognized and the new tool was put to use in the
calculations of the atomic structures and spectra by, to name only
a few, H.A. Bethe, E.P. Wigner and others. Group theory has now be-
come indispensable in most branches of physics and physical chemistry.

Although a mathematician is generally more interested in the
formal development of abstract group theory, a physicist finds the
representation theory of groups of direct use in quantum physics and
other branches of physics. In this chapter, we shall discuss only those
aspects of abstract group theory which will be needed for under-
standing the representation theory; this will be taken up in Chapter 3
for finite groups and in Chapter 4 for continuous groups.

1.1 What is a Group?

Consider the set [ of all integers, /= {..., —3,~2,-1,0,1,2,...},
and consider the rollowing four properties of this set: (a) The sum of -
any two elements of the set 7 is again an integer and hence belongs

1Bell (1965).
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to the set 1. (b) The set contains an element O, called zero, which has
the property that for any element m& I, m+0=0+m=m. (c) For
every element m of I, there exists a unique element n also belonging to
I such that m+n=n+m=0; evidently, n=—m. (d) If m, n and p are
any three elements of I, m+(n+p)=(m-+n)+p; this means that the law
of addition is associative.

Consider another set, the set U(n) of all unitary matrices of order
n, where n is a fixed finite positive integer. This set has the following
four properties: (a) If U and ¥ are any two unitary matrices of order
n, their product UV is again a unitary matrix of order » and hence
belongs to the set U(n). (b) The set contains the unit matrix / which
has the property UI=IU=U for every UcU(n). (c) If U 1s an
element of U(n), there exists a unique element ¥ also in U(n) such
that UV=VU=I (d) IfU, V and W are any three elements of the
set, UVW)=UV)W.

It will be noticed that thg four properties satisfied by the above
two sets are very much similar in nature. In fact, these properties
define a group and both the sets discussed above are examples of a
group.

Abstractly, a group is a set of distinct elements, G={E, 4, B, C,
D, ...}, endowed with a law of composition (such as addition,
multiplication, matrix multiplication, etc.), such that the following
properties are satisfied:

(a) The composition of any two elements 4 and B of G under the
given law results in an’ element which also belongs to G. Thus,

A-Be G, BoAE G, (1.1)
where we have denoted the composition of two elements of G by the
symbol ». Symbolically,

AoBE G~ A,BE G.
This property is known as the closure property of the group and the
set is said to be closed under the given law of composition.

(b) There exists an identity element E€ G such that for all A€G,

EoA=A0 E=A. (1.2)
‘Symbolically, ‘
JEEGDEcA=AE=ANv A € G.
E is known as the identity element of G.
(¢) For any element A€ G, there exists a unique element BEG
such that
Ao B=Bo A=E. (1.3)
Symbolically,
Y AEGIBEGD Ao B=Bo A=E.
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B is called the inverse of A, and vice versa.
(d) The law of composition of the group elements is associative,
i.e., for any 4, B, CEG, ) ,
Ao(BoC)=(AeB)e C. (1.4)
Symbolically,
Ao(BoC)=(AB)oCx A4, B, CE G,

The number of elements in a group is called its order. A group .
containing a finite number of elements i1s called a finite group; a
group containing an infinite number of elements is called an infinite
group. An infinite group may further be either discrete or continuous:
if the number of the elements in a group is denumerably infinite
(such as the number of all integers), the group is discrete; if the
number of the elements in a group is nondenumerably infinite (such
as the number of all real numbers), the group is continuous.

Some more examples of a group are:

(i) The group of order two consisting of the real numbers 1,—1,
with ordinary multiplication as the law of composition.

(i) The group of order four consisting of the complex numbers
1, i, —1,—i (where i#=—1), under multiplication.

(it1) The discrete infinite group of all real integers discussed above.
The law of composition is addition and the identity element is O.

(iv) The set of all real numbers under addition. This is a
continuous group with O as the identity element. The inverse of a
number b is its negative —b.

(v) The set of all positive (zero excluded) real numbers under
multiplication. The identity element is 1 and the inverse of x is its
rcciproca] 1/x.

(vi) The single point set containing just the unity is a group of
order one under multiplication.

(vii) The set of the two rnatriccs[ (1) 2 ]'ahd [_(1) ?]under

matrix multiplication.
(viii) The set of all nonsingular square matrices of order n (n
a posttive integer) under matrix multiplication. o
(ix) If k is a positive integer, the set (0, 1, 2, ..., k—1) of k
integers isa group under? addition modulo (k). The identity element is
zero and the inverse of an element r is k—r.

2A number n modulo (k) is defined as the remainder obtained on dividing

n by k. Thus,10 modulo (6) =4, 3 modulo (3) =0, etc. Let k=6 in Example
(ix); then 3+4=1, 5+1=0, etc.
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(x) If pis a prime number greater than 1, the set (1, 2, ..., p—1)
of p—1 integers is a group under multiplication® modulo (p).
The identity element is 1 and the inverse of an element ris (sp+1)/r
where s is the smallest positive integer which makes sp+1 an integral
multiple of r in the ordinary sense.

(xi) The set of all matrices of order m X n under matrix addition.
The identity element is the null matrix of order m xn and the inverse
of an element A is its negative — A.

In the above examples, we come across two basic laws of
composition—addition and multiplication—each referring to scalars
and matrices. When the law of composition of a group is addition, the
inverse of an element is called the additive inverse; when it is
multiplication, the inverse is called the multiplicative inverse. Thus, if
x 1s a number, —.x is its additive inverse and 1/x the multiplicative
inverse provided xs£0. If 4 is a matrix,— A4 is its additive inverse and
A-! the multiplicative inverse provided A is nonsingular. Similarly, in
the case of a group of numbers, 0 is the additive identity and 1 the
multiplicative identity; in the case of a group of matrices, the null
matrix (of appropriate order) is the additive identity while the unit
matrix (of appropriate order) is the multiplicative identity.

Hereafter, the symbol o will be dropped and, for example, 4B
will be written for A o B. Similarly, we shall often replace the word
‘composition’ by ‘multiplication’ or ‘product’ of group elements.

The product of the group elements is not necessarily commutative,
i.e., in general, ABs£BA. If al) the elements of a group commute with
each other, it is said to be an abelian group. Such groups have impor-
tant consequences as will be seen later, All the groups considered
above, except the group U(n) of all unitary matrices of order n and
the group of all nonsingular matrices of order n, are abelian groups.

1.1.1 Group of transformations. The groups of particular
interest to a physicist are the groups of transformations* of
physical systems. A transformation which leaves a physical system
invariant is called a symmetry transformation of the system. Thus any
rotation of a circle about an axis passing through its centre and per-
pendicular to the plane of the circle is a symmetry transformation for
it. A permutation of two identical atoms in a molecule is a
symmetry transformation for the molecule.

3See footnote 2. In this Example, if p=7, then 3.4=5, 2.5=3, etc.; the
inverse of 4 is 2, since 4.2=1.
4Such as rotations, reflections, permutations, translations, etc.
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We shall now show that the set of all symmetry transformations of
a system is a group. First we observe that if we perform two symmetry
transformations of the system successively, the system remains
invariant. Thus the composition of any two symmetry transformations
of the system 1s again a symmetry transformation of the system, i.e.,
the set considered isclosed under the law of successive transformations.
We can define an identity transformation which leaves the system
unchanged; and this obviously belongs to the set. Given a symmetry
transformation, we see that there exists an inverse transformation which
also belongs to the set. Finally, the successive transformation >f the
system obeys the associative law. This proves that the set const lered
is a group. ‘ _

The group of all symmetry transformations of a system is called
the group of symmetry of the system.

1.1.2 The group of symmetry of a square. Suppose we have
a square cut out in a piece of cardboard as shown in Fig. (1.1).
Let us label the various points of the square as shown in the figure:
the corners by a, b, ¢, d; the centres of the edges by e, /, g, h; and -
the centre of the square by 0. The points marked 1, 2,...,8 are fixed
on the paper (they are not marked on the square). Now suppose we
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FIGURE 1.1 The axes and the planes of symmetry of a square

rotate the square through a right angle about a line perpendicular to
the square and passing through o. But for the labeling a, b,..., A.
we would not notice any change in the square. Consider all such
symmetry transformations of the square (such as rotating or reflecting
it, without bending or stretching) which leave the position of
the boundaries of the square unchanged but give a distinct labeling of
the marked points a, b. ..., /i. Before listing all such transfor-
mations, it would be proper to say a few words about the notation we
shall be using.
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If a rotation through an angle 2x/n (n a positive integer) about
some axis leaves the system invariant, the axis is known as an n-fold
symmeltry axis of the system and the corresponding operation is
denoted by C,. Its integral powers, which will also be symmetry
transformations of the system, will be denoted by C,*; this repre-
sents k successive operations of C, on the system, or a rotation of
2rk/n about the axis. A reflection in a plane will be denoted by
m or o with a subscript specifying the plane of reflection. The
identity transformation will be denoted by E. -

While enumerating all the symmetry transformations of a square,
which are listed in Table (1.1), we-shall use the shorthand notation
‘reflection in a line’ to mean ‘reflection in a plane perpendicular to the
square passing through the line’.

It can be seen that the operations listed in Table (1.1) exhaust
the symmetry transformations of a square, 1.e.,-there is no other trans-
formation which leaves the square in the same position and yet gives
a distinct labeling for the points a, b, ..., h. One may think of in-
version through the centre o; but it can be readily verified that it is
identical to C,2.
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FIGURE 1.2 The equivalance of the transformations of a square
with those of a cartesian coordinate system

It is interesting to note that these eight transformations correspond
to the eight different ways in whicli we can choose a cartesian coordinate
system with axes parallel to the edges of the square. These are shown
in Fig. (1.2). We either consider that the coordinate system is held
fixed while the square is transformed, which is known as the active
viewpoint, or that the square is held fixed while the coordinate
system is transformed, which is known as the passive viewpoint. 1t
should be noted that a transformation in the active viewpoint is



ABSTRACT GROUP THEORY

Symbol
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TABLE 1.1 SYMMETRY TRANSFORMATIONS
OF A SQUARE

Operation

The identity.

Result

4
- - | 1
A clockwise rotation through 90° about
an axis normal to the square and passing
through o.
4
1
A rotation through 180° about the above
axis.
4
1
A clockwise rotation through 270° about
the same axis.
4
Reflection in the line 5-7. 5

Reflection in the line 6-8.

Reflection in the line 1-3.

U
=

-

Reflection in the line 2-4.
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equivalent to the inverse transformation in the passive viewpoint.
Thus, if in the active viewpoint, we define C, as a clockwise rotation
of the square, in the passive viewpoint, C, would mean an anticlockwise
rotation of the coordinate system. This convention will be used
throughout this book and isillustrated explicitly in Fig. (1.2).

It can be readily verified that the set of the eight transformations
listed in Table (1.1) is a group which is the group of symmetry of a
square. Thus, consider the operation of C, followed by that of 6, on
the square. This can be found as follows:

a b d a d ¢ a b
6uCs =0 . —=my . (1 . 5)
d C C b a b d c

f

Inthe operator notation, we can write this as
UuC‘I:’)?x, . (1 .6)
meaning thereby that the operations of a. C4 and of m. on the square

or in fact, on any system, give the same result.
The inverse of an operator is that operator which nullifies the

effect of the first. Thus, consider the successive operation C,;*C, on
the square:

a b d al’ a b a b
C‘:’C“ =C43 - = E . (1.7)
d c < b d C d c

The same result would be obtained if we operate by C, and C,3
in the reverse order. Thus, by (1.3), C, is the inverse of C,® and vice
versa. In the operator notation, we may write this as

(CH)1=C2 or C,C32=C3C,=E. (1.8)
It is left asan exercise to verify that each of the eight symmetry trans-
formations has an inverse which is just one of these eight transfor-
mations.

Finally, the transformations obey the associative law. Hence
the set of the symmetry transformations of a square is a group. This
symmetry group of a square of order eight is denoted by C,, in crys-

tallography?®.

5The crystallographic point groups are dealt with in Chapter 7. If instead of
the reflections, we consider rotations through = about the four lines of Fig.
(1.1), we have the group Dy which is also the symmetry group of a square and
has the eight elements (E, Cg, Cq2, C43, Cs7, Cggs C1a» Caq) where Csy
denotes a twofold rotation about the line 5-7, etc. See Chapter 7 for more

details.
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1.2 The Multiplication Table

Let us consider the following operations

Cy My=06u, o4 C2=iny,

ou 0,=C,%, and so on.
All such products of the group elements can be represented by atable,
known as the group multiplication rable. 1t 1s shownin Table (1.2) for
the symmetry group of a squarc. C,,. Note that in a successive
operation such as ABC. . ., the order of operation is from right to left.
Thus, in the product Cyms, my is the first operation and C, the second
operation. The entry for Cymxwould therefore be found in Table (1.2)
in the column corresponding to m, and the row corresponding to C,.

