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CHAPTER 2

Particle Properties of Waves

The penetrating ability of x-rays enabled them to reveal the frog which this snake had
swallowed. The snake’s jaws are very loosely joined and so can open widely.

2.1 ELECTROMAGNETIC WAVES
Coupled electric and magnetic oscillations that
move with the speed of light and exhibit typical
wave behavior

2.2 BLACKBODY RADIATION
Only the quantum theory of light can explain its
origin

2.3 PHOTOELECTRIC EFFECT
The energies of electrons liberated by light
depend on the frequency of the light

2.4 WHAT IS LIGHT?
Both wave and particle

2.5 X-RAYS
They consist of high-energy photons

2.6 X-RAY DIFFRACTION
How x-ray wavelengths can be determined

2.7 COMPTON EFFECT
Further confirmation of the photon model

2.8 PAIR PRODUCTION
Energy into matter

2.9 PHOTONS AND GRAVITY
Although they lack rest mass, photons behave as
though they have gravitational mass

bei48482_ch02.qxd  1/16/02  1:52 PM  Page 52



I n our everyday experience there is nothing mysterious or ambiguous about the
concepts of particle and wave. A stone dropped into a lake and the ripples that
spread out from its point of impact apparently have in common only the ability

to carry energy and momentum from one place to another. Classical physics, which
mirrors the “physical reality” of our sense impressions, treats particles and waves as
separate components of that reality. The mechanics of particles and the optics of waves
are traditionally independent disciplines, each with its own chain of experiments and
principles based on their results.

The physical reality we perceive has its roots in the microscopic world of atoms and
molecules, electrons and nuclei, but in this world there are neither particles nor waves
in our sense of these terms. We regard electrons as particles because they possess charge
and mass and behave according to the laws of particle mechanics in such familiar de-
vices as television picture tubes. We shall see, however, that it is just as correct to in-
terpret a moving electron as a wave manifestation as it is to interpret it as a particle
manifestation. We regard electromagnetic waves as waves because under suitable cir-
cumstances they exhibit diffraction, interference, and polarization. Similarly, we shall
see that under other circumstances electromagnetic waves behave as though they con-
sist of streams of particles. Together with special relativity, the wave-particle duality is
central to an understanding of modern physics, and in this book there are few argu-
ments that do not draw upon either or both of these fundamental ideas.

2.1   ELECTROMAGNETIC WAVES

Coupled electric and magnetic oscillations that move with the speed of light
and exhibit typical wave behavior

In 1864 the British physicist James Clerk Maxwell made the remarkable suggestion
that accelerated electric charges generate linked electric and magnetic disturbances that
can travel indefinitely through space. If the charges oscillate periodically, the distur-
bances are waves whose electric and magnetic components are perpendicular to each
other and to the direction of propagation, as in Fig. 2.1.

From the earlier work of Faraday, Maxwell knew that a changing magnetic field can
induce a current in a wire loop. Thus a changing magnetic field is equivalent in its
effects to an electric field. Maxwell proposed the converse: a changing electric field has
a magnetic field associated with it. The electric fields produced by electromagnetic
induction are easy to demonstrate because metals offer little resistance to the flow of
charge. Even a weak field can lead to a measurable current in a metal. Weak magnetic
fields are much harder to detect, however, and Maxwell’s hypothesis was based on a
symmetry argument rather than on experimental findings.

Figure 2.1 The electric and magnetic fields in an electromagnetic wave vary together. The fields are
perpendicular to each other and to the direction of propagation of the wave.

Particle Properties of Waves 53

Electric field

Direction
of wave

Magnetic field

bei48482_ch02.qxd  2/4/02  11:30 AM  Page 53



54 Chapter Two

If Maxwell was right, electromagnetic (em) waves must occur in which constantly
varying electric and magnetic fields are coupled together by both electromagnetic in-
duction and the converse mechanism he proposed. Maxwell was able to show that the
speed c of electromagnetic waves in free space is given by

c ! ! 2.998 " 108 m/s

where !0 is the electric permittivity of free space and "0 is its magnetic permeability.
This is the same as the speed of light waves. The correspondence was too great to be
accidental, and Maxwell concluded that light consists of electromagnetic waves.

During Maxwell’s lifetime the notion of em waves remained without direct experi-
mental support. Finally, in 1888, the German physicist Heinrich Hertz showed that em
waves indeed exist and behave exactly as Maxwell had predicted. Hertz generated the
waves by applying an alternating current to an air gap between two metal balls. The
width of the gap was such that a spark occurred each time the current reached a peak.
A wire loop with a small gap was the detector; em waves set up oscillations in the loop
that produced sparks in the gap. Hertz determined the wavelength and speed of the
waves he generated, showed that they have both electric and magnetic components,
and found that they could be reflected, refracted, and diffracted.

Light is not the only example of an em wave. Although all such waves have the
same fundamental nature, many features of their interaction with matter depend upon

1
#
!!0"0"

James Clerk Maxwell (1831–
1879) was born in Scotland
shortly before Michael Faraday
discovered electromagnetic induc-
tion. At nineteen he entered Cam-
bridge University to study physics
and mathematics. While still a stu-
dent, he investigated the physics of
color vision and later used his
ideas to make the first color pho-
tograph. Maxwell became known

to the scientific world at twenty-four when he showed that the
rings of Saturn could not be solid or liquid but must consist of
separate small bodies. At about this time Maxwell became in-
terested in electricity and magnetism and grew convinced that
the wealth of phenomena Faraday and others had discovered
were not isolated effects but had an underlying unity of some
kind. Maxwell’s initial step in establishing that unity came in
1856 with the paper “On Faraday’s Lines of Force,” in which
he developed a mathematical description of electric and mag-
netic fields.

Maxwell left Cambridge in 1856 to teach at a college in
Scotland and later at King’s College in London. In this period
he expanded his ideas on electricity and magnetism to create a
single comprehensive theory of electromagnetism. The funda-
mental equations he arrived at remain the foundations of the
subject today. From these equations Maxwell predicted that
electromagnetic waves should exist that travel with the speed

of light, described the properties the waves should have, and
surmised that light consisted of electromagnetic waves. Sadly,
he did not live to see his work confirmed in the experiments
of the German physicist Heinrich Hertz.

Maxwell’s contributions to kinetic theory and statistical
mechanics were on the same profound level as his contribu-
tions to electromagnetic theory. His calculations showed that
the viscosity of a gas ought to be independent of its pressure,
a surprising result that Maxwell, with the help of his wife, con-
firmed in the laboratory. They also found that the viscosity was
proportional to the absolute temperature of the gas. Maxwell’s
explanation for this proportionality gave him a way to estimate
the size and mass of molecules, which until then could only be
guessed at. Maxwell shares with Boltzmann credit for the equa-
tion that gives the distribution of molecular energies in a gas.

In 1865 Maxwell returned to his family’s home in Scotland.
There he continued his research and also composed a treatise
on electromagnetism that was to be the standard text on the
subject for many decades. It was still in print a century later.
In 1871 Maxwell went back to Cambridge to establish and
direct the Cavendish Laboratory, named in honor of the pio-
neering physicist Henry Cavendish. Maxwell died of cancer at
the age of forty-eight in 1879, the year in which Albert Ein-
stein was born. Maxwell had been the greatest theoretical physi-
cist of the nineteenth century; Einstein was to be the greatest
theoretical physicist of the twentieth century. (By a similar 
coincidence, Newton was born in the year of Galileo’s death.)

bei48482_ch02.qxd  1/16/02  1:52 PM  Page 54



Frequency,
Hz

1022

1021

1020

1019

1018

1017

1016

1015

1014

1013

1012

1011

1010

109

108

107

106

105

104

103

(1 GHz)

(1 MHz)

(1 kHz)

Photon
energy, eV

107

106

105

104

103

102

10

1

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–8

10–9

10–10

10–11

(1 MeV)

(1 keV)

Radiation
Wavelength,

m

10–13

10–12

10–11

10–10

10–9

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

1

10

102

103

104

105

(1 pm)

(1 nm)

(1 µm)

(1 mm)

(1 cm)

(1 km)

G
am

m
a

ra
ys

U
lt

ra
-

vi
ol

et
In

fr
ar

ed
R

ad
io

Visible

TV, FM

Standard
broadcast

X
-r

ay
s

M
ic

ro
-

w
av

es

Figure 2.2 The spectrum of electromagnetic radiation.

their frequencies. Light waves, which are em waves the eye responds to, span only a
brief frequency interval, from about 4.3 " 1014 Hz for red light to about 7.5 " 1014

Hz for violet light. Figure 2.2 shows the em wave spectrum from the low frequencies
used in radio communication to the high frequencies found in x-rays and gamma rays.

A characteristic property of all waves is that they obey the principle of superposition:

When two or more waves of the same nature travel past a point at the same time,
the instantaneous amplitude there is the sum of the instantaneous amplitudes of
the individual waves.

Instantaneous amplitude refers to the value at a certain place and time of the quan-
tity whose variations constitute the wave. (“Amplitude” without qualification refers to
the maximum value of the wave variable.) Thus the instantaneous amplitude of a wave
in a stretched string is the displacement of the string from its normal position; that of
a water wave is the height of the water surface relative to its normal level; that of a
sound wave is the change in pressure relative to the normal pressure. Since the elec-
tric and magnetic fields in a light wave are related by E ! cB, its instantaneous amplitude
can be taken as either E or B. Usually E is used, since it is the electric fields of light
waves whose interactions with matter give rise to nearly all common optical effects.

Particle Properties of Waves 55

bei48482_ch02.qxd  1/16/02  1:52 PM  Page 55



A C

DB

The interference of water waves. Constructive interference occurs along the line
AB and destructive interference occurs along the line CD.

+

(a) b)

+ = =

(

Figure 2.3 (a) In constructive interference, superposed waves in phase reinforce each other. (b) In destructive
interference, waves out of phase partially or completely cancel each other.

When two or more trains of light waves meet in a region, they interfere to produce
a new wave there whose instantaneous amplitude is the sum of those of the original
waves. Constructive interference refers to the reinforcement of waves with the same
phase to produce a greater amplitude, and destructive interference refers to the partial
or complete cancellation of waves whose phases differ (Fig. 2.3). If the original waves
have different frequencies, the result will be a mixture of constructive and destructive
interference, as in Fig. 3.4.

The interference of light waves was first demonstrated in 1801 by Thomas Young,
who used a pair of slits illuminated by monochromatic light from a single source (Fig. 2.4).
From each slit secondary waves spread out as though originating at the slit; this is an ex-
ample of diffraction, which, like interference, is a characteristic wave phenomenon. Ow-
ing to interference, the screen is not evenly lit but shows a pattern of alternate bright
and dark lines. At those places on the screen where the path lengths from the two slits
differ by an odd number of half wavelengths (##2, 3##2, 5##2, . . .), destructive inter-
ference occurs and a dark line is the result. At those places where the path lengths are

56 Chapter Two
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Figure 2.4 Origin of the interference pattern in Young’s experiment. Constructive interference occurs where the difference in path lengths
from the slits to the screen is $, #, 2#, . . . . Destructive interference occurs where the path difference is ##2, 3##2, 5##2, . . . .

equal or differ by a whole number of wavelengths (#, 2#, 3#, . . .), constructive inter-
ference occurs and a bright line is the result. At intermediate places the interference is
only partial, so the light intensity on the screen varies gradually between the bright and
dark lines.

Interference and diffraction are found only in waves—the particles we are familiar
with do not behave in those ways. If light consisted of a stream of classical particles,
the entire screen would be dark. Thus Young’s experiment is proof that light consists
of waves. Maxwell’s theory further tells us what kind of waves they are: electromag-
netic. Until the end of the nineteenth century the nature of light seemed settled forever.

2.2   BLACKBODY RADIATION

Only the quantum theory of light can explain its origin

Following Hertz’s experiments, the question of the fundamental nature of light
seemed clear: light consisted of em waves that obeyed Maxwell’s theory. This cer-
tainty lasted only a dozen years. The first sign that something was seriously amiss
came from attempts to understand the origin of the radiation emitted by bodies of
matter.

We are all familiar with the glow of a hot piece of metal, which gives off visible light
whose color varies with the temperature of the metal, going from red to yellow to white
as it becomes hotter and hotter. In fact, other frequencies to which our eyes do not
respond are present as well. An object need not be so hot that it is luminous for it to
be radiating em energy; all objects radiate such energy continuously whatever their
temperatures, though which frequencies predominate depends on the temperature. At
room temperature most of the radiation is in the infrared part of the spectrum and
hence is invisible.

The ability of a body to radiate is closely related to its ability to absorb radiation.
This is to be expected, since a body at a constant temperature is in thermal equilib-
rium with its surroundings and must absorb energy from them at the same rate as it
emits energy. It is convenient to consider as an ideal body one that absorbs all radi-
ation incident upon it, regardless of frequency. Such a body is called a blackbody.

The point of introducing the idealized blackbody in a discussion of thermal ra-
diation is that we can now disregard the precise nature of whatever is radiating, since
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Figure 2.6 Blackbody spectra. The spectral distribution of energy in the radiation depends only on
the temperature of the body. The higher the temperature, the greater the amount of radiation and the
higher the frequency at which the maximum emission occurs. The dependence of the latter frequency
on temperature follows a formula called Wien’s displacement law, which is discussed in Sec. 9.6.

Incident

Light ray

Figure 2.5 A hole in the wall of a
hollow object is an excellent ap-
proximation of a blackbody.

The color and brightness of an
object heated until it glows, such
as the filament of this light bulb,
depends upon its temperature,
which here is about 3000 K. An
object that glows white is hotter
than it is when it glows red, and
it gives off more light as well.

all blackbodies behave identically. In the laboratory a blackbody can be approximated
by a hollow object with a very small hole leading to its interior (Fig. 2.5). Any ra-
diation striking the hole enters the cavity, where it is trapped by reflection back and
forth until it is absorbed. The cavity walls are constantly emitting and absorbing ra-
diation, and it is in the properties of this radiation (blackbody radiation) that we
are interested.

Experimentally we can sample blackbody radiation simply by inspecting what
emerges from the hole in the cavity. The results agree with everyday experience. A
blackbody radiates more when it is hot than when it is cold, and the spectrum of a
hot blackbody has its peak at a higher frequency than the peak in the spectrum of a
cooler one. We recall the behavior of an iron bar as it is heated to progressively higher
temperatures: at first it glows dull red, then bright orange-red, and eventually it be-
comes “white hot.” The spectrum of blackbody radiation is shown in Fig. 2.6 for two
temperatures.

The Ultraviolet Catastrophe

Why does the blackbody spectrum have the shape shown in Fig. 2.6? This prob-
lem was examined at the end of the nineteenth century by Lord Rayleigh and James
Jeans. The details of their calculation are given in Chap. 9. They started by con-
sidering the radiation inside a cavity of absolute temperature T whose walls are
perfect reflectors to be a series of standing em waves (Fig. 2.7). This is a three-
dimensional generalization of standing waves in a stretched string. The condition
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Figure 2.7 Em radiation in a cav-
ity whose walls are perfect reflec-
tors consists of standing waves
that have nodes at the walls,
which restricts their possible
wavelengths. Shown are three
possible wavelengths when the
distance between opposite walls
is L.

for standing waves in such a cavity is that the path length from wall to wall, whatever
the direction, must be a whole number of half-wavelengths, so that a node occurs
at each reflecting surface. The number of independent standing waves G(%)d% in
the frequency interval between % and d% per unit volume in the cavity turned out
to be

G(%)d% ! (2.1)

This formula is independent of the shape of the cavity. As we would expect, the higher
the frequency %, the shorter the wavelength and the greater the number of possible
standing waves.

The next step is to find the average energy per standing wave. According to the
theorem of equipartition of energy, a mainstay of classical physics, the average energy
per degree of freedom of an entity (such as a molecule of an ideal gas) that is a mem-
ber of a system of such entities in thermal equilibrium at the temperature T is #

1
2

#kT.
Here k is Boltzmann’s constant:

Boltzmann’s constant k ! 1.381 " 10$23 J/K

A degree of freedom is a mode of energy possession. Thus a monatomic ideal gas
molecule has three degrees of freedom, corresponding to kinetic energy of motion in
three independent directions, for an average total energy of #

3
2

#kT.
A one-dimensional harmonic oscillator has two degrees of freedom, one that corre-

sponds to its kinetic energy and one that corresponds to its potential energy. Because
each standing wave in a cavity originates in an oscillating electric charge in the cavity
wall, two degrees of freedom are associated with the wave and it should have an average
energy of 2(#

1
2

#)kT:

!" ! kT (2.2)

The total energy u(%) d% per unit volume in the cavity in the frequency interval from
% to % % d% is therefore

u(%) d% ! !"G(%) d% ! %2 d% (2.3)

This radiation rate is proportional to this energy density for frequencies between % and
% % d%. Equation (2.3), the Rayleigh-Jeans formula, contains everything that classi-
cal physics can say about the spectrum of blackbody radiation.

Even a glance at Eq. (2.3) shows that it cannot possibly be correct. As the fre-
quency % increases toward the ultraviolet end of the spectrum, this formula predicts
that the energy density should increase as %2. In the limit of infinitely high fre-
quencies, u(%) d% therefore should also go to infinity. In reality, of course, the energy
density (and radiation rate) falls to 0 as %S & (Fig. 2.8). This discrepancy became
known as the ultraviolet catastrophe of classical physics. Where did Rayleigh and
Jeans go wrong?

8&kT
#

c3

Rayleigh-Jeans 
formula

Classical average energy
per standing wave

8&%2d%
#

c3

Density of standing
waves in cavity
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60 Chapter Two

Planck Radiation Formula

In 1900 the German physicist Max Planck used “lucky guesswork” (as he later called it)
to come up with a formula for the spectral energy density of blackbody radiation:

u(%) d% ! (2.4)

Here h is a constant whose value is

Planck’s constant h ! 6.626 " 10$34 J ' s

%3 d%
##
eh%#kT $ 1

8&h
#

c3
Planck radiation
formula
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Figure 2.8 Comparison of the Rayleigh-Jeans formula for the spectrum of the radiation from a black-
body at 1500 K with the observed spectrum. The discrepancy is known as the ultraviolet catastrophe
because it increases with increasing frequency. This failure of classical physics led Planck to the dis-
covery that radiation is emitted in quanta whose energy is h%.

Max Planck (1858–1947) was
born in Kiel and educated in Mu-
nich and Berlin. At the University
of Berlin he studied under Kirch-
hoff and Helmholtz, as Hertz had
done earlier. Planck realized that
blackbody radiation was important
because it was a fundamental effect
independent of atomic structure,
which was still a mystery in the late
nineteenth century, and worked at
understanding it for six years be-

fore finding the formula the radiation obeyed. He “strived from
the day of its discovery to give it a real physical interpretation.”
The result was the discovery that radiation is emitted in energy
steps of h%. Although this discovery, for which he received the
Nobel Prize in 1918, is now considered to mark the start of

modern physics, Planck himself remained skeptical for a long
time of the physical reality of quanta. As he later wrote, “My
vain attempts to somehow reconcile the elementary quantum
with classical theory continued for many years and cost me
great effort. . . . Now I know for certain that the quantum of
action has a much more fundamental significance than I orig-
inally suspected.”

Like many physicists, Planck was a competent musician (he
sometimes played with Einstein) and in addition enjoyed moun-
tain climbing. Although Planck remained in Germany during
the Hitler era, he protested the Nazi treatment of Jewish scien-
tists and lost his presidency of the Kaiser Wilhelm Institute as
a result. In 1945 one of his sons was implicated in a plot to
kill Hitler and was executed. After World War II the Institute
was renamed after Planck and he was again its head until his
death.
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At high frequencies, h% (( kT and eh%#kTS &, which means that u(%) d%S 0 as
observed. No more ultraviolet catastrophe. At low frequencies, where the Rayleigh-
Jeans formula is a good approximation to the data (see Fig. 2.8), h% )) kT and h%#kT
)) 1. In general,

ex ! 1 % x % % % ' ' '

If x is small, ex $ 1 % x, and so for h%#kT )) 1 we have

$ $ h% )) kT

Thus at low frequencies Planck’s formula becomes

u(%) d% $ %3 % & d% $ %2 d%

which is the Rayleigh-Jeans formula. Planck’s formula is clearly at least on the right
track; in fact, it has turned out to be completely correct.

Next Planck had the problem of justifying Eq. (2.4) in terms of physical principles.
A new principle seemed needed to explain his formula, but what was it? After several
weeks of “the most strenuous work of my life,” Planck found the answer: The oscilla-
tors in the cavity walls could not have a continuous distribution of possible energies
! but must have only the specific energies

!n ! nh% n ! 0, 1, 2, ' ' ' (2.5)

An oscillator emits radiation of frequency % when it drops from one energy state to the
next lower one, and it jumps to the next higher state when it absorbs radiation of
frequency %. Each discrete bundle of energy h% is called a quantum (plural quanta)
from the Latin for “how much.”

With oscillator energies limited to nh%, the average energy per oscillator in the cavity
walls—and so per standing wave—turned out to be not !" ! kT as for a continuous
distribution of oscillator energies, but instead

! ! (2.6)

This average energy leads to Eq. (2.4). Blackbody radiation is further discussed in
Chap. 9.

Example 2.1

Assume that a certain 660-Hz tuning fork can be considered as a harmonic oscillator whose vi-
brational energy is 0.04 J. Compare the energy quanta of this tuning fork with those of an atomic
oscillator that emits and absorbs orange light whose frequency is 5.00 " 1014 Hz.

h%
##
eh%#kT $ 1

Actual average energy
per standing wave

Oscillator energies

8&kT
#

c3

kT
#
h%

8&h
#

c3

kT
#
h%

1
##

1 % #
k
h
T
%
# $ 1

1
#
eh%# kT$1

x3

#
3!

x2

#
2!
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Solution

(a) For the tuning fork,

h%1 ! (6.63 " 10$34 J ' s) (660 s$1) ! 4.38 " 10$31 J

The total energy of the vibrating tines of the fork is therefore about 1029 times the quantum
energy h%. The quantization of energy in the tuning fork is obviously far too small to be observed,
and we are justified in regarding the fork as obeying classical physics.

(b) For the atomic oscillator,

h%2 ! (6.63 " 10$34 J ' s) (5.00 " 1014 s$1) ! 3.32 " 10$19 J

In electronvolts, the usual energy unit in atomic physics,

h%2 ! ! 2.08 eV

This is a significant amount of energy on an atomic scale, and it is not surprising that classical
physics fails to account for phenomena on this scale.

The concept that the oscillators in the cavity walls can interchange energy with
standing waves in the cavity only in quanta of h% is, from the point of view of classi-
cal physics, impossible to understand. Planck regarded his quantum hypothesis as an
“act of desperation” and, along with other physicists of his time, was unsure of how
seriously to regard it as an element of physical reality. For many years he held that,
although the energy transfers between electric oscillators and em waves apparently are
quantized, em waves themselves behave in an entirely classical way with a continuous
range of possible energies.

2.3   PHOTOELECTRIC EFFECT

The energies of electrons liberated by light depend on the frequency 
of the light

During his experiments on em waves, Hertz noticed that sparks occurred more readily in
the air gap of his transmitter when ultraviolet light was directed at one of the metal balls.
He did not follow up this observation, but others did. They soon discovered that the cause
was electrons emitted when the frequency of the light was sufficiently high. This phe-
nomenon is known as the photoelectric effect and the emitted electrons are called pho-
toelectrons. It is one of the ironies of history that the same work to demonstrate that light
consists of em waves also gave the first hint that this was not the whole story.

Figure 2.9 shows how the photoelectric effect was studied. An evacuated tube con-
tains two electrodes connected to a source of variable voltage, with the metal plate whose
surface is irradiated as the anode. Some of the photoelectrons that emerge from this sur-
face have enough energy to reach the cathode despite its negative polarity, and they con-
stitute the measured current. The slower photoelectrons are repelled before they get to
the cathode. When the voltage is increased to a certain value V0, of the order of several
volts, no more photoelectrons arrive, as indicated by the current dropping to zero. This
extinction voltage corresponds to the maximum photoelectron kinetic energy.

3.32 " 10$19 J
##
1.60 " 10$19 J/eV
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Figure 2.9 Experimental observation of the photoelectric effect.

The existence of the photoelectric effect is not surprising. After all, light waves carry
energy, and some of the energy absorbed by the metal may somehow concentrate on
individual electrons and reappear as their kinetic energy. The situation should be like
water waves dislodging pebbles from a beach. But three experimental findings show
that no such simple explanation is possible.

1 Within the limits of experimental accuracy (about 10$9 s), there is no time interval
between the arrival of light at a metal surface and the emission of photoelectrons. How-
ever, because the energy in an em wave is supposed to be spread across the wavefronts,
a period of time should elapse before an individual electron accumulates enough energy
(several eV) to leave the metal. A detectable photoelectron current results when 10$6

W/m2 of em energy is absorbed by a sodium surface. A layer of sodium 1 atom thick
and 1 m2 in area contains about 1019 atoms, so if the incident light is absorbed in the
uppermost atomic layer, each atom receives energy at an average rate of 10$25 W. At
this rate over a month would be needed for an atom to accumulate energy of the mag-
nitude that photoelectrons from a sodium surface are observed to have.
2 A bright light yields more photoelectrons than a dim one of the same frequency, but
the electron energies remain the same (Fig. 2.10). The em theory of light, on the con-
trary, predicts that the more intense the light, the greater the energies of the electrons.
3 The higher the frequency of the light, the more energy the photoelectrons have 
(Fig. 2.11). Blue light results in faster electrons than red light. At frequencies below a
certain critical frequency %0, which is characteristic of each particular metal, no elec-
trons are emitted. Above %0 the photoelectrons range in energy from 0 to a maximum
value that increases linearly with increasing frequency (Fig. 2.12). This observation,
also, cannot be explained by the em theory of light.

Quantum Theory of Light

When Planck’s derivation of his formula appeared, Einstein was one of the first—
perhaps the first—to understand just how radical the postulate of energy quantization

Particle Properties of Waves 63

Retarding potential

Ph
ot

oe
le

ct
ro

n 
cu

rr
en

t

V0 V

Frequency = v
= constant

0

3I

2I

I

Figure 2.10 Photoelectron cur-
rent is proportional to light in-
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photoelectron energy, is the same
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Figure 2.11 The stopping poten-
tial V0, and hence the maximum
photoelectron energy, depends on
the frequency of the light. When
the retarding potential is V ! 0,
the photoelectron current is the
same for light of a given intensity
regardless of its frequency.
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Figure 2.12 Maximum photoelectron kinetic energy KEmax versus frequency of incident light for three
metal surfaces.

of oscillators was: “It was as if the ground was pulled from under one.” A few years
later, in 1905, Einstein realized that the photoelectric effect could be understood if the
energy in light is not spread out over wavefronts but is concentrated in small packets,
or photons. (The term photon was coined by the chemist Gilbert Lewis in 1926.) Each
photon of light of frequency % has the energy h%, the same as Planck’s quantum energy.
Planck had thought that, although energy from an electric oscillator apparently had to
be given to em waves in separate quanta of h% each, the waves themselves behaved
exactly as in conventional wave theory. Einstein’s break with classical physics was more
drastic: Energy was not only given to em waves in separate quanta but was also car-
ried by the waves in separate quanta.