TABLE 1.2 THE MULTIPLICATION TABLE
FOR THE GROUP C,,

SECOND FIRST

OPERATION OPERATION
E C4 C42 C43 ﬂl,\- my Cu Cy

E E C, C,* C? M iy Gu Oy
C3 | C3 E C, C? a, Cu My M,y

c?: | CE C& E C, my My G, Oy
C, | G 2 CB E Cu o, my, My
my | me ¢, my Cu E Ce: C3 C,
my | m, o My oy c2 E C, Cg3
Ou Gu Ny Gy My Cy Cé E (g2
G, Gy m,y Ou My Cg C, C2 F

The ordering of the rows and the columns in writing down the
multiplication table of a group is immaterial. We have chosen a diffe-
rent ordering for the rows and for the columns:the ordering is such
that an element in the first column (second operation) is the inverse
of the corresponding element in the first row (first operation). If the
multiplication table is written in this way, the principal diagonal
contains only the identity element E. The advantage of this arrange-
ment will be clear in Section 3.7.

1.2.1 The rearrangement theorem. It will be noticed from the
multiplication Table (1.2) that each element of the group occurs once
and only once in cach column. This s known as the rearrangcinncni
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theorem. The arrangement of elements in a row (column) is different
from that in every other row (column).

To prove this theorem, we first show that no element can occur
more than once in a row or a column. For, suppose an element D
occurs twice in a column corresponding to the element 4. This means
that there exist two elements, say B and C, such that

BA=Dand CA=D.
Multiplying from the right by 41, we get

B=DA-, C=DA,
showing that B=C, which is contrary to the hypothesis. that the
group elements are distinct. The same line of argument can be used
to show that no element can occur more than once in a row.

The second part is now easy to prove: since no element can
occur more than once in a row or in a column and since the number
of places to be filled in each row or each column is equal to the
order of the group, each element must occur once and only once in
each row and in each column. This completes the proof.

An important consequience of this theorem 1is that if f is any
function of the group elements, then

2 f(A)= X f(AB), (1.9)
AEG AEG
where B 1s an element of the finite group G and the sum runs over
all the group elements.

1.2.2 Generators of a finite group. It is possible to generate
all the elements of a group by starting from a certain set of elements
which are subject to some relations. Consider the smallest set of
elements whose powers and products generate all the elements of the
group. The elements of this set are called the generators of the group.
We shall restrict ourselves here to finite groups only and illustrate by
means of two examples.

EXAMPLE 1. We wish to generate a group starting from an element
A subject only to the relation 4”=EF such that n is the smallest
positive integer satisfying this relation.

Since A4 1s an element of the group, all its integral powers must
also be in the group. Thus, we generate new elements A2, A43,..., of
the group and the process stops at 4= E. The higher powers of 4 do
not give us new elements because A% = 4% The desired group is thus
(4, A%, A%,..., A", A"=:E), whose order is n.

'y
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FXAMPLE 2. We wish to generate a group from two elements A4
and B subject only to the relations 4*=B3=(AB)?=F.

The group must contain the elements E, A, B and B2, since A’=FE
and B*=FE. But then it must also contain all the products of A. B
and B% among themselves. Hence we get two new elements of the
group, AB and BA. It can be shown that 4 and B do not commute,
since if they do, then from the relation (4B)*=E, we have

E=ABAB=A*B*=B%
which is not true. Therefore AB and BA are distinct elements. We
have thus generated the six elements of the group E, A, B, B2, 4B,
BA.

It can now be shown that this set is a group, i.e., it is closed
under multiplication. Suppose we wish to show that the product
(AB) B=AB? belongs to this set. From the relation (AB)*=E, we
have (AB)'=AB or B'A-'=AB or AB=B-'4 since A*=F. But
from B*=E, we have B1=B%? Hence AB=B*4. Using this. we
find that

(AB) B=B*AB=B>B*4=BA,
which indeed belongs to the set. Similarly, it can be verified that
the inverse of each element of the set also belongs to the set. Hence
the desired group is (E, 4, B, B 4B, BA). whose order is six.

The generators of a group are not unique; they can be chosen in a
variety of ways. Thus, for example. the group of order six of
Example 2 above may be generated by any one of the following sets

of generators: (4. B), (A4, B?), (A, AB), (B. AB), etc. See Problem
(1.25)

1.3 Conjugate Elements and Classes

Consider a relation such as
A-1BA=C. (1.10)
where 4, B and C are elcments ol a group. When such a relation
exists between two elements B and C, they are said to be conjugate
elements. The operation is called a similarity transformation of B by
A. It 1s clear that
' ACA-1'=B. (.11
1t is not difficult to find such relationships among the elements of:
the group C,,. Thus,
CmyCy=niy. (.12
showing that »:, and /1, are conjugate tc cach olher.
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It is a simple exercise to show that if B is conjugate to € and B
1s also conjugate to D, then C and D are conjugate elements; or
B, C and D are all conjugate to each other.

It immediately follows that we can split a group into sets such
that all the elements of a set are conjugate to each other but no
two elements belonging to different sets are conjugate to each other.
In fact, such sets of elements are called the conjugacy classes or simply
the classes of a group. The identity element E always constitutes
a class by itself in any group, since, for any element 4 of the
group, A'FA=E. It is left as an exercise to show that the classes

of C,, are
(E)’ (Cm Cda): (C42)7 (mx, my), (O'u, Gp)- (1 . 13)

In case we are dealing with groups of transformations consisting
of rotations, reflections and inversion of a physical system, there are
some simple rules which allow the determination of the classes of a
group without having to perform explicit calculations for all the ele-
ments. These are: '

(1) Rotations through angles of different -magnitudes must
belong to different classes. Thus C, and C,? of C,, belong to different
classes (see Problem 1.17).

(i) Rotations through an angle in the clockwise and in the
anticlockwise sense about an axis belong to a class if and only if
there exists a transformation in the group which reverses the direction
of the axis or which changes the sense of a cartesian coordinate
system (l.e., takes a right-handed system into a left-handed one or
vice versa). Thus, C, and C,? of C,, belong to the same class because
a reflection (such as m, or 6,) changes the sense of the coordinate
system.

(ili) Rotations through the same angle about two different axes
or reflections in two distinct planes belong to the same class if and
only if the two axes or the two planes can be brought into each other
by some element of the group. Thus, m and m, belong to the same
class since the line 5-7 of Fig. (1.1) can be brought into the line 6-8
by the application of C,; ou and my do not belong to the same class
since there is no operation in C,, which can bring the line 1-3 into
the line 5-7.

These simple criteria are very useful in obtaining the classes of
the molecular and the crystallogarphic point groups simply by
inspection. ‘
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1.3.1 Multiplication of classes. We now define the product of
two classes as-follows. Let Ci=(A4,, As,...,4Am) and C;=(B,, B,... .,
Bn) be two classes (same or Jistinct) of a group containing m1 and n
elements, respectively. We define their product as a set containing all
the elements obtained by taking the products of each element of (;
with every element of ;. We keep each element as many times as it
occurs in the product. Thus,

CiCi=(A,By, A\By, ..., ABk,. .., AnBy,). (1.14)

We can easily show that the set ; (; consists of complete classes.
It would be enough to show that if an element A;Bx belongs tc the
set (; C;, then any element conjugate to A4;Bx also belongs t. the
set. Consider an element conjugate to A;Bx with respect to some ele-
ment X of the group G:

XY AB)X=(X14,X) (X~'BiX)
=A,B;, say, (1.15)
where, by the definition of a class, 4, belongs to (i and B; belongs
to ;. Hence A,B; belongs to the set C;C;.
We can then express the product of two classes of a group as
a sum of complete classes of the group:

Ci Cj=§;{aijk Ck, (1.16)

where a;;x are nonnegative integers giving the number of times the
class Cx is contained in the product i j, and the sum is over all
the classes of the group.

1.4 Subgroups

A set His said to be a subgroup of a group G if H is itself a
group under the same law of composition as that of G and if all the
elements of H are also in G. ,

As an example, consider the four elements (E,C,, C,3 C,*) of
C,,. It is easy to see that this set satisfies all the axioms defining a
group; hence it 1s a subgroup of C,,. Some more examples of the
subgroups of C,, are (E, C,%, mx, m,), (E, cu), etc.

Every group G has two trivial subgroups—the identity element
and the group G itself. A subgroup H of G is called a proper sub-
group if H+#G, .e., if G has more elements than A.

If we work out the classes of the two subgroups (FE, Cy, C,2,
C.2) and (£, C% mx,my). we find that in both of these groups every
element constitutes a class by itself (see Problem 1.12). The
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elements C, and C,® do not belong to the same class in the group
(E.Cy, C2, C®) because there is no operation in this group which
changes the sense of the coordinate system. Similarly, m, and m,
do not belong to the same class in the group (E, C,2, m,, m,) because
there is no operation in this group which can take the x axis into
the y axis. It is therefore important to note that elements belonging

to a class in a larger group may not belong to a class in a smaller
subgroup.

1.4.1 Cyclic groups. If A is an element of a group G,
all integral powers of 4 such as 4%, 43, ..., must also be in G. If G
is a finite group there must exist a finite positive integer » such that

A"=F, (1.17)
the identity element. The smallest positive (nonzero) integer satis-
fying (1.17) ‘s called the order of the element A.

The group (A, A%, A3, ..., A"=E), which we have already
_ discussed in Example 1 of Section 1.2.2, has the property that
each of its elements is some power of one particular element. Such
groups are called cyclic groups. A group generated by a single ele-

ment is a cyclic group. Clearly, cyclic groups are abelian, while the
converse IS not necessarily true.

1.4.2° Cosets. Consider a subgroup H=(H,=E, H,, ..., Hy)
of order h of a group G which is of orderg. Let X' be any element
of G. Construct all the products such as XE, XH,, etc., and denote
the set of these elements by®
XH=(XE,XH,, XH,, ...,XH,). (1.18)
Now there arise two cases—X may be in the subgroup H or X may
not be in H. If X is a member of H, the set XH must be identical
to the group H by the definition of a group. In the set XH, we
only have a rearrangement of the elements of H. We may denote
this by writing
XH=H if X€ H. (1.19)
On the other hand, if X does not belong to H, it can be shown that
no element of the set XA belongs to H. This we do by starting
from a contrary assumption. Thus, suppose that XH; for some
value of 7 (I <<i<Ch) belongs to H. Now since H is a group, H;—!
also belongs to H. Hence it follows that (XH;) Hi7'=X 1s in H,

6This is the multiplication of a set by an element. We have previously
discussed the product of two sets in Section 1.3.1.
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contrary to the hypothesis that X is not a member of H. This
proves that H and XH have no common element. We say that H
and X H are disjoint sets and express it, in the set theoretic notation,
by saying that the intersection of H and X H is the null set ¢:

H N (XH)=¢. (1.20)

The set XH is called the left coset of H in G with respect to X,
Similarly, we can define the right coset of Hin G with respect to X as -
the set of elements '

HX=(EX, HX, HyX,.. ., H:X), (1.21)
which will also be disjoint to H if X isnot in H. All the elements
of the left coset and the right coset must of course belong to the
bigger group G since X as well as H; belong to G.

1.4.3 A theorem on subgroups. We are almost half-way through
to prove an important theorem: If a group H of order h is a subgroup
of a group G of order g. then g is an integral multiple of h.

To prove this, let H=(E, H,, H,, ..., H;) be the subgroup of
G. As before, form the left coset of H with respect to an element
X & G which does not belong to A. All the elements X H; (1 <<i<Ch)
belong to G but none of them is a member of H, as already shown
above. Thus, we have / new elements of the group G. We have so
far generated the following 222 members of G:

HUXH=(E,H,, H,,. .., Hy, X, XH,,. .., XH,). (1.22)
If this does not exhaust the group G, then pick up an element Y
from the remaining e¢lements of G such that Y belongs neither to H
nor to XH. Again, forming the left coset YH, we see by the pre-
vious argument that all the elements YH must belong to G, but that
no element of YH can belong to H. That is, the sets H
and YH are disjoint. We now prove that the sets YH and XH are
also disjoint. For, if an element YH; were to be identical to an
element, say, XH; (1 <1, j<Ch), then we have

YH,=XH;,

or Y=XH; H~1=XHqy, say, (1.23)
with 1<k << h, showing that Y belongs to XH, contrary to the
hypothesis. Thus we have a set of A new elements of G, making
altogether the 34 elements

HUXHUYH
—(E.Hy, ..., Hiy X, XHyy. . ,XH,, Y, YH,,.. . YHy. (1.24)
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If this still does not exhaust the group G, then we pick up one
of the remaining elements of G and continue the process. Every
time we generate i new elements, they must all belong to G and
hence the order of G must be an integral multiple of A.

The integer g/h is called the index of the subgroup H in G.