The three experimental observations listed above follow directly from Einstein’s hy-
pothesis. (1) Because em wave energy is concentrated in photons and not spread out,
there should be no delay in the emission of photoelectrons. (2) All photons of fre-
quency % have the same energy, so changing the intensity of a monochromatic light
beam will change the number of photoelectrons but not their energies. (3) The higher
the frequency %, the greater the photon energy h% and so the more energy the photo-
electrons have.

What is the meaning of the critical frequency %0 below which no photoelectrons are
emitted? There must be a minimum energy ' for an electron to escape from a partic-
ular metal surface or else electrons would pour out all the time. This energy is called
the work function of the metal, and is related to %0 by the formula

Work function ' ! h%0 (2.7)

The greater the work function of a metal, the more energy is needed for an electron
to leave its surface, and the higher the critical frequency for photoelectric emission
to occur.

Some examples of photoelectric work functions are given in Table 2.1. To pull an
electron from a metal surface generally takes about half as much energy as that needed
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Table 2.1 Photoelectric Work Functions

Metal Symbol Work Function, eV

Cesium Cs 1.9
Potassium K 2.2
Sodium Na 2.3
Lithium Li 2.5
Calcium Ca 3.2
Copper Cu 4.7
Silver Ag 4.7
Platinum Pt 6.4

All light-sensitive detectors, including the eye and the one used in this video camera, are based
on the absorption of energy from photons of light by electrons in the atoms the light falls on.

to pull an electron from a free atom of that metal (see Fig. 7.10); for instance, the
ionization energy of cesium is 3.9 eV compared with its work function of 1.9 eV. Since
the visible spectrum extends from about 4.3 to about 7.5 " 1014 Hz, which corre-
sponds to quantum energies of 1.7 to 3.3 eV, it is clear from Table 2.1 that the pho-
toelectric effect is a phenomenon of the visible and ultraviolet regions.

According to Einstein, the photoelectric effect in a given metal should obey the
equation

Photoelectric effect h% ! KEmax % ' (2.8)

where h% is the photon energy, KEmax is the maximum photoelectron energy (which is
proportional to the stopping potential), and ' is the minimum energy needed for an
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E = hv0

Metal

E = hv

KE = 0

KEmax = hv – hv0

Figure 2.13 If the energy h%0 (the work function of the surface) is needed to remove an electron from
a metal surface, the maximum electron kinetic energy will be h% $ h%0 when light of frequency % is
directed at the surface.

electron to leave the metal. Because ' ! h%0, Eq. (2.8) can be rewritten (Fig. 2.13)

h% ! KEmax % h%0

KEmax ! h% $ h%0 ! h(% $ %0) (2.9)

This formula accounts for the relationships between KEmax and % plotted in Fig. 2.12
from experimental data. If Einstein was right, the slopes of the lines should all be equal
to Planck’s constant h, and this is indeed the case.

In terms of electronvolts, the formula E ! h% for photon energy becomes

E ! % &% ! (4.136 " 10$15)% eV ' s (2.10)

If we are given instead the wavelength # of the light, then since % ! c## we have

E ! !

(2.11)

Example 2.2

Ultraviolet light of wavelength 350 nm and intensity 1.00 W/m2 is directed at a potassium sur-
face. (a) Find the maximum KE of the photoelectrons. (b) If 0.50 percent of the incident pho-
tons produce photoelectrons, how many are emitted per second if the potassium surface has an
area of 1.00 cm2?

Solution

(a) From Eq. (2.11) the energy of the photons is, since 1 nm ! 1 nanometer ! 10$9 m,

Ep ! ! 3.5 eV
1.24 " 10$6 eV ' m
###
(350 nm)(10$9 m/nm)

1.240 " 10$6 eV ' m
###

#

(4.136 " 10$15 eV ' s)(2.998 " 108 m/s)
#####

#

Photon 
energy

6.626 " 10$34 J ' s
###
1.602 " 10$19 J/eV

Photon
energy
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Thermionic Emission

E instein’s interpretation of the photoelectric effect is supported by studies of thermionic emis-
sion. Long ago it was discovered that the presence of a very hot object increases the elec-

tric conductivity of the surrounding air. Eventually the reason for this effect was found to be the
emission of electrons from such an object. Thermionic emission makes possible the operation
of such devices as television picture tubes, in which metal filaments or specially coated cathodes
at high temperature supply dense streams of electrons.

The emitted electrons evidently obtain their energy from the thermal agitation of the parti-
cles of the metal, and we would expect the electrons to need a certain minimum energy to
escape. This minimum energy can be determined for many surfaces, and it is always close to
the photoelectric work function for the same surfaces. In photoelectric emission, photons of
light provide the energy required by an electron to escape, while in thermionic emission heat
does so.

•
e

e

•

•

(a)

(b)

•
•

Figure 2.14 (a) The wave theory
of light explains diffraction and
interference, which the quantum
theory cannot account for. (b) The
quantum theory explains the pho-
toelectric effect, which the wave
theory cannot account for.

Table 2.1 gives the work function of potassium as 2.2 eV, so

KEmax ! h% $ ' ! 3.5 eV $ 2.2 eV ! 1.3 eV

(b) The photon energy in joules is 5.68 " 10$19 J. Hence the number of photons that reach the
surface per second is

np ! ! ! ! 1.76 " 1014 photons/s

The rate at which photoelectrons are emitted is therefore

ne ! (0.0050)np ! 8.8 " 1011 photoelectrons/s

(1.00 W/m2) (1.00 " 10$4 m2)
####

5.68 " 10$19 J/photon

(P#A)(A)
#

Ep

E#t
#
Ep

2.4   WHAT IS LIGHT?

Both wave and particle

The concept that light travels as a series of little packets is directly opposed to the wave
theory of light (Fig. 2.14). Both views have strong experimental support, as we have
seen. According to the wave theory, light waves leave a source with their energy spread
out continuously through the wave pattern. According to the quantum theory, light
consists of individual photons, each small enough to be absorbed by a single electron.
Yet, despite the particle picture of light it presents, the quantum theory needs the fre-
quency of the light to describe the photon energy.

Which theory are we to believe? A great many scientific ideas have had to be re-
vised or discarded when they were found to disagree with new data. Here, for the first
time, two different theories are needed to explain a single phenomenon. This situation
is not the same as it is, say, in the case of relativistic versus newtonian mechanics, where
one turns out to be an approximation of the other. The connection between the wave
and quantum theories of light is something else entirely.

To appreciate this connection, let us consider the formation of a double-slit in-
terference pattern on a screen. In the wave model, the light intensity at a place on
the screen depends on E2

—
, the average over a complete cycle of the square of the in-

stantaneous magnitude E of the em wave’s electric field. In the particle model, this
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intensity depends instead on Nh%, where N is the number of photons per second
per unit area that reach the same place on the screen. Both descriptions must give
the same value for the intensity, so N is proportional to E2

—
. If N is large enough,

somebody looking at the screen would see the usual double-slit interference pat-
tern and would have no reason to doubt the wave model. If N is small—perhaps
so small that only one photon at a time reaches the screen—the observer would
find a series of apparently random flashes and would assume that he or she is watch-
ing quantum behavior.

If the observer keeps track of the flashes for long enough, though, the pattern they
form will be the same as when N is large. Thus the observer is entitled to conclude
that the probability of finding a photon at a certain place and time depends on the value
of E 2

—
there. If we regard each photon as somehow having a wave associated with it,

the intensity of this wave at a given place on the screen determines the likelihood that
a photon will arrive there. When it passes through the slits, light is behaving as a wave
does. When it strikes the screen, light is behaving as a particle does. Apparently light
travels as a wave but absorbs and gives off energy as a series of particles.

We can think of light as having a dual character. The wave theory and the quan-
tum theory complement each other. Either theory by itself is only part of the story
and can explain only certain effects. A reader who finds it hard to understand how
light can be both a wave and a stream of particles is in good company: shortly before
his death, Einstein remarked that “All these fifty years of conscious brooding have
brought me no nearer to the answer to the question, ‘What are light quanta?’ ” The
“true nature” of light includes both wave and particle characters, even though there is
nothing in everyday life to help us visualize that.

2.5   X-RAYS

They consist of high-energy photons

The photoelectric effect provides convincing evidence that photons of light can transfer
energy to electrons. Is the inverse process also possible? That is, can part or all of the
kinetic energy of a moving electron be converted into a photon? As it happens, the in-
verse photoelectric effect not only does occur but had been discovered (though not
understood) before the work of Planck and Einstein.

In 1895 Wilhelm Roentgen found that a highly penetrating radiation of unknown
nature is produced when fast electrons impinge on matter. These x-rays were soon
found to travel in straight lines, to be unaffected by electric and magnetic fields, to
pass readily through opaque materials, to cause phosphorescent substances to glow,
and to expose photographic plates. The faster the original electrons, the more pene-
trating the resulting x-rays, and the greater the number of electrons, the greater the in-
tensity of the x-ray beam.

Not long after this discovery it became clear that x-rays are em waves. Electro-
magnetic theory predicts that an accelerated electric charge will radiate em waves,
and a rapidly moving electron suddenly brought to rest is certainly accelerated. Ra-
diation produced under these circumstances is given the German name
bremsstrahlung (“braking radiation”). Energy loss due to bremsstrahlung is more
important for electrons than for heavier particles because electrons are more violently
accelerated when passing near nuclei in their paths. The greater the energy of an
electron and the greater the atomic number of the nuclei it encounters, the more en-
ergetic the bremsstrahlung.
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In 1912 a method was devised for measuring the wavelengths of x-rays. A dif-
fraction experiment had been recognized as ideal, but as we recall from physical
optics, the spacing between adjacent lines on a diffraction grating must be of the
same order of magnitude as the wavelength of the light for satisfactory results, and
gratings cannot be ruled with the minute spacing required by x-rays. Max von Laue
realized that the wavelengths suggested for x-rays were comparable to the spacing
between adjacent atoms in crystals. He therefore proposed that crystals be used to
diffract x-rays, with their regular lattices acting as a kind of three-dimensional grat-
ing. In experiments carried out the following year, wavelengths from 0.013 to 0.048
nm were found, 10$4 of those in visible light and hence having quanta 104 times
as energetic.

Electromagnetic radiation with wavelengths from about 0.01 to about 10 nm falls
into the category of x-rays. The boundaries of this category are not sharp: the shorter-
wavelength end overlaps gamma rays and the longer-wavelength end overlaps ultravi-
olet light (see Fig. 2.2).

Figure 2.15 is a diagram of an x-ray tube. A cathode, heated by a filament through
which an electric current is passed, supplies electrons by thermionic emission.
The high potential difference V maintained between the cathode and a metallic tar-
get accelerates the electrons toward the latter. The face of the target is at an angle
relative to the electron beam, and the x-rays that leave the target pass through the

Wilhelm Konrad Roentgen
(1845–1923) was born in Lennep,
Germany, and studied in Holland
and Switzerland. After periods at
several German universities,
Roentgen became professor of
physics at Würzburg where, on
November 8, 1895, he noticed
that a sheet of paper coated with
barium platinocyanide glowed
when he switched on a nearby
cathode-ray tube that was entirely

covered with black cardboard. In a cathode-ray tube electrons

are accelerated in a vacuum by an electric field, and it was
the impact of these electrons on the glass end of the tube that
produced the penetrating “x” (since their nature was then
unknown) rays that caused the salt to glow. Roentgen said of
his discovery that, when people heard of it, they would say,
“Roentgen has probably gone crazy.” In fact, x-rays were an
immediate sensation, and only two months later were being
used in medicine. They also stimulated research in new di-
rections; Becquerel’s discovery of radioactivity followed within
a year. Roentgen received the first Nobel Prize in physics in
1902. He refused to benefit financially from his work and died
in poverty in the German inflation that followed the end of
World War I.

Target Cathode

X-rays
Evacuated

tube

Electrons

–+

V

Figure 2.15 An x-ray tube. The higher the accelerating voltage V, the faster the electrons and the
shorter the wavelengths of the x-rays.
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Figure 2.16 X-ray spectra of tungsten at various accelerating potentials.

In modern x-ray tubes like these,
circulating oil carries heat away
from the target and releases it to
the outside air through a heat
exchanger. The use of x-rays as a
diagnostic tool in medicine is
based upon the different extents
to which different tissues absorb
them. Because of its calcium con-
tent, bone is much more opaque
to x-rays than muscle, which in
turn is more opaque than fat. To
enhance contrast, “meals” that con-
tain barium are given to patients to
better display their digestive sys-
tems, and other compounds may
be injected into the bloodstream to
enable the condition of blood ves-
sels to be studied.
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Figure 2.17 X-ray spectra of tungsten and molybdenum at 35 kV accelerating potential.

side of the tube. The tube is evacuated to permit the electrons to get to the target
unimpeded.

As mentioned earlier, classical electromagnetic theory predicts bremsstrahlung when
electrons are accelerated, which accounts in general for the x-rays produced by an x-ray
tube. However, the agreement between theory and experiment is not satisfactory in cer-
tain important respects. Figures 2.16 and 2.17 show the x-ray spectra that result when
tungsten and molybdenum targets are bombarded by electrons at several different accel-
erating potentials. The curves exhibit two features electromagnetic theory cannot explain:

1 In the case of molybdenum, intensity peaks occur that indicate the enhanced pro-
duction of x-rays at certain wavelengths. These peaks occur at specific wavelengths for
each target material and originate in rearrangements of the electron structures of the
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target atoms after having been disturbed by the bombarding electrons. This phenom-
enon will be discussed in Sec. 7.9; the important thing to note at this point is the pres-
ence of x-rays of specific wavelengths, a decidedly nonclassical effect, in addition to a
continuous x-ray spectrum.
2 The x-rays produced at a given accelerating potential V vary in wavelength, but none
has a wavelength shorter than a certain value #min. Increasing V decreases #min. At a
particular V, #min is the same for both the tungsten and molybdenum targets. Duane
and Hunt found experimentally that #min is inversely proportional to V; their precise
relationship is

X-ray production #min ! V ' m (2.12)

The second observation fits in with the quantum theory of radiation. Most of the
electrons that strike the target undergo numerous glancing collisions, with their energy
going simply into heat. (This is why the targets in x-ray tubes are made from high-
melting-point metals such as tungsten, and a means of cooling the target is usually em-
ployed.) A few electrons, though, lose most or all of their energy in single collisions
with target atoms. This is the energy that becomes x-rays.

X-rays production, then, except for the peaks mentioned in observation 1 above,
represents an inverse photoelectric effect. Instead of photon energy being transformed
into electron KE, electron KE is being transformed into photon energy. A short wave-
length means a high frequency, and a high frequency means a high photon energy h%.

1.24 " 10$6

##
V

In a CT (computerized tomography) scanner, a series of x-ray exposures of a patient
taken from different directions are combined by a computer to give cross-sectional
images of the parts of the body being examined. In effect, the tissue is sliced up by the
computer on the basis of the x-ray exposures, and any desired slice can be displayed.
This technique enables an abnormality to be detected and its exact location established,
which might be impossible to do from an ordinary x-ray picture. (The word tomogra-
phy comes from tomos, Greek for “cut.”)
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Since work functions are only a few electronvolts whereas the accelerating poten-
tials in x-ray tubes are typically tens or hundreds of thousands of volts, we can ignore
the work function and interpret the short wavelength limit of Eq. (2.12) as corre-
sponding to the case where the entire kinetic energy KE ! Ve of a bombarding elec-
tron is given up to a single photon of energy h%max. Hence

Ve ! h%max !

#min ! ! V ' m

which is the Duane-Hunt formula of Eq. (2.12)—and, indeed, the same as Eq. (2.11)
except for different units. It is therefore appropriate to regard x-ray production as the
inverse of the photoelectric effect.

Example 2.3

Find the shortest wavelength present in the radiation from an x-ray machine whose accelerat-
ing potential is 50,000 V.

Solution

From Eq. (2.12) we have

#min ! ! 2.48 " 10$11 m ! 0.0248 nm

This wavelength corresponds to the frequency

%max ! ! ! 1.21 " 1019 Hz

2.6   X-RAY DIFFRACTION

How x-ray wavelengths can be determined

A crystal consists of a regular array of atoms, each of which can scatter em waves. The
mechanism of scattering is straightforward. An atom in a constant electric field be-
comes polarized since its negatively charged electrons and positively charged nucleus
experience forces in opposite directions. These forces are small compared with the
forces holding the atom together, and so the result is a distorted charge distribution
equivalent to an electric dipole. In the presence of the alternating electric field of an
em wave of frequency %, the polarization changes back and forth with the same fre-
quency %. An oscillating electric dipole is thus created at the expense of some of the
energy of the incoming wave. The oscillating dipole in turn radiates em waves of fre-
quency %, and these secondary waves go out in all directions except along the dipole
axis. (In an assembly of atoms exposed to unpolarized radiation, the latter restriction
does not apply since the contributions of the individual atoms are random.)

In wave terminology, the secondary waves have spherical wave fronts in place of
the plane wave fronts of the incoming waves (Fig. 2.18). The scattering process, then,

3.00 " 108 m's
##
2.48 " 10$11 m

c
#
#min

1.24 " 10$6 V ' m
##

5.00 " 104 V

1.240 " 10$6

##
V

hc
#
Ve

hc
#
#min
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waves

Figure 2.18 The scattering of electromagnetic radiation by a group of atoms. Incident plane waves are
reemitted as spherical waves.
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involves atoms that absorb incident plane waves and reemit spherical waves of the
same frequency.

A monochromatic beam of x-rays that falls upon a crystal will be scattered in all di-
rections inside it. However, owing to the regular arrangement of the atoms, in certain
directions the scattered waves will constructively interfere with one another while in
others they will destructively interfere. The atoms in a crystal may be thought of as
defining families of parallel planes, as in Fig. 2.19, with each family having a charac-
teristic separation between its component planes. This analysis was suggested in 1913
by W. L Bragg, in honor of whom the above planes are called Bragg planes.

The conditions that must be fulfilled for radiation scattered by crystal atoms to un-
dergo constructive interference may be obtained from a diagram like that in Fig. 2.20.
A beam containing x-rays of wavelength ! is incident upon a crystal at an angle " with
a family of Bragg planes whose spacing is d. The beam goes past atom A in the first
plane and atom B in the next, and each of them scatters part of the beam in random
directions. Constructive interference takes place only between those scattered rays that
are parallel and whose paths differ by exactly !, 2!, 3!, and so on. That is, the path
difference must be n!, where n is an integer. The only rays scattered by A and B for
which this is true are those labeled I and II in Fig. 2.20.

The first condition on I and II is that their common scattering angle be equal to
the angle of incidence " of the original beam. (This condition, which is independent

d2

+

Cl–

d1

+

Figure 2.19 Two sets of Bragg planes in a NaCl crystal.
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The interference pattern pro-
duced by the scattering of x-rays
from ions in a crystal of NaCl. The
bright spots correspond to the di-
rections where x-rays scattered
from various layers in the crystal
interfere constructively. The cubic
pattern of the NaCl lattice is sug-
gested by he fourfold symmetry
of the pattern. The large central
spot is due to the unscattered
x-ray beam.

Detector

Crystal

Path of
detectorCollimators

X-rays

θ

θ

Figure 2.21 X-ray spectrometer.

Path difference
= 2d sin θ

d

θ

θθ

A

B
d sin θ

θ

I

II

Figure 2.20 X-ray scattering from a cubic crystal.

of wavelength, is the same as that for ordinary specular reflection in optics: angle of
incidence ! angle of reflection.) The second condition is that

2d sin $ ! n# n ! 1, 2, 3, ' ' ' (2.13)

since ray II must travel the distance 2d sin $ farther than ray I. The integer n is the
order of the scattered beam.

The schematic design of an x-ray spectrometer based upon Bragg’s analysis is shown
in Fig. 2.21. A narrow beam of x-rays falls upon a crystal at an angle $, and a detector
is placed so that it records those rays whose scattering angle is also $. Any x-rays reach-
ing the detector therefore obey the first Bragg condition. As $ is varied, the detector
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Figure 2.22 (a) The scattering of a photon by an electron is called the Compton effect. Energy and momentum are conserved in such an
event, and as a result the scattered photon has less energy (longer wavelength) than the incident photon. (b) Vector diagram of the momenta
and their components of the incident and scattered photons and the scattered electron.

will record intensity peaks corresponding to the orders predicted by Eq. (2.13). If the
spacing d between adjacent Bragg planes in the crystal is known, the x-ray wavelength
# may be calculated.

2.7   COMPTON EFFECT

Further confirmation of the photon model

According to the quantum theory of light, photons behave like particles except for their
lack of rest mass. How far can this analogy be carried? For instance, can we consider
a collision between a photon and an electron as if both were billiard balls?

Figure 2.22 shows such a collision: an x-ray photon strikes an electron (assumed
to be initially at rest in the laboratory coordinate system) and is scattered away from
its original direction of motion while the electron receives an impulse and begins to
move. We can think of the photon as losing an amount of energy in the collision that
is the same as the kinetic energy KE gained by the electron, although actually separate
photons are involved. If the initial photon has the frequency % associated with it, the
scattered photon has the lower frequency %*, where

Loss in photon energy ! gain in electron energy

h% $ h%* ! KE (2.14)

From Chap. 1 we recall that the momentum of a massless particle is related to its
energy by the formula

E ! pc (1.25)

Since the energy of a photon is h%, its momentum is

Photon momentum p ! ! (2.15)
h%
#
c

E
#
c
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Momentum, unlike energy, is a vector quantity that incorporates direction as well
as magnitude, and in the collision momentum must be conserved in each of two
mutually perpendicular directions. (When more than two bodies participate in a
collision, momentum must be conserved in each of three mutually perpendicular
directions.) The directions we choose here are that of the original photon and one
perpendicular to it in the plane containing the electron and the scattered photon
(Fig. 2.22).

The initial photon momentum is h%#c, the scattered photon momentum is h%*#c, and
the initial and final electron momenta are respectively 0 and p. In the original photon
direction

Initial momentum ! final momentum

% 0 ! cos ' % p cos $ (2.16)

and perpendicular to this direction

Initial momentum ! final momentum

0 ! sin ' $ p sin $ (2.17)

The angle ' is that between the directions of the initial and scattered photons, and $
is that between the directions of the initial photon and the recoil electron. From Eqs.
(2.14), (2.16), and (2.17) we can find a formula that relates the wavelength difference
between initial and scattered photons with the angle ' between their directions, both
of which are readily measurable quantities (unlike the energy and momentum of the
recoil electron).

The first step is to multiply Eqs. (2.16) and (2.17) by c and rewrite them as

pc cos $ ! h% $ h%* cos '

pc sin $ ! h%* sin '

By squaring each of these equations and adding the new ones together, the angle $ is
eliminated, leaving

p2c2 ! (h%)2 $ 2(h%)(h%*) cos ' % (h%*)2 (2.18)

Next we equate the two expressions for the total energy of a particle

E ! KE % mc2 (1.20)

E ! !m2c4 %" p2c2" (1.24)

from Chap. 1 to give

(KE % mc2)2 ! m2c4 % p2c2

p2c2 ! KE2 % 2mc2 KE

h%*
#

c

h%*
#

c
h%
#
c
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Since

KE ! h% $ h%*

we have

p2c2 ! (h%)2 $ 2(h%)(h%*) % (h%*)2 % 2mc2(h% $ h%*) (2.19)

Substituting this value of p2c2 in Eq. (2.18), we finally obtain

2mc2(h% $ h%*) ! 2(h%)(h%*)(1 $ cos ') (2.20)

This relationship is simpler when expressed in terms of wavelength #. Dividing
Eq. (2.20) by 2h2 c2,

% $ & ! (1 $ cos ')

and so, since %#c ! 1## and %*#c ! 1##*,

% $ & !

Compton effect #* $ # ! (1 $ cos ') (2.21)

Equation (2.21) was derived by Arthur H. Compton in the early 1920s, and the phe-
nomenon it describes, which he was the first to observe, is known as the Compton
effect. It constitutes very strong evidence in support of the quantum theory of radiation.

Equation (2.21) gives the change in wavelength expected for a photon that is scat-
tered through the angle ' by a particle of rest mass m. This change is independent of
the wavelength # of the incident photon. The quantity

Compton wavelength #C ! (2.22)

is called the Compton wavelength of the scattering particle. For an electron
#C ! 2.426 " 10$12 m, which is 2.426 pm (1 pm ! 1 picometer ! 10$12 m). In
terms of #C, Eq. (2.21) becomes

Compton effect #* $ # ! #C(1 $ cos ') (2.23)

The Compton wavelength gives the scale of the wavelength change of the incident
photon. From Eq. (2.23) we note that the greatest wavelength change possible corre-
sponds to ' ! 180°, when the wavelength change will be twice the Compton wave-
length #C. Because #C ! 2.426 pm for an electron, and even less for other particles
owing to their larger rest masses, the maximum wavelength change in the Compton
effect is 4.852 pm. Changes of this magnitude or less are readily observable only in
x-rays: the shift in wavelength for visible light is less than 0.01 percent of the initial
wavelength, whereas for x-rays of # ! 0.1 nm it is several percent. The Compton effect
is the chief means by which x-rays lose energy when they pass through matter.

h
#
mc

h
#
mc

1 $ cos '
##

##*

1
#
#*

1
#
#

mc
#
h

%*
#
c

%
#
c

%*
#
c

%
#
c

mc
#
h
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Arthur Holly Compton (1892–
1962), a native of Ohio, was edu-
cated at College of Wooster and
Princeton. While at Washington
University in St. Louis he found
that x-rays increase in wavelength
when scattered, which he ex-
plained in 1923 on the basis of the
quantum theory of light. This work
convinced remaining doubters of
the reality of photons.

After receiving the Nobel Prize in 1927, Compton, now at
the University of Chicago, studied cosmic rays and helped es-
tablish that they are fast charged particles (today known to be
atomic nuclei, largely protons) that circulate in space and are
not high-energy gamma rays as many had thought. He did this
by showing that cosmic-ray intensity varies with latitude, which
makes sense only if they are ions whose paths are influenced
by the earth’s magnetic field. During World War II Compton
was one of the leaders in the development of the atomic bomb.

Example 2.4

X-rays of wavelength 10.0 pm are scattered from a target. (a) Find the wavelength of the x-rays
scattered through 45°. (b) Find the maximum wavelength present in the scattered x-rays. (c) Find
the maximum kinetic energy of the recoil electrons.

Solution

(a) From Eq. (2.23), #* $ # ! #C(1 $ cos '), and so

#* ! # % #C(1 $ cos 45°)

! 10.0 pm % 0.293#C

! 10.7 pm

(b) #* $ # is a maximum when (1 $ cos ') ! 2, in which case

#* ! # % 2#C ! 10.0 pm % 4.9 pm ! 14.9 pm

(c) The maximum recoil kinetic energy is equal to the difference between the energies of the
incident and scattered photons, so

KEmax ! h(+ $ +*) ! hc % $ &
where #* is given in (b). Hence

KEmax ! % $ &
! 6.54 " 10$15 J

which is equal to 40.8 keV.

The experimental demonstration of the Compton effect is straightforward. As in
Fig. 2.23, a beam of x-rays of a single, known wavelength is directed at a target, and
the wavelengths of the scattered x-rays are determined at various angles '. The results,
shown in Fig. 2.24, exhibit the wavelength shift predicted by Eq. (2.21), but at each
angle the scattered x-rays also include many that have the initial wavelength. This is
not hard to understand. In deriving Eq. (2.21) it was assumed that the scattering par-
ticle is able to move freely, which is reasonable since many of the electrons in matter

1
#
14.9 pm

1
#
10.0 pm

(6.626 " 10$34 J ' s)(3.00 " 108 m/s)
####

10$12 m/pm

1
#
#*

1
#
#

78 Chapter Two

bei48482_ch02.qxd  1/16/02  1:53 PM  Page 78



are only loosely bound to their parent atoms. Other electrons, however, are very tightly
bound and when struck by a photon, the entire atom recoils instead of the single elec-
tron. In this event the value of m to use in Eq. (2.21) is that of the entire atom, which
is tens of thousands of times greater than that of an electron, and the resulting Comp-
ton shift is accordingly so small as to be undetectable.

2.8 PAIR PRODUCTION

Energy into matter

As we have seen, in a collision a photon can give an electron all of its energy (the pho-
toelectric effect) or only part (the Compton effect). It is also possible for a photon to
materialize into an electron and a positron, which is a positively charged electron. In
this process, called pair production, electromagnetic energy is converted into matter.
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Figure 2.23 Experimental demonstration of the Compton effect.

Figure 2.24 Experimental confirmation of Compton scattering. The greater the scattering angle, the greater the wavelength
change, in accord with Eq. (2.21).
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Photon

Positron

Electron–

+
Nucleus

Figure 2.25 In the process of pair production, a photon of sufficient energy materializes into an elec-
tron and a positron.

Bubble-chamber photograph of electron-positron pair formation. A magnetic field perpendicular to
the page caused the electron and positron to move in opposite curved paths, which are spirals be-
cause the particles lost energy as they moved through the chamber. In a bubble chamber, a liquid
(here, hydrogen) is heated above its normal boiling point under a pressure great enough to keep it
liquid. The pressure is then released, and bubbles form around any ions present in the resulting un-
stable superheated liquid. A charged particle moving through the liquid at this time leaves a track of
bubbles that can be photographed.

No conservation principles are violated when an electron-positron pair is created
near an atomic nucleus (Fig. 2.25). The sum of the charges of the electron (q ! (e)
and of the positron (q ! %e) is zero, as is the charge of the photon; the total energy,
including rest energy, of the electron and positron equals the photon energy; and lin-
ear momentum is conserved with the help of the nucleus, which carries away enough
photon momentum for the process to occur. Because of its relatively enormous mass,
the nucleus absorbs only a negligible fraction of the photon energy. (Energy and lin-
ear momentum could not both be conserved if pair production were to occur in empty
space, so it does not occur there.)
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Figure 2.26 Vector diagram of the momenta involved if a photon were to materialize into an electron-
positron pair in empty space. Because such an event cannot conserve both energy and momentum, it
does not occur. Pair production always involves an atomic nucleus that carries away part of the initial
photon momentum.

The rest energy mc2 of an electron or positron is 0.51 MeV, hence pair production
requires a photon energy of at least 1.02 MeV. Any additional photon energy becomes
kinetic energy of the electron and positron. The corresponding maximum photon wave-
length is 1.2 pm. Electromagnetic waves with such wavelengths are called gamma rays,
symbol ), and are found in nature as one of the emissions from radioactive nuclei and
in cosmic rays.

The inverse of pair production occurs when a positron is near an electron and the
two come together under the influence of their opposite electric charges. Both parti-
cles vanish simultaneously, with the lost mass becoming energy in the form of two
gamma-ray photons:

e% % e$S ) % )

The total mass of the positron and electron is equivalent to 1.02 MeV, and each pho-
ton has an energy h% of 0.51 MeV plus half the kinetic energy of the particles relative
to their center of mass. The directions of the photons are such as to conserve both en-
ergy and linear momentum, and no nucleus or other particle is needed for this pair
annihilation to take place.

Example 2.5

Show that pair production cannot occur in empty space.

Solution

From conservation of energy,

h% ! 2)mc2

where h% is the photon energy and )mc2 is the total energy of each member of the electron-
position pair. Figure 2.26 is a vector diagram of the linear momenta of the photon, electron,
and positron. The angles $ are equal in order that momentum be conserved in the transverse
direction. In the direction of motion of the photon, for momentum to be conserved it must
be true that

! 2p cos $

h% ! 2pc cos $

h%
#
c
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Since p ! )m* for the electron and positron,

h% ! 2)mc2% & cos $

Because *#c ) 1 and cos $ , 1,

h% ) 2)mc2

But conservation of energy requires that h% ! 2)mc2. Hence it is impossible for pair produc-
tion to conserve both energy and momentum unless some other object is involved in the process
to carry away part of the initial photon momentum.

Example 2.6

An electron and a positron are moving side by side in the %x direction at 0.500c when they an-
nihilate each other. Two photons are produced that move along the x axis. (a) Do both photons
move in the %x direction? (b) What is the energy of each photon?

Solution

(a) In the center-of-mass (CM) system (which is the system moving with the original particles),
the photons move off in opposite directions to conserve momentum. They must also do so in
the lab system because the speed of the CM system is less than the speed c of the photons.
(b) Let p1 be the momentum of the photon moving in the %x direction and p2 be the momen-
tum of the photon moving in the $x direction. Then conservation of momentum (in the lab
system) gives

p1 $ p2 ! 2)m* !

! ! 0.590 MeV/c

Conservation of energy gives

p1c % p2c ! 2)mc2 ! ! ! 1.180 MeV

and so p1 % p2 ! 1.180 MeV/c

Now we add the two results and solve for p1 and p2:

(p1 $ p2) % (p1 % p2) ! 2p1 ! (0.590 % 1.180) MeV/c

p1 ! 0.885 MeV/c

p2 ! (p1 % p2) $ p1 ! 0.295 MeV/c

The photon energies are accordingly

E1 ! p1c ! 0.885 MeV E2 ! p2c ! 0.295 MeV

Photon Absorption

The three chief ways in which photons of light, x-rays, and gamma rays interact with
matter are summarized in Fig. 2.27. In all cases photon energy is transferred to elec-
trons which in turn lose energy to atoms in the absorbing material.

2(0.511 MeV)
##
!1 $ (0".500)2"

2mc2

##
!1 $ *2"#c2"

2(0.511 MeV/c2)(c2)(0.500c)#c2

####
!1 $ (0".500)2"

2(mc2)(*#c2)
##
!1 $ *#"c2"

*
#
c
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Figure 2.27 X- and gamma rays interact with matter chiefly through the photoelectric effect, Comp-
ton scattering, and pair production. Pair production requires a photon energy of at least 1.02 MeV.
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Figure 2.28 The relative probabilities of the photoelectric effect, Compton scattering, and pair
production as functions of energy in carbon (a light element) and lead (a heavy element).

At low photon energies the photoelectric effect is the chief mechanism of energy
loss. The importance of the photoelectric effect decreases with increasing energy, to be
succeeded by Compton scattering. The greater the atomic number of the absorber, the
higher the energy at which the photoelectric effect remains significant. In the lighter
elements, Compton scattering becomes dominant at photon energies of a few tens of
keV, whereas in the heavier ones this does not happen until photon energies of nearly
1 MeV are reached (Fig. 2.28).
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Figure 2.29 Linear attentuation coefficients for photons in lead.

Pair production becomes increasingly likely the more the photon energy exceeds
the threshold of 1.02 MeV. The greater the atomic number of the absorber, the lower
the energy at which pair production takes over as the principal mechanism of energy
loss by gamma rays. In the heaviest elements, the crossover energy is about 4 MeV, but
it is over 10 MeV for the lighter ones. Thus gamma rays in the energy range typical of
radioactive decay interact with matter largely through Compton scattering.

The intensity I of an x- or gamma-ray beam is equal to the rate at which it trans-
ports energy per unit cross-sectional area of the beam. The fractional energy $dI#I lost
by the beam in passing through a thickness dx of a certain absorber is found to be pro-
portional to dx:

$ ! " dx (2.24)

The proportionality constant " is called the linear attenuation coefficient and its
value depends on the energy of the photons and on the nature of the absorbing material.
Integrating Eq. (2.24) gives

Radiation intensity I ! I0e$" x (2.25)

The intensity of the radiation decreases exponentially with absorber thickness x.
Figure 2.29 is a graph of the linear attenuation coefficient for photons in lead as a func-
tion of photon energy. The contribution to " of the photoelectric effect, Compton scat-
tering, and pair production are shown.

We can use Eq. (2.25) to relate the thickness x of absorber needed to reduce the
intensity of an x- or gamma-ray beam by a given amount to the attenuation coefficient
". If the ratio of the final and initial intensities is I#I0,

! e$"x ! e"x ln ! "x

Absorber thickness x ! (2.26)
ln (I0#I)
#

"

I0
#
I

I0
#
I

I
#
I0

dI
#
I
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Example 2.7

The linear attenuation coefficient for 2.0-MeV gamma rays in water is 4.9 m!1. (a) Find the rel-
ative intensity of a beam of 2.0-MeV gamma rays after it has passed through 10 cm of water.
(b) How far must such a beam travel in water before its intensity is reduced to 1 percent of its
original value?

Solution

(a) Here !x " (4.9 m!1)(0.10 m) " 0.49 and so, from Eq. (2.25)

" e!! x " e!0.49 " 0.61

The intensity of the beam is reduced to 61 percent of its original value after passing through
10 cm of water.
(b) Since I0!I " 100, Eq. (2.26) yields

x " " " 0.94 m

2.9 PHOTONS AND GRAVITY

Although they lack rest mass, photons behave as though they have
gravitational mass

In Sec. 1.10 we learned that light is affected by gravity by virtue of the curvature of
spacetime around a mass. Another way to approach the gravitational behavior of light
follows from the observation that, although a photon has no rest mass, it nevertheless
interacts with electrons as though it has the inertial mass

m " " (2.27)

(We recall that, for a photon, p " h"!c and # " c.) According to the principle of equiv-
alence, gravitational mass is always equal to inertial mass, so a photon of frequency "
ought to act gravitationally like a particle of mass h"!c2.

The gravitational behavior of light can be demonstrated in the laboratory. When we
drop a stone of mass m from a height H near the earth’s surface, the gravitational pull of
the earth accelerates it as it falls and the stone gains the energy mgH on the way to the
ground. The stone’s final kinetic energy 12 m"2 is equal to mgH, so its final speed is "2gH#.

All photons travel with the speed of light and so cannot go any faster. However, a
photon that falls through a height H can manifest the increase of mgH in its energy by
an increase in frequency from " to "# (Fig. 2.30). Because the frequency change is
extremely small in a laboratory-scale experiment, we can neglect the corresponding
change in the photon’s “mass” h"!c2. 

h"
$
c2

p
$
#

Photon “mass”

ln100
$
4.9 m!1

ln(I0!I)
$

!

I
$
I0
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H

KE = mgH

KE = 0 E = hv

E = hv + hv
c2 gH = hv′

Figure 2.30 A photon that falls in a gravitational field gains energy, just as a stone does. This gain in
energy is manifested as an increase in frequency from " to "#.

Hence,

final photon energy " initial photon energy % increase in energy

h"# " h" % mgH

and so

h"# " h" % $ % gH

h"# " h"$1 % % (2.28)

Example 2.8

The increase in energy of a fallen photon was first observed in 1960 by Pound and Rebka at
Harvard. In their work H was 22.5 m. Find the change in frequency of a photon of red light
whose original frequency is 7.3 & 1014 Hz when it falls through 22.5 m.

Solution

From Eq. (2.28) the change in frequency is

"# ! " " $ %"

" " 1.8 Hz

Pound and Rebka actually used gamma rays of much higher frequency, as described in Exercise 53.

(9.8 m/s2)(22.5 m)(7.3 & 1014 Hz)
$$$$

(3.0 & 108 m/s)2

gH
$
c2

gH
$
c2

h"
$
c2
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Figure 2.31 The frequency of a photon emitted from the surface of a star decreases as it moves away
from the star.

R

mass = M

v v′

Gravitational Red Shift

An interesting astronomical effect is suggested by the gravitational behavior of light. If
the frequency associated with a photon moving toward the earth increases, then the
frequency of a photon moving away from it should decrease.

The earth’s gravitational field is not particularly strong, but the fields of many stars
are. Suppose a photon of initial frequency % is emitted by a star of mass M and radius
R, as in Fig. 2.31. The potential energy of a mass m on the star’s surface is

PE ! $

where the minus sign is required because the force between M and m is attractive. The
potential energy of a photon of “mass” h%#c2 on the star’s surface is therefore

PE ! $

and its total energy E, the sum of PE and its quantum energy h%, is

E ! h% $ ! h%%1 $ &
At a larger distance from the star, for instance at the earth, the photon is beyond

the star’s gravitational field but its total energy remains the same. The photon’s energy
is now entirely electromagnetic, and

E ! h%*

where %* is the frequency of the arriving photon. (The potential energy of the photon
in the earth’s gravitational field is negligible compared with that in the star’s field.)
Hence

h%* ! h%%1 $ &
!1 $

GM
#
c2R

%*
#
%

GM
#
c2R

GM
#
c2R

GMh%
#

c2R

GMh%
#

c2R

GMm
#

R
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Quasars and Galaxies

I n even the most powerful telescope, a quasar appears as a sharp point of light, just as a star
does. Unlike stars, quasars are powerful sources of radio waves; hence their name, a contrac-

tion of quast-stellar radio sources. Hundreds of quasars have been discovered, and there seem to
be many more. Though a typical quasar is smaller than the solar system, its energy output may
be thousands of times the output of our entire Milky Way galaxy.

Most astronomers believe that at the heart of every quasar is a black hole whose mass is at
least that of 100 million suns. As nearby stars are pulled toward the black hole, their matter is
squeezed and heated to produce the observed radiation. While being swallowed, a star may lib-
erate 10 times as much energy as it would have given off had it lived out a normal life. A diet
of a few stars a year seems enough to keep a quasar going at the observed rates. It is possible
that quasars are the cores of newly formed gafaxies. Did all galaxies once undergo a quasar phase?
Nobody can say as yet, but there is evidence that all galaxies, including the Milky Way, contain
massive black holes at their centers.

and the relative frequency change is

! ! 1 $ ! (2.29)

The photon has a lower frequency at the earth, corresponding to its loss in energy as
it leaves the field of the star.

A photon in the visible region of the spectrum is thus shifted toward the red end,
and this phenomenon is accordingly known as the gravitational red shift. It is different
from the doppler red shift observed in the spectra of distant galaxies due to their
apparent recession from the earth, a recession that seems to be due to a general
expansion of the universe.

As we shall learn in Chap. 4, when suitably excited the atoms of every element emit
photons of certain specific frequencies only. The validity of Eq. (2.29) can therefore be
checked by comparing the frequencies found in stellar spectra with those in spectra
obtained in the laboratory. For most stars, including the sun, the ratio M/R is too small
for a gravitational red shift to be apparent. However, for a class of stars known as white
dwarfs, it is just on the limit of measurement—and has been observed. A white dwarf
is an old star whose interior consists of atoms whose electron structures have collapsed
and so it is very small: a typical white dwarf is about the size of the earth but has the
mass of the sun.

Black Holes

An interesting question is, what happens if a star is so dense that GM#c2R - 1? If this
is the case, then from Eq. (2.29) we see that no photon can ever leave the star, since
to do so requires more energy than its initial energy h%. The red shift would, in effect,
have then stretched the photon wavelength to infinity. A star of this kind cannot radi-
ate and so would be invisible—a black hole in space.

In a situation in which gravitational energy is comparable with total energy, as for
a photon in a black hole, general relativity must be applied in detail. The correct cri-
terion for a star to be a black hole turns out to be GM#c2R - 1

2. The Schwarzschild
radius RS of a body of mass M is defined as

GM
#
c2R

%*
#
%

% $ %*
#

%

.%
#
%

Gravitational 
red shift
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2.2 Blackbody Radiation

1. If Planck’s constant were smaller than it is, would quantum
phenomena be more or less conspicuous than they are now?

2. Express the Planck radiation formula in terms of wavelength.

2.3 Photoelectric Effect

3. Is it correct to say that the maximum photoelectron energy
KEmax is proportional to the frequency % of the incident light?
If not, what would a correct statement of the relationship
between KEmax and % be?

4. Compare the properties of particles with those of waves. Why
do you think the wave aspect of light was discovered earlier
than its particle aspect?

5. Find the energy of a 700-nm photon.

6. Find the wavelength and frequency of a 100-MeV photon.

7. A 1.00-kW radio transmitter operates at a frequency of
880 kHz. How many photons per second does it emit?

8. Under favorable circumstances the human eye can detect 1.0
" 10$18 J of electromagnetic energy. How many 600-nm
photons does this represent?

E X E R C I S E S

“Why,” said the Dodo, “the best way to explain it is to do it.” —Lewis Carroll, Alice’s Adventures in Wonderland

Exercises 89

RS ! (2.30)

The body is a black hole if all its mass is inside a sphere with this radius. The bound-
ary of a black hole is called its event horizon. The escape speed from a black hole is
equal to the speed of the light c at the Schwarzschild radius, hence nothing at all can
ever leave a black hole. For a star with the sun’s mass, RS is 3 km, a quarter of a mil-
lion times smaller than the sun’s present radius. Anything passing near a black hole
will be sucked into it, never to return to the outside world.

Since it is invisible, how can a black hole be detected? A black hole that is a mem-
ber of a double-star system (double stars are quite common) will reveal its presence
by its gravitational pull on the other star; the two stars circle each other. In addition,
the intense gravitational field of the black hole will attract matter from the other star,
which will be compressed and heated to such high temperatures that x-rays will be
emitted profusely. One of a number of invisible objects that astronomers believe on
this basis to be black holes is known as Cygnus X-1. Its mass is perhaps 8 times that
of the sun, and its radius may be only about 10 km. The region around a black hole
that emits x-rays should extend outward for several hundred kilometers.

Only very heavy stars end up as black holes. Lighter stars evolve into white dwarfs
and neutron stars, which as their name suggests consist largely of neutrons (see Sec.
9.11). But as time goes on, the strong gravitational fields of both white dwarfs and
neutron stars attract more and more cosmic dust and gas. When they have gathered
up enough mass, they too will become black holes. If the universe lasts long enough,
then everything in it may be in the form of black holes.

Black holes are also believed to be at the cores of galaxies. Again, the clues come
from the motions of nearby bodies and from the amount and type of radiation emit-
ted. Stars close to a galactic center are observed to move so rapidly that only the grav-
itational pull of an immense mass could keep them in their orbits instead of flying off.
How immense? As much as a billion times the sun’s mass. And, as in the case of black
holes that were once stars, radiation pours out of galactic centers so copiously that only
black holes could be responsible.

2GM
#

c2
Schwarzschild
radius
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90 Chapter Two

9. Light from the sun arrives at the earth, an average of 1.5
" 1011 m away, at the rate of 1.4 " 103 W/m2 of area perpendi-
cular to the direction of the light. Assume that sunlight is mono-
chromatic with a frequency of 5.0 " 1014 Hz. (a) How many
photons fall per second on each square meter of the earth’s sur-
face directly facing the sun? (b) What is the power output of the
sun, and how many photons per second does it emit? (c) How
many photons per cubic meter are there near the earth?

10. A detached retina is being “welded” back in place using 20-ms
pulses from a 0.50-W laser operating at a wavelength of
632 nm. How many photons are in each pulse?

11. The maximum wavelength for photoelectric emission in tungsten
is 230 nm. What wavelength of light must be used in order for
electrons with a maximum energy of 1.5 eV to be ejected?

12. The minimum frequency for photoelectric emission in copper is
1.1 " 1015 Hz. Find the maximum energy of the photoelec-
trons (in electronvolts) when light of frequency 1.5 " 1015 Hz
is directed on a copper surface.

13. What is the maximum wavelength of light that will cause
photoelectrons to be emitted from sodium? What will the
maximum kinetic energy of the photoelectrons be if 200-nm
light falls on a sodium surface?

14. A silver ball is suspended by a string in a vacuum chamber and
ultraviolet light of wavelength 200 nm is directed at it. What
electrical potential will the ball acquire as a result?

15. 1.5 mW of 400-nm light is directed at a photoelectric cell. If
0.10 percent of the incident photons produce photoelectrons,
find the current in the cell.

16. Light of wavelength 400 nm is shone on a metal surface in an
apparatus like that of Fig. 2.9. The work function of the metal
is 2.50 eV. (a) Find the extinction voltage, that is, the retarding
voltage at which the photoelectron current disappears. (b) Find
the speed of the fastest photoelectrons.

17. A metal surface illuminated by 8.5 " 1014 Hz light emits
electrons whose maximum energy is 0.52 eV. The same surface
illuminated by 12.0 " 1014 Hz hight emits electrons whose
maximum energy is 1.97 eV. From these data find Planck’s
constant and the work function of the surface.

18. The work function of a tungsten surface is 5.4 eV. When the
surface is illuminated by light of wavelength 175 nm, the maxi-
mum photoelectron energy is 1.7 eV. Find Planck’s constant
from these data.

19. Show that it is impossible for a photon to give up all its energy
and momentum to a free electron. This is the reason why the
photoelectric effect can take place only when photons strike
bound electrons.

2.5 X-Rays

20. What voltage must be applied to an x-ray tube for it to emit
x-rays with a minimum wavelength of 30 pm?

21. Electrons are accelerated in television tubes through potential
differences of about 10 kV. Find the highest frequency of the
electromagnetic waves emitted when these electrons strike the
screen of the tube. What kind of waves are these?

2.6 X-Ray Diffraction

22. The smallest angle of Bragg scattering in potassium chloride
(KCl) is 28.4° for 0.30-nm x-rays. Find the distance between
atomic planes in potassium chloride.

23. The distance between adjacent atomic planes in calcite (CaCO3)
is 0.300 nm. Find the smallest angle of Bragg scattering for
0.030-nm x-rays.

24. Find the atomic spacing in a crystal of rock salt (NaCl), whose
structure is shown in Fig. 2.19. The density of rock salt is 2.16
" 103 kg/m3 and the average masses of the Na and Cl atoms
are respectively 3.82 " 10$26 kg and 5.89 " 10$26 kg.

2.7 Compton Effect

25. What is the frequency of an x-ray photon whose momentum is
1.1 " 10$23 kg ' m/s?

26. How much energy must a photon have if it is to have the mo-
mentum of a 10-MeV proton?

27. In Sec. 2.7 the x-rays scattered by a crystal were assumed to un-
dergo no change in wavelength. Show that this assumption is
reasonable by calculating the Compton wavelength of a Na atom
and comparing it with the typical x-ray wavelength of 0.1 nm.

28. A monochromatic x-ray beam whose wavelength is 55.8 pm is
scattered through 46°. Find the wavelength of the scattered
beam.

29. A beam of x-rays is scattered by a target. At 45/ from the beam
direction the scattered x-rays have a wavelength of 2.2 pm.
What is the wavelength of the x-rays in the direct beam?

30. An x-ray photon whose initial frequency was 1.5 " 1019 Hz
emerges from a collision with an electron with a frequency of
1.2 " 1019 Hz. How much kinetic energy was imparted to the
electron?

31. An x-ray photon of initial frequency 3.0 " 1019 Hz collides with
an electron and is scattered through 90°. Find its new frequency.

32. Find the energy of an x-ray photon which can impart a maxi-
mum energy of 50 keV to an electron.

33. At what scattering angle will incident 100-keV x-rays leave a
target with an energy of 90 keV?

34. (a) Find the change in wavelength of 80-pm x-rays that are
scattered 120° by a target. (b) Find the angle between the direc-
tions of the recoil electron and the incident photon. (c) Find
the energy of the recoil electron.

35. A photon of frequency % is scattered by an electron initially at
rest. Verify that the maximum kinetic energy of the recoil elec-
tron is KEmax ! (2h2%2#mc2)#(1 % 2h%#mc2).

36. In a Compton-effect experiment in which the incident x-rays
have a wavelength of 10.0 pm, the scattered x-rays at a certain
angle have a wavelength of 10.5 pm. Find the momentum
(magnitude and direction) of the corresponding recoil electrons.

37. A photon whose energy equals the rest energy of the electron
undergoes a Compton collision with an electron. If the electron
moves off at an angle of 40° with the original photon direction,
what is the energy of the scattered photon?
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38. A photon of energy E is scattered by a particle of rest energy
E0. Find the maximum kinetic energy of the recoiling particle
in terms of E and E0.

2.8 Pair Production

39. A positron collides head on with an electron and both are anni-
hilated. Each particle had a kinetic energy of 1.00 MeV. Find
the wavelength of the resulting photons.

40. A positron with a kinetic energy of 2.000 MeV collides with an
electron at rest and the two particles are annihilated. Two pho-
tons are produced; one moves in the same direction as the in-
coming positron and the other moves in the opposite direction.
Find the energies of the photons.

41. Show that, regardless of its initial energy, a photon cannot un-
dergo Compton scattering through an angle of more than 60°
and still be able to produce an electron-positron pair. (Hint:
Start by expressing the Compton wavelength of the electron in
terms of the maximum photon wavelength needed for pair
production.)

42. (a) Verify that the minimum energy a photon must have to cre-
ate an electron-positron pair in the presence of a stationary nu-
cleus of mass M is 2mc2(1 % m#M), where m is the electron
rest mass. (b) Find the minimum energy needed for pair pro-
duction in the presence of a proton.

43. (a) Show that the thickness x1#2 of an absorber required to
reduce the intensity of a beam of radiation by a factor of 2 is
given by x1#2 ! 0.693#". (b) Find the absorber thickness
needed to produce an intensity reduction of a factor of 10.

44. (a) Show that the intensity of the radiation absorbed in a thick-
ness x of an absorber is given by I0"x when "x )) 1. (b) If
"x ! 0.100, what is the percentage error in using this formula
instead of Eq. (2.25)?

45. The linear absorption coefficient for 1-MeV gamma rays in lead
is 78 m$1. Find the thickness of lead required to reduce by
half the intensity of a beam of such gamma rays.

46. The linear absorption coefficient for 50-keV x-rays in sea-level
air is 5.0 " 10$3 m$1. By how much is the intensity of a beam
of such x-rays reduced when it passes through 0.50 m of air?
Through 5.0 m of air?

47. The linear absorption coefficients for 2.0-MeV gamma rays are
4.9 m$1 in water and 52 m$1 in lead. What thickness of water
would give the same shielding for such gamma rays as 10 mm
of lead?

48. The linear absorption coefficient of copper for 80-keV x-rays is
4.7 " 104 m$1. Find the relative intensity of a beam of 80-keV
x-rays after it has passed through a 0.10-mm copper foil.