If an element A of a finite group G is of order n, we have
seen that the set (4, A%...,A"=F) is a subgroup of G. Hence it
follows that the order of every element of a finite group must be an
integral divisor of the order of the group.

1.4.4 Normal subgroups and factor groups. If the left and
the right cosets of a subgroup /H with respect to all the elements
X EG are the same, then H is called a normal subgroup or an inva-
riant subgroup of G. This condition can be written as

XH=HX, .
or X-'HX=H for all Xe€@. (1.25)

We can also express this condition alternatively by requiring that

every element of X H be equal to some element of HX, or
XHi=H;X,

which gives

X-1H;X=H,. (1.26)
But this is just the conjugation relation between the elements H;
and H;and shows that if an element H; belongs to a normal subgroup
H of G, then all the elements conjugate to H; also belong to H.
This is often expressed by saying that a normal subgroup consists of
complete classes of the bigger group. The converse also holds, i.e., if
a subgroup H consists of complete classes of G, then H is a normal
subgroup of G (see Problem 1.26). This may therefore be taken as
an alternative definition of a normal subgroup. For example, (E, C,2,
myx, My) 1s a normal subgroup of C,, whereas (F, my) is not.

We now introduce another important concept, that of a factor
group. We shall illustrate this first by an example and then follow
with a general discussion.

Consider a normal subgroup of C,,, say K| -—(E C,?), and form
all its distinct cosets with respect to various elements of Cs,. There
are four such distinct cosets including X|:

Ki=(E, C®), K,=(Cy, CP),

Ky=(mx, my), K,=(o40,). : (1.27)
We can make this set of cosets a group if we define the product of
two cosets as follows: The multiplication of two cosets is a set
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obtained by multiplying each element of the first coset with every
element of the other, repeated elements being taken only once.” In
general, the product of two cosets will depend on the order of
multiplication. Thus, we consider
K,Ky=(Cy, C®) (mx, my)

=(0u, 6y, Ou, 6,)—>(ou, 6,)=K,. (1.28)
It can then be seen that the set K=(K,, K,, Ky, K,) is closed under
coset multiplication defined above. Similarly, it can be verified that
this set also satisfies all the other requirements for being a group.
Hence it follows that the set K, where each coset K; is considered an
‘element’ on a higher plane of abstraction, isa group under the given
law of composition. This group K iscalled the factor group of G with
respect to the normal subgroup X,.

Quite generally, if H is a normal subgroup of G, the set of all
the distinct cosets of H in G, together with the coset multiplication
defined above, is called the factor group or the quotient group of G
with respect to H and is denoted by

| K=G/H. (1.29)
If g is the order of G and A that of H, then it is easy to see that the
order of K is g/h, the index of Hin G.

1.5 Direct Product of Groups

The direct product of two groups H=(H,=E, H,, H,,..., H,)

of order h and X=(K,=E, K,, K,,.... K}) of order k is defined as a

group G of order g=hk consisting of elements obtained by taking

the products of each element of H with every element of K, provided

(i) that H and K have no common element except the identity F and

(i) that each element of H commutes with every element of K.

The direct-product group is denoted by
G=HQ K=(E, EK,, EK,,.. ., EKy, H,K,,...,

H,Ky,. .., HyKy). (1.30)

Clearly, both H and K are normal subgroups of G. The subgroups of
C,, afford a simple example of this concept. Thus,

(E, mx)Q (E, my)=(E, Cg?, mx, my). (1.31)

Taking the direct product of groups provides the simplest

method of enlarging a group. This concept finds its immediate use

in the study of symmetry of physical systems such asatoms, molecules,

7Note that this is different from the class multiplication defined earlier.
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crystals, nuclei and elementary particles. To take an example,
suppose G is a group of symmetry (of a system) consisting of proper
rotations only. Suppose we later discover that the inversion, J, is
also a symmetry transformation of the system. The inversion ope-
rator J along with the identity E constitutes a group of order 2,
(E,J). Since the inversion commutes with all the rotations, we can
take the direct product of G with (F, J) to obtain a bigger symmetry
group for the system which is now G®(E, J). Although it is not
possible in reality to tell whether we have found all the symmetries of
a given system, it is naturally desirable to know as many of them
as possible. We shall discuss this concept in more detail when we
come to the applications of group theory to quantum mechanics
in Chapters 5 and 6.

1.6 Isomorphism and Homomorphism

A group multiplication table, such as that shown in Table (1.2)
for the group of a square, characterizes the group completely and
contains all the information about the analytical structure of the
group. All groups having similar multiplication tables have the same
structure—they are said to be isomorphic to each other.

Mathematically, there is an isomorphism between two groups
G={E, A, B, C,...} and G'={E’, A’, B, C’,...}, both of the same
order g, if there exists a one-to-one correspondence between the elements
of G and G’. In other words, if the one-to-one correspondence is
denoted by A«A’, B~B’', C—C’, etc., then a multiplication such as
AB=C in the group G implies that 4’ B’=C" in the group G’. The
multiplication table of G’ can thus be obtained from that of G simply
by replacing the elements of G by the corresponding elements of G’.
It should be noted that the identity element of one group corresponds
to the identity element of the other group under isomorphic mapping.

As an example, it can be seen that the group {l, i/, —1, —i} of
numbers is isomorphic to the group {F£, C,, C,2, C,?} of rotations
under the mapping

1E, ieaC,—1eC2,—ieC3.
Thus, for example, the product (—1) (—i)=i in one group
corresponds to the product C,2 C,*=C, in the other. We shall come
across many other examples of isomorphism later.

Very often we come across a many-to-one correspondence or
mapping from one group to another (or one set to another, in
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general). We say that there is a homomorphism from a group G, to
another G, if to each element A in G, there corresponds a unique
element ¢ (A) of G, such that ¢ (4B)=¢ (A) ¢ (B). The mapping ¢ must
be defined for all elements of G,. The element ¢ (4) of G, is called the
image or map of the element 4 of G, under the homomorphism.
Although each element 4 of G, is mapped onto a unique element
#(A) of G,, several elements of G; may be mapped onto the same
element in G,. Thus it may happen that ¢ (4)=¢(B) even if A%B. If
n elements of G, are mapped onto each element of G,, we say that
there is an n-to-1 mapping or homomorphism from G, to G,. It is
evident that if n=1, the mapping reduces to isomorphism.

Let us develop a slightly different notation to make the concepts
more clear. Let G={F, A, B, C, ...} be a group of order g and let
G'={Ey, Ey, ..., En, A}, Ay, ..., Ay, ...} be a group of order ng
(note that only one element, say E,, is the identity of G’). Suppose
that it is possible to split the group G’ into g sets (Ej), (4)),
etc., each containing n elements such that the elements of G’ can be
mapped onto the elements of G according to the scheme

E,,FE,, ..., E.—>E;
Ay, Ay ..., An>A; etc. (1.32)
Then the group G’ is said to be homomorphic to G if the mapping is
such that the product
Ay Bj=Ck, 1<k<n, (1.33)
in G’ implies AB = C in G, and vice versa, where C is the image in G
of the elements Ci, C;..., C, of G'. We say that there is an n-to-1
homomorphism or mapping from G’ to G.

Again the subgroups of C,, provide a simple example of
homomorphism. Thus, the group (E, C,2, mx, my) is homomorphic to
the group (E, m,) with the following two-to-one mapping:

E, C2—>FE; mg, my—>m;. (1.34)

1.6.1 The set (E;) is a normal subgroup of G’. It can be shown
quite generally that the set (E;) of G’, whose elements E,, F,, ..., Ex
are mapped onto the identity element FE of G, is a normal subgroup
of G'. To prove this, we first show that the set (E;) is a group. In the
group G, we have EE=E; therefore, by the definition of homomorphism,.'
the product of any two elements E; and E; of G’ must belong to
the same set (E;). Thus, the set (E;) is closed under multiplication.
Now we must show that the identity element, which we denote by
L' for a moment, belongs to the set (E;). Suppose E’ belongs to
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some other set of G’, say, E’ € (4:); then for any element B, € G’,
we must have E’B,=B,. By homomorphism, we must then have
AB=B in G, which is possible only if A=E, 1.2., only if E’' € (Ei.
It is now almost trivial to show that if E; € (F;), then E;~! also
belongs to the set (£:). Thus we have proved that (E;)is a group.

To prove the second part, that (E;) is a normal subgroup of
G’, we consider its left and right cosets with any other element, say
A € G, ie., we consider Ai(E;) and (E;)4;. Because EA=AE=A4
in G, any product element such as £;4; or A;E; of G’ must belong
to the set (4;). Moreover, the products of 4; with all the n elements
E; of the set (E;) exhaust the set (4;). To put it briefly, every element
of (4;) must occur once and only once in the product 4; (E;); the
same will clearly be true for (E;) 4;. Thus, we have

Ay (Ej)=(Ai),
(Ey) Ai=(4), (1.35)
showing that (F;) is a normal subgroup of G'.

The set (E;) of G’ which is mapped onto E of G is called the kernel
of homomorphism. The above theorem can therefore be stated briefly
by saying that the kernel of homomorphism from G’ to G is a normal
subgroup of G'. .

The identity element furnishes a trivial example of homomorphism.
There is a homomorphism from any group G onto the group “of
order one containing only the identity element, which, in turn, is a
normal subgroup of any group.

1.7 Permutation Groups

These groups are of considerable importance in the quantum
mechanics of identical particles. Consider a system of n identical
objects. If we interchange any two or more of these objects, the
resulting configuration is indistinguishable from the original one.
We can consider each interchange as a transformation of the system
and then all such possible transformations form a group under which
the system is invariant. Since there are altogether n! permutations on
n objects, the group has order n!. It is known as the permuration
group of n objects or the symmetric group of degree n and is usually
denoted by Sk.

Taking a specific example of three identical objects, we see that
there are six possible pqrmutations which may be denoted as:

|
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12 3 1203 (12
E=(1 2 3)’ A"(z 3 1)’ B—(3

123 (1 23 (12
c=(; 1 3) p=(3 3 1) F=; 3

The labels 1, 2 and 3 refer to the positions of the three objects rather
than to the objects themselves.® The system itself has six possible
‘states’ which may be denoted by

4‘12(1 2 3), 4’2:(2 3 1), l~]":s=(3 1 2),»

—

(1.37)
=2 1 3. 4=0G 2 1), $=0 3 2).
The six operators of (1.36) th'n act on any of the above six states
and their operations are to be .nterpreted as follows. The opcration
of A, for example, on any state {; means that the object in position
2 is to be put in position 1, that in position 3 to be put in position 2,
and that in position 1 to be brought to position 3. Thus,

A¢,=(;_ § 3) 12 3)=@2 3 )=y, (1.38a)
C¢2=(; ? 3) 23 1)=(3 2 )=, (1.38b)

It can be readily shown that the set of the six permutations of
(1.36) is a group. The successive operation of two permutations on
a state can be easily worked out. Thus, operating on (1.38b) from the
left, say, by A, we find

ACh=(; 3 1) B2D=@ 1 3= (1.39)
But we also have -
12 3
F¢2=(1 : 2) @3 D=0 1=t (1.40)
Thus, we have '

It will be seen that if we start from any other state, the result is the
same, i.e.,

; AC‘{IL—'——F%, 1<Zi<6. (1.42)
Therefore, in the operator notation, we can write
AC=F. (1.43)

It is left as an exercise in Problem (1.19) to work out the mul-
tiplication table of S,.

8In quantum mechanics it is futile to try to label identical particles!
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Coming back to the general case of n identical objects, we see,
that éach permutation of these objects can be expressed as the
successive: interchange or transposition of two objects taken at a
time. We define a transposition (mk) on n identical objects as
the operation in which the objects in the positions m and k are to
be interchanged leaving all the other objects where they are. It
can then be verified that the symmetric group S, of degree n (n
finite) can be generated by the n—1 transpositions (12), (13),..., (1n).

As an example, a set of generators of S, are the two transpo-
sitions (12) and (13). All the elements of S, can be written as
suitable products of these generators. Thus, B=(13)(12), F=(13)
(12)(13), C=(12), etc., where, as per the convention, the order. of
operation is from right to left.

If a permutation consists of an even number of transpositions,
it is called an even permutation; if it consists of an odd number of
transpositions, it is called an odd permutation. Thus, the operators
E, A and B of (1.36) are even permutations, while C, D and F are
odd permutations.

The product of two even or of two odd permutations is an
even permutation, whereas the product of an even permutation with
an odd permutation is an odd permutation. It then immediately
follows that the set of all even permutations among the group S,
is a subgroup.? This is known as the alternating group of degree n and
is usually denoted by A4,. Its order is clearly n!/2. Thus, the
alterpating group of degree 3 is A,=(E, 4, B), where the elements
have been defined in (1.36).

Some more discussion of the permutation group and its classes is
given in Section 6.1.3.

L8 Distinct Groups of a Given Order

We have already mentioned that isomorphic groups have
identical analytical structures. A number of isomorphic groups
may stand for altogether different physical situations, but it is
_ sufficient to study only one of them mathematically. The elements
of a number of isomorphic groups may be matrices or permutations
or coordinate transformations; it suffices to study a group which is
isomorphic to all of these and its elements need not have any

A similar result does not hold for the set of all odd permutations. Why?
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‘meaning’ and may be treated in the abstract sense. Notice that
the whole theory is based on the four fundamental group axioms
which are quite independent of any particular interpretation given
to the group elements. This part of the theory is therefore called
abstract group theory. We may ‘put in’ any interpretation for the
group elements demanded by the physical situation at hand and
‘take out’ the corresponding results.

It is therefore desirable to enumerate the distinct (nonisomorphic)
groups of a given order n. It is particularly easy to do so for
small values of n. We list below the possible structures of groups
of orders upto n=6.

(i) n=1. There is only one distinct structure: a group having
only the identity element E.

(ii) n=2. Again, there is only one distinct structure: a group
(E, A), where, because the group is of order two, 4% must equal E.
" Any.group of order 2 must be isomorphic to (E, A). Examples are
(E, my), (E, ou), (1,—1), etc.

(i) n=3. This case also has only one structure: a group
generated by an element A4 of order 3, i.e., (4, A%, A*=E).

(iv) n=4. This is the lowest order for which there are two non-
isomorphic groups. If we denote the group by (E, 4, B, C), then
the two possible structures are discussed below.

As discussed at the end of Section 1.4.3, the elements A, B
and C can be of order 2 or 4. If any one element, say A, is of
order 4, it follows that the remaining three elements must be equal
to the powers of 4 and we get the structure

A2=B, A3=C, A*=E. (1.44)
This gives us the cyclic group of order 4, (A4, 4%, A%, A‘*=E).

In the second case, when no element is of order 4, it follows

that all the elements (excluding the identity) are of order 2; hence

A2=B2=C?=E. (1.45)
The result of Problem (1.11) then shows that the group must be
abelian. Now consider the product AB; the two possibilities are
AB=F and AB=C. But AB=F implies that B is the inverse of
A, wHereas, from (1.45), we see that 4 is its own inverse. In
other words, AB=E weguld imply B=A ; therefore the only possibility
is AB=C. |

The two nonisomorphic structures are then

(a) acyclic group of order 4, (4, A%, A3, A‘*=E); .

(b) a noncyclic abelian group of order 4, (E, A, B; C) with
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the structure A*=B2=C?=E, AB=C, BC=A, CA=B. This is the
lowest order noncyclic group.

Any group of order 4 must be isomorphic to one of these two
groups.

(v) n=5. Only one distinct structure is possible in this case:
the cyclic group of order 5, (4, A2, A3, A4, A>=F).

(vi) n=6. There are again two distinct (nonisomorphic)
groups. We shall prove only a part of this statement to illustrate
the argument involved.

Let us denote the group by (E, 4, B, C, D, F). As before, we
note that the orders of all the elements except £ must be 2, 3 or 6.
If the order of any one elements is 6, it follow that we have a cyclic
group of order 6, (4, 4%, A3, A% A5, A®=E). Therefore, to find the
second possible structure we exclude this case.

Now we shall show that not all the elements A4, B, C, D and
F can be of order 2. For if they are, then by Problem (1.11), the
group is abelian. Then consider any two elements, say 4 and B
with A2=B2=F, and let AB=BA=C. It is clear that the set
(E, A, B, C) of four elements is a subgroup of order 4. But this
is not possible, because it violates the fundamental theorem on
subgroups that the order of a subgroup must be an integral divisor
of the order of the group. Hence we conclude that at least one
element is of order 3. |

The remaining part of the proof is left to the reader. The two
resulting structures are:

(a) a cyclic group (A4, A2 A3, A4, A5, A°=F);

(b) a noncyclic group (E, 4, B, C, D, F) which is also nonabelian
and has the structure A*=B}=F, C*=D*=F?=E, B=A%,
AC=F, CA=D, BC=D, etc. This is the lowest order nonabelian
group and is isomorphic to S,. '

It is not easy, although possible in principle, to go on in this
way to higher values of n. The number of nonisomorphic groups
would increase, in general, with increasing n. However, two comments
are worthy of note:

(i) For every finite value of n, there is always a cyclic group
generated by an element of order n, i.e., (4, 4%, A%, ..., A"=E).

(i) If the order n of a group is a prime number, there is only
one possible structure, i. €., the cyclic group of order n.

We conclude this chapter with one solved example.

- EXAMPLE. Prove that a set of a group G is a system of generators of
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G {f and only if no proper subgroup of G exists which contains all
the elements of the set S.

Choose a subset of the group G such that S is a system of
generators of G. To begin with, let us assume that there exists a
proper subgroup H of G such that SCHCG. Since / is a group
and S is contained in H, the powers and products of the elements of
S give elements belonging to the group H alone, not G, which
contradicts the assumption that S is a system of gencrators of G.
Hence, if Sis a system of generators of G, there exists no proper
subgroup of G which contains S.

Now, assume that there exists no proper subgroup of G which
contains S. Let us generate a group by taking all powers and products
of the elements of S. Suppose this gives rise to the group K; evidently,
KCG. But, by assumption, G contains no proper subgroup which
contains S. Hence it follows that K=G, showing that S is a system of
generators of G. Thus if no proper subgroup of G exists which contains
S, then S is a system of generators of G.

The desired result follows immediately on combining the above
two results. o

PROBLEMS ON CHAPTER 1

(1.1) Show that the following sets are groups under the given laws of com-
position and classify them according to their properties:
(3) theset of all rational numbers!® under addition;
(if) the set of all nonzero rational numbers uader scalar multiplication:
(iii) the set of all complex numbers under addition;
(iv) the set of all nonzero complex numbers under scalar multiplication;
(v) the set of the eight matrices

tlon]. [0 o] [081 10 7o] Lo 0 7050, [0 5],

0 1
[ o]}
under matrix multiplication;
(vi) the set of all unitary matrices of order n under matrix multiplication;
(vii) the set of all even integers under addition;
(viii_) the set of all complex numbers of unit magnitude under scalar multipli-
cation.
(1.2) Show that the following sets are not groups under the given laws of '
composition. Which of the group axioms do they fail to satisfy? '
(i) The set of all real numbers under multiplication;

10A rational number is one which can be expressed as the ratio of two
integers, p/q. A real number which cannot be expressed as the ratio of two
integers (such as 4/2) is called an irrational number.
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(ii) the set of all nonnegative real numbers under addition;
(ii1) the set of all odd integers under (a) muitiplication, (b) addition;

(iv) theset (1,2,..., p—1) of p—1 integers under multiplication modulo (p)
swhere p is not a prime number.

(}.3) (a) Do the three matrices

E=r1 0 0 0y A=0 0 0 17, B=0 0 1 0
01 0O (l 0 0 0 0 0 01
0 01o0 I_ 1 0 0 1 0 00
0 0 01 0010 0100

form a group (under matrix multiplication)? Add a minimum number of
matrices to this set to make it a group. Find these necessary additional matrices
and write down the multiplication table and classes. Is this group isomorphicto
(E, Cq C¢?, C4®) or to (F, Ca2, mg, my) por to both?

(b) Tc the group obtained in the above problem, one more matrix is
added:

0

Again, add to this set of matrices a minimum number of matrices to make it a
group. Show that the resulting group has crder eight and that it is isomorphic
to Cy0. (This fact will be used in Section (3.9)

(1.4) Show that the n n-th roots of unity, i.e., exp (i2rk/n)for 1 <k <n,
form a cyclic group of order n under scalar multiplication. Show that if m is ap
integral divisor of n, then the said group has a subgroup of order m.

(1.3) Construct the group multiplication tables for the groups of
Example (ix) of Section 1.1 for k=4 and 5, and for those of Example (x) for
p=3Sand 7.

(1.6) Write down the multiplication table for the group of the eight matrices
of Problem 1.1 (v). Obtain the classes and all the subgroups. Which of
them are normal subgroups? Show that this group is isomorphic to the group
Cy4p. treated in this chapter by finding a suitable onz-to-one correspondence.

(1.7) Generate the matrix group two of whose clements are

[+ o] [7 o]

Show that the group is of order 8 and has 5 classes, but is not isomorphic to
Cue- (Hint: Show that the matrix group generated here has six elements of
order 4 whereas Cy, has only two such elements. The multiplication tables can
therefore not bo identical.) (This shows that two groups of the same order having
the same number of classes are not necessarily isomorphic.)

(1.8) Obtain the products of the various classes of the group C,, and
express them as sums of classes in accordance with Eq. (1.16).

(1.9) Generate a group from two clements 4 and B subject only to the
relations A= B*=(AB)2= E, where k is a finite integer greater than 1, and find

out its order, (Such groups are known as the dikedral groups and are denoted
by Dy.)
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(1.10) What are the generators of the groups Cyy and S3? What are the
generators of the matrix group of Problem 1.1 (v)?

(1.11) Show thata group in which each element except the identity is of
order 2 is abelian.

(1.12) Show that an element of a group G constitutes a class by itself if and
only if it commutes with all the elements of G. Hence show that in an abelian
group every element is a class. /

(1.13) Let H be a subgroup of a group G and let S be an arbitrary subset
of G.

(i) Let C (5 ; H) be the set of elements of H each of which commutes with
every element of S, i.c.,

C(S; H)=(X € H| XA=AX ¥ A € 5).

Show that C (S ; H)is a group. (This group is known as the centralizer of S
in H.)

(i) Let N(S ; H) be the set of elements of H such that for all X € H, X-1

SX=S, i.e., '

N(S ; H)=(X € H| X-1 SX=S5).
Show that N(S ; H) is a group. (This group is known as the normalizer of
S in H).

(1.14) Show that the group generated by two commuting elements 4 and B
such that A2==B3=F is cyclic. What is its order?

(1.15) Let H be a subgroup of G and let XH be a coset of H which is
disjoint to H. Let Y be an element of G belonging neither to .H nor to XH.
Show that the set YXH need not be disjoint to both H and XH. (Hint: Show
that if YXH were disjoint to both H and X H, then in the proof of the theorem
in Section 1.4.3, we would arrive at the erroneous result that the integer
g/h must be an integral power of 2.)

(1.16) Show that every subgroup of index 2 is a normal subgroup..

(1.17) Show that all the elements belonging to a class of a group have the
same order. Show, by giving a contrary example, that the converse is not
necessarily true.

(1.18) Let C; be a class of a group and let (;* be the set of elements which
are the inverses of those of ;. Show that ;* is also a class. (The class C;* is
usually called the inverse of the class C;.)

(1.19) Construct the multiplication table of the symmetric group Sy and
obtain its classes.

(1.20) Show that the symmetric group S, of degree n is homomorphic to
the symmetric group Sy of degree 2.

(1.21) Construct the symme=try group of an equilateral triangle (this group
is denoted by Ty, in crystallography), Write down its multiplication table,
classes, subgroups and normal subgroups. Show that Cyg is isomorphic to Ss.

(1.22) Construct the alternating group of degree 4, A4,. Write down its
multiplication table and obtain its classes.11

(1.23) If G=H @ K, show that"

(i) both H and K are normal subgroups of G;

(i) the factor group G/H is isomorphic to K;

11See Falicov (1967), p. 14,
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(iii) G is homomorphic to both H and K;
(iv) the number of classes in G is equal to the product of thre numbers of classes
in H and K.

(1.24) Show that the group Cy, is homomorphic to the group (1, —1)
under multiplication. Also show that this 4-to-1 homomorphic mapping can be
established in three distinct ways.

(1.25) Given that A2=B3=(AB)2=E, generate groups starting from the ele-
ments (i) (4, AB), (ii) (B2, BA). Show that in both the cases, you get the same
group as that obtained in Example 2 of Section 1.2.2.

(1.26) 1If a subgroup H of a bigger group G consists of complete classes of
G, show that H is a normal subgroup of G, that is, the left and the right
cosets of H with respect to any element of G are the same.

(1.27) Coansider the symmetric group S, of degree 4 with generators (12),

234

134.610.

(13) and (14). Inthe notation of the text, this means that (l2)=(;

(a) Express the two permutations

(1023 4 1 2 3 4
A(4321)a“d3”(3142

as products of the generators.

(b) What is the order of each of the two elements 4 and B ? Find the
number of transpositions in each of these elements,

(c) Obtain both the products 4B and BA of these two elements.

(d) Obtain the inverse of each of the two elements.

(1.28) Find the subgroup of the symmetric group S4 which leaves the
polynomial x;xp+x3+ x4 invariant. (Such a group is called the group of the
given polynomial.)

(1.29) Find the group of the polynomial xjyxg-x3xq and verify that it
contains as a subgroup the group obtained in Problem (1.28).

(1.30) Prove that the group of all positive numbers under multiplication is
isomorphic to the group of all real numbers under addition. (Hint: The
isomorphic mapping is set up by taking logarithms.)