49. What thickness of copper is needed to reduce the intensity of
the beam in Exercise 48 by half?

50. The linear absorption coefficients for 0.05-nm x-rays in lead
and in iron are, respectively, 5.8 " 104 m$1 and 1.1 "
104 m$1. How thick should an iron shield be in order to pro-
vide the same protection from these x-rays as 10 mm of lead?

2.9 Photons and Gravity

51. The sun’s mass is 2.0 " 1030 kg and its radius is 7.0 " 108 m.
Find the approximate gravitational red shift in light of wave-
length 500 nm emitted by the sun.

52. Find the approximate gravitational red shift in 500-nm light
emitted by a white dwarf star whose mass is that of the sun but
whose radius is that of the earth, 6.4 " 106 m.

53. As discussed in Chap. 12, certain atomic nuclei emit photons
in undergoing transitions from “excited” energy states to their
“ground” or normal states. These photons constitute gamma
rays. When a nucleus emits a photon, it recoils in the opposite
direction. (a) The 57

27Co nucleus decays by K capture to 57
26Fe,

which then emits a photon in losing 14.4 keV to reach its
ground state. The mass of a 57

26Fe atom is 9.5 " 10$26 kg. By
how much is the photon energy reduced from the full
14.4 keV available as a result of having to share energy and
momentum with the recoiling atom? (b) In certain crystals the
atoms are so tightly bound that the entire crystal recoils when
a gamma-ray photon is emitted, instead of the individual atom.
This phenomenon is known as the Mössbauer effect. By how
much is the photon energy reduced in this situation if the ex-
cited 57

26Fe nucleus is part of a 1.0-g crystal? (c) The essentially
recoil-free emission of gamma rays in situations like that of b
means that it is possible to construct a source of virtually
monoenergetic and hence monochromatic photons. Such a
source was used in the experiment described in Sec. 2.9. What
is the original frequency and the change in frequency of a
14.4-keV gamma-ray photon after it has fallen 20 m near the
earth’s surface?

54. Find the Schwarzschild radius of the earth, whose mass is
5.98 " 1024 kg.

55. The gravitational potential energy U relative to infinity of a
body of mass m at a distance R from the center of a body of
mass M is U ! $GmM#R. (a) If R is the radius of the body of
mass M, find the escape speed *e of the body, which is the
minimum speed needed to leave it permanently. (b) Obtain
a formula for the Schwarzschild radius of the body by setting
*e ! c, the speed of light, and solving for R. (Of course, a
relativistic calculation is correct here, but it is interesting to
see what a classical calculation produces.)
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CHAPTER 3

Wave Properties of Particles

In a scanning electron microscope, an electron beam that scans a specimen causes secondary
electrons to be ejected in numbers that vary with the angle of the surface. A suitable data display
suggests the three-dimensional form of the specimen. The high resolution of this image of a red
spider mite on a leaf is a consequence of the wave nature of moving electrons.

3.1 DE BROGLIE WAVES
A moving body behaves in certain ways as
though it has a wave nature

3.2 WAVES OF WHAT?
Waves of probability

3.3 DESCRIBING A WAVE
A general formula for waves

3.4 PHASE AND GROUP VELOCITIES
A group of waves need not have the same
velocity as the waves themselves

3.5 PARTICLE DIFFRACTION
An experiment that confirms the existence of 
de Broglie waves

3.6 PARTICLE IN A BOX
Why the energy of a trapped particle is
quantized

3.7 UNCERTAINTY PRINCIPLE I
We cannot know the future because we cannot
know the present

3.8 UNCERTAINTY PRINCIPLE II
A particle approach gives the same result

3.9 APPLYING THE UNCERTAINTY PRINCIPLE
A useful tool, not just a negative statement
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L ooking back, it may seem odd that two decades passed between the 1905
discovery of the particle properties of waves and the 1924 speculation that
particles might show wave behavior. It is one thing, however, to suggest a rev-

olutionary concept to explain otherwise mysterious data and quite another to suggest
an equally revolutionary concept without a strong experimental mandate. The latter is
just what Louis de Broglie did in 1924 when he proposed that moving objects have
wave as well as particle characteristics. So different was the scientific climate at the
time from that around the turn of the century that de Broglie’s ideas soon received
respectful attention, whereas the earlier quantum theory of light of Planck and Einstein
had been largely ignored despite its striking empirical support. The existence of de
Broglie waves was experimentally demonstrated by 1927, and the duality principle they
represent provided the starting point for Schrödinger’s successful development of
quantum mechanics in the previous year.

Wave Properties of Particles 93

Louis de Broglie (1892–1987),
although coming from a French
family long identified with diplo-
macy and the military and initially
a student of history, eventually
followed his older brother
Maurice in a career in physics. His
doctoral thesis in 1924 contained
the proposal that moving bodies
have wave properties that com-
plement their particle properties:
these “seemingly incompatible
conceptions can each represent an

aspect of the truth. . . . They may serve in turn to represent
the facts without ever entering into direct conflict.” Part of
de Broglie’s inspiration came from Bohr’s theory of the hydro-
gen atom, in which the electron is supposed to follow only cer-
tain orbits around the nucleus. “This fact suggested to me the
idea that electrons . . . could not be considered simply as par-
ticles but that periodicity must be assigned to them also.” Two
years later Erwin Schrödinger used the concept of de Broglie
waves to develop a general theory that he and others applied
to explain a wide variety of atomic phenomena. The existence
of de Broglie waves was confirmed in diffraction experiments
with electron beams in 1927, and in 1929 de Broglie received
the Nobel Prize.

3.1   DE BROGLIE WAVES

A moving body behaves in certain ways as though it has a wave nature

A photon of light of frequency ! has the momentum

p ! !

since "! ! c. The wavelength of a photon is therefore specified by its momentum
according to the relation

Photon wavelength " ! (3.1)

De Broglie suggested that Eq. (3.1) is a completely general one that applies to material
particles as well as to photons. The momentum of a particle of mass m and velocity #
is p ! $m#, and its de Broglie wavelength is accordingly 

" ! (3.2)
h

"
$m#

De Broglie 
wavelength

h
"
p

h
"
"

h!
"
c
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The greater the particle’s momentum, the shorter its wavelength. In Eq. (3.2) $ is the
relativistic factor

$ !

As in the case of em waves, the wave and particle aspects of moving bodies can never
be observed at the same time. We therefore cannot ask which is the “correct” descrip-
tion. All that can be said is that in certain situations a moving body resembles a wave
and in others it resembles a particle. Which set of properties is most conspicuous depends
on how its de Broglie wavelength compares with its dimensions and the dimensions of
whatever it interacts with.

Example 3.1

Find the de Broglie wavelengths of (a) a 46-g golf ball with a velocity of 30 m/s, and (b) an
electron with a velocity of 107 m/s.

Solution

(a) Since # ## c, we can let $ ! 1. Hence

" ! ! ! 4.8 $ 10%34 m

The wavelength of the golf ball is so small compared with its dimensions that we would not
expect to find any wave aspects in its behavior.

(b) Again # ## c, so with m ! 9.1 $ 10%31 kg, we have

" ! ! ! 7.3 $ 10%11 m

The dimensions of atoms are comparable with this figure—the radius of the hydrogen atom, for
instance, is 5.3 $ 10%11 m. It is therefore not surprising that the wave character of moving elec-
trons is the key to understanding atomic structure and behavior.

Example 3.2

Find the kinetic energy of a proton whose de Broglie wavelength is 1.000 fm ! 1.000 $
10%15 m, which is roughly the proton diameter.

Solution

A relativistic calculation is needed unless pc for the proton is much smaller than the proton rest
energy of E0 ! 0.938 GeV. To find out, we use Eq. (3.2) to determine pc:

pc ! ($m#)c ! ! ! 1.240 $ 109 eV

! 1.2410 GeV

Since pc & E0 a relativistic calculation is required. From Eq. (1.24) the total energy of the proton is

E ! !E2
0 ' p"2c2" ! !(0.938" GeV)2" ' (1."2340 G"eV)2" ! 1.555 GeV

(4.136 $ 10%15 eV ( s)(2.998 $ 108 m/s)
"""""

1.000 $ 10%15 m

hc
"
"

6.63 $ 10%34 J ( s
"""
(9.1 $ 10%31 kg)(107 m/s)

h
"
m#

6.63 $ 10%34 J ( s
"""
(0.046 kg)(30 m/s)

h
"
m#

1
""
!1 % #2"#c2"
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The corresponding kinetic energy is

KE ! E % E0 ! (1.555 % 0.938) GeV ! 0.617 GeV ! 617 MeV

De Broglie had no direct experimental evidence to support his conjecture. However,
he was able to show that it accounted in a natural way for the energy quantization—
the restriction to certain specific energy values—that Bohr had had to postulate in his
1913 model of the hydrogen atom. (This model is discussed in Chap. 4.) Within a few
years Eq. (3.2) was verified by experiments involving the diffraction of electrons by
crystals. Before we consider one of these experiments, let us look into the question of
what kind of wave phenomenon is involved in the matter waves of de Broglie.

3.2   WAVES OF WHAT?

Waves of probability

In water waves, the quantity that varies periodically is the height of the water surface.
In sound waves, it is pressure. In light waves, electric and magnetic fields vary. What
is it that varies in the case of matter waves?

The quantity whose variations make up matter waves is called the wave function,
symbol ) (the Greek letter psi). The value of the wave function associated with a mov-
ing body at the particular point x, y, z in space at the time t is related to the likelihood
of finding the body there at the time.

Max Born (1882–1970) grew up in
Breslau, then a German city but to-
day part of Poland, and received a
doctorate in applied mathematics at
Göttingen in 1907. Soon afterward
he decided to concentrate on
physics, and was back in Göttingen
in 1909 as a lecturer. There he
worked on various aspects of the
theory of crystal lattices, his “cen-
tral interest” to which he often re-
turned in later years. In 1915, at

Planck’s recommendation, Born became professor of physics in
Berlin where, among his other activities, he played piano to
Einstein’s violin. After army service in World War I and a period
at Frankfurt University, Born was again in Göttingen, now as pro-
fessor of physics. There a remarkable center of theoretical physics
developed under his leadership: Heisenberg and Pauli were
among his assistants and Fermi, Dirac, Wigner, and Goeppert
were among those who worked with him, just to name future
Nobel Prize winners. In those days, Born wrote, “There was com-
plete freedom of teaching and learning in German universities,
with no class examinations, and no control of students. The Uni-
versity just offered lectures and the student had to decide for
himself which he wished to attend.”

Born was a pioneer in going from “the bright realm of classi-
cal physics into the still dark and unexplored underworld of the
new quantum mechanics;” he was the first to use the latter term.
From Born came the basic concept that the wave function ) of
a particle is related to the probability of finding it. He began with
an idea of Einstein, who “sought to make the duality of particles
(light quanta or photons) and waves comprehensible by inter-
preting the square of the optical wave amplitude as probability
density for the occurrence of photons. This idea could at once
be extended to the )-function: $)$2 must represent the proba-
bility density for electrons (or other particles). To assert this was
easy; but how was it to be proved? For this purpose atomic scat-
tering processes suggested themselves.” Born’s development of
the quantum theory of atomic scattering (collisions of atoms with
various particles) not only verified his “new way of thinking about
the phenomena of nature” but also founded an important branch
of theoretical physics.

Born left Germany in 1933 at the start of the Nazi period,
like so many other scientists. He became a British subject and
was associated with Cambridge and then Edinburg universities
until he retired in 1953. Finding the Scottish climate harsh and
wishing to contribute to the democratization of postwar Germany,
Born spent the rest of his life in Bad Pyrmont, a town near
Göttingen. His textbooks on modern physics and on optics were
standard works on these subjects for many years.
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The wave function ) itself, however, has no direct physical significance. There is a
simple reason why ) cannot by interpreted in terms of an experiment. The probabil-
ity that something be in a certain place at a given time must lie between 0 (the object
is definitely not there) and 1 (the object is definitely there). An intermediate proba-
bility, say 0.2, means that there is a 20% chance of finding the object. But the ampli-
tude of a wave can be negative as well as positive, and a negative probability, say %0.2,
is meaningless. Hence ) by itself cannot be an observable quantity.

This objection does not apply to $)$2, the square of the absolute value of the wave
function, which is known as probability density:

The probability of experimentally finding the body described by the wave function
) at the point x, y, z, at the time t is proportional to the value of $)$2 there at t.

A large value of $)$2 means the strong possibility of the body’s presence, while a small
value of $)$2 means the slight possibility of its presence. As long as $)$2 is not actually
0 somewhere, however, there is a definite chance, however small, of detecting it there.
This interpretation was first made by Max Born in 1926.

There is a big difference between the probability of an event and the event itself. Al-
though we can speak of the wave function ) that describes a particle as being spread
out in space, this does not mean that the particle itself is thus spread out. When an ex-
periment is performed to detect electrons, for instance, a whole electron is either found
at a certain time and place or it is not; there is no such thing as a 20 percent of an elec-
tron. However, it is entirely possible for there to be a 20 percent chance that the elec-
tron be found at that time and place, and it is this likelihood that is specified by $)$2.

W. L. Bragg, the pioneer in x-ray diffraction, gave this loose but vivid interpreta-
tion: “The dividing line between the wave and particle nature of matter and radiation
is the moment ‘now.’ As this moment steadily advances through time it coagulates a
wavy future into a particle past. . . . Everything in the future is a wave, everything in
the past is a particle.” If “the moment ‘now’ ” is understood to be the time a measure-
ment is performed, this is a reasonable way to think about the situation. (The philoso-
pher Søren Kierkegaard may have been anticipating this aspect of modern physics when
he wrote, “Life can only be understood backwards, but it must be lived forwards.”)

Alternatively, if an experiment involves a great many identical objects all described
by the same wave function ), the actual density (number per unit volume) of objects
at x, y, z at the time t is proportional to the corresponding value of $)$2. It is instruc-
tive to compare the connection between ) and the density of particles it describes with
the connection discussed in Sec. 2.4 between the electric field E of an electromagnetic
wave and the density N of photons associated with the wave.

While the wavelength of the de Broglie waves associated with a moving body is
given by the simple formula " ! h#$m#, to find their amplitude ) as a function of
position and time is often difficult. How to calculate ) is discussed in Chap. 5 and
the ideas developed there are applied to the structure of the atom in Chap. 6. Until
then we can assume that we know as much about ) as each situation requires.

3.3   DESCRIBING A WAVE

A general formula for waves

How fast do de Broglie waves travel? Since we associate a de Broglie wave with a moving
body, we expect that this wave has the same velocity as that of the body. Let us see if
this is true.

96 Chapter Three
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If we call the de Broglie wave velocity !p, we can apply the usual formula

!p ! "#

to find !p. The wavelength # is simply the de Broglie wavelength # ! h!$m!. To find
the frequency, we equate the quantum expression E ! h" with the relativistic formula
for total energy E ! $mc2 to obtain

h" ! $mc2

" !

The de Broglie wave velocity is therefore

!p ! "# ! " #" # ! (3.3)

Because the particle velocity ! must be less than the velocity of light c, the de Broglie
waves always travel faster than light! In order to understand this unexpected result, we
must look into the distinction between phase velocity and group velocity. (Phase ve-
locity is what we have been calling wave velocity.)

Let us begin by reviewing how waves are described mathematically. For simplicity
we consider a string stretched along the x axis whose vibrations are in the y direction,
as in Fig. 3.1, and are simple harmonic in character. If we choose t ! 0 when the
displacement y of the string at x ! 0 is a maximum, its displacement at any future
time t at the same place is given by the formula

y ! A cos 2%"t (3.4)

c2

"
!

h
"
$m!

$mc2

"
h

De Broglie phase
velocity

$mc2

"
h
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Figure 3.1 (a) The appearance of a wave in a stretched string at a certain time. (b) How the
displacement of a point on the string varies with time.
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y = A cos 2π!t
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where A is the amplitude of the vibrations (that is, their maximum displacement on
either side of the x axis) and ! their frequency.

Equation (3.4) tells us what the displacement of a single point on the string is as a
function of time t. A complete description of wave motion in a stretched string, how-
ever, should tell us what y is at any point on the string at any time. What we want is
a formula giving y as a function of both x and t.

To obtain such a formula, let us imagine that we shake the string at x ! 0 when 
t ! 0, so that a wave starts to travel down the string in the 'x direction (Fig. 3.2).
This wave has some speed #p that depends on the properties of the string. The wave
travels the distance x ! #pt in the time t, so the time interval between the formation
of the wave at x ! 0 and its arrival at the point x is x##p. Hence the displacement y
of the string at x at any time t is exactly the same as the value of y at x ! 0 at the
earlier time t % x##p. By simply replacing t in Eq. (3.4) with t % x##p, then, we have
the desired formula giving y in terms of both x and t:

y ! A cos 2%!%t % & (3.5)

As a check, we note that Eq. (3.5) reduces to Eq. (3.4) at x ! 0.
Equation (3.5) may be rewritten

y ! A cos 2%%!t % &
Since the wave speed #p is given by #p ! !" we have

y ! A cos 2%%!t % & (3.6)

Equation (3.6) is often more convenient to use than Eq. (3.5).
Perhaps the most widely used description of a wave, however, is still another form

of Eq. (3.5). The quantities angular frequency & and wave number k are defined by
the formulas

x
"
"

Wave formula

!x
"
#p

x
"
#p

Wave formula
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Figure 3.2 Wave propagation.
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& ! 2%! (3.7)

k ! ! (3.8)

The unit of & is the radian per second and that of k is the radian per meter. An-
gular frequency gets its name from uniform circular motion, where a particle that moves
around a circle ! times per second sweeps out 2%! rad/s. The wave number is equal
to the number of radians corresponding to a wave train 1 m long, since there are 2% rad
in one complete wave.

In terms of & and k, Eq. (3.5) becomes

y ! A cos (&t % kx) (3.9)

In three dimensions k becomes a vector k normal to the wave fronts and x is re-
placed by the radius vector r. The scalar product k ! r is then used instead of kx in
Eq. (3.9).

3.4   PHASE AND GROUP VELOCITIES

A group of waves need not have the same velocity as 
the waves themselves

The amplitude of the de Broglie waves that correspond to a moving body reflects the
probability that it will be found at a particular place at a particular time. It is clear that
de Broglie waves cannot be represented simply by a formula resembling Eq. (3.9),
which describes an indefinite series of waves all with the same amplitude A. Instead,
we expect the wave representation of a moving body to correspond to a wave packet,
or wave group, like that shown in Fig. 3.3, whose waves have amplitudes upon which
the likelihood of detecting the body depends.

A familiar example of how wave groups come into being is the case of beats.
When two sound waves of the same amplitude but of slightly different frequencies
are produced simultaneously, the sound we hear has a frequency equal to the aver-
age of the two original frequencies and its amplitude rises and falls periodically.
The amplitude fluctuations occur as many times per second as the difference be-
tween the two original frequencies. If the original sounds have frequencies of,
say, 440 and 442 Hz, we will hear a fluctuating sound of frequency 441 Hz with
two loudness peaks, called beats, per second. The production of beats is illustrated
in Fig. 3.4.

A way to mathematically describe a wave group, then, is in terms of a superposi-
tion of individual waves of different wavelengths whose interference with one another
results in the variation in amplitude that defines the group shape. If the velocities of
the waves are the same, the velocity with which the wave group travels is the common
phase velocity. However, if the phase velocity varies with wavelength, the different
individual waves do not proceed together. This situation is called dispersion. As a
result the wave group has a velocity different from the phase velocities of the waves
that make it up. This is the case with de Broglie waves.

Wave formula

&
"
#p

2%
"
"

Wave number

Angular frequency
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Figure 3.3 A wave group.

Wave group
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It is not hard to find the velocity #g with which a wave group travels. Let us sup-
pose that the wave group arises from the combination of two waves that have the same
amplitude A but differ by an amount *& in angular frequency and an amount *k in
wave number. We may represent the original waves by the formulas

y1 ! A cos (&t % kx)

y2 ! A cos [(& ' *&) t % (k ' *k)x]

The resultant displacement y at any time t and any position x is the sum of y1 and y2.
With the help of the identity

cos ' ' cos ( ! 2 cos "
1
2

"(' ' () cos "
1
2

"(' % ()

and the relation

cos(%)) ! cos )

we find that

y ! y1 ' y2

! 2A cos "
1
2

"[(2& ' *&) t % (2k ' *k)x] cos "
1
2

"(*& t % *k x)

Since *& and *k are small compared with & and k respectively,

2& ' *& ' 2&

2k ' *k ' 2k

and so

Beats y ! 2A cos (&t % kx) cos % t % x& (3.10)
*k
"
2

*&
"

2
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Figure 3.4 Beats are produced by the superposition of two waves with different frequencies.
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Equation (3.10) represents a wave of angular frequency & and wave number k
that has superimposed upon it a modulation of angular frequency "

1
2

"#& and of wave
number "

1
2

"#k.
The effect of the modulation is to produce successive wave groups, as in Fig. 3.4.

The phase velocity !p is

Phase velocity !p ! (3.11)

and the velocity !g of the wave groups is

Group velocity !g ! (3.12)

When & and k have continuous spreads instead of the two values in the preceding
discussion, the group velocity is instead given by

Group velocity !g ! (3.13)

Depending on how phase velocity varies with wave number in a particular situa-
tion, the group velocity may be less or greater than the phase velocities of its member
waves. If the phase velocity is the same for all wavelengths, as is true for light waves
in empty space, the group and phase velocities are the same.

The angular frequency and wave number of the de Broglie waves associated with a
body of mass m moving with the velocity ! are

& ! 2%" !

! (3.14)

k ! !

! (3.15)

Both & and k are functions of the body’s velocity !.
The group velocity !g of the de Broglie waves associated with the body is

!g ! !

Now !

!
2%m

""
h(1 $ !2!c2)3!2

dk
"
d!

2%m!
""
h(1 $ !2!c2)3!2

d&
"
d!

d&!d!
"
dk!d!

d&
"
dk

2%m!
""
h$1 $ !2%!c2%

Wave number of
de Broglie waves

2%$m!
"

h
2%
"
#

2%mc2

""
h$1 $ !2%!c2%

Angular frequency of
de Broglie waves

2%$mc2

"
h

d&
"
dk

#&
"
#k

&
"
k
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Electron Microscopes

T he wave nature of moving electrons is the basis of the electron microscope, the first of
which was built in 1932. The resolving power of any optical instrument, which is limited

by diffraction, is proportional to the wavelength of whatever is used to illuminate the specimen.
In the case of a good microscope that uses visible light, the maximum useful magnification is
about 500$; higher magnifications give larger images but do not reveal any more detail. Fast
electrons, however, have wavelengths very much shorter than those of visible light and are eas-
ily controlled by electric and magnetic fields because of their charge. X-rays also have short wave-
lengths, but it is not (yet?) possible to focus them adequately.

In an electron microscope, current-carrying coils produce magnetic fields that act as lenses
to focus an electron beam on a specimen and then produce an enlarged image on a fluorescent
screen or photographic plate (Fig. 3.5). To prevent the beam from being scattered and thereby
blurring the image, a thin specimen is used and the entire system is evacuated.

The technology of magnetic “lenses” does not permit the full theoretical resolution of electron
waves to be realized in practice. For instance, 100-keV electrons have wavelengths of 0.0037 nm,
but the actual resolution they can provide in an electron microscope may be only about 0.1 nm.
However, this is still a great improvement on the (200-nm resolution of an optical microscope,
and magnifications of over 1,000,000$ have been achieved with electron microscopes.

102 Chapter Three

Figure 3.5 Because the wave-
lengths of the fast electrons in an
electron microscope are shorter
than those of the light waves in
an optical microscope, the elec-
tron microscope can produce
sharp images at higher magnifi-
cations. The electron beam in an
electron microscope is focused
by magnetic fields.

Electron source

Magnetic
condensing lens

Object

Magnetic
objective lens

Electron paths

Magnetic
projection
lens

Image

Electron micrograph showing bacteriophage viruses in an
Escherichia coli bacterium. The bacterium is approximately
1 +m across.

An electron microscope.
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and so the group velocity turns out to be

#g ! # (3.16)

The de Broglie wave group associated with a moving body travels with the same
velocity as the body.

The phase velocity #p of de Broglie waves is, as we found earlier,

#p ! ! (3.3)

This exceeds both the velocity of the body # and the velocity of light c, since # # c.
However, #p has no physical significance because the motion of the wave group, not
the motion of the individual waves that make up the group, corresponds to the mo-
tion of the body, and #g # c as it should be. The fact that #p & c for de Broglie waves
therefore does not violate special relativity.

Example 3.3

An electron has a de Broglie wavelength of 2.00 pm ! 2.00 $ 10%12 m. Find its kinetic energy
and the phase and group velocities of its de Broglie waves.

Solution

(a) The first step is to calculate pc for the electron, which is

pc ! ! ! 6.20 $ 105 eV

! 620 keV

The rest energy of the electron is E0 ! 511 keV, so

KE ! E % E0 ! !E2
0 ' ("pc)2" % E0 ! !(511 k"eV)2 '" (620"keV)2" % 511 keV

! 803 keV % 511 keV ! 292 keV

(b) The electron velocity can be found from

E !

to be

# ! c)1 %** ! c)1 % %**&2* ! 0.771c

Hence the phase and group velocities are respectively

#p ! ! ! 1.30c

#g ! # ! 0.771c

c2

"
0.771c

c2

"
#

511 keV
"
803 keV

E2
0"

E2

E0
""

!1 % #2"#c2"

(4.136 $ 10%15 eV ( s)(3.00 $ 108 m/s)
"""""

2.00 $ 10%12 m
hc
"
"

c2

"
#

&
"
k

De Broglie phase
velocity

De Broglie group
velocity
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3.5 PARTICLE DIFFRACTION

An experiment that confirms the existence of de Broglie waves

A wave effect with no analog in the behavior of Newtonian particles is diffraction. In
1927 Clinton Davisson and Lester Germer in the United States and G. P. Thomson in
England independently confirmed de Broglie’s hypothesis by demonstrating that elec-
tron beams are diffracted when they are scattered by the regular atomic arrays of crys-
tals. (All three received Nobel Prizes for their work. J. J. Thomson, G. P.’s father, had
earlier won a Nobel Prize for verifying the particle nature of the electron: the wave-
particle duality seems to have been the family business.) We shall look at the experi-
ment of Davisson and Germer because its interpretation is more direct.

Davisson and Germer were studying the scattering of electrons from a solid using
an apparatus like that sketched in Fig. 3.6. The energy of the electrons in the primary
beam, the angle at which they reach the target, and the position of the detector could
all be varied. Classical physics predicts that the scattered electrons will emerge in all
directions with only a moderate dependence of their intensity on scattering angle and
even less on the energy of the primary electrons. Using a block of nickel as the target,
Davisson and Germer verified these predictions.

In the midst of their work an accident occurred that allowed air to enter their ap-
paratus and oxidize the metal surface. To reduce the oxide to pure nickel, the target
was baked in a hot oven. After this treatment, the target was returned to the appara-
tus and the measurements resumed.

Now the results were very different. Instead of a continuous variation of scattered
electron intensity with angle, distinct maxima and minima were observed whose
positions depended upon the electron energy! Typical polar graphs of electron intensity
after the accident are shown in Fig. 3.7. The method of plotting is such that the intensity
at any angle is proportional to the distance of the curve at that angle from the point
of scattering. If the intensity were the same at all scattering angles, the curves would
be circles centered on the point of scattering.

Two questions come to mind immediately: What is the reason for this new effect?
Why did it not appear until after the nickel target was baked?

De Broglie’s hypothesis suggested that electron waves were being diffracted by the
target, much as x-rays are diffracted by planes of atoms in a crystal. This idea received
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Figure 3.6 The Davisson-Germer
experiment.

Electron gun

Electron
detector

Incident
beam

Scattered
beam

Figure 3.7 Results of the Davisson-Germer experiment, showing how the number of scattered elec-
trons varied with the angle between the incoming beam and the crystal surface. The Bragg planes of
atoms in the crystal were not parallel to the crystal surface, so the angles of incidence and scattering
relative to one family of these planes were both 65° (see Fig. 3.8).

40 V

In
ci

de
nt

 b
ea

m

68 V64 V60 V54 V

50°

48 V44 V

bei48482_ch03_qxd  1/16/02  1:51 PM  Page 104



support when it was realized that heating a block of nickel at high temperature causes
the many small individual crystals of which it is normally composed to form into a
single large crystal, all of whose atoms are arranged in a regular lattice.

Let us see whether we can verify that de Broglie waves are responsible for the findings
of Davisson and Germer. In a particular case, a beam of 54-eV electrons was directed
perpendicularly at the nickel target and a sharp maximum in the electron distribution
occurred at an angle of 50° with the original beam. The angles of incidence and
scattering relative to the family of Bragg planes shown in Fig. 3.8 are both 65°. The
spacing of the planes in this family, which can be measured by x-ray diffraction, is
0.091 nm. The Bragg equation for maxima in the diffraction pattern is

n " ! 2d sin ) (2.13)

Here d ! 0.091 nm and ) ! 65°. For n ! 1 the de Broglie wavelength " of the
diffracted electrons is

" ! 2d sin ) ! (2)(0.091 nm)(sin65,) ! 0.165 nm

Now we use de Broglie’s formula " ! h#$m# to find the expected wavelength of
the electrons. The electron kinetic energy of 54 eV is small compared with its rest en-
ergy mc2 of 0.51 MeV, so we can let $ ! 1. Since

KE ! "
1
2

" m#2

the electron momentum m# is

m# ! !2mKE"

! !(2)(9.1" $ 10%"31 kg)("54 eV)"(1.6 $" 10%19" J/eV)"
! 4.0 $ 10%24 kg ( m/s

The electron wavelength is therefore

" ! ! ! 1.66 $ 10%10 m ! 0.166 nm

which agrees well with the observed wavelength of 0.165 nm. The Davisson-Germer
experiment thus directly verifies de Broglie’s hypothesis of the wave nature of moving
bodies.

Analyzing the Davisson-Germer experiment is actually less straightforward than in-
dicated above because the energy of an electron increases when it enters a crystal by
an amount equal to the work function of the surface. Hence the electron speeds in the
experiment were greater inside the crystal and the de Broglie wavelengths there shorter
than the values outside. Another complication arises from interference between waves
diffracted by different families of Bragg planes, which restricts the occurrence of maxima
to certain combinations of electron energy and angle of incidence rather than merely
to any combination that obeys the Bragg equation.

Electrons are not the only bodies whose wave behavior can be demonstrated. The
diffraction of neutrons and of whole atoms when scattered by suitable crystals has been
observed, and in fact neutron diffraction, like x-ray and electron diffraction, has been
used for investigating crystal structures.

6.63 $ 10%34 J ( s
"""
4.0 $ 10%24 kg ( m/s

h
"
m#
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Figure 3.8 The diffraction of the
de Broglie waves by the target is
responsible for the results of
Davisson and Germer.
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3.6   PARTICLE IN A BOX

Why the energy of a trapped particle is quantized

The wave nature of a moving particle leads to some remarkable consequences when
the particle is restricted to a certain region of space instead of being able to move freely.

The simplest case is that of a particle that bounces back and forth between the walls of
a box, as in Fig. 3.9. We shall assume that the walls of the box are infinitely hard, so the
particle does not lose energy each time it strikes a wall, and that its velocity is sufficiently
small so that we can ignore relativistic considerations. Simple as it is, this model situation
requires fairly elaborate mathematics in order to be properly analyzed, as we shall learn in
Chap. 5. However, even a relatively crude treatment can reveal the essential results.

From a wave point of view, a particle trapped in a box is like a standing wave in a
string stretched between the box’s walls. In both cases the wave variable (transverse
displacement for the string, wave function ) for the moving particle) must be 0 at
the walls, since the waves stop there. The possible de Broglie wavelengths of the par-
ticle in the box therefore are determined by the width L of the box, as in Fig. 3.10.
The longest wavelength is specified by " ! 2L, the next by " ! L, then " ! 2L#3,
and so forth. The general formula for the permitted wavelengths is

"n ! n ! 1, 2, 3, . . . (3.17)

Because m# ! h#", the restrictions on de Broglie wavelength " imposed by the
width of the box are equivalent to limits on the momentum of the particle and, in turn,
to limits on its kinetic energy. The kinetic energy of a particle of momentum m# is

KE ! "
1
2

" m#2 ! !

The permitted wavelengths are "n ! 2L#n, and so, because the particle has no potential
energy in this model, the only energies it can have are

h2

"
2m-2

(m#)2

"
2m

2L
"
n

De Broglie
wavelengths of
trapped particle
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Figure 3.9 A particle confined to
a box of width L. The particle is
assumed to move back and forth
along a straight line between the
walls of the box.

L

Figure 3.10 Wave functions of a
particle trapped in a box L wide.

λ = L

λ = 2LΨ1

Ψ2

Ψ3

L

λ = 2L
3

Neutron diffraction by a quartz crystal. The peaks represent directions in which con-
structive interference occurred. (Courtesy Frank J. Rotella and Arthur J. Schultz, Argonne
National Laboratory)
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En ! n ! 1, 2, 3, . . . (3.18)

Each permitted energy is called an energy level, and the integer n that specifies an
energy level En is called its quantum number.

We can draw three general conclusions from Eq. (3.18). These conclusions apply
to any particle confined to a certain region of space (even if the region does not have
a well-defined boundary), for instance an atomic electron held captive by the attraction
of the positively charged nucleus.

1 A trapped particle cannot have an arbitrary energy, as a free particle can. The fact
of its confinement leads to restrictions on its wave function that allow the particle to
have only certain specific energies and no others. Exactly what these energies are de-
pends on the mass of the particle and on the details of how it is trapped.

2 A trapped particle cannot have zero energy. Since the de Broglie wavelength of the
particle is " ! h#m#, a speed of # ! 0 means an infinite wavelength. But there is no
way to reconcile an infinite wavelength with a trapped particle, so such a particle must
have at least some kinetic energy. The exclusion of E ! 0 for a trapped particle, like
the limitation of E to a set of discrete values, is a result with no counterpart in classi-
cal physics, where all non-negative energies, including zero, are allowed.

3 Because Planck’s constant is so small—only 6.63 $ 10%34 J ( s—quantization of en-
ergy is conspicuous only when m and L are also small. This is why we are not aware
of energy quantization in our own experience. Two examples will make this clear.

Example 3.4

An electron is in a box 0.10 nm across, which is the order of magnitude of atomic dimensions.
Find its permitted energies.

Solution

Here m ! 9.1 $ 10%31 kg and L ! 0.10 nm ! 1.0 $ 10%10 m, so that the permitted electron
energies are

En ! ! 6.0 $ 10%18n2 J

! 38n2 eV

The minimum energy the electron can have is 38 eV, corresponding to n ! 1. The sequence of
energy levels continues with E2 ! 152 eV, E3 ! 342 eV, E4 ! 608 eV, and so on (Fig. 3.11). If
such a box existed, the quantization of a trapped electron’s energy would be a prominent feature
of the system. (And indeed energy quantization is prominent in the case of an atomic electron.)

Example 3.5

A 10-g marble is in a box 10 cm across. Find its permitted energies.

Solution

With m ! 10 g ! 1.0 $ 10%2 kg and L ! 10 cm ! 1.0 $ 10%1 m,

En !

! 5.5 $ 10%64n2 J

(n2)(6.63 $ 10%34 J ( s)2

""""
(8)(1.0 $ 10%2 kg)(1.0 $ 10%1 m)2

(n2)(6.63 $ 10%34 J ( s)2

"""""
(8)(9.1 $ 10%31 kg)(1.0 $ 10%10 m)2

n2h2

"
8mL2

Particle in a box
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Figure 3.11 Energy levels of an
electron confined to a box
0.1 nm wide.
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The minimum energy the marble can have is 5.5 $ 10%64 J, corresponding to n ! 1. A marble
with this kinetic energy has a speed of only 3.3 $ 10%31 m/s and therefore cannot be experi-
mentally distinguished from a stationary marble. A reasonable speed a marble might have is, say,
"
1
3

" m/s—which corresponds to the energy level of quantum number n ! 1030! The permissible
energy levels are so very close together, then, that there is no way to determine whether the
marble can take on only those energies predicted by Eq. (3.18) or any energy whatever. Hence
in the domain of everyday experience, quantum effects are imperceptible, which accounts for
the success of Newtonian mechanics in this domain.

3.7 UNCERTAINTY PRINCIPLE 1

We cannot know the future because we cannot know the present

To regard a moving particle as a wave group implies that there are fundamental limits
to the accuracy with which we can measure such “particle” properties as position and
momentum.

To make clear what is involved, let us look at the wave group of Fig. 3.3. The par-
ticle that corresponds to this wave group may be located anywhere within the group
at a given time. Of course, the probability density $)$2 is a maximum in the middle of
the group, so it is most likely to be found there. Nevertheless, we may still find the
particle anywhere that $)$2 is not actually 0.

The narrower its wave group, the more precisely a particle’s position can be speci-
fied (Fig. 3.12a). However, the wavelength of the waves in a narrow packet is not well
defined; there are not enough waves to measure " accurately. This means that since 
" ! h#$m#, the particle’s momentum $m# is not a precise quantity. If we make a series
of momentum measurements, we will find a broad range of values.

On the other hand, a wide wave group, such as that in Fig. 3.12b, has a clearly
defined wavelength. The momentum that corresponds to this wavelength is therefore
a precise quantity, and a series of measurements will give a narrow range of values. But
where is the particle located? The width of the group is now too great for us to be able
to say exactly where the particle is at a given time.

Thus we have the uncertainty principle:

It is impossible to know both the exact position and exact momentum of an ob-
ject at the same time.

This principle, which was discovered by Werner Heisenberg in 1927, is one of the
most significant of physical laws.

A formal analysis supports the above conclusion and enables us to put it on a quan-
titative basis. The simplest example of the formation of wave groups is that given in
Sec. 3.4, where two wave trains slightly different in angular frequency & and wave
number k were superposed to yield the series of groups shown in Fig. 3.4. A moving
body corresponds to a single wave group, not a series of them, but a single wave group
can also be thought of in terms of the superposition of trains of harmonic waves. How-
ever, an infinite number of wave trains with different frequencies, wave numbers, and
amplitudes is required for an isolated group of arbitrary shape, as in Fig. 3.13.

At a certain time t, the wave group )(x) can be represented by the Fourier integral

)(x) ! +.

0
g(k) cos kx dk (3.19)
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Figure 3.12 (a) A narrow de
Broglie wave group. The position
of the particle can be precisely
determined, but the wavelength
(and hence the particle's momen-
tum) cannot be established be-
cause there are not enough waves
to measure accurately. (b) A wide
wave group. Now the wavelength
can be precisely determined but
not the position of the particle.
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where the function g(k) describes how the amplitudes of the waves that contribute to
)(x) vary with wave number k. This function is called the Fourier transform of )(x),
and it specifies the wave group just as completely as )(x) does. Figure 3.14 contains
graphs of the Fourier transforms of a pulse and of a wave group. For comparison, the
Fourier transform of an infinite train of harmonic waves is also included. There is only
a single wave number in this case, of course.

Strictly speaking, the wave numbers needed to represent a wave group extend from
k ! 0 to k ! ., but for a group whose length *x is finite, the waves whose ampli-
tudes g(k) are appreciable have wave numbers that lie within a finite interval *k. As
Fig. 3.14 indicates, the narrower the group, the broader the range of wave numbers
needed to describe it, and vice versa.

The relationship between the distance *x and the wave-number spread *k depends
upon the shape of the wave group and upon how *x and *k are defined. The minimum
value of the product *x *k occurs when the envelope of the group has the familiar
bell shape of a Gaussian function. In this case the Fourier transform happens to be a
Gaussian function also. If *x and *k are taken as the standard deviations of the
respective functions )(x) and g(k), then this minimum value is *x *k ! !

1
2

". Because
wave groups in general do not have Gaussian forms, it is more realistic to express the
relationship between *x and *k as

*x *k / "
1
2

" (3.20)
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Figure 3.14 The wave functions and Fourier transforms for (a) a pulse, (b) a wave group, (c) a wave
train, and (d) a Gaussian distribution. A brief disturbance needs a broader range of frequencies to
describe it than a disturbance of greater duration. The Fourier transform of a Gaussian function is
also a Gaussian function.
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Figure 3.13 An isolated wave group is the result of superposing an infinite number of waves with dif-
ferent wavelengths. The narrower the wave group, the greater the range of wavelengths involved. A
narrow de Broglie wave group thus means a well-defined position (*x smaller) but a poorly defined
wavelength and a large uncertainty *p in the momentum of the particle the group represents. A wide
wave group means a more precise momentum but a less precise position.
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Gaussian Function

W hen a set of measurements is made of some quantity x in which the experimental errors
are random, the result is often a Gaussian distribution whose form is the bell-shaped

curve shown in Fig. 3.15. The standard deviation * of the measurements is a measure of the
spread of x values about the mean of x0, where * equals the square root of the average of the
squared deviations from x0. If N measurements were made,

* ! )*,
N

i !1
(x1* % x0)*2*

The width of a Gaussian curve at half its maximum value is 2.35*.
The Gaussian function f(x) that describes the above curve is given by

f(x) ! e%(x % x0)2#2*2

where f(x) is the probability that the value x be found in a particular measurement. Gaussian
functions occur elsewhere in physics and mathematics as well. (Gabriel Lippmann had this to
say about the Gaussian function: “Experimentalists think that it is a mathematical theorem while
mathematicians believe it to be an experimental fact.”)

The probability that a measurement lie inside a certain range of x values, say between x1 and
x2, is given by the area of the f(x) curve between these limits. This area is the integral

Px1x2
! +x2

x1

f(x) dx

An interesting questions is what fraction of a series of measurements has values within a stan-
dard deviation of the mean value x0. In this case x1 ! x0 % * and x2 ! x0 ' *, and

Px00* ! +x0'*

x0%*
f(x) dx ! 0.683

Hence 68.3 percent of the measurements fall in this interval, which is shaded in Fig. 3.15. A
similar calculation shows that 95.4 percent of the measurements fall within two standard
deviations of the mean value.

1
"
* !2%"

Gaussian function

1
"
N

Standard deviation

Figure 3.15 A Gaussian distribution. The probability of finding a value of x is given by the Gaussian
function f(x). The mean value of x is x0, and the total width of the curve at half its maximum value
is 2.35*, where * is the standard deviation of the distribution. The total probability of finding a value
of x within a standard deviation of x0 is equal to the shaded area and is 68.3 percent.
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The de Broglie wavelength of a particle of momentum p is !!h!p and the
corresponding wave number is

k ! !

In terms of wave number the particle’s momentum is therefore

p !

Hence an uncertainty "k in the wave number of the de Broglie waves associated with the
particle results in an uncertainty "p in the particle’s momentum according to the formula

"p !

Since "x "k # $
1
2

$, "k # 1!(2"x) and

"x "p # (3.21)

This equation states that the product of the uncertainty "x in the position of an ob-
ject at some instant and the uncertainty "p in its momentum component in the x di-
rection at the same instant is equal to or greater than h!4".

If we arrange matters so that "x is small, corresponding to a narrow wave group,
then "p will be large. If we reduce "p in some way, a broad wave group is inevitable
and "x will be large.

h
$
4"

Uncertainty 
principle

h "k
$
2"

hk
$
2"

2"p
$

h
2"
$
%

Werner Heisenberg (1901–1976)
was born in Duisberg, Germany,
and studied theoretical physics at
Munich, where he also became an
enthusiastic skier and moun-
taineer. At Göttingen in 1924 as an
assistant to Max Born, Heisenberg
became uneasy about mechanical
models of the atom: “Any picture
of the atom that our imagination
is able to invent is for that very

reason defective,” he later remarked. Instead he conceived an
abstract approach using matrix algebra. In 1925, together with
Born and Pascual Jordan, Heisenberg developed this approach
into a consistent theory of quantum mechanics, but it was so
difficult to understand and apply that it had very little impact
on physics at the time. Schrödinger’s wave formulation of
quantum mechanics the following year was much more suc-
cessful; Schrödinger and others soon showed that the wave and
matrix versions of quantum mechanics were mathematically
equivalent.

In 1927, working at Bohr’s institute in Copenhagen, Heisen-
berg developed a suggestion by Wolfgang Pauli into the uncer-
tainty principle. Heisenberg initially felt that this principle was
a consequence of the disturbances inevitably produced by any

measuring process. Bohr, on the other hand, thought that the
basic cause of the uncertainties was the wave-particle duality,
so that they were built into the natural world rather than solely
the result of measurement. After much argument Heisenberg
came around to Bohr’s view. (Einstein, always skeptical about
quantum mechanics, said after a lecture by Heisenberg on the
uncertainty principle: “Marvelous, what ideas the young people
have these days. But I don’t believe a word of it.”) Heisenberg
received the Nobel Prize in 1932.

Heisenberg was one of the very few distinguished scientists
to remain in Germany during the Nazi period. In World War II
he led research there on atomic weapons, but little progress had
been made by the war’s end. Exactly why remains unclear, al-
though there is no evidence that Heisenberg, as he later claimed,
had moral qualms about creating such weapons and more or
less deliberately dragged his feet. Heisenberg recognized early
that “an explosive of unimaginable consequences” could be de-
veloped, and he and his group should have been able to have
gotten farther than they did. In fact, alarmed by the news that
Heisenberg was working on an atomic bomb, the U.S. govern-
ment sent the former Boston Red Sox catcher Moe Berg to shoot
Heisenberg during a lecture in neutral Switzerland in 1944.
Berg, sitting in the second row, found himself uncertain from
Heisenberg’s remarks about how advanced the German program
was, and kept his gun in his pocket.
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These uncertainties are due not to inadequate apparatus but to the imprecise charac-
ter in nature of the quantities involved. Any instrumental or statistical uncertainties that
arise during a measurement only increase the product *x *p. Since we cannot know ex-
actly both where a particle is right now and what its momentum is, we cannot say any-
thing definite about where it will be in the future or how fast it will be moving then. We
cannot know the future for sure because we cannot know the present for sure. But our igno-
rance is not total: we can still say that the particle is more likely to be in one place than
another and that its momentum is more likely to have a certain value than another.

H-Bar

The quantity h#2% appears often in modern physics because it turns out to be the 
basic unit of angular momentum. It is therefore customary to abbreviate h#2% by the
symbol + (“h-bar”):

+ ! ! 1.054 $ 10%34 J ( s

In the remainder of this book + is used in place of h#2%. In terms of +, the uncer-
tainty principle becomes

*x *p / (3.22)

Example 3.6

A measurement establishes the position of a proton with an accuracy of 01.00 $ 10%11 m. Find
the uncertainty in the proton’s position 1.00 s later. Assume # ## c.

Solution

Let us call the uncertainty in the proton’s position *x0 at the time t ! 0. The uncertainty in its
momentum at this time is therefore, from Eq. (3.22),

*p /

Since # ## c, the momentum uncertainty is *p ! *(m#) ! m *# and the uncertainty in the
proton’s velocity is

*# ! /

The distance x the proton covers in the time t cannot be known more accurately than

*x ! t *# /

Hence *x is inversely proportional to *x0: the more we know about the proton’s position at 
t ! 0, the less we know about its later position at t & 0. The value of *x at t ! 1.00 s is

*x /

/ 3.15 $ 103 m

This is 3.15 km—nearly 2 mi! What has happened is that the original wave group has spread
out to a much wider one (Fig. 3.16). This occurred because the phase velocities of the compo-
nent waves vary with wave number and a large range of wave numbers must have been present
to produce the narrow original wave group. See Fig. 3.14.

(1.054 $ 10%34 J ( s)(1.00 s)
"""""
(2)(1.672 $ 10%27 kg)(1.00 $ 10%11 m)

+t
"
2m *x0

+
"
2m *x0

*p
"
m

+
"
2*x0

+
"
2

Uncertainty 
principle

h
"
2%
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3.8 UNCERTAINTY PRINCIPLE II

A particle approach gives the same result

The uncertainty principle can be arrived at from the point of view of the particle prop-
erties of waves as well as from the point of view of the wave properties of particles.

We might want to measure the position and momentum of an object at a certain mo-
ment. To do so, we must touch it with something that will carry the required information
back to us. That is, we must poke it with a stick, shine light on it, or perform some sim-
ilar act. The measurement process itself thus requires that the object be interfered with in
some way. If we consider such interferences in detail, we are led to the same uncertainty
principle as before even without taking into account the wave nature of moving bodies.

Suppose we look at an electron using light of wavelength ", as in Fig. 3.17. Each
photon of this light has the momentum h#". When one of these photons bounces
off the electron (which must happen if we are to “see” the electron), the electron’s

Wave Properties of Particles 113

Figure 3.16 The wave packet that corresponds to a moving packet is a composite of many individ-
ual waves, as in Fig. 3.13. The phase velocities of the individual waves vary with their wave lengths.
As a result, as the particle moves, the wave packet spreads out in space. The narrower the original
wavepacket—that is, the more precisely we know its position at that time—the more it spreads out
because it is made up of a greater span of waves with different phase velocities.

Wave packet
Classical particle

Ψ 2 t1

t2

t3

x

x

x

Ψ 2

Ψ 2

Figure 3.17 An electron cannot be observed without changing its momentum.
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original momentum will be changed. The exact amount of the change *p cannot be
predicted, but it will be of the same order of magnitude as the photon momentum
h#". Hence

*p ' (3.23)

The longer the wavelength of the observing photon, the smaller the uncertainty in the
electron’s momentum.

Because light is a wave phenomenon as well as a particle phenomenon, we cannot
expect to determine the electron’s location with perfect accuracy regardless of the in-
strument used. A reasonable estimate of the minimum uncertainty in the measurement
might be one photon wavelength, so that

*x / " (3.24)

The shorter the wavelength, the smaller the uncertainty in location. However, if we use
light of short wavelength to increase the accuracy of the position measurement, there will
be a corresponding decrease in the accuracy of the momentum measurement because
the higher photon momentum will disturb the electron’s motion to a greater extent. Light
of long wavelength will give a more accurate momentum but a less accurate position.

Combining Eqs. (3.23) and (3.24) gives

*x *p / h (3.25)

This result is consistent with Eq. (3.22), *x *p / +#2.
Arguments like the preceding one, although superficially attractive, must be 

approached with caution. The argument above implies that the electron can possess a
definite position and momentum at any instant and that it is the measurement process
that introduces the indeterminacy in *x *p. On the contrary, this indeterminacy is
inherent in the nature of a moving body. The justification for the many “derivations” of
this kind is first, they show it is impossible to imagine a way around the uncertainty
principle; and second, they present a view of the principle that can be appreciated in
a more familiar context than that of wave groups.

3.9 APPLYING THE UNCERTAINTY PRINCIPLE

A useful tool, not just a negative statement

Planck’s constant h is so small that the limitations imposed by the uncertainty princi-
ple are significant only in the realm of the atom. On such a scale, however, this principle
is of great help in understanding many phenomena. It is worth keeping in mind that
the lower limit of +#2 for *x *p is rarely attained. More usually *x *p / +, or even
(as we just saw) *x *p / h.

Example 3.7

A typical atomic nucleus is about 5.0 $ 10%15 m in radius. Use the uncertainty principle to
place a lower limit on the energy an electron must have if it is to be part of a nucleus.

h
"
"
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Solution

Letting *x ! 5.0 $ 10%5 m we have

*p / / / 1.1 $ 10%20 kg ( m/s

If this is the uncertainty in a nuclear electron’s momentum, the momentum p itself must be at
least comparable in magnitude. An electron with such a momentum has a kinetic energy KE
many times greater than its rest energy mc2. From Eq. (1.24) we see that we can let KE ! pc
here to a sufficient degree of accuracy. Therefore

KE ! pc / (1.1 $ 10%20 kg ( m/s)(3.0 $ 108 m/s) / 3.3 $ 10%12 J

Since 1 eV ! 1.6 $ 10%19 J, the kinetic energy of an electron must exceed 20 MeV if it is to
be inside a nucleus. Experiments show that the electrons emitted by certain unstable nuclei never
have more than a small fraction of this energy, from which we conclude that nuclei cannot con-
tain electrons. The electron an unstable nucleus may emit comes into being at the moment the
nucleus decays (see Secs. 11.3 and 12.5).

Example 3.8

A hydrogen atom is 5.3 $ 10%11 m in radius. Use the uncertainty principle to estimate the min-
imum energy an electron can have in this atom.

Solution

Here we find that with * x ! 5.3 $ 10%11 m.

* p / / 9.9 $ 10%25 kg ( m/s

An electron whose momentum is of this order of magnitude behaves like a classical particle, and
its kinetic energy is

KE ! / / 5.4 $ 10%19 J

which is 3.4 eV. The kinetic energy of an electron in the lowest energy level of a hydrogen atom
is actually 13.6 eV.

Energy and Time

Another form of the uncertainty principle concerns energy and time. We might wish
to measure the energy E emitted during the time interval *t in an atomic process. If
the energy is in the form of em waves, the limited time available restricts the accuracy
with which we can determine the frequency ! of the waves. Let us assume that the
minimum uncertainty in the number of waves we count in a wave group is one wave.
Since the frequency of the waves under study is equal to the number of them we count
divided by the time interval, the uncertainty *! in our frequency measurement is

*! /
1

"
*t

(9.9 $ 10%25 kg ( m/s)2

"""
(2)(9.1 $ 10%31 kg)

p2

"
2m

+
"
2* x

1.054 $ 10%34 J ( s
"""
(2)(5.0 $ 10%15 m)

+
"
2* x
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The corresponding energy uncertainty is

*E ! h *!

and so

*E / or *E *t / h

A more precise calculation based on the nature of wave groups changes this result to

*E *t / (3.26)

Equation (3.26) states that the product of the uncertainty *E in an energy meas-
urement and the uncertainty *t in the time at which the measurement is made is equal
to or greater than +#2. This result can be derived in other ways as well and is a gen-
eral one not limited to em waves.