(1.31) Let G denote a cyclic group of order 12 generated by an element A
and let H be a subgroup generated by the element A3. Find all the cosets of H
in G and obtain the multiplication table for the factor group G/H.

(1.32) Consider the set of the following six functions:

NH@)=x, fr@=1l-x, f3(x)=x/(x—1),
Soe()=1lx, f5 ()=1/(1—x), [q (x)=(x—1)/x.

Let the operation of composition of two functions be defined as the substitution
of a function into another (that is, ‘function of a function’). Thus for example,

(SsS(x)=fs(fs (xN=fs (x/(x—D)=1/(1—x](x—1))
=1 _xafa(x))

so that fg f3=f,, etc. Show that the set is a group under this law of composi-
tion. Show that

(fs)1=fa and (f)"1=f; for i=2, 3, 4.
Finally, show that the group is isomorphic to Sa or Cy,.
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(1.33) Determine the symmetry groups of a regular pentagon and a regular
hexagon. Also find their classes.
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CHAPTER 2

Hilbert Spaces and Operators

It is an axiom of quantum mechanics that to every physical
observable, there corresponds a hermitian operator and that the
set of all eigenfunctions of a hermitian operator is a complete set.
The Hilbert space of the operator is the set of all linear combinations
of the eigenfunctions. Each state of the system is represented
by a vector of the Hilbert space on which the operator acts. We then
proceed to expand ‘any’ function as a linear combination of all the
eigenfunctions. Sometimes this can be dangerous and misleading
unless we know that the function under consideration belongs to
the Hilbert space and the conditions under which- such an expansion
is possible. In this chapter, we shall develop the concepts of
Hilbert spaces and operators and prepare the ground for the appli-
cations of group theory in quantum mechanics. In most respects,
this chapter is independent of the first one. None the less, these two
chapters will form the basis of all the remaining chapters.

2.1 Vector Spaces and Hilbert Spaces

In this section, we shall introduce the idea of Hilbert spaces.
Some of their important properties will be described in the next
section. We are very familiar with the ordinary three-dimensional
vector algebra. To a mathematician, however. the familiar three-
dimensional space is just a particular example of the generalized
concept of a vector space of arbitrary dimensions. This purely abs-
tract concept of n-dimensional spaces (7 a finite real positive
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integer or infiniie) indeed becomes essential in many problems in
modern physics and mathematics.

Bcfore we begin, it will not be out of place to define in brief
a field. Let F be a set of elements (a, b, ¢, d,...) and suppose that
two binary operations are defined for the elements of F: an operation
denoted by -+ (called addition) and an operation denoted by .
(called muitiplication). Then F is a field if

() F isan abelian group under addition, with an identity
element denoted by 0 and called zero, and

(i) the set of the nonzero elements of F also is an abelian
group under multiplication. The identity element of this group is
denoted by 1 and is called the unity.

We shall quote only three examples of a field to which we shall
frequently refer: )

(a) The set of all real numbers, commonly denoted by R;

(b) The set of all complex numbers, commonly denoted by C;

(¢c) The set of all rational numbers, commonly denoted by Q.

Loosely speaking, the fields are the number systems of mathe-
matics. An example of a finite field is given in Problem 2.12.

The elements of a field are called scalars.

We shall now define a vector space and the subsequent subsections
will be steps towards defining a Hilbert space.

2.1.1 Vector space. A set L of elements v, v, w,... is called
a vector space' over a field F if the following two conditions are
fulfilled :

(a) An operation of addition i1s defined in L, which ‘we
denote by -+, such that L is an abelian- group under addition. The
identity element of this group will be denoted by 0.

(b) Any scalar of the field F and any element of L can be
combined by an operation called scalar multiplication to give an
element of L such that for everyu, v€L and a, bEF, we have

a(u+v)=au+ave L,
(a+b)u=au+bu€c L,
a(bu)=(a.b)u,
lu=u, Ou=0. 2.1
Note here that 0 is an element of the field F, whereas 0 is the ‘null’
element of L.

1The names vector space, linear vector space and linear space are all synoni-
mous.



32 ELEMENTS OF GROUP THEORY FOR PHYSICISTS.

The elements of a vector space are called vectors. The ‘multi-
plication’ of two elements of a vector space is not necessarily defined.?

Henceforth, we shall not distinguish between the two zeros O
and 0.

Examples of a vector space are:

(i) The familiar three-dimensional space of position vectors
over the field of real numbers. In the sophisticated mathematical
language, this should now be described as ‘the set of all position
vectors together with the operations of ordinary vector addition and
multiplication of a scalar by a vector’.

(i) The set of all n-tuplets of numbers such as u=(uy, wu,, uy,
...,un) over a field to which the scalars u; belong. Thus, the set of
all n-tuplets of complex numbers is a vector space over C; the set of
all n-tuplets of real numbers is a vector space over R; the set of all
n-tuplets of rational numbers is a vector space over Q. Two
elements ¥ and w=(w,, W,,...,ws) of this set are said to be equal if
and only if w;=w; for all 1<<i<{n. We denote this by writing u=w
The addition of two vectors ¥ and v=(v,, ¥,,..., v») of this space and
scalar multiplication are defined by ' -

(Uy, Ugy. . Un)F(V1, Vas. o V) =(Uy+Vy, Uy Vo, . . . UntVn),

c(ty, Uy . Ug)=(Cliy, Cly,. ..,ClUp).
Moreover, if 1;=0 for 1<{i<Cn, we say that u=0.

Example (i) above 1s clearly a special case of the example at
hand—it is the set of all triplets of real numbers.

(iil) The set of all real numbers.

(iv) The set of all complex numbers.

(v) The set of all rational numbers.

In the last three examples above the scalars and the vectors are
the same. If a vector space 1s defined over the field of real numbers,
it is called a real vector space; a vector space defined over the field
of complex numbers is called a complex vector space.

(2.2)

2.1.2 Inner product space. A vector space L defined over a
field F, where F refers to the field of complex numbers or of real
numbers, is further called an inner product space if its elements satisfy
one more condition:

(c) With every pair of elementsu, v € L, there is associated
a unique number belonging to the field F—denoted by (u, v) and

:If the composition of two elements of a vector space is defined and also belongs
to the space (with a few more conditions on the product), we have an algebra.
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called the inner product or the scalar product of uand v—for which
the following properties hold. ‘
(u, V)=(v, u)*,
(au, bvy=a*b (u, v), (2.3)
(w, au+bv)=a(w,u)+b(w, v),
where the asterisk denotes the complex conjugate.
The linear space of all n-tuplets of complex numbers becomes.
an inner product space if we define the scalar product of two elements-
u and v as the complex number given by

n
(u, v)='§llu,-*r,-. (24)
=
The ordinary three-dimensional space of position vectors is
also an inner product space with the familiar rule for taking the
scalar product of two vectors. The vector spaces mentioned as
"~ examples after (2.2) are all, in fact, inner product spaces with suit-
able rules for taking the inner product.
Taking the inner product of an element with itself, we find,

from (2.4)
(u, u)= §qu % (2.5
1=1

where | | denotes the absolute magnitude of the.number enclosed. We
introduce the notation .
ll® = (u, w). (2.6)
- and the nonnegative square root of this real number, denoted by
||lul|, is called the norm of the vector u. Clearly, in the familiar lan-
guage, this corresponds to the /ength of a vector. It is easy to see -
that the norm has the following properties:
(1) |lu]|> 0, and |lu]|=0 if and only if u=0;
(it) |[u+v]| < |[u]|4|[||; this is the usual triangular inequality;
(i) [lau]|=lal [Ju]].
Before we go a step further and define a Hilbert space, we must
consider what a Cauchy sequence is.

2.1.3 Cauchy sequence. If with each positive integer n we can
associate a number ¢, (in general, complex), then these numbers
Cys Cgy Cgye+., Cny... are sald to form an infinite sequence or, simply,
a sequence. '

A sequence ¢y, Cy,. .., Cn,... is sald to converge to a number c,
or to be convergent with the limit c, if for every real positive number
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<, however small, there exists a positive (finite) integer Nsuch that for
every integer n> N,

I Ca—C | < €, (27)
The number ¢ is called the limit of the sequence.
A sequence c¢,, C,,... is said to be a Cauchy sequence if for

every real positive number €, however small, we can find a finite
positive integer N such that for any two integers n>N and m>N,
| Ch—Cm | < €. . (28)
Examples of convergent, and therefore Cauchy, sequences are:
(i) the sequence of the real numbers whose terms are
cn=2-+5/n, i.e.,
7, 9/2, 11/3, 13/4, 3, 17/6,..., (2n+5)/n,..., with the limit
c=2;
@ 1, 1/2,1/3,..., 1/n,.. ., with the limit c=0;
(i) 1.9, 1.99, 1.999, 1.9999,.. ., with the limit 2.0;
(iv) the sequence of the complex numbers whose terms are
ca=(5n+3)/4n+i (2n—8)/3n with the limit ¢=5/4+i2/3:
The following sequences are divergent:
(i) the sequence of numbers whose terms are c,=p" for p>1,
(i) the sequenceof positive integers, 1, 2, 3,4,..., n,... .
Although, in the above discussion, we have defined a sequence
with reference to numbers (real or complex), it should be clear that
we can easily extend the idea to sequences of arbitrary entities
provided they are all of the same nature. Thus, we may speak of a
sequence of vectors in a two- or a three-dimensional space, a sequence
of n-tuplets in their vector space, etc. Of course, in each case we
must suitably interpret the quantities |[c,—c| and |cn—cn| while stu-
dying their convergence. This will be illustrated with reference to a
sequence of n-tuplets because all the other examples follow as special
cases of this one.
Consider a sequence of elements in the vector space of all n-tup-
lets (real or complex) whose terms are denoted by u(*, u®), .. ., u'k)
where

CREEN

R =(u, (), w,'R) L u,R)), (2.9)
We say that this is a Cauchy sequence if for every positive number
e there exists a positive integer N such that for any two integers
k>N and m>N,
| ulk) —ytm) | < € (2.10)
in the sense that
‘ u,-”"—u,‘"" I < ¢ for 1<<i<nm,
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Similarly, the sequence is said to converge to a limit u=(u,, us,..., %n)
if for every real positive number €, we can find a positive integer N
such that for all integers m> N,

| ulm —u| < e (2.11)
in the sense that
| ™ —uy| < efor 1<Ci<<n.

2.1.4 Hilbert space. We are now ready to define a Hilbert
space. We shall restrict ourselves to the field of real or complex
numbers. Constder an inner product space L. If every Cauchy sequence
of elements belonging to L has a limit which also belongs to L,
the space L is said to be complete. A complete inner product space
18 called a Hilbert space.

Examples of Hilbert spaces, as well as contrary examples, are
easy to construct. All the inner product spaces discussed above,
except the vector space of all n-tuplets of rational numbers
(which includes, as a special case for n=1, the set of all rational
numbers), are also Hilbert spaces. The space of all rational numbers
is not complete because we can construct a Cauchy sequence in this
space whose limit is an irrational number, which does not belong to
this space. For example, the sequence of the successive approxima-
tions to the square rootof 2, i.e., 1.414, 1.4142, 1.41421, 1.414213,...,
i1s a Cauchy sequence whose limit 4/2 does not belong to the set of
rational numbers. A similar argument shows that the set of all n-tup-
lets of rational numbers is not a Hilbert space.

2.2 Coordinate Geometry and Vector Algebra in é New Notation

In what follows, we shall treat Hilbert spaces in general. We
shall denote a Hilbert space of n-dimensions (the dimensionality
is defined below) by L,. Although drawing pictures or diagrams for the
sake of understanding an argument should-not be encouraged in
modern pure physics and mathematics, it may be advisable to take
some specific examples with n=2 or n=3 to make the ideas clear.
Some important concepts and properties are enumerated below.

(1) In the ordinary three-dimensional space of position vectors,
we need a set of three axes, and any point in this space can then be
located by means of three coordinates measured along the three axes.
Similarly, in an n-dimensional vector space, we would need a set of
n ‘independent’ vectors ry, r,,. .., ran to ‘span’ the whole space.
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Two vectors r;and ry of L, aresaid to be linearly independent of each
other if one is not a constant multiple of the other, i.e., it isimpossible
tofind a scalar c¢suchthat r;=cr;. In the familiar language, this means
that r; and r; are not ‘parallel’ vectors. In general, m vectors of L, are
said to be a set of linearly independent vectors if and only if the equation

m
'El a;ri=0 (2.12)
=
1s satisfied only when all the scalars ;=0 for 1<Ci<<m. In other words,
the m vectors are linearly independent if it is impossible to construct
the null element of the space by a linear combination of the vectors
with at Jeast one nonzero coefficient. Or again, the set of m vectors
is linearly independent if none of them can be expressed as a linear
combination of the remaining m—1 vectors. A simple test for the
linear independence of a set of vectors is to construct the determinant
of their scalar products with each other as

(ryy r) (11, 1)+ o(rys )
P= (r2: rl) (r21 r2) ...()'2, rm) ’

(Fms 1) (Frm, Ta) <o < (Fmy )
known as the Gram determinant. If I'=0, it follows that one of the
vectors can be expressed asa linear combination of the remaining m— |
vectors, so that the vectors are linearly dependent; if I'#0, the vectors
are linearly independent.