Example 3.9

An “excited” atom gives up its excess energy by emitting a photon of characteristic frequency,
as described in Chap. 4. The average period that elapses between the excitation of an atom and
the time it radiates is 1.0 $ 10%8 s. Find the inherent uncertainty in the frequency of the 
photon.

Solution

The photon energy is uncertain by the amount

*E / / / 5.3 $ 10%27 J

The corresponding uncertainty in the frequency of light is

*! ! / 8 $ 106 Hz

This is the irreducible limit to the accuracy with which we can determine the frequency of the
radiation emitted by an atom. As a result, the radiation from a group of excited atoms does not
appear with the precise frequency !. For a photon whose frequency is, say, 5.0 $ 1014 Hz, 
*!#! ! 1.6 $ 10%8. In practice, other phenomena such as the doppler effect contribute more
than this to the broadening of spectral lines.

*E
"

h

1.054 $ 10%34 J ( s
"""

2(1.0 $ 10%8 s)

+
"
2*t

+
"
2

Uncertainties in 
energy and time

h
"
*t
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Exercises 117

E X E R C I S E S

It is only the first step that takes the effort. —Marquise du Deffand

3.1 De Broglie Waves

1. A photon and a particle have the same wavelength. Can any-
thing be said about how their linear momenta compare? About
how the photon’s energy compares with the particle’s total
energy? About how the photon’s energy compares with the
particle’s kinetic energy?

2. Find the de Broglie wavelength of (a) an electron whose speed is
1.0 $ 108 m/s, and (b) an electron whose speed is 2.0 $ 108 m/s.

3. Find the de Broglie wavelength of a 1.0-mg grain of sand
blown by the wind at a speed of 20 m/s.

4. Find the de Broglie wavelength of the 40-keV electrons used in
a certain electron microscope.

5. By what percentage will a nonrelativistic calculation of the
de Broglie wavelength of a 100-keV electron be in error?

6. Find the de Broglie wavelength of a 1.00-MeV proton. Is a rela-
tivistic calculation needed?

7. The atomic spacing in rock salt, NaCl, is 0.282 nm. Find the
kinetic energy (in eV) of a neutron with a de Broglie wave-
length of 0.282 nm. Is a relativistic calculation needed? Such
neutrons can be used to study crystal structure.

8. Find the kinetic energy of an electron whose de Broglie wave-
length is the same as that of a 100-keV x-ray.

9. Green light has a wavelength of about 550 nm. Through what
potential difference must an electron be accelerated to have this
wavelength?

10. Show that the de Broglie wavelength of a particle of mass m
and kinetic energy KE is given by

- !

11. Show that if the total energy of a moving particle greatly
exceeds its rest energy, its de Broglie wavelength is nearly the
same as the wavelength of a photon with the same total energy.

12. (a) Derive a relativistically correct formula that gives the 
de Broglie wavelength of a charged particle in terms of the po-
tential difference V through which it has been accelerated.
(b) What is the nonrelativistic approximation of this formula,
valid for eV ## mc2?

3.4 Phase and Group Velocities

13. An electron and a proton have the same velocity. Compare the
wavelengths and the phase and group velocities of their 
de Broglie waves.

14. An electron and a proton have the same kinetic energy.
Compare the wavelengths and the phase and group velocities of
their de Broglie waves.

hc
""
!KE(KE" ' 2m"c2)"

15. Verify the statement in the text that, if the phase velocity is the
same for all wavelengths of a certain wave phenomenon (that
is, there is no dispersion), the group and phase velocities are
the same.

16. The phase velocity of ripples on a liquid surface is !2%S#"",",
where S is the surface tension and , the density of the liquid.
Find the group velocity of the ripples.

17. The phase velocity of ocean waves is !g"#2%", where g is the
acceleration of gravity. Find the group velocity of ocean waves.

18. Find the phase and group velocities of the de Broglie waves of
an electron whose speed is 0.900c.

19. Find the phase and group velocities of the de Broglie waves of
an electron whose kinetic energy is 500 keV.

20. Show that the group velocity of a wave is given by #g !
d!#d(1#-).

21. (a) Show that the phase velocity of the de Broglie waves of a
particle of mass m and de Broglie wavelength - is given by

#p ! c)1 ' %**&2*
(b) Compare the phase and group velocities of an electron
whose de Broglie wavelength is exactly 1 $ 10%13 m.

22. In his original paper, de Broglie suggested that E ! h! and 
p ! h#-, which hold for electromagnetic waves, are also valid
for moving particles. Use these relationships to show that the
group velocity #g of a de Broglie wave group is given by dE#dp,
and with the help of Eq. (1.24), verify that #g ! # for a particle
of velocity #.

3.5 Particle Diffraction

23. What effect on the scattering angle in the Davisson-Germer
experiment does increasing the electron energy have?

24. A beam of neutrons that emerges from a nuclear reactor contains
neutrons with a variety of energies. To obtain neutrons with an
energy of 0.050 eV, the beam is passed through a crystal whose
atomic planes are 0.20 nm apart. At what angles relative to the
original beam will the desired neutrons be diffracted?

25. In Sec. 3.5 it was mentioned that the energy of an electron en-
tering a crystal increases, which reduces its de Broglie wavelength.
Consider a beam of 54-eV electrons directed at a nickel target.
The potential energy of an electron that enters the target changes
by 26 eV. (a) Compare the electron speeds outside and inside the
target. (b) Compare the respective de Broglie wavelengths.

26. A beam of 50-keV electrons is directed at a crystal and
diffracted electrons are found at an angle of 50, relative to the
original beam. What is the spacing of the atomic planes of the
crystal? A relativistic calculation is needed for -.

mc"
"

h

bei48482_ch03_qxd  1/16/02  1:51 PM  Page 117



118 Chapter Three

3.6 Particle in a Box

27. Obtain an expression for the energy levels (in MeV) of a neu-
tron confined to a one-dimensional box 1.00 $ 10%14 m wide.
What is the neutron’s minimum energy? (The diameter of an
atomic nucleus is of this order of magnitude.)

28. The lowest energy possible for a certain particle trapped in a
certain box is 1.00 eV. (a) What are the next two higher ener-
gies the particle can have? (b) If the particle is an electron, how
wide is the box?

29. A proton in a one-dimensional box has an energy of 400 keV in
its first excited state. How wide is the box?

3.7 Uncertainty Principle I
3.8 Uncertainty Principle II
3.9 Applying the Uncertainty Principle

30. Discuss the prohibition of E ! 0 for a particle trapped in a
box L wide in terms of the uncertainty principle. How does
the minimum momentum of such a particle compare with the
momentum uncertainty required by the uncertainty principle if
we take *x ! L?

31. The atoms in a solid possess a certain minimum zero-point
energy even at 0 K, while no such restriction holds for the
molecules in an ideal gas. Use the uncertainty principle to
explain these statements.

32. Compare the uncertainties in the velocities of an electron and a
proton confined in a 1.00-nm box.

33. The position and momentum of a 1.00-keV electron are simulta-
neously determined. If its position is located to within 0.100 nm,
what is the percentage of uncertainty in its momentum?

34. (a) How much time is needed to measure the kinetic energy of
an electron whose speed is 10.0 m/s with an uncertainty of no
more than 0.100 percent? How far will the electron have
traveled in this period of time? (b) Make the same calculations

for a 1.00-g insect whose speed is the same. What do these
sets of figures indicate?

35. How accurately can the position of a proton with # ## c be
determined without giving it more than 1.00 keV of kinetic
energy?

36. (a) Find the magnitude of the momentum of a particle in a
box in its nth state. (b) The minimum change in the particle’s
momentum that a measurement can cause corresponds to a
change of 01 in the quantum number n. If *x ! L, show that
*p *x / +#2.

37. A marine radar operating at a frequency of 9400 MHz emits
groups of electromagnetic waves 0.0800 -s in duration. The
time needed for the reflections of these groups to return
indicates the distance to a target. (a) Find the length of each
group and the number of waves it contains. (b) What is the
approximate minimum bandwidth (that is, spread of frequen-
cies) the radar receiver must be able to process?

38. An unstable elementary particle called the eta meson has a rest
mass of 549 MeV/c2 and a mean lifetime of 7.00 $ 10%19 s.
What is the uncertainty in its rest mass?

39. The frequency of oscillation of a harmonic oscillator of mass m
and spring constant C is ! ! !C#m"#2%. The energy of the
oscillator is E ! p2#2m ' C x2#2, where p is its momentum
when its displacement from the equilibrium position is x. In
classical physics the minimum energy of the oscillator is 
Emin ! 0. Use the uncertainty principle to find an expression
for E in terms of x only and show that the minimum energy is
actually Emin ! h!#2 by setting dE#dx ! 0 and solving for Emin.

40. (a) Verify that the uncertainty principle can be expressed in the
form *L *) / +#2, where *L is the uncertainty in the angular
momentum of a particle and *) is the uncertainty in its
angular position. (Hint: Consider a particle of mass m moving
in a circle of radius r at the speed #, for which L ! m#r.)
(b) At what uncertainty in L will the angular position of a parti-
cle become completely indeterminate?
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4.1 THE NUCLEAR ATOM
An atom is largely empty space

4.2 ELECTRON ORBITS
The planetary model of the atom and why it
fails

4.3 ATOMIC SPECTRA
Each element has a characteristic line spectrum

4.4 THE BOHR ATOM
Electron waves in the atom

4.5 ENERGY LEVELS AND SPECTRA
A photon is emitted when an electron jumps
from one energy level to a lower level

4.6 CORRESPONDENCE PRINCIPLE
The greater the quantum number, the closer
quantum physics approaches classical physics

4.7 NUCLEAR MOTION
The nuclear mass affects the wavelengths of
spectral lines

4.8 ATOMIC EXCITATION
How atoms absorb and emit energy

4.9 THE LASER
How to produce light waves all in step

APPENDIX: RUTHERFORD SCATTERING

CHAPTER 4

Atomic Structure

Solid-state infrared laser cutting 1.6-mm steel sheet. This laser uses an yttrium-aluminum-
garnet crystal doped with neodymium. The neodymium is pumped with radiation from
small semiconductor lasers, a highly efficient method.
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F ar in the past people began to suspect that matter, despite appearing continu-
ous, has a definite structure on a microscopic level beyond the direct reach of
our senses. This suspicion did not take on a more concrete form until a little

over a century and a half ago. Since then the existence of atoms and molecules, the
ultimate particles of matter in its common forms, has been amply demonstrated, and
their own ultimate particles, electrons, protons, and neutrons, have been identified and
studied as well. In this chapter and in others to come our chief concern will be the
structure of the atom, since it is this structure that is responsible for nearly all the prop-
erties of matter that have shaped the world around us.

Every atom consists of a small nucleus of protons and neutrons with a number
of electrons some distance away. It is tempting to think that the electrons circle the 
nucleus as planets do the sun, but classical electromagnetic theory denies the pos-
sibility of stable electron orbits. In an effort to resolve this paradox, Niels Bohr ap-
plied quantum ideas to atomic structure in 1913 to obtain a model which, despite
its inadequacies and later replacement by a quantum-mechanical description of
greater accuracy and usefulness, still remains a convenient mental picture of the
atom. Bohr’s theory of the hydrogen atom is worth examining both for this reason
and because it provides a valuable transition to the more abstract quantum theory
of the atom.

4.1 THE NUCLEAR ATOM

An atom is largely empty space

Most scientists of the late nineteenth century accepted the idea that the chemical 
elements consist of atoms, but they knew almost nothing about the atoms themselves.
One clue was the discovery that all atoms contain electrons. Since electrons carry 
negative charges whereas atoms are neutral, positively charged matter of some kind
must be present in atoms. But what kind? And arranged in what way?

One suggestion, made by the British physicist J. J. Thomson in 1898, was that atoms
are just positively charged lumps of matter with electrons embedded in them, like
raisins in a fruitcake (Fig. 4.1). Because Thomson had played an important role in 
discovering the electron, his idea was taken seriously. But the real atom turned out to
be quite different.

The most direct way to find out what is inside a fruitcake is to poke a finger into
it, which is essentially what Hans Geiger and Ernest Marsden did in 1911. At the sug-
gestion of Ernest Rutherford, they used as probes the fast alpha particles emitted by
certain radioactive elements. Alpha particles are helium atoms that have lost two elec-
trons each, leaving them with a charge of !2e.

Geiger and Marsden placed a sample of an alpha-emitting substance behind a lead
screen with a small hole in it, as in Fig. 4.2, so that a narrow beam of alpha particles
was produced. This beam was directed at a thin gold foil. A zinc sulfide screen, which
gives off a visible flash of light when struck by an alpha particle, was set on the other
side of the foil with a microscope to see the flashes.

It was expected that the alpha particles would go right through the foil with hardly
any deflection. This follows from the Thomson model, in which the electric charge in-
side an atom is assumed to be uniformly spread through its volume. With only weak
electric forces exerted on them, alpha particles that pass through a thin foil ought to
be deflected only slightly, 1° or less.

120 Chapter Four

Figure 4.1 The Thomson model
of the atom. The Rutherford scat-
tering experiment showed it to be
incorrect.
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What Geiger and Marsden actually found was that although most of the alpha 
particles indeed were not deviated by much, a few were scattered through very large
angles. Some were even scattered in the backward direction. As Rutherford remarked,
“It was as incredible as if you fired a 15-inch shell at a piece of tissue paper and it
came back and hit you.”

Alpha particles are relatively heavy (almost 8000 electron masses) and those used
in this experiment had high speeds (typically 2 " 107 m/s), so it was clear that 
powerful forces were needed to cause such marked deflections. The only way to 
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Figure 4.2 The Rutherford scattering experiment.
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Ernest Rutherford (1871–1937),
a native of New Zealand, was
on his family’s farm digging pota-
toes when he learned that he had
won a scholarship for graduate
study at Cambridge University in
England. “This is the last potato I
will every dig,” he said, throwing
down his spade. Thirteen years
later he received the Nobel Prize in
chemistry.

At Cambridge, Rutherford was a research student under 
J. J. Thomson, who would soon announce the discovery of the
electron. Rutherford’s own work was on the newly found phe-
nomenon of radioactivity, and he quickly distinguished between
alpha and beta particles, two of the emissions of radioactive ma-
terials. In 1898 he went to McGill University in Canada, where
he found that alpha particles are the nuclei of helium atoms
and that the radioactive decay of an element gives rise to an-
other element. Working with the chemist Frederick Soddy and
others, Rutherford traced the successive transformations of ra-
dioactive elements, such as uranium and radium, until they end
up as stable lead.

In 1907 Rutherford returned to England as professor of physics
at Manchester, where in 1911 he showed that the nuclear model
of the atom was the only one that could explain the observed scat-
tering of alpha particles by thin metal foils. Rutherford’s last im-
portant discovery, reported in 1919, was the disintegration of
nitrogen nuclei when bombarded with alpha particles, the first
example of the artificial transmutation of elements into other el-
ements. After other similar experiments, Rutherford suggested that
all nuclei contain hydrogen nuclei, which he called protons. He
also proposed that a neutral particle was present in nuclei as well.

In 1919 Rutherford became director of the Cavendish Lab-
oratory at Cambridge, where under his stimulus great strides
in understanding the nucleus continued to be made. James
Chadwick discovered the neutron there in 1932. The Cavendish
Laboratory was the site of the first accelerator for producing
high-energy particles. With the help of this accelerator, fusion
reactions in which light nuclei unite to form heavier nuclei were
observed for the first time.

Rutherford was not infallible: only a few years before the
discovery of fission and the building of the first nuclear reac-
tor, he dismissed the idea of practical uses for nuclear energy
as “moonshine.” He died in 1937 of complications of a hernia
and was buried near Newton in Westminster Abbey.
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explain the results, Rutherford found, was to picture an atom as being composed of a
tiny nucleus in which its positive charge and nearly all its mass are concentrated, with
the electrons some distance away (Fig. 4.3). With an atom being largely empty space,
it is easy to see why most alpha particles go right through a thin foil. However, when
an alpha particle happens to come near a nucleus, the intense electric field there scat-
ters it through a large angle. The atomic electrons, being so light, do not appreciably
affect the alpha particles.

The experiments of Geiger and Marsden and later work of a similar kind also 
supplied information about the nuclei of the atoms that composed the various tar-
get foils. The deflection of an alpha particle when it passes near a nucleus depends
on the magnitude of the nuclear charge. Comparing the relative scattering of alpha
particles by different foils thus provides a way to find the nuclear charges of the
atoms involved.

All the atoms of any one element turned out to have the same unique nuclear charge,
and this charge increased regularly from element to element in the periodic table. The
nuclear charges always turned out to be multiples of !e; the number Z of unit 
positive charges in the nuclei of an element is today called the atomic number of the 
element. We know now that protons, each with a charge !e, provide the charge on a
nucleus, so the atomic number of an element is the same as the number of protons in
the nuclei of its atoms.

Ordinary matter, then, is mostly empty space. The solid wood of a table, the steel
that supports a bridge, the hard rock underfoot, all are simply collections of tiny charged
particles comparatively farther away from one another than the sun is from the 
planets. If all the actual matter, electrons and nuclei, in our bodies could somehow be
packed closely together, we would shrivel to specks just visible with a microscope.

Rutherford Scattering Formula

The formula that Rutherford obtained for alpha particle scattering by a thin foil on the
basis of the nuclear model of the atom is

N(!) # (4.1)

This formula is derived in the Appendix to this chapter. The symbols in Eq. (4.1) have
the following meanings:

N(!) # number of alpha particles per unit area that reach the screen at a
scattering angle of !

Ni # total number of alpha particles that reach the screen
n # number of atoms per unit volume in the foil
Z # atomic number of the foil atoms
r # distance of the screen from the foil

KE # kinetic energy of the alpha particles
t # foil thickness

The predictions of Eq. (4.1) agreed with the measurements of Geiger and Marsden,
which supported the hypothesis of the nuclear atom. This is why Rutherford is credited

NintZ2e4

$$$
(8"#0)2r2 KE2 sin4(!!2)

Rutherford
scattering formula
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Figure 4.3 The Rutherford model
of the atom.
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with the “discovery” of the nucleus. Because N(!) is inversely proportional to sin4 (!!2)
the variation of N(!) with ! is very pronounced (Fig. 4.4): only 0.14 percent of the
incident alpha particles are scattered by more than 1°.

Nuclear Dimensions

In his derivation of Eq. (4.1) Rutherford assumed that the size of a target nucleus is
small compared with the minimum distance R to which incident alpha particles 
approach the nucleus before being deflected away. Rutherford scattering therefore gives
us a way to find an upper limit to nuclear dimensions.

Let us see what the distance of closest approach R was for the most energetic alpha
particles employed in the early experiments. An alpha particle will have its smallest R
when it approaches a nucleus head on, which will be followed by a 180° scattering.
At the instant of closest approach the initial kinetic energy KE of the particle is entirely
converted to electric potential energy, and so at that instant

KEinitial # PE #

since the charge of the alpha particle is 2e and that of the nucleus is Ze. Hence

R # (4.2)
2Ze2

$$
4"#0KEinitial

Distance of closest
approach

2Ze2

$
R

1
$
4"#0
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Figure 4.4 Rutherford scattering. N(!) is the number of alpha particles per unit area that reach the
screen at a scattering angle of !; N(180°) is this number for backward scattering. The experimental
findings follow this curve, which is based on the nuclear model of the atom.
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The maximum KE found in alpha particles of natural origin is 7.7 MeV, which is 
1.2 " 10%12 J. Since 1!4"#0 # 9.0 " 109 N & m2/C2, 

R #

# 3.8 " 10%16 Z m

The atomic number of gold, a typical foil material, is Z # 79, so that

R (Au) # 3.0 " 10%14 m

The radius of the gold nucleus is therefore less than 3.0 " 10%14 m, well under 
10%4 the radius of the atom as a whole.

In more recent years particles of much higher energies than 7.7 MeV have been
artificially accelerated, and it has been found that the Rutherford scattering formula
does indeed eventually fail to agree with experiment. These experiments and the in-
formation they provide on actual nuclear dimensions are discussed in Chap. 11.
The radius of the gold nucleus turns out to be about $15$ of the value of R (Au) found
above.

(2)(9.0 " 109 N & m2/C2)(1.6 " 10%19 C)2 Z
$$$$$

1.2 " 10%12 J

4.2 ELECTRON ORBITS

The planetary model of the atom and why it fails

The Rutherford model of the atom, so convincingly confirmed by experiment, pictures
a tiny, massive, positively charged nucleus surrounded at a relatively great distance by
enough electrons to render the atom electrically neutral as a whole. The electrons can-
not be stationary in this model, because there is nothing that can keep them in place
against the electric force pulling them to the nucleus. If the electrons are in motion,
however, dynamically stable orbits like those of the planets around the sun are pos-
sible (Fig. 4.5).

Let us look at the classical dynamics of the hydrogen atom, whose single electron
makes it the simplest of all atoms. We assume a circular electron orbit for convenience,
though it might as reasonably be assumed to be elliptical in shape. The centripetal
force

Fc #
m$2

$
r

Figure 4.5 Force balance in the
hydrogen atom.

Electron

r

–e
v

F F+e
Proton

Neutron Stars

T he density of nuclear matter is about 2.4 " 1017 kg/m3, which is equivalent to 4 bil-
lion tons per cubic inch. As discussed in Sec. 9.11, neutron stars are stars whose atoms

have been so compressed that most of their protons and electrons have fused into neutrons,
which are the most stable form of matter under enormous pressures. The densities of neu-
tron stars are comparable to those of nuclei: a neutron star packs the mass of one or two
suns into a sphere only about 10 km in radius. If the earth were this dense, it would fit into
a large apartment house.
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holding the electron in an orbit r from the nucleus is provided by the electric force

Fe #

between them. The condition for a dynamically stable orbit is

Fc # Fe

# (4.3)

The electron velocity $ is therefore related to its orbit radius r by the formula

$ # (4.4)

The total energy E of the electron in a hydrogen atom is the sum of its kinetic and
potential energies, which are

KE # m$2 PE # %

(The minus sign follows from the choice of PE # 0 at r # ', that is, when the 
electron and proton are infinitely far apart.) Hence

E # KE ! PE # %

Substituting for $ from Eq. (4.4) gives

E # %

E # % (4.5)

The total energy of the electron is negative. This holds for every atomic electron and
reflects the fact that it is bound to the nucleus. If E were greater than zero, an electron
would not follow a closed orbit around the nucleus.

Actually, of course, the energy E is not a property of the electron alone but is a prop-
erty of the system of electron ! nucleus. The effect of the sharing of E between the
electron and the nucleus is considered in Sec. 4.7.

Example 4.1

Experiments indicate that 13.6 eV is required to separate a hydrogen atom into a proton and an
electron; that is, its total energy is E # %13.6 eV. Find the orbital radius and velocity of the
electron in a hydrogen atom.

e2

$
8"#0r

Total energy of
hydrogen atom

e2

$
4"#0r

e2

$
8"#0r

e2

$
4"#0r

m$2

$
2

e2

$
4"#0r

1
$
2

e
$$
"4"#0m#r#

Electron velocity

e2

$
r2

1
$
4"#0

m$2

$
r

e2

$
r2

1
$
4"#0
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Solution

Since 13.6 eV # 2.2 " 10%18 J, from Eq. (4.5)

r # % # %

# 5.3 " 10%11 m

An atomic radius of this magnitude agrees with estimates made in other ways. The electron’s
velocity can be found from Eq. (4.4):

$ # #

# 2.2 " 106 m$s

Since $ (( c, we can ignore special relativity when considering the hydrogen atom.

The Failure of Classical Physics

The analysis above is a straightforward application of Newton’s laws of motion and
Coulomb’s law of electric force—both pillars of classical physics—and is in accord with
the experimental observation that atoms are stable. However, it is not in accord with
electromagnetic theory—another pillar of classical physics—which predicts that accel-
erated electric charges radiate energy in the form of em waves. An electron pursuing
a curved path is accelerated and therefore should continuously lose energy, spiraling
into the nucleus in a fraction of a second (Fig. 4.6).

But atoms do not collapse. This contradiction further illustrates what we saw in the
previous two chapters: The laws of physics that are valid in the macroworld do not
always hold true in the microworld of the atom.

1.6 " 10 %19 C
$$$$$$
"(4")(8#.85 "#10%12#F$m)(9#.1 " 1#0%31 k#g)(5.3#" 10%#11 m)#

e
$$
"4"#0m#r#

(1.6 " 10%19 C)2

$$$$$
(8")(8.85 " 10%12 F/m)( %2.2 " 10%18 J)

e2

$
8"#0E

Figure 4.6 An atomic electron
should, classically, spiral rapidly
into the nucleus as it radiates
energy due to its acceleration.

Electron

Proton+e

–e

Is Rutherford's Analysis Valid?

A n interesting question comes up at this point. When he derived his scattering formula,
Rutherford used the same laws of physics that prove such dismal failures when applied

to atomic stability. Might it not be that this formula is not correct and that in reality the atom
does not resemble Rutherford’s model of a small central nucleus surrounded by distant elec-
trons? This is not a trivial point. It is a curious coincidence that the quantum-mechanical
analysis of alpha particle scattering by thin foils yields precisely the same formula that Ruther-
ford found.

To verify that a classical calculation ought to be at least approximately correct, we note
that the de Broglie wavelength of an alpha particle whose speed is 2.0 " 107 m$s is

% # #

# 5.0 " 10%15 m

As we saw in Sec. 4.1, the closest an alpha particle with this wavelength ever gets to a gold
nucleus is 3.0 " 10%14 m, which is six de Broglie wavelengths. It is therefore just reasonable to
regard the alpha particle as a classical particle in the interaction. We are correct in thinking of
the atom in terms of Rutherford’s model, though the dynamics of the atomic electrons—which
is another matter—requires a nonclassical approach.

6.63 " 10%34 J & s
$$$$
(6.6 " 10%27 kg)(2.0 " 107 m$s)

h
$
m$
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Classical physics fails to provide a meaningful analysis of atomic structure because
it approaches nature in terms of “pure” particles and “pure” waves. In reality particles
and waves have many properties in common, though the smallness of Planck’s con-
stant makes the wave-particle duality imperceptible in the macroworld. The usefulness
of classical physics decreases as the scale of the phenomena under study decreases, and
we must allow for the particle behavior of waves and the wave behavior of particles to
understand the atom. In the rest of this chapter we shall see how the Bohr atomic
model, which combines classical and modern notions, accomplishes part of the latter
task. Not until we consider the atom from the point of view of quantum mechanics,
which makes no compromise with the intuitive notions we pick up in our daily lives,
will we find a really successful theory of the atom.

4.3 ATOMIC SPECTRA

Each element has a characteristic line spectrum

Atomic stability is not the only thing that a successful theory of the atom must account
for. The existence of spectral lines is another important aspect of the atom that finds
no explanation in classical physics.

We saw in Chap. 2 that condensed matter (solids and liquids) at all temperatures
emits em radiation in which all wavelengths are present, though with different
intensities. The observed features of this radiation were explained by Planck without
reference to exactly how it was produced by the radiating material or to the nature of
the material. From this it follows that we are witnessing the collective behavior of a
great many interacting atoms rather than the characteristic behavior of the atoms of a
particular element.