(ii) Inan n-dimensional complete vector space, or Hilbert space,
L,. aset of n linearly independent vectors is called a complete set in Ln.
If the number of vectors chosen is less than », they are called an incom-
plete set in Ln; clearly they are not enough to span the full space. On
the other hand, if more than n vectors are chosen in Ly, they form an
overcomplete or redundant set in L,. They cannot all be linearly
independent and it is possible to find at least two nonvanishing scalars
a; such that

m
hX a;n-——-O, m>n. (213)
i=1
(iii) - The dimension of a vector space is the maximum number
of linearly independent vectors in the space or the minimum number
of vectors required to span the space. In other words, the dimension
is the number of linearly independent vectors which are both necessary
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and sufficient to span the full space. Thus, in the ordinary three-
dimensional space of position vectors, we can find at most three
linearly independent vectors; three is also the minimum number of
linearly independent vectors required to span the space.

A set of n linearly independent vectors in an n-dimensional vector
space is called a basis, and the vectors are called the basis veciors.
Clearly, the choice of the basis vectors is not unique; they can be
chossn in an infinite number of ways.

(iv) Any vector u in L, can now be expanded in terms of a
complete set of basis vectorsry, L.e., '

n
u=2 uiry, (214)
_ i=1
where u; is the component of u along r;. We say that the space La
can be fully spanned by the basis vectors. This result holds only if
{ri} 1s a complete set. The scalars u; are also called the Fourier
coefficients of u and (2.14) is called the Fourier expansion of u.

(v) We choose a unit for the norm of the vectors in the space
L, (in the familiar language, a unit for the ‘length’ of the vectors).
A vector of unit norm is called a wnit vector or normalized vector.
Rather than choosing the basis vectors r; of arbitrary norm, we then
choose a basis consisting of the unit vectors e, e,,.. ., €, in Ly,

(vi) So far, we have not assumed any relationship among the
basis vectors except their linear independence. But now, for the sake
of convenience and to make our algebra simpler, we will choose a com-
plete set of orthogonal basis vectors, without loss of generality. Inthe
ordinary three-dimensional space, this means that we choose cartesian
coordinate axes rather than oblique ones. If ¢; are the orthonormal
basis vectors, we have

(€1, €))=0j, (2.15)
where 3;; is the Kronecker delta given by
1 ifi=j,
8;,_{0 if i) (2.16)

(vii) The scalar product of two vectors

n n
u= 2 ue; and vy= Z ve (2.17a)
i=1 i=1

is then easily found to be

n
(u, V)=(l', u)"= p) ui* vy (2. 17b)

i=]
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Also lu|P=(u, u)= 2 |wt (2.17c)

(viii) A linear transformation in the space L, can be defined by
an operator 7 such that T acting on a vector u& L, gives a vector v,
also belongingto L.. The operation is denoted by

_ Tu=v. (2.18)
When this happens, that is, when Tu &€ L, for all u € L,, the space
L, 1s said to be closed under the action of T. ‘

Note that this is the active view point of transformations dis-
cussed in Section 1.1.2.

Ifthe vector Tu is unique for all u € L, and if the inverse trans-
formation is also uniquely defined, Tis said to be a one-fo-one mapping
of the space Ln onto itself.

We shall be mainly concerned with transformations which pre-
serve the Euclidean properties of the space L,, such as the norms of
the vectors and the scalar product of two vectors. Rotations, reflec-
tions and inversion are obvious examples of such transformations.

(ix) In the passive view point, we can define transformations of
the basis vectors ¢, (keeping everything else fixed) resulting in a new
set of basis vectors e;” as follows:

n
e,'—a»ei'-:Te;:_ 21 e; Th, 1<<i<n, (2.19)
j=

where 7; is a scalar denoting the component of ¢; along e¢;. Trans-
formations which take one orthonormal set of basis vectors into an-
other orthonormal set are called unitary transformations; the operators
associated with them are called wnitary operatorsd. 1tcan be seen that
this definition amounts to preserving the norms and the scalar products

of vectors.
(x) Eq. (2.19) is in fact a set of n linear equations which can be

written explicitly as

T(el, 6’2, “n ey (.’,,)::(6’1’. 02’,- ey en')
=(€1v()21'-', en) |— T]l le .. Tln -I
Ty Tyg ... Ton
: . (2.20)
L- Tnl Tn2 a s Tnn _J

3 If the vectors of the space L, are real, i.e., if L, is defined over the field of
real numbers, these reduce to orthogonal transformations and orthogonal
operators, respectively,
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The square matrix? [T;;]=T of order » onthe right hand side is called
e representation of the operator T in the basis (e;).

(xi) Consider a vector ¢/ of (2.19). If we take its scalar pro-
duct with any of the original basis vectors, say ez, we get

n
(ex, ci')==(ex, Tfi):(é’k,_ El ej Ti),
=
or (er, Te)=Ty; (2.21)
by using {2.15). We call this the matrix element of the operator T
between the basis vectors e, and ¢;. It means that if the operator 7 is
applied on e¢;, the resulting vector has a projection 7%; alon‘ the
VEeCtor €.
(xii) The scalar product of any two vectors v and 7y of L,,
where vand v are the vectors of (2.17a), 1s given by*
(u, Tv)=(2 ugex, T2 vie;)
B )

H

:(Zuké’k, > Vi€;j Tji)

ok iJ
= 2 uc*v; Tji(ex, e;)
i,j,k
= % u*vy T (2.22)
iy &

(xiii) Since, by assumption, the transformed basis vectors ¢’
are each of unit length and orthogonal to each other, we have
(e, e))=3;,. (2.23)
It immediately follows that the matrix 7 has the following properties
(see Problem 2.2):

n
_E Tii* Tin=0x (2.24a)
i=1 1<<j, k<<n;
il
% Ti% Tri=djx, (2.24b)
i=1
| det T'|=1. (2.24c)

These are the well-known conditions for a unitary matrix. It is

4 The matrix 7=[T;;] should not be confused with the operator T appearing on
the left hand side of (2.20). We shali often use the sare symbol for an
operator and a matrix representing it. '

5 Although n and v are not elements of a complete set of basis stctors and there
is no apparent matrix for T here, (4, Tv) is called the ‘matrix element’ of T
between 1 and v in quantum mechanics.
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often said that all the rows (columns) of a unitary matrix are orthogo-
nal to each other and normalized, which is just what Eqgs. (2.24) tell.
In the matrix notation, (2.24) can be written concisely as

Tt =T1 or TT'=TtT=E, (2.25)

where E is the unit matrix of order » and 7T denotes the hermitian
conjugate of 7.
(xiv) The scalar product of two vectors in L, is invariant under
a unitary transformation: Let © and v be any two vectors of L, and
7 be a unitary operator, then
(Tu, Tv)="{u, v). (2.26)

Tu

FIGURE 2.1 The scalar product of two vectors is invariant
under a unitary transformation '

Leaving the proof of (2.26) to Problem (2.3), we show the simple
physical interpretation of this result inatwo-dimensional space. In Fig
(2. 1), we have shown the four vectors v, v, Tuand 7Tv, assuming that T
is an anticlockwise rotation through an angle 0 about an axis normal
to the plane of the paper. The validity of (2.26) for the particular
case considered in this figure should be obvious.

(xv) An important operator is the projection operator. This is
an operator which, when it operates on a vectoru € L,, gives the pro-
jection of v along a given basis vector. It can be written in the form

Pi=e; (e, )s (227)
where the notation means that the scalar product is to be taken with

the vector on which P; operates. Thus, if u is the vector of (2.17a),
then

Piu=e; (e;, u)
= U;f;
=the projection of u along e;. (2.28)
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It should be noted that P; is not a unitary operator.
If we apply the operator P; once more on the resulting vector
use; of (2.28), clearly, the result is the same vector ue; again, 1.e.,

P; (Pau)=P; (uie))=u;e;,=P; (u). (2.29)
Since this is true for all u € L,, we can write in the operator notation,
P2:=P, (2.30)

which is an important property ot projection operators. In fact, any
operator P, acting on a Hilbert space Ly, for which P2=P, (1e., Pu
=Pu &+ u€ L, is called a projection operator. It can be readily
verified that

” .
2 P;=E, (2.31)

. i=1

where F is the identity operator.

(xvi) We now introduce the concept of the direct sum of two or
more spaces. Consider a vector space L, of n dimensions with a coor-
dinate system (e,, e,,.. ., es), and a vector space L, of m dimensions
with the basis vectors (i, ip,. . ., im). Provided thatthe two spaces have
no common vector except the null vector, the direct-sum space L, isthe
vector space defined by the t=m-n basis vecters (ey, e,,. . ., €, I, Iy,
.. -,im). These may be relabeled by the ¢ vectors (ky, ks,..., k1), If L,
and L, are complete spaces, sois L,;, and any vector u in L, can be
expanded as A

H
u= 2 u,k,-, : (232)
i=1
where u; are scalars.

As a simple example, consider a two-dimensional vector space
(a plane) with the basis vectors (x, y) and a one-dimensional vector
space (a line) with the basis vector (z), which does not lie in the plane
(x, ). If the null element is common to both the spaces, the direct-
sum space is the three-dimensional vector space with the basis vectors
(x, ¥, 2). :

(xvii) Finally, we consider the direct product (also known as the
Kronecker product) of two vector spaces. Consider, again, the two
spaces L, and L, defined above. The direct-product space ‘is a space
L, of dimensions p=nm defined by the p basis vectors (e,i, €,iy, . . .,
€ims €3iy,. .., €xim). At the first thought, ¢;ix seems to be a tensor
rather than a vector; but it can be seen, without much difficulty, that
we can identify it with a vector in the p-dimensional space. If we
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make this identification and denote the resulting basis vectors by the
new labels (/, 4,,..., /;), then, as before, they form a complete set
in Lpif L, and L,, are complete spaces. Any vector v & L, can then
be expressed as

P
v="5 v, ). (2.33)

2.3 Function Spaces

Consider the set of all continuous, ‘square integrable’ functions
/, & h,...), each of which is a function of one independent
sariable x ontheinterval [a, b]. We define the equality of two functions
is follows: Two functions f and g are said to be equal on [a, b],
lenoted by writing f=g, if and only if f(x)=g(x)for all values of x
»n the interval [a, b].

Referring to the definition of vector spaces in Section (2.1.1),
ve then see that the set of functions considered above 1s a vector space
>ver a field Fif we define the addition of two functions and scalar

nultiplication by
(fF8) (x)=f(x)+g(x), : (2.34a)
(¢f) () =c/ (). (2.34b)

Eq. (2.34a) is called the operation of pointwise addition of two
functions. If the functions of the set considered are real, we have a
vector space over the field of real numbers; if they are complex, we
have a vector space over the field of complex numbers. The identity
in cither case is a function which is identically zero for all values of x
on [a, b] and the inverse of a function f is the function —f with the
property (—/)(x)=—/f(x) (i.e., the value of the function —f at a point
x is the negative of the value of f at x).

As a concrete example, consider the set { f, (x)} of all continu-
ous, square integrable, even, periodic functions of x of period 2/. We
shall allow, in general, complex functions to be included in the set.
Thesum of two functions of thisset is also a continuous, square integ
rable, even periodic function of period 2/, and hence belongs to the
set. In fact, it is easy to verify that the set is an abelian group under
the rule of pointwise addition. Moreover, scalar multiplication by com-
plex numbers as defined in (2. 34b) satisfies the conditions(2.1). Hence
it follows thatthe set { f,(x) } is a vector space, which we shall denote

by L..



HILBERT SPACES AND OPERATORS 43

A vector space whose elements are functions is also called a fume-
tion space.

All the concepts developed in Sections (2.1) and (2.2) can then
be applied to function spaces, because, as emphasized in Section 1.8
inconnection with groups, the mathematical definition of a vector space
1s quite independent of the exact nature of its elements. This gives us
considerable freedom in handling different vector spaces by the same
abstract methods.

Thus, a function space can be made an inner product space if we
associate with any two functions a scalarsuch that the conditions (2.3)
are satisfied. This can be easily done if we define the inner product of
two functions f and g by

f, )= ]b £*(x) g(x) d, (2.35)

where the integral is over the range [a, 4] of xon which the functions
of the space are defined. The norm || f|| of a function f is given by®

b
17=h0)= 1l (2.36)

A Cauchy sequence of functions is defined as follows: A seque-
nce fy, fo.---, fn,-.. of functions of one variable x is said to be a

Cauchy sequence on|[a, b] if for every real positive number ¢, we can
find a positive integer N such that for all integers n>N and m>N,

[ fr—Sm || <€ (2.37).

in the sense that

[ o (X)—Fom () dx <.