At the other extreme, the atoms or molecules in a rarefied gas are so far apart on
the average that they only interact during occasional collisions. Under these circum-
stances we would expect any emitted radiation to be characteristic of the particular
atoms or molecules present, which turns out to be the case.

When an atomic gas or vapor at somewhat less than atmospheric pressure is suitably
“excited,” usually by passing an electric current through it, the emitted radiation has a
spectrum which contains certain specific wavelengths only. An idealized arrangement for
observing such atomic spectra is shown in Fig. 4.7; actual spectrometers use diffraction

Atomic Structure 127

Figure 4.7 An idealized spectrometer.
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gratings. Figure 4.8 shows the emission line spectra of several elements. Every element
displays a unique line spectrum when a sample of it in the vapor phase is excited. Spec-
troscopy is therefore a useful tool for analyzing the composition of an unknown substance.

When white light is passed through a gas, the gas is found to absorb light of cer-
tain of the wavelengths present in its emission spectrum. The resulting absorption line
spectrum consists of a bright background crossed by dark lines that correspond to the
missing wavelengths (Fig. 4.9); emission spectra consist of bright lines on a dark back-
ground. The spectrum of sunlight has dark lines in it because the luminous part of the

Figure 4.8 Some of the principal lines in the emission spectra of hydrogen, helium, and mercury.

700 nm
Red

600 nm 500 nm 400 nm
VioletOrange Yellow Green Blue

Mercury

Helium

Hydrogen

Figure 4.9 The dark lines in the absorption spectrum of an element correspond to bright lines in its
emission spectrum.

Absorption spectrum
of sodium vapor

Emission spectrum
of sodium vapor

Gas atoms excited by electric currents in these tubes radiate light
of wavelengths characteristic of the gas used.
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sun, which radiates very nearly like a blackbody heated to 5800 K, is surrounded by
an envelope of cooler gas that absorbs light of certain wavelengths only. Most other
stars have spectra of this kind.

The number, intensity, and exact wavelengths of the lines in the spectrum of an 
element depend upon temperature, pressure, the presence of electric and magnetic
fields, and the motion of the source. It is possible to tell by examining its spectrum
not only what elements are present in a light source but much about their physical
state. An astronomer, for example, can establish from the spectrum of a star which 
elements its atmosphere contains, whether they are ionized, and whether the star is
moving toward or away from the earth.

Spectral Series

A century ago the wavelengths in the spectrum of an element were found to fall into
sets called spectral series. The first such series was discovered by J. J. Balmer in 1885
in the course of a study of the visible part of the hydrogen spectrum. Figure 4.10 shows
the Balmer series. The line with the longest wavelength, 656.3 nm, is designated
H&, the next, whose wavelength is 486.3 nm, is designated H', and so on. As the
wave-length decreases, the lines are found closer together and weaker in intensity until
the series limit at 364.6 nm is reached, beyond which there are no further separate
lines but only a faint continuous spectrum. Balmer’s formula for the wavelengths of
this series is

Balmer # R % % & n # 3, 4, 5, & & & (4.6)

The quantity R, known as the Rydberg constant, has the value

Rydberg constant R # 1.097 " 107 m%1 # 0.01097 nm%1

The H& line corresponds to n # 3, the H' line to n # 4, and so on. The series limit
corresponds to n # ', so that it occurs at a wavelength of 4!R, in agreement with
experiment.

The Balmer series contains wavelengths in the visible portion of the hydrogen spec-
trum. The spectral lines of hydrogen in the ultraviolet and infrared regions fall into
several other series. In the ultraviolet the Lyman series contains the wavelengths given
by the formula

1
$
n2

1
$
22

1
$
%

Figure 4.10 The Balmer series of hydrogen. The H& line is red, the H' line is blue, the H( and H)

lines are violet, and the other lines are in the near ultraviolet.
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Lyman # R % % & n # 2, 3, 4, & & & (4.7)

In the infrared, three spectral series have been found whose lines have the wavelengths
specified by the formulas

Paschen # R % % & n # 4, 5, 6, & & & (4.8)

Brackett # R % % & n # 5, 6, 7, & & & (4.9)

Pfund # R % % & n # 6, 7, 8, & & & (4.10)

These spectral series of hydrogen are plotted in terms of wavelength in Fig. 4.11; the
Brackett series evidently overlaps the Paschen and Pfund series. The value of R is the
same in Eqs. (4.6) to (4.10).

These observed regularities in the hydrogen spectrum, together with similar regu-
larities in the spectra of more complex elements, pose a definitive test for any theory
of atomic structure.

4.4 THE BOHR ATOM

Electron waves in the atom

The first theory of the atom to meet with any success was put forward in 1913 by Niels
Bohr. The concept of matter waves leads in a natural way to this theory, as de Broglie
found, and this is the route that will be followed here. Bohr himself used a different
approach, since de Broglie’s work came a decade later, which makes his achievement
all the more remarkable. The results are exactly the same, however.

We start by examining the wave behavior of an electron in orbit around a hydro-
gen nucleus. (In this chapter, since the electron velocities are much smaller than c, we
will assume that ( # 1 and for simplicity omit ( from the various equations.) The de
Broglie wavelength of this electron is

% #

where the electron velocity $ is that given by Eq. (4.4):

$ #

Hence

% # '( (4.11)
4"#0r
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Figure 4.11 The spectral series of
hydrogen. The wavelengths in
each series are related by simple
formulas.
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By substituting 5.3 " 10%11 m for the radius r of the electron orbit (see Example
4.1), we find the electron wavelength to be

% # '(((
# 33 " 10%11 m

This wavelength is exactly the same as the circumference of the electron orbit,

2"r # 33 " 10%11 m

The orbit of the electron in a hydrogen atom corresponds to one complete electron
wave joined on itself (Fig. 4.12)!

The fact that the electron orbit in a hydrogen atom is one electron wavelength in
circumference provides the clue we need to construct a theory of the atom. If we con-
sider the vibrations of a wire loop (Fig. 4.13), we find that their wavelengths always
fit an integral number of times into the loop’s circumference so that each wave joins
smoothly with the next. If the wire were perfectly elastic, these vibrations would 
continue indefinitely. Why are these the only vibrations possible in a wire loop? If
a fractional number of wavelengths is placed around the loop, as in Fig. 4.14, destructive

(4")(8.85 " 10%12 C2$N & m2)(5.3 " 10%11m)
$$$$$

9.1 " 10%31 kg
6.63 " 10%34 J & s
$$

1.6 " 10%19C

Figure 4.13 Some modes of vi-
bration of a wire loop. In each
case a whole number of wave-
lengths fit into the circumference
of the loop.

Circumference = 2 wavelengths

Circumference = 4 wavelengths

Circumference = 8 wavelengthsFigure 4.12 The orbit of the electron in a hydrogen atom corresponds to a complete electron de Broglie
wave joined on itself.

Electron path
De Broglie electron wave

Figure 4.14 A fractional number of wavelengths cannot persist because destructive interference will
occur.
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interference will occur as the waves travel around the loop, and the vibrations will die
out rapidly.

By considering the behavior of electron waves in the hydrogen atom as analogous
to the vibrations of a wire loop, then, we can say that

An electron can circle a nucleus only if its orbit contains an integral number of
de Broglie wavelengths.

This statement combines both the particle and wave characters of the electron since
the electron wavelength depends upon the orbital velocity needed to balance the pull
of the nucleus. To be sure, the analogy between an atomic electron and the standing
waves of Fig. 4.13 is hardly the last word on the subject, but it represents an illumi-
nating step along the path to the more profound and comprehensive, but also more
abstract, quantum-mechanical theory of the atom.

It is easy to express the condition that an electron orbit contain an integral number
of de Broglie wavelengths. The circumference of a circular orbit of radius r is 2"r, and
so the condition for orbit stability is

Niels Bohr (1884–1962) was
born and spent most of his life in
Copenhagen, Denmark. After re-
ceiving his doctorate at the uni-
versity there in 1911, Bohr went to
England to broaden his scientific
horizons. At Rutherford’s labora-
tory in Manchester, Bohr was in-
troduced to the just-discovered
nuclear model of the atom, which
was in conflict with the existing
principles of physics. Bohr realized

that it was “hopeless” to try to make sense of the atom in
the framework of classical physics alone, and he felt that the
quantum theory of light must somehow be the key to under-
standing atomic structure.

Back in Copenhagen in 1913, a friend suggested to Bohr
that Balmer’s formula for one set of the spectral lines of hydro-
gen might be relevant to his quest. “As soon as I saw Balmer’s
formula the whole thing was immediately clear to me,” Bohr
said later. To construct his theory, Bohr began with two revo-
lutionary ideas. The first was that an atomic electron can circle
its nucleus only in certain orbits, and the other was that an
atom emits or absorbs a photon of light when an electron jumps
from one permitted orbit to another.

What is the condition for a permitted orbit? To find out,
Bohr used as a guide what became known as the correspon-
dence principle: When quantum numbers are very large, quan-
tum effects should not be conspicuous, and the quantum the-
ory must then give the same results as classical physics.
Applying this principle showed that the electron in a permit-
ted orbit must have an angular momentum that is a multiple

of ) # h!2". A decade later Louis de Broglie explained this
quantization of angular momentum in terms of the wave na-
ture of a moving electron.

Bohr was able to account for all the spectral series of hy-
drogen, not just the Balmer series, but the publication of the
theory aroused great controversy. Einstein, an enthusiastic sup-
porter of the theory (which “appeared to me like a miracle—
and appears to me as a miracle even today,” he wrote many years
later), nevertheless commented on its bold mix of classical and
quantum concepts, “One ought to be ashamed of the successes
[of the theory] because they have been earned according to the
Jesuit maxim, ‘Let not thy left hand know what the other doeth.’” 
Other noted physicists were more deeply disturbed: Otto Stern
and Max von Laue said they would quit physics if Bohr were
right. (They later changed their minds.) Bohr and others tried
to extend his model to many-electron atoms with occasional
success—for instance, the correct prediction of the properties of
the then-unknown element hafnium—but real progress had to
wait for Wolfgang Pauli’s exclusion principle of 1925.

In 1916 Bohr returned to Rutherford’s laboratory, where he
stayed until 1919. Then an Institute of Theoretical Physics was
created for him in Copenhagen, and he directed it until his
death. The institute was a magnet for quantum theoreticians
from all over the world, who were stimulated by the exchange
of ideas at regular meetings there. Bohr received the Nobel Prize
in 1922. His last important work came in 1939, when he used
an analogy between a large nucleus and a liquid drop to ex-
plain why nuclear fission, which had just been discovered, oc-
curs in certain nuclei but not in others. During World War II
Bohr contributed to the development of the atomic bomb at
Los Alamos, New Mexico. After the war, Bohr returned to
Copenhagen, where he died in 1962.
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n% # 2"rn n # 1, 2, 3, . . . (4.12)

where rn designates the radius of the orbit that contain n wavelengths. The integer n
is called the quantum number of the orbit. Substituting for %, the electron wavelength
given by Eq. (4.11), yields

'( # 2"rn

and so the possible electron orbits are those whose radii are given by

rn # n # 1, 2, 3, . . . (4.13)

The radius of the innermost orbit is customarily called the Bohr radius of the hydrogen
atom and is denoted by the symbol a0:

Bohr radius a0 # r1 # 5.292 " 10%11 m

The other radii are given in terms of a0 by the formula

rn # n2a0 (4.14)

4.5 ENERGY LEVELS AND SPECTRA

A photon is emitted when an electron jumps from one energy level to a
lower level

The various permitted orbits involve different electron energies. The electron energy
En is given in terms of the orbit radius rn by Eq. (4.5) as

En # %

Substituting for rn from Eq (4.13), we see that

Energy levels En # % % & # n # 1, 2, 3, & & & (4.15)

E1 # %2.18 " 10%18 J # %13.6 eV

The energies specified by Eq. (4.15) are called the energy levels of the hydrogen atom
and are plotted in Fig. 4.15. These levels are all negative, which signifies that the elec-
tron does not have enough energy to escape from the nucleus. An atomic electron can
have only these energies and no others. An analogy might be a person on a ladder,
who can stand only on its steps and not in between.
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The lowest energy level E1 is called the ground state of the atom, and the higher
levels E2, E3, E4, . . . are called excited states. As the quantum number n increases,
the corresponding energy En approaches closer to 0. In the limit of n # ', E' # 0
and the electron is no longer bound to the nucleus to form an atom. A positive
energy for a nucleus-electron combination means that the electron is free and has
no quantum conditions to fulfill; such a combination does not constitute an atom,
of course.

The work needed to remove an electron from an atom in its ground state is called
its ionization energy. The ionization energy is accordingly equal to %E1, the energy
that must be provided to raise an electron from its ground state to an energy of E # 0,
when it is free. In the case of hydrogen, the ionization energy is 13.6 eV since the
ground-state energy of the hydrogen atom is %13.6 eV. Figure 7.10 shows the ioniza-
tion energies of the elements.

Figure 4.15 Energy levels of the hydrogen atom.
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Example 4.2

An electron collides with a hydrogen atom in its ground state and excites it to a state of n
# 3. How much energy was given to the hydrogen atom in this inelastic (KE not conserved)
collision?

Solution

From Eq. (4.15) the energy change of a hydrogen atom that goes from an initial state of quan-
tum number ni to a final state of quantum number nf is

*E # Ef % Ei # % # E1 % % &
Here ni # 1, nf # 3, and E1 # %13.6 eV, so

*E # %13.6 % % & eV # 12.1 eV

Example 4.3

Hydrogen atoms in states of high quantum number have been created in the laboratory and
observed in space. They are called Rydberg atoms. (a) Find the quantum number of the Bohr
orbit in a hydrogen atom whose radius is 0.0100 mm. (b) What is the energy of a hydrogen
atom in this state?

Solution

(a) From Eq. (4.14) with rn # 1.00 " 10%5 m,

n # '( # '(( # 435

(b) From Eq. (4.15),

En # # # %7.19 " 10%5 eV

Rydberg atoms are obviously extremely fragile and are easily ionized, which is why they are
found in nature only in the near-vacuum of space. The spectra of Rydberg atoms range down
to radio frequencies and their existence was established from radio telescope data.

Origin of Line Spectra

We must now confront the equations developed above with experiment. An especially
striking observation is that atoms exhibit line spectra in both emission and absorption.
Do such spectra follow from our model?

The presence of discrete energy levels in the hydrogen atom suggests the connec-
tion. Let us suppose that when an electron in an excited state drops to a lower state,
the lost energy is emitted as a single photon of light. According to our model, elec-
trons cannot exist in an atom except in certain specific energy levels. The jump of an
electron from one level to another, with the difference in energy between the levels 
being given off all at once in a photon rather than in some more gradual manner, fits
in well with this model.
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If the quantum number of the initial (higher-energy) state is ni and the quantum
number of the final (lower-energy) state is nf, we are asserting that

Initial energy ! final energy " photon energy

Ei !Ef " h! (4.16)

where ! is the frequency of the emitted photon. From Eq. (4.15) we have

Ei ! Ef " E1! ! " " !E1! ! "
We recall that E1 is a negative quantity (!13.6 eV, in fact), so !E1 is a positive quan-
tity. The frequency of the photon released in this transition is therefore

! " " ! ! ! " (4.17)

Since " " c#!, 1#" " !#c and

" ! ! ! " (4.18)

Equation (4.18) states that the radiation emitted by excited hydrogen atoms
should contain certain wavelengths only. These wavelengths, furthermore, fall into
definite sequences that depend upon the quantum number nf of the final energy
level of the electron (Fig. 4.16). Since ni # nf in each case, in order that there be
an excess of energy to be given off as a photon, the calculated formulas for the first
five series are

Lyman nf " 1: " ! ! ! " n " 2, 3, 4, $ $ $
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Quantization in the Atomic World

S equences of energy levels are characteristic of all atoms, not just those of hydrogen. As in
the case of a particle in a box, the confinement of an electron to a region of space leads to

restrictions on its possible wave functions that in turn limit the possible energies to well-defined
values only. The existence of atomic energy levels is a further example of the quantization, or
graininess, of physical quantities on a microscopic scale.

In the world of our daily lives, matter, electric charge, energy, and so forth appear to be con-
tinuous. In the world of the atom, in contrast, matter is composed of elementary particles that
have definite rest masses, charge always comes in multiples of &e or !e, electromagnetic waves
of frequency ! appear as streams of photons each with the energy h!, and stable systems of par-
ticles, such as atoms, can possess only certain energies. As we shall find, other quantities in na-
ture are also quantized, and this quantization enters into every aspect of how electrons, protons,
and neutrons interact to endow the matter around us (and of which we consist) with its famil-
iar properties.

bei48482_ch04.qxd  1/29/02  4:50 PM  Page 136



Atomic Structure 137

Balmer nf # 2: # % % % & n # 3, 4, 5, & & &

Paschen nf # 3: # % % % & n # 4, 5, 6, & & &

Brackett nf # 4: # % % % & n # 5, 6, 7, & & &

Pfund nf # 5: # % % % & n # 6, 7, 8, & & &

These sequences are identical in form with the empirical spectral series discussed earlier.
The Lyman series corresponds to nf # 1; the Balmer series corresponds to nf # 2; the
Paschen series corresponds to nf # 3; the Brackett series corresponds to nf # 4; and the
Pfund series corresponds to nf # 5.

Our final step is to compare the value of the constant term in the above equations with
that of the Rydberg constant in Eqs. (4.6) to (4.10). The value of the constant term is

% #

#

# 1.097 " 107 m%1

(9.109 " 10%31 kg)(1.602 " 10%19 C)4
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Figure 4.16 Spectral lines originate in transitions between energy levels. Shown are the spectral series
of hydrogen. When n # ', the electron is free.
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which is indeed the same as R. Bohr’s model of the hydrogen atom is therefore in accord
with the spectral data.

Example 4.4

Find the longest wavelength present in the Balmer series of hydrogen, corresponding to the H+ line.

Solution

In the Balmer series the quantum number of the final state is nf # 2. The longest wavelength in
this series corresponds to the smallest energy difference between energy levels. Hence the initial
state must be ni # 3 and

# R % % & # R % % & # 0.139R

% # # # 6.56 " 10%7m # 656 nm

This wavelength is near the red end of the visible spectrum.

4.6 CORRESPONDENCE PRINCIPLE

The greater the quantum number, the closer quantum physics approaches
classical physics

Quantum physics, so different from classical physics in the microworld beyond reach
of our senses, must nevertheless give the same results as classical physics in the
macroworld where experiments show that the latter is valid. We have already seen that
this basic requirement is true for the wave theory of moving bodies. We shall now find
that it is also true for Bohr’s model of the hydrogen atom.

According to electromagnetic theory, an electron moving in a circular orbit radi-
ates em waves whose frequencies are equal to its frequency of revolution and to har-
monics (that is, integral multiples) of that frequency. In a hydrogen atom the electron’s
speed is

$ #

according to Eq. (4.4), where r is the radius of its orbit. Hence the frequency of
revolution f of the electron is

f # # #

The radius rn of a stable orbit is given in terms of its quantum number n by Eq. (4.13)
as
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and so the frequency of revolution is

f # % & # % & (4.19)

Example 4.5

(a) Find the frequencies of revolution of electrons in n # 1 and n # 2 Bohr orbits. (b) What is
the frequency of the photon emitted when an electron in an n # 2 orbit drops to an n # 1 or-
bit? (c) An electron typically spends about 10%8 s in an excited state before it drops to a lower
state by emitting a photon. How many revolutions does an electron in an n # 2 Bohr orbit make
in 1.00 " 10%8 s?

Solution

(a) From Eq. (4.19),

f1 # % & # % & (2) # 6.58 " 1015 rev/s

f2 # % & # # 0.823 " 1015 rev/s

(b) From Eq. (4.17),

* # % % & # % &% % & # 2.88 " 1015 Hz

This frequency is intermediate between f1 and f2.

(c) The number of revolutions the electron makes is

N # f2 *t # (8.23 " 1014 rev/s)(1.00"10%8 s) # 8.23 " 106 rev

The earth takes 8.23 million y to make this many revolutions around the sun.

Under what circumstances should the Bohr atom behave classically? If the electron
orbit is so large that we might be able to measure it directly, quantum effects ought
not to dominate. An orbit 0.01 mm across, for instance, meets this specification. As
we found in Example 4.3, its quantum number is n # 435.

What does the Bohr theory predict such an atom will radiate? According to Eq.
(4.17), a hydrogen atom dropping from the nith energy level to the nf th energy level
emits a photon whose frequency is

* # % % &
Let us write n for the initial quantum number ni and n % p (where p # 1, 2, 3, . . .)
for the final quantum number nf. With this substitution,

* # ) % * # ) *
When ni and nf are both very large, n is much greater than p, and

2np % p2 + 2np
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so that

* # % & (4.20)

When p # 1, the frequency * of the radiation is exactly the same as the frequency
of rotation f of the orbital electron given in Eq. (4.19). Multiples of this frequency are
radiated when p # 2, 3, 4, . . . . Hence both quantum and classical pictures of the
hydrogen atom make the same predictions in the limit of very large quantum num-
bers. When n # 2, Eq. (4.19) predicts a radiation frequency that differs from that given
by Eq. (4.20) by almost 300 percent. When n # 10,000, the discrepancy is only about
0.01 percent.

The requirement that quantum physics give the same results as classical physics in
the limit of large quantum numbers was called by Bohr the correspondence princi-
ple. It has played an important role in the development of the quantum theory of
matter.

Bohr himself used the correspondence principle in reverse, so to speak, to look for
the condition for orbit stability. Starting from Eq. (4.19) he was able to show that stable
orbits must have electron orbital angular momenta of

m$r # n # 1, 2, 3, . . . (4.21)

Since the de Broglie electron wavelength is % # h!m$, Eq. (4.21) is the same as
Eq. (4.12), n% # 2"r, which states that an electron orbit must contain an integral num-
ber of wavelengths.

4.7 NUCLEAR MOTION

The nuclear mass affects the wavelengths of spectral lines

Thus far we have been assuming that the hydrogen nucleus (a proton) remains
stationary while the orbital electron revolves around it. What must actually happen, of
course, is that both nucleus and electron revolve around their common center of mass,
which is very close to the nucleus because the nuclear mass is much greater than that
of the electron (Fig. 4.17). A system of this kind is equivalent to a single particle of
mass m, that revolves around the position of the heavier particle. (This equivalence is
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Frequency of
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Figure 4.17 Both the electron and nucleus of a hydrogen atom revolve around a common center of
mass (not to scale !).
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demonstrated in Sec. 8.6.) If m is the electron mass and M the nuclear mass, then m,
is given by

Reduced mass m, # (4.22)

The quantity m, is called the reduced mass of the electron because its value is less
than m.

To take into account the motion of the nucleus in the hydrogen atom, then, all we
need do is replace the electron with a particle of mass m,. The energy levels of the
atom then become

E,n # % % & # % &% & (4.23)

Owing to motion of the nucleus, all the energy levels of hydrogen are changed by the
fraction

# # 0.99945

This represents an increase of 0.055 percent because the energies En, being smaller in
absolute value, are therefore less negative.

The use of Eq. (4.23) in place of (4.15) removes a small but definite discrepancy
between the predicted wavelengths of the spectral lines of hydrogen and the measured
ones. The value of the Rydberg constant R to eight significant figures without correct-
ing for nuclear motion is 1.0973731 " 107 m%1; the correction lowers it to 1.0967758
" 107 m%1.

The notion of reduced mass played an important part in the discovery of deuterium,
a variety of hydrogen whose atomic mass is almost exactly double that of ordinary
hydrogen because its nucleus contains a neutron as well as a proton. About one
hydrogen atom in 6000 is a deuterium atom. Because of the greater nuclear mass, the
spectral lines of deuterium are all shifted slightly to wavelengths shorter than the
corresponding ones of ordinary hydrogen. Thus the H& line of deuterium, which arises
from a transition from the n # 3 to the n # 2 energy level, occurs at a wavelength of
656.1 nm, whereas the H& line of hydrogen occurs at 656.3 nm. This difference in
wavelength was responsible for the identification of deuterium in 1932 by the 
American chemist Harold Urey.

Example 4.6

A positronium “atom” is a system that consists of a positron and an electron that orbit each
other. Compare the wavelengths of the spectral lines of positronium with those of ordinary
hydrogen.

Solution

Here the two particles have the same mass m, so the reduced mass is
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where m is the electron mass. From Eq. (4.23) the energy levels of a positronium “atom” are

E,n # % & #

This means that the Rydberg constant—the constant term in Eq. (4.18)—for positronium is half
as large as it is for ordinary hydrogen. As a result the wavelengths in the positronium spectral
lines are all twice those of the corresponding lines in the hydrogen spectrum.

Example 4.7

A muon is an unstable elementary particle whose mass is 207me and whose charge is either !e
or %e. A negative muon (+%) can be captured by a nucleus to form a muonic atom. (a) A proton
captures a +%. Find the radius of the first Bohr orbit of this atom. (b) Find the ionization energy
of the atom.

Solution

(a) Here m # 207me and M # 1836me, so the reduced mass is

m, # # # 186me

According to Eq. (4.13) the orbit radius corresponding to n # 1 is

r1 # 

where r1 # a0 # 5.29 " 10%11 m. Hence the radius r, that corresponds to the reduced mass
m, is

r,1 # % & r1 # % & a0 # 2.85 " 10%13 m

The muon is 186 times closer to the proton than an electron would be, so a muonic hydrogen
atom is much smaller than an ordinary hydrogen atom.

(b) From Eq. (4.23) we have, with n # 1 and E1 # %13.6 eV,

E,1 # % & E1 # 186E1 # %2.53 " 103 eV # %2.53 keV

The ionization energy is therefore 2.53 keV, 186 times that for an ordinary hydrogen atom.

4.8 ATOMIC EXCITATION

How atoms absorb and emit energy

There are two main ways in which an atom can be excited to an energy above its
ground state and thereby become able to radiate. One of these ways is by a collision
with another particle in which part of their joint kinetic energy is absorbed by the
atom. Such an excited atom will return to its ground state in an average of 10%8 s by
emitting one or more photons (Fig. 4.18).

To produce a luminous discharge in a rarefied gas, an electric field is established
that accelerates electrons and atomic ions until their kinetic energies are sufficient to

m,
$
m

me
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Figure 4.18 Excitation by colli-
sion. Some of the available energy
is absorbed by one of the atoms,
which goes into an excited energy
state. The atom then emits a pho-
ton in returning to its ground
(normal) state.
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excite atoms they collide with. Because energy transfer is a maximum when the colliding
particles have the same mass (see Fig. 12.22), the electrons in such a discharge are
more effective than the ions in providing energy to atomic electrons. Neon signs and
mercury-vapor lamps are familiar examples of how a strong electric field applied
between electrodes in a gas-filled tube leads to the emission of the characteristic spec-
tral radiation of that gas, which happens to be reddish light in the case of neon and
bluish light in the case of mercury vapor.