In a similar way (cf. Section 2.1.3), we can define a convergent
sequence and its himit. The definition of a Hilbert space of functions
follows immediately.

A set of nfunctions f}, f,,..., [ of a vector space is said to be
a set of linearly independent functions on [a,b] if and only if the
equation’

n
_Elam (x)=0 (2.38)
1=
for all x on[a, b] implies that all the scalars a;=0 for 1<<i<<n.
Coming back to the vector space L. of all continuous square
integrable even periodic functions of period 2/, we see that any func-

8If the norm of afunction is finite, the function is said to be square integrable.
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tion of this space can be expanded in the well-known Fourier cosine
series

f)= 3 atn J/1) cos(rx /). (2.39)

n=

The infinite set of functions (I/\/T) cos(nnx/l) for 0<<n< oo clearly
serves as an orthonormal basis in this space, for the functions of this
set satisfy the relations

/

Thus the vector space under consideration is denumerably infinite
dimenstonal.

i
! J cos(nmx/l) cos(mmx/l) dx=3,n. (2.40)
-7

2.3.1 The dual space. For each function f in the space L., we
have a set of coefficients a(n) for 0<Cn<<oo as in (2.39). These can be
obtained very easily by Fourier inversion of (2.39), which gives -

a(n):jl_l F(x) (1/A/ ) cos(nrx/l) dx. (2.41a)

These Fourier coefficients are unique, i.e., if we have another function
g& L, whose Fourier coefficients are

b(m= J-I_’ g(x) (1/4/D) cos(nrmx/l)dx, (2.41b)

then a(n)=b(n) for all 0<<n< oo if and only if f==g on [—/, ].

Now we may treat a as a function of the discrete variable n. It
1s easy to see that the function corresponding to f+g would be a5,
and that corresponding to —f would be —a. In fact, it can be readily
verified that the set of functions (a, b,...) is a veetor space which is
defined over the same field as the space L.. This is known as the dua/
space of L. and its vectors have a one-to-one correspondence with the
vectors of L.. It therefore follows that the dual space is also denu-
merably infinite dimensional.

It should be clear that this is similar to the space of all n-tuplets
where n is now denumerably infinite. The scalar product of two func-
tions in this space is

(a,b)= 5 a*(n) b(n). (2.42a)
0

n=

By using Egs. (2.41) in (2.42a), we find
(a, b)=]' £ g () dr=(f, g). (2.42b)

-1
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In the above equation, we have an important property of the Fourier
transforms that the scalar product of fand g is the same as that of
their transforms @ and b.

2.3.2 Direct sum of function spaces. Consider the set { f, (x)}
of all continuous square integrable odd periodic functions of period
21, that is, the set of functions satisfying the relations

Jo (x+20)=f5 (x)
fo (—=X)=—f> (). (2.43)

Once again, it can be verified that this set is a vector space’
which we denote by L,. Any function ¢(x) of L, can be expanded in
the well-known Fourier sine series

d(x) = cEnlcc(n) (1/4/1) sin(nmx/l). (2.44)

The inﬁnite set of functions (I/4/1) sin(nrx/l) for 1<<n< oo can be
chosen as the orthonormal basis functions in this space, because
4
11 J sin(nrex/l) sin(mrex/l) dx=Sm. (2.45)
We can now take the direct sum of the two function spaces L,
and L, since they have nocommon element except the function which
1s identically zero. Wethen have a space of all periodic functions with
period 2/, The Fourier expansion for a function of this space is ’

S(x)= Z a(n) (1/4/1) cos(nex/l)+ Z a(n) (1/4/1]) sin(nmcx/l).
n=0 n=1
(2.46)
The basis functions of this space chosenin (2.46) are clearly orthonor-
mal since, in addition to (2.40) and (2.45), they satisfy

llr cos(nmx/l) sin(mmx/l) dx=0 % n, m. (2.47)

The spaces L., L, and their direct-sum space arc all denumerably
infinite dimensional. The dual space of L, is the set all functions
(a, B,...), each element of which is the Fourier .ransform of an ele-
ment of L,.

It is a fairly easy matter to extend the concepts of this section to
functions of more than one variables.

7 The function which is identically zero for all values of x is even as well as
odd in x. It is therefore common to, and is the ‘zero’ element of, both the

spaces { f, (x)} and {f, (x)}.
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2.4 Operators

Im this section, we shall use the symbols ¢.(x) for the orthonor-
mal basis functions of a Hilbert space L of functions,® which may be
finite or infinite dimensional.

An operator T is said to be defined on the space L if the action
of T on any function f € L results in a function which also belongs
to L. Thus,

Tf (x)=g(x) where g € L. (2.48)

To know the action of an operator on any function of L, itis

enough to know its effect on the basis functions of L. Thus, when an

operator T acts on a basis function ¢.(x), the result is some function

of L, say ¢.'(x), which can be expanded in a linear combination of
the original basis functions: '

T ¢n(X)=¢n’(X)=E ¢m(x)7'mn, n,m= ], 2,.... (249)
m .

This represents a system of linear equations, one for each value of n.
Written out in an expanded form, this becomes

(¢l” ¢2"“" ¢n’ > ")=T(¢1’ ¢2,' b 4 ¢n’ "')
=(¢b1s P2s-+ 25 Pn---) B Ty, Ty...Tin.. _l

21 .Tzz--.T2n-.

. (2.50)
Tnl Tn2---Tnn..

The matrix [T};] is the representation of the operator 7 with the

basis {¢.}. It can beseen in analogy with (2.21) that a matrix element
of T is given by

Tlﬂn:(¢"‘l) ¢n’)=(¢m, T¢n)
=8¢m*(x) Ta(x), (2.51)
where S denotes summation over the discrete variables and integra-
tion over the continuous variables of the set x on which ¢’s depend
(see footnote 8).
If we introduce the following notation for row vectors

O=(d;, Pas- > Pn, ..),
O=(d, sbs’s > P’y =) (2.52)

8 Here, x stands for the set of variables on which the functions of L may
depend.
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then (2.49) can be simply written in the matrix notation as
O’'=0T. (2.53)

2.4.1 Special operators. We shall consider some special ope-
rators in this subsection. An operator 7 issaid to be a linear operator
if for every fand g in L, :

T (¢f+dg)=cTf+dTg, (2.54)
where ¢ and 4 are any scalars of the field over which L is defined. On
the other hand, T is called an antilinear operator if

T (¢f+dg)=c*Tf+d*Tg ~+ f,g € L. (2.55)
An obvious example of such an operator is the operator for ¢ “m-
plex conjugation. If we denote it by K| it is defined by

Kf=f*, K(cf)=c* Kf=c* [*. (2.56)
If two operators 4 and B satisfy the relation
(f, Ag)=(Bf,8) ~ [, g € L, (2.57)

A 1is said to be the hermitian conjugate of B, and vice versa, which is
expressed by writing

A=Bt, At =B, (2.58)
Let
/=Z an‘}”n, g=2 bn¢n (2. 59)
n n
Then, on using the orthogonality of ¢,, (2.57) becomes
Z an*bmAnm = 2 apn*bmBmn*. (2 . 60)
n,m n,m

Since this must be true for all fand g in L, i.e., for all scalars a,
and b, it follows that
' Anm=Bmnn*. (2.61)
If the scalars of the space L are reai numbers, (2.58) and (2.67}
reduce to

A=8, A=B, Aum=Bmn, (2.62)
and A 1s said to be the transpose of B, and vice versa.

If an operator T is its own hermitian conjugate (adjoint), it is
said to be hermitian or self-adjoint. From (2.57), we see that T is
hermitian if and only if

| (f, Te)=(1f,8) v~ /, g € L. (2.63)
With (2.59), this reduces to
Tum=Tmn*. (2.64)
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This is just the definition of a hermitian matrix—that is, a matrix
which equals its own hermitian conjugate—and is written as

T=TT=T)*=T*. (2.65)
Thus a hermitian operator is represented by a hermitian matrix in a
linear vector space.
T is said to be a unitary operator if
TT =TT T=E, (2.66)

where E is the identity operator. It can be readily seen that if T is
unitary, then

(71, Tg)=(f. &) ¥ f, g € L. (2.67)
If the scalars of the space are real numbers, (2.66) reduces to
TT=TT=E, (2.68)

in which case T is said to be an orthogonal operator.

2.4.2 The eigenvalue problem. We have already discussed the

operation of an operator 7 on a basis function, which is |

T ¢p=2 ¢m Tmn. (2.49)

m

The choice of the set of basis functions {¢.} is not unique, and, as
such, we would like to choose that set of orthonormal basis functions
{$,} in L which simplifies Eq. (2.49) as much as possible. Clearly,
the simplest nontrivial case arises when the only nonvanishing term
on the right-hand side is the n-th term, in which case we have

T on="Ton Yn=tnYn, (2.69)
which defines the scalars #,. A nonzero vector ¢, satisfying (2.69) is
called an eigenvector or an eigenfunction of T corresponding to the
eigenvalue 1,. The problem of obtaining the eigenvalues and the eigen-
functions of an operator (acting on a Hilbert space) is usually referred
to asthe eigenvalue problem, and (2.69) is often called the eigenvalue
equation.

The eigenvalues need not all be distinct, that is, two or more
eigenvectors may correspond to the same eigenvalue; in this case,
such eigenvectors are said to be degenerate. The multiplicity of an
eigenvalue is defined as the number of Jinearly independent eigenvec-
tors which have the same eigenvalue under consideration.

It is proper to ask whether each operator has eigenvalues and
eigenvectors. If the vector space L is defined over the fieild of real
numbers. every operator acting on L does not necessarily possess
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eigenvalues and eigenvectors. Thus, consider the operation of a rota-
tion through 90° on a two-dimensional vector space of (real) position
vectors. This operator has no eigenvectors since there is no nonzero
vector in this space which transforms into a real multiple of itself.

However, if L is a vector space over the field of complex num-
bers, every operator on L has eigenvectors. If we count each eigen-
value as many times as it occurs, then the number of eigenvalues is
precisely equal to the dimension of the space L. ‘

The set of the eigenvalues of an operator is called its spectrum.

2.43 Diagonalization. We see from (2.69) that if we choose
the set {{.} as the basis in the space L, rather than the original sct
{4}, then the matrix representing the operator T is diagonal, i.e.,

Ta= |— 1,

(2.70)
0 tn
L .
The eigenvalues ?, are the solutions of the N-th order equation
det(T—1tE)=0. 2.71)

As we have said, N may be infinite, as is indeed the case in most phy-
sical problems. We are then faced with the problem of solving an
infinite determinant. However, we are usually interested onlyin a
few lowest eigenvalues in the spectrum of the operator and we can
suitably reduce the determinant to a new determinant of a finite order
N with small error if the subspace is properly chosen.

Once the eigenvalues are determined in this way, the eigenfunc-
tions can be easily obtained. For this, we express an eigenfunction ¢,
corresponding to the eigenvalue #, as a linear combination of the

original basis functions:

N
q/n: 2 ‘ﬁm Umn- (2.72)
=1

If both the sets {{.} and {¢a} are orthonormal, U will be a unitary
matrix. Let us express ¢, in the row vector notation as Y,=(Uja,
Uzn, ..., Unn). The eigenvalue Eq. (2.69) then becomes
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Ttan(U]n, U2n, er ey UNII) B Tll Ttl PR TNI _}
Ty Ty, ... Tny
L T)N T2N &4 TNN -
=1y (Uln, Uzn,. .y UNn). (2738)

where we have used (2.69) in the last step. Note that the matrix of
transformation which appears in (2.73a) is the transpose of that
appearing in (2.49). | This is because in (2.49), T acts on the basis
vectors ¢, (the passive viewpoint), while in (2.73a), it acts on
vectors of the space leaving the basis vectors unchanged (the active
viewpoint).
*‘Writing the m-th column of (2.73a), we have
N

> Ukn Trk=tn Upnn, (2.73b)
k=1

where 1 << n <<N. This is a system of N linear equations for the N
unknowns Unmn (1 <m<C N, fixed n). However, these equations are
not all independent due to the condition (2.71). If the eigenvalue ¢,
is k-fold degenerate, it can be shown that the matrix (T—1, E) has
rank N—k and hence only N—k equations from (2.73) are indepen-
dent. This means that we can determine at most N—k components
Umn (fixed n). The general method is then to fix arbitrarily, say, the
first kK components and to obtain the remaining N—k components im
terms of them.? Thus there is a considerable arbitrariness which
results from the fact that any linear combination of the degenerate
eigenfunctions is also an eigenfunction with the same eigenvalue.
We may conveniently choose any k£ orthonormal functions in this
k-dimensional subspace of the full space.

Having obtained in this way a set of N orthonormal eigenfunc-
tions, we can show that the representation of T with the basis {{,} is a
diagonal matrix. We write Egs. (2.49) and (2.72) in the matrix
notation as

TO=d[T], (2.74a)

V=0 U, (2.74b)
where ® and ¥ stand for the row vectors
d’=(¢b (,52,. * oy ¢N)»
‘F:('*pu q’zs- ) 4’N):

9Joshi (1984), Section 8; Kreyszig (1972), Section 6.9,
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and we have distinguished between the operator 7and the matrix [77].
From (2.72), it i; clear that the n-th column of the matnx U just
contains the components of the eigenfunction ¢,, i.e.,

U:r Ull UlZ « .. Uln PR UN1 —i
U21 U22 e U2r| E—— U2N . (2.75)
L Um UNQ = e (J'Nn .. UNA' _J

Multiplying (2.74a) from the right.by U, we get
TOU=0UU[T]U.
or TY=Y (U-![T] U). (2.76)
Thus, the matrix U-* [T] U is the representation of the operator T

with the basis {$,}. Now it can be readily verified that, by the cons-
truction of U as in (2.75), we have

U-1[T] U=Ta.

This can be scen by taking the (/, n)  element of the left-hand side of
the above equation, which gives

S (U lim Tk Ukn = Z [U"tm Unma ta [by (2.73b)]

mik m
= In an,
which is just the {/, n)  element of Tz. Eq. (2.76) then finally gives
us ,
TY=Y T, (2.77)
which is the desired result. This process is called the diagonalization
of an operator.!°

2.4.4 The spectral Theory of operators. We shall restrict
ourselves to the case when the Hilbert space of the operator T is finite
dimensional. Moreover, we shall consider T to be a hermitian opera-
tor or a unitary oparator.!!

Let L, be the n-dimensional (0 < n < o) Hilbert space of T.
We assume that L, is defined over the field of complex numbers, so
that T has exactly n eigenvalues. Let ¢,, t,,..., t» be the distinct

10See also Joshi (1984), pp. 95-97

11The discussion of this subsection is, in fact, valid for a more general class
of operators known as normal operators. Anoperator 7T is normal if it com-
mutes with its own hermitian conjugate, that is, if T71=717. Hermitian
and unitary operators are clearly normal operators.
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cigenvalues of 7', sothat m<Cn. If the eigenvalue #; is ki-fold degene-
rate, there are k; linearly independent eigenvectors of T in L, which
have the same eigenvalue 7;,. These eigenvectors constitute the basis
for a k;-dimensional subspdce M; of L,; M; is called the eigenspace
of T corresponding to the cigenvalue #;. Any vector of M; is an
eigenvector of T with the eigenvalue 7,

We thus have the eigenspaces M;, M,,..., Mi,..., Mm, corres-
ponding to the eigenvalues ¢,, #,,..., fi,. .., Im, respectively. If Tis a
hermitian or a unitary operator, then these subspaces are pairwise
orthogonal;'? two spaces are said to be orthogonal if every vector of
one space is orthogonal to every vector of the other. In our case, this
is denoted by writing M; | M, if i#j.

Any vector u€ L, can now be expressed uniquely in the form

_ u=uﬁl’-u,+ .o tm, (2.78)
where 1y is in M;. The u,’s are therefore pairwise orthogonal. The
operation of 7 on u then gives"

Tu=Tu;+Tus+ ... +Tum
=t -+t g+ ... +imlim. (2.79)

This then determines uniquely the action of T on any vector of the
Hilbert space L,. To express the above result in a more convenient
form, we define the m projection operators P; on the eigenspaces M,
such that the action of P; on u gives the projection of # on Mj, or

Pu=u,. (2.80)
Eq. (2.79) then becomes

Tu=t,Pyu-+t,Pu+t...+1mPmu % u € Ln,
so that we can write

T=1,P,+1,P;+. .. +tmPm. (2.81)

This expression is known as the spectral resolution of T. For every
hermitian or unitary operator acting on a finite-dimensional Hilbert
space, the spectral resolution exists and is unique.

The concepts developed in this section are closely related to, and
find useful applications in, the eigenvalue problem in physics, because
in quantum mechanics, we are concerned with the eigenvalues and
the eigenfunctions of hermitian operators.

12]n this subsection, we shall state the important results of the spectral
theory without proofs. For proofs, the reader is referred to Simmons
(1963). '
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2.8 Direct Sum and Direct Product of Matrices

We now digress a little in this section and consider two important
operations with matrices which are not normally treated in elementary
books on matrix algebra. These are the direct sum and the direct
product (also known as the outer product or the Kronecker product)
of matrices. |

2.5.1 Direct sum of matrices. The direct sum of two square
matrices A=[A;;] of order m and B=[B;j] of order nis a square
matrix C of order m+n defined by

C=A®B=T 4 0:|=r Ay ... A -

|
0 B 0, , (2.82)

L - By ... By
where 0, and 0, are null matrices of order mxn and nXxm, respec-
tively. Here the symbol @ stands for the direct sum. This idea can
be easily extended to more than two matrices. For example, the
direct sum of ‘
A=a, B=[ b ¢ 7| and C=[" f g h
[ 2]

i j k
I m n
is a matrix of order six given by
D=A®B®C=|a 1o 0o 0o o o]f. (2.83)
I N -
6o | b ¢ 10 0o 0
|
i i
o | d e !l o 0 0
| }_. _________
0 0 o 1 f g h
[
1
0 0 o [ i k
}
0 0 0 / m n
- i _
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Such a matrix, which has nonvanishing elements in square blocks
along the main diagonal and zeros elsewhere, is said to be in the
block-diagonalized form. 1t has the important properties:

det D=(det 4) (det B) (det C), (2.84a)
trace D=trace A trace B-+trace C, (2.84b)
D'=A"'® B! @® C, (2.84¢)

which should be clear from (2.83). Also, if A4, and A, are square

matrices of the same order, say n, and B, and B, are square matrices
of the same order, say m, then'3 _

(4,DB,) (4:DB,)=(A4,42)D(B,B,). (2.84d)

2.5.2 Direct product of matrices. The direct product of two

matrices A=[A4/m] of order L xM and B=[B],, of order PxQ isa

matrix C of order I XJ where I=LP and J=MQ. Itcan be written as

C=A®B=[ A,B A,B ... AuB 7, (2.85)
Ale AZZB =. AgMB

where au ‘element’ 4,,B stands for a matrix of order P X Q given by

A’,,,B= r AhﬂBll AlmBn “os AlmBlo . (2.86)
Ahnle AIMBQI e e AlmB:Q
L AumBe, AimBer ... AmBeo

To obtain an element of C in terms of the elements of 4 and B,
we use the notation C=[Cj,, m;] Where a row of C is denoted by a
dual symbol (/p) and a column 6f C by a dual symbol (mq), such that
Clp, mq-_—A;m qu. (2.87)
We may relabel the rows and the columns of C by two new indices
iandj(1<i<I, 1 <j<<J)so that
C=[Cy]=[C1p, mql- (2.88)
This rather complicated notation can be made clear by an
example. The direct product of

D@3 - (1@
A=) a b ¢, B=()[ & r
(2)Ld e f | ks
ORI

18Hor proofs of various results mentioned in this and the following subsectiouns,
‘gee Joshi (1984), Section 13.
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18 the 6 X 6 matrix

(11) (12) (21) (22) (31) (32)
C=AQB=(11) [ ah ar bh br ch cr 7. (2.89)
(12) ak as bk bs ck cs
(13) al at bl bt ¢l ct
(21) dh dr eh er fh fr
(22) dk ds ek es fk fs
23y L dl dt el e fl fr |

Note that the rows and the columns of the matrix C are labeled by
different schemes. Thus, while the third row of C is labeled as the

(13) row, the third column is labeled as the (21) column An element
of C is, for example,

Cary sy =Sh=Ay3 B,
which is consistent with (2.87). We now relabel the rows and the
columns by identifying each dual symbol with one number, separately
for the rows and for the columns. We then have the matrix
[Ci 1 =I[Crp, mg) with (Ip) — i, (mq) —j and 1</, j<<6. Thus, in the
above example, C,;, 3y = Cs.

In the general case, the idertification of the dual symbol with the
single running index can be made by letting i=(/—1) P+p and
j=(m—1) Q-g; thus,

Cips me=C1i=Cy-1yP+p, (m~1) 0+9.

The concept can once again be extended to the direct product
of more than two matrices. There is no restriction on the order of
the matrices whose direct product is to be taken.

If A, 4,, B, and B, are any matrices whose dimensions are such

that the ordmary matrix products 4,4, and B,B are defined, then
the direct product has the important property

(4, ® By} (4, @ By)=(414,) @ (B1By). (2:90a)
Further, if F is the direct product of a number of square matrices
A B, C, ..., thatis, F = AQXBRCE® ..., then

trace F=(trace A) (trace B) (trace C)... . (2.90b)
The operation of the direct product of matrices is associative, so that
ARBRC)=(A®B)®C=4AQ BQ C. (2.91)

The operation is also distributive with respect to matrix addition,
Thus,

AR(CH+D)=AR C+A4A® D. (2.92)

Moreover, from (2.90a), we have
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(AB)® (AB) @ (AB)=(4B)® (4 ® 4)(B® B))
=(AR® AR A)BX B B). (2.93)
Generalizing the above equation, we have
(AB)M=(A)H (B), (2.94)
where
A=A R AR AR ... X A (k times). (2.95)
Finally, if 4 and B are square matrices with eigenvalues and eigen-
vectors A;, x; and pj, yj, respectively, the eigenvalues of 4 @ B are
Ay and its eigenvectors are x;®@ y;. That is, if Ax;=Nx; and
Byj=ujy,, then
(4 @ B)(xi @ yi)=Hij (i ® y1)- (2.96)
The proof follows directly from (2.90a).
We shall find these concepts very useful in the next chapter

PROBLEMS ON CHAPTER 2

(2.1) Show that the following sets are vector spaces. Also indicate how
you would choose a basis in each space. What is the dimension of each space?
Which is the field over which each vector space is defined ?

(i) The set of all vectors denoting the possible velocities of a free particls
in classical mechanics.

(ii) The set of all vectors denoting the possible wave vectors of a free
particle in classical or quantum mechanics (note that this is usually referred to
as the k-space).

(iii) The set of all continuous square integrable solutions of an n-th order
ordinary linear homogeneous differential equation.

(iv) The set of all continuous square integrable functions which depend on
a set of variables.

(v) The set of all real square matrices of order n.

(vi) The set of all complex square matrices of order n.

(2.2) Prove Eq. (2.24).

(2.3) Prove Eq. (2.26). [Hint: Use (2.24).] -

(2.4) State whether the following statements are true or false and explain
your answer:

(i) If all the vectors of a set are pairwise orthogonal, it necessarily follows
that it is an orthogonal set.

(i) Ifall the vectors of a set are pairwise independent of each other, it
necessarily follows that it is a set of linearly independent vectors.

(2.5) Consider the projection operators P defined in (2.28)..Show that
PP;=0if i=j. (This is expressed by saying that the projection operators are
pairwise orthogonal.)

(2.6) Show that the eigenvalues of a hermitian operator are real and that
those of a unitary operator have absolute magnitude equal to unity.
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(2.7) Show that the functions Py(x)=1 and P'l(i)=x are orthogonal on the
interval —1<"x<C1. Find scalars @’ and b’ such that Py(x)=1+4a'x+&'x2 is
orthogonal to both Py(x)and Py(x) on the same interval. In this way, generate
polynomials P,(x)=1+ax+bx24-...4gx® such that P,(x) is orthogonal to
each P, (x),0<~=m <<n—1,0n the interval [—1, 1]. .[Note that these are the
Legendre polynomials, apart from constant factors.]

(2.8) Obtain the eigenvalues and the cigenvectors of the following matrices :

O 12 0 —3v32 | @D [ cos 8 sin6
0 1 0 —sin 6 cos6 |’
—3v32 0 =52
(2.9) Obtain the direct sum and fhe direct product of the following
matrices:

OF 2 S 97 and [ 6 4
1 4 7 L2 7}
3 3 3
Y[ 10 3 —57 and [3 9 O
—9 2 5 s 1 8
|_ 0 5 —~1 4 2 =2
(2.10) Obtain the direct product of the two matrices:
- —2 3 4 ] and [ 9
L 8 7 —6 6 1.
3

(2.11) In Problem (2.9) verify Egs. (2.84a), (2.84b)Y (2.84c) and (2.90b)

(2.12) Letp be a primoe number and consider the set of the p integers
0,1,2,..., p—1). Show that this set is a field with addition mod (p) and
multiplication mod (p)as the two binary operations. (A finite field is called
a Galois field.) :

(2.13) If T(A) is the matrix representing an operator T in the vector space
L, and T (B) that representing 7 in the vector space Ly show that the matrix
representing T in the vector space La (X) Ly is T (A) Q) T (B).
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