Another excitation mechanism is involved when an atom absorbs a photon of light
whose energy is just the right amount to raise the atom to a higher energy level. For
example, a photon of wavelength 121.7 nm is emitted when a hydrogen atom in the
n ! 2 state drops to the n ! 1 state. Absorbing a photon of wavelength 121.7 nm by
a hydrogen atom initially in the n ! 1 state will therefore bring it up to the n ! 2
state (Fig. 4.19). This process explains the origin of absorption spectra.

Auroras are caused by streams of fast protons and electrons from the sun that excite atoms in
the upper atmosphere. The green hues of an auroral display come from oxygen, and the reds
originate in both oxygen and nitrogen. This aurora occurred in Alaska.

Figure 4.19 How emission and absorption spectral lines originate.
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When white light, which contains all wavelengths, is passed through hydrogen gas,
photons of those wavelengths that correspond to transitions between energy levels are
absorbed. The resulting excited hydrogen atoms reradiate their excitation energy almost
at once, but these photons come off in random directions with only a few in the same
direction as the original beam of white light (Fig. 4.20). The dark lines in an absorp-
tion spectrum are therefore never completely black but only appear so by contrast with
the bright background. We expect the lines in the absorption spectrum of any element
to coincide with those in its emission spectrum that represent transitions to the ground
state, which agrees with observation (see Fig. 4.9).

Franck-Hertz Experiment

Atomic spectra are not the only way to investigate energy levels inside atoms. A series
of experiments based on excitation by collision was performed by James Franck and
Gustav Hertz (a nephew of Heinrich Hertz) starting in 1914. These experiments demon-
strated that atomic energy levels indeed exist and, furthermore, that the ones found in
this way are the same as those suggested by line spectra.

Franck and Hertz bombarded the vapors of various elements with electrons of known
energy, using an apparatus like that shown in Fig. 4.21. A small potential difference
V0 between the grid and collecting plate prevents electrons having energies less than
a certain minimum from contributing to the current I through the ammeter. As the
accelerating potential V is increased, more and more electrons arrive at the plate and
I rises (Fig. 4.22).

Figure 4.20 The dark lines in an absorption spectrum are never totally dark.
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Figure 4.21 Apparatus for the Franck-Hertz experiment.
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If KE is conserved when an electron collides with one of the atoms in the vapor,
the electron merely bounces off in a new direction. Because an atom is much heavier
than an electron, the electron loses almost no KE in the process. After a certain criti-
cal energy is reached, however, the plate current drops abruptly. This suggests that an
electron colliding with one of the atoms gives up some or all of its KE to excite the
atom to an energy level above its ground state. Such a collision is called inelastic, in
contrast to an elastic collision in which KE is conserved. The critical electron energy
equals the energy needed to raise the atom to its lowest excited state.

Then, as the accelerating potential V is raised further, the plate current again
increases, since the electrons now have enough energy left to reach the plate after under-
going an inelastic collision on the way. Eventually another sharp drop in plate current
occurs, which arises from the excitation of the same energy level in other atoms by the
electrons. As Fig. 4.22 shows, a series of critical potentials for a given atomic vapor is
obtained. Thus the higher potentials result from two or more inelastic collisions and
are multiples of the lowest one.

To check that the critical potentials were due to atomic energy levels, Franck and
Hertz observed the emission spectra of vapors during electron bombardment. In the
case of mercury vapor, for example, they found that a minimum electron energy of
4.9 eV was required to excite the 253.6-nm spectral line of mercury—and a photon
of 253.6-nm light has an energy of just 4.9 eV. The Franck-Hertz experiments were
performed shortly after Bohr announced his theory of the hydrogen atom, and they
independently confirmed his basic ideas.

4.9 THE LASER

How to produce light waves all in step

The laser is a device that produces a light beam with some remarkable properties:

1 The light is very nearly monochromatic.
2 The light is coherent, with the waves all exactly in phase with one another (Fig.4.23).

Figure 4.22 Results of the Franck-Hertz experiment, showing critical potentials in mercury vapor.
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Figure 4.23 A laser produces a
beam of light  whose waves all
have the same frequency  (mono-
chromatic) and are in phase with
one another  (coherent). The
beam is also well collimated and
so spreads out very little, even
over long distances.

Monochromatic,
coherent light

Ordinary light

Monochromatic,
incoherent light

bei48482_ch04.qxd  1/14/02  12:20 AM  Page 145



146 Chapter Four

3 A laser beam diverges hardly at all. Such a beam sent from the earth to a mirror left
on the moon by the Apollo 11 expedition remained narrow enough to be detected on
its return to the earth, a total distance of over three-quarters of a million kilometers.
A light beam produced by any other means would have spread out too much for this
to be done.
4 The beam is extremly intense, more intense by far than the light from any other
source. To achieve an energy density equal to that in some laser beams, a hot object
would have to be at a temperature of 1030 K.

The last two of these properties follow from the second of them. 
The term laser stands for light amplification by stimulated emission of radiation.

The key to the laser is the presence in many atoms of one or more excited energy lev-
els whose lifetimes may be 10%3 s or more instead of the usual 10%8 s. Such relatively
long-lived states are called metastable (temporarily stable); see Fig. 4.24.

Three kinds of transition involving electromagnetic radiation are possible between
two energy levels, E0 and E1, in an atom (Fig. 4.25). If the atom is initially in the
lower state E0, it can be raised to E1 by absorbing a photon of energy E1 % E0 #
h*. This process is called stimulated absorption. If the atom is initially in the upper
state E1, it can drop to E0 by emitting a photon of energy h*. This is spontaneous
emission.

Einstein, in 1917, was the first to point out a third possibility, stimulated emis-
sion, in which an incident photon of energy h* causes a transition from E1 to E0.
In stimulated emission, the radiated light waves are exactly in phase with the
incident ones, so the result is an enhanced beam of coherent light. Einstein
showed that stimulated emission has the same probability as stimulated absorp-
tion (see Sec. 9.7). That is, a photon of energy h* incident on an atom in the upper

Figure 4.24 An atom can exist in a metastable energy level for a longer time before radiating than it
can in an ordinary energy level.
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Figure 4.25 Transitions between two energy levels in an atom can occur by stimulated absorption,
spontaneous emission, and stimulated emission.
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state E1 has the same likelihood of causing the emission of another photon of
energy h* as its likelihood of being absorbed if it is incident on an atom in the lower
state E0.

Stimulated emission involves no novel concepts. An analogy is a harmonic oscilla-
tor, for instance a pendulum, which has a sinusoidal force applied to it whose period
is the same as its natural period of vibration. If the applied force is exactly in phase
with the pendulum swings, the amplitude of the swings increases. This corresponds
to stimulated absorption. However, if the applied force is 180° out of phase with the
pendulum swings, the amplitude of the swings decreases. This corresponds to stimu-
lated emission.

A three-level laser, the simplest kind, uses an assembly of atoms (or molecules)
that have a metastable state h* in energy above the ground state and a still higher ex-
cited state that decays to the metastable state (Fig. 4.26). What we want is more atoms
in the metastable state than in the ground state. If we can arrange this and then shine
light of frequency * on the assembly, there will be more stimulated emissions from
atoms in the metastable state than stimulated absorptions by atoms in the ground state.
The result will be an amplification of the original light. This is the concept that un-
derlies the operation of the laser.

The term population inversion describes an assembly of atoms in which the ma-
jority are in energy levels above the ground state; normally the ground state is occu-
pied to the greatest extent.

A number of ways exist to produce a population inversion. One of them, called
optical pumping, is illustrated in Fig. 4.27. Here an external light source is used some
of whose photons have the right frequency to raise ground-state atoms to the excited
state that decays spontaneously to the desired metastable state.

Why are three levels needed? Suppose there are only two levels, a metastable state
h* above the ground state. The more photons of frequency * we pump into the assembly

Charles H. Townes (1915– ) was
born in Greenville, South Carolina,
and attended Furman University
there. After graduate study at Duke
University and the California Insti-
tute of Technology, he spent 1939
to 1947 at the Bell Telephone
Laboratories designing radar-
controlled bombing systems.
Townes then joined the physics de-
partment of Columbia University.
In 1951, while sitting on a park

bench, the idea for the maser (microwave amplification by
stimulated emission of radiation) occurred to him as a way to
produce high-intensity microwaves, and in 1953 the first maser
began operating. In this device ammonia (NH3) molecules were
raised to an excited vibrational state and then fed into a reso-
nant cavity where, as in a laser, stimulated emission produced
a cascade of photons of identical wavelength, here 1.25 cm in
the microwave part of the spectrum. “Atomic clocks” of great
accuracy are based on this concept, and solid-state maser am-
plifiers are used in such applications as radioastronomy.

In 1958 Townes and Arthur Schawlow attracted much at-
tention with a paper showing that a similar scheme ought to
be possible at optical wavelengths. Slightly earlier Gordon
Gould, then a graduate student at Columbia, had come to the
same conclusion, but did not publish his calculations at once
since that would prevent securing a patent. Gould tried to de-
velop the laser—his term—in private industry, but the De-
fense Department classified as secret the project (and his orig-
inal notebooks) and denied him clearance to work on it.
Finally, twenty years later, Gould succeeded in establishing his
priority and received two patents on the laser, and still later,
a third. The first working laser was built by Theodore Maiman
at Hughes Research Laboratories in 1960. In 1964 Townes,
along with two Russian laser pioneers, Aleksander Prokhorov
and Nikolai Basov, was awarded a Nobel Prize. In 1981
Schawlow shared a Nobel Prize for precision spectroscopy
using lasers.

Soon after its invention, the laser was spoken of as a “solu-
tion looking for a problem” because few applications were then
known for it. Today, of course, lasers are widely employed for
a variety of purposes.
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Figure 4.26 The principle of the laser.
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Figure 4.27 The ruby laser. In order for stimulated emission to exceed stimulated absorption, more than half the Cr3+ ions in the ruby
rod must be in the metastable state. This laser produces a pulse of red light after each flash of the lamp.

Radiationless transition

Laser transition
694.3 nm

Optical pumping
550 nm

Ground state

1.79 eV

2.25 eV

Metastable state

Cr3+ ion

Xenon flash lamp

Ruby rod

Partly transparent
mirror

Mirror

of atoms, the more upward transitions there will be from the ground state to the
metastable state. However, at the same time the pumping will stimulate downward
transitions from the metastable state to the ground state. When half the atoms are in
each state, the rate of stimulated emissions will equal the rate of stimulated absorp-
tions, so the assembly cannot ever have more than half its atoms in the metastable
state. In this situation laser amplification cannot occur. A population inversion is only
possible when the stimulated absorptions are to a higher energy level than the
metastable one from which the stimulated emission takes place, which prevents the
pumping from depopulating the metastable state.

In a three-level laser, more than half the atoms must be in the metastable state for
stimulated induced emission to predominate. This is not the case for a four-level laser.
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As in Fig. 4.28, the laser transition from the metastable state ends at an unstable in-
termediate state rather than at the ground state. Because the intermediate state decays
rapidly to the ground state, very few atoms are in the intermediate state. Hence even
a modest amount of pumping is enough to populate the metastable state to a greater
extent than the intermediate state, as required for laser amplification.

Practical Lasers

The first successful laser, the ruby laser, is based on the three energy levels in the
chromium ion Cr3! shown in Fig. 4.27. A ruby is a crystal of aluminum oxide, Al2O3,

Figure 4.28 A four-level laser.
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A robot arm carries a laser for cutting fabric in a clothing factory. 
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in which some of the Al3+ ions are replaced by Cr3+ ions, which are responsible for
the red color. A Cr3+ ion has a metastable level whose lifetime is about 0.003 s. In the
ruby laser, a xenon flash lamp excites the Cr3+ ions to a level of higher energy from
which they fall to the metastable level by losing energy to other ions in the crystal.
Photons from the spontaneous decay of some Cr3+ ions are reflected back and forth
between the mirrored ends of the ruby rod, stimulating other excited Cr3+ ions to ra-
diate. After a few microseconds the result is a large pulse of monochromatic, coherent
red light from the partly transparent end of the rod.

The rod’s length is made precisely an integral number of half-wavelengths long, so
the radiation trapped in it forms an optical standing wave. Since the stimulated emis-
sions are induced by the standing wave, their waves are all in step with it.

The common helium-neon gas laser achieves a population inversion in a differ-
ent way. A mixture of about 10 parts of helium and 1 part of neon at a low pressure
(,1 torr) is placed in a glass tube that has parallel mirrors, one of them partly trans-
parent, at both ends. The spacing of the mirrors is again (as in all lasers) equal to an
integral number of half-wavelengths of the laser light. An electric discharge is pro-
duced in the gas by means of electrodes outside the tube connected to a source of
high-frequency alternating current, and collisions with electrons from the discharge
excite He and Ne atoms to metastable states respectively 20.61 and 20.66 eV above
their ground states (Fig. 4.29). Some of the excited He atoms transfer their energy to
ground-state Ne atoms in collisions, with the 0.05 eV of additional energy being pro-
vided by the kinetic energy of the atoms. The purpose of the He atoms is thus to help
achieve a population inversion in the Ne atoms.

The laser transition in Ne is from the metastable state at 20.66 eV to an ex-
cited state at 18.70 eV, with the emission of a 632.8-nm photon. Then another
photon is spontaneously emitted in a transition to a lower metastable state; this
transition yields only incoherent light. The remaining excitation energy is lost in
collisions with the tube walls. Because the electron impacts that excite the He and
Ne atoms occur all the time, unlike the pulsed excitation from the xenon flash lamp
in a ruby laser, a He-Ne laser operates continuously. This is the laser whose narrow
red beam is used in supermarkets to read bar codes. In a He-Ne laser, only a tiny

Figure 4.29 The helium-neon laser. In a four-level  laser such as this, continuous operation is possi-
ble. Helium-neon lasers are commonly used to read bar codes.
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fraction (one in millions) of the atoms present participates in the laser process at
any moment.

Many other types of laser have been devised. A number of them employ molecules
rather than atoms. Chemical lasers are based on the production by chemical reactions
of molecules in metastable excited states. Such lasers are efficient and can be very pow-
erful: one chemical laser, in which hydrogen and fluorine combine to form hydrogen
fluoride, has generated an infrared beam of over 2 MW. Dye lasers use dye molecules
whose energy levels are so close together that they can “lase” over a virtually continu-
ous range of wavelengths (see Sec. 8.7). A dye laser can be tuned to any desired
wavelength in its range. Nd:YAG lasers, which use the glassy solid yttrium aluminum
garnet with neodymium as an impurity, are helpful in surgery because they seal small
blood vessels while cutting through tissue by vaporizing water in the path of their
beams. Powerful carbon dioxide gas lasers with outputs up to many kilowatts are
used industrially for the precise cutting of almost any material, including steel, and for
welding.

Tiny semiconductor lasers by the million process and transmit information today.
(How such lasers work is described in Chap. 10.) In a compact disk player, a semi-
conductor laser beam is focused to a spot a micrometer (10–6 m) across to read data
coded as pits that appear as dark spots on a reflective disk 12 cm in diameter. A com-
pact disk can store over 600 megabytes of digital data, about 1000 times as much as
the floppy disks used in personal computers. If the stored data is digitized music, the
playing time can be over an hour.

Semiconductor lasers are ideal for fiber-optic transmission lines in which the elec-
tric signals that would normally be sent along copper wires are first converted into a
series of pulses according to a standard code. Lasers then turn the pulses into flashes
of infrared light that travel along thin (5–50 +m diameter) glass fibers and at the other
end are changed back into electric signals. Over a million telephone conversations can
be carried by a single fiber; by contrast, no more than 32 conversations can be carried
at the same time by a pair of wires. Telephone fiber-optic systems today link many
cities and exchanges within cities everywhere, and fiber-optic cables span the world’s
seas and oceans.

Chirped Pulse Amplification

T he most powerful lasers are pulsed, which produces phenomenal outputs for very short
periods. The petawatt (1015 W) threshold was crossed in 1996 with pulses less than a

trillionth of a second long—not all that much energy per pulse, but at a rate of delivery over
1000 times that of the entire electrical grid of the United States. An ingenious method called
chirped pulse amplification made this possible without the laser apparatus itself being destroyed
in the process. What was done was to start with a low-power laser pulse that was quite short,
only 0.1 picosecond (10%13 s). Because the pulse was short, it consisted of a large span of wave-
lengths, as discussed in Sec. 3.7 (see Figs. 3.13 and 3.14). A diffraction grating then spread out
the light into different paths according to wavelength, which stretched the pulse to 3 nanosec-
onds (3 " 10–9 s), 30,000 times longer. The result was to decrease the peak power so that laser
amplifiers could boost the energy of each beam. Finally the amplified beams, each of slightly
different wavelength, were recombined by another grating to produce a pulse less than 0.5 pi-
coseconds long whose power was 1.3 petawatts.
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Appendix to  Chapter  4

Rutherford Scattering

R utherford’s model of the atom was accepted because he was able to arrive at a
formula to describe the scattering of alpha particles by thin foils on the basis of
this model that agreed with the experimental results. He began by assuming that

the alpha particle and the nucleus it interacts with are both small enough to be consid-
ered as point masses and charges; that the repulsive electric force between alpha particle
and nucleus (which are both positively charged) is the only one acting; and that the nu-
cleus is so massive compared with the alpha particle that it does not move during their
interaction. Let us see how these assumptions lead to Eq. (4.1).

Scattering Angle

Owing to the variation of the electric force with 1!r2, where r is the instantaneous sep-
aration between alpha particle and nucleus, the alpha particle’s path is a hyperbola with
the nucleus at the outer focus (Fig. 4.30). The impact parameter b is the minimum
distance to which the alpha particle would approach the nucleus if there were no force
between them, and the scattering angle ! is the angle between the asymptotic direc-
tion of approach of the alpha particle and the asymptotic direction in which it recedes.
Our first task is to find a relationship between b and !.

As a result of the impulse - F dt given it by the nucleus, the momentum of the
alpha particle changes by *p from the initial value p1 to the final value p2. That is,

*p # p2 % p1 # - F dt (4.24)

Because the nucleus remains stationary during the passage of the alpha particle, by hy-
pothesis, the alpha-particle kinetic energy is the same before and after the scattering.
Hence the magnitude of its momentum is also the same before and after, and

p1 # p2 # m$

Figure 4.30 Rutherford scattering.
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Alpha particle
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b
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Here $ is the alpha-particle velocity far from the nucleus.
From Fig. 4.31 we see that according to the law of sines,

#

Since sin (" % !) # cos

and sin ! # 2 sin cos

we have for the magnitude of the momentum change

*p # 2m$ sin (4.25)

Because the impulse - F dt is in the same direction as the momentum change *p,
its magnitude is

.- F dt. # - F cos , dt (4.26)

where , is the instantaneous angle between F and *p along the path of the alpha
particle. Inserting Eqs. (4.25) and (4.26) in Eq. (4.24),

2m$ sin # /'

%'
F cos , dt

To change the variable on the right-hand side from t to ,, we note that the limits of
integration will change to %$

1
2

$ (" % !) and !$
1
2

$ (" % !), corresponding to , at t # %'
and t # ' respectively, and so

2m$ sin # /!("%!)!2

%("%!)!2
F cos , d, (4.27)
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Figure 4.31 Geometrical relationships in Rutherford scattering.
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The quantity d,!dt is just the angular velocity - of the alpha particle about the nucleus
(this is evident from Fig. 4.31).

The electric force exerted by the nucleus on the alpha particle acts along the radius
vector joining them, so there is no torque on the alpha particle and its angular
momentum m-r2 is constant. Hence

m-r2 # constant # mr2 # m$b

from which we obtain

#

Substituting this expression for dt!d, in Eq. (4.27) gives

2m$2b sin # /!("%!)!2

%("%!)!2
Fr2 cos , d, (4.28)

As we recall, F is the electric force exerted by the nucleus on the alpha particle. The
charge on the nucleus is Ze, corresponding to the atomic number Z, and that on the
alpha particle is 2e. Therefore

F #

and sin # /!("%!)!2

%("%!)!2
cos , d, # 2 cos

The scattering angle ! is related to the impact parameter b by the equation

cot # b

It is more convenient to specify the alpha-particle energy KE instead of its mass and
velocity separately; with this substitution,

Scattering angle cot # b (4.29)

Figure 4.32 is a schematic representation of Eq. (4.29); the rapid decrease in ! as b
increases is evident. A very near miss is required for a substantial deflection.

Rutherford Scattering Formula

Equation (4.29) cannot be directly confronted with experiment because there is no way
of measuring the impact parameter corresponding to a particular observed scattering
angle. An indirect strategy is required.

4"#0KE
$

Ze2

!
$
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$
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Our first step is to note that all alpha particles approaching a target nucleus with
an impact parameter from 0 to b will be scattered through an angle of ! or more, where
! is given in terms of b by Eq. (4.29). This means that an alpha particle that is initially
directed anywhere within the area "b2 around a nucleus will be scattered through !
or more (Fig. 4.32). The area "b2 is accordingly called the cross section for the
interaction. The general symbol for cross section is ., and so here

Cross section . # "b2 (4.30)

Of course, the incident alpha particle is actually scattered before it reaches the imme-
diate vicinity of the nucleus and hence does not necessarily pass within a distance b
of it.

Now we consider a foil of thickness t that contains n atoms per unit volume. The
number of target nuclei per unit area is nt, and an alpha-particle beam incident upon
an area A therefore encounters ntA nuclei. The aggregate cross section for scatterings
of ! or more is the number of target nuclei ntA multiplied by the cross section . for
such scattering per nucleus, or ntA.. Hence the fraction f of incident alpha particles
scattered by ! or more is the ratio between the aggregate cross section ntA. for such
scattering and the total target area A. That is,

f #

# #

# nt"b2

Substituting for b from Eq. (4.30),

f # "nt % &2
cot2 (4.31)

In this calculation it was assumed that the foil is sufficiently thin so that the cross sec-
tions of adjacent nuclei do not overlap and that a scattered alpha particle receives its
entire deflection from an encounter with a single nucleus.

!
$
2

Ze2

$
4"#0KE

ntA.
$

A
aggregate cross section
$$$

target area

alpha particles scattered by ! or more
$$$$

incident alpha particles

Rutherford Scattering 155

Figure 4.32 The scattering angle decreases with increasing impact parameter.
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Example 4.8

Find the fraction of a beam of 7.7-MeV alpha particles that is scattered through angles of more
than 45° when incident upon a gold foil 3 " 10%7 m thick. These values are typical of the alpha-
particle energies and foil thicknesses used by Geiger and Marsden. For comparison, a human
hair is about 10%4 m in diameter.

Solution

We begin by finding n, the number of gold atoms per unit volume in the foil, from the relationship

n # #

Since the density of gold is 1.93 " 104 kg/m3, its atomic mass is 197 u, and 1 u # 1.66 "
10%27 kg, we have

n #

# 5.90 " 1028 atoms/m3

The atomic number Z of gold is 79, a kinetic energy of 7.7 MeV is equal to 1.23 " 10%12 J,
and ! # 45°; from these figures we find that

f # 7 " 10%5

of the incident alpha particles are scattered through 45° or more—only 0.007 percent! A foil
this thin is quite transparent to alpha particles.

In an actual experiment, a detector measures alpha particles scattered between !
and ! ! d!, as in Fig. 4.33. The fraction of incident alpha particles so scattered is
found by differentiating Eq. (4.31) with respect to !, which gives

1.93 " 104 kg/m3

$$$$
(197 u/atom)(1.66 " 10%27 kg/u)

mass$m3

$$
mass$atom

atoms
$

m3
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Figure 4.33 In the Rutherford experiment, particles are detected that have been scattered between !
and ! ! d!.
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df # %"nt % &2
cot csc2 d! (4.32)

The minus sign expresses the fact that f decreases with increasing !.
As we saw in Fig. 4.2, Geiger and Marsden placed a fluorescent screen a distance

r from the foil and the scattered alpha particles were detected by means of the scintil-
lations they caused. Those alpha particles scattered between ! and ! ! d! reached a
zone of a sphere of radius r whose width is r d!. The zone radius itself is r sin !, and
so the area dS of the screen struck by these particles is

dS # (2"r sin !)(r d!) # 2"r2 sin ! d!

# 4"r2 sin cos d!

If a total of Ni alpha particles strike the foil during the course of the experiment, the
number scattered into d! at ! is Nidf. The number N(!) per unit area striking the screen
at !, which is the quantity actually measured, is

N(!) # #

N(!) # (4.1)

Equation (4.1) is the Rutherford scattering formula. Figure 4.4 shows how N(!) varies
with !.
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4.1 The Nuclear Atom

1. The great majority of alpha particles pass through gases and
thin metal foils with no deflections. To what conclusion about
atomic structure does this observation lead?

2. The electric field intensity at a distance r from the center of a
uniformly charged sphere of radius R and total charge Q is
Qr!4"#0R3 when r ( R. Such a sphere corresponds to the
Thomson model of the atom. Show that an electron in this
sphere executes simple harmonic motion about its center and
derive a formula for the frequency of this motion. Evaluate the

frequency of the electron oscillations for the case of the hydro-
gen atom and compare it with the frequencies of the spectral
lines of hydrogen.

3. Determine the distance of closest approach of 1.00-MeV pro-
tons incident on gold nuclei.

4.2 Electron Orbits

4. Find the frequency of revolution of the electron in the classical
model of the hydrogen atom. In what region of the spectrum
are electromagnetic waves of this frequency?

E X E R C I S E S

It isn’t that they can’t see the solution. It is that they can’t see the problem. —Gilbert Chesterton
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4.3 Atomic Spectra

5. What is the shortest wavelength present in the Brackett series of
spectral lines?

6. What is the shortest wavelength present in the Paschen series of
spectral lines?

4.4 The Bohr Atom

7. In the Bohr model, the electron is in constant motion. How can
such an electron have a negative amount of energy?

8. Lacking de Broglie’s hypothesis to guide his thinking, Bohr ar-
rived at his model by postulating that the angular momentum
of an orbital electron must be an integral multiple of / . Show
that this postulate leads to Eq. (4.13).

9. The fine structure constant is defined as & # e2!2#0hc. This
quantity got its name because it first appeared in a theory by
the German physicist Arnold Sommerfeld that tried to explain
the fine structure in spectral lines (multiple lines close together
instead of single lines) by assuming that elliptical as well as cir-
cular orbits are possible in the Bohr model. Sommerfeld’s ap-
proach was on the wrong track, but & has nevertheless turned
out to be a useful quantity in atomic physics. (a) Show that &
# $1!c, where $1 is the velocity of the electron in the ground
state of the Bohr atom. (b) Show that the value of & is very
close to 1!137 and is a pure number with no dimensions. Be-
cause the magnetic behavior of a moving charge depends on its
velocity, the small value of & is representative of the relative
magnitudes of the magnetic and electric aspects of electron be-
havior in an atom. (c) Show that &a0 # %C!2", where a0 is the
radius of the ground-state Bohr orbit and %C is the Compton
wavelength of the electron.

10. An electron at rest is released far away from a proton, toward
which it moves. (a) Show that the de Broglie wavelength of the
electron is proportional to "r#, where r is the distance of the
electron from the proton. (b) Find the wavelength of the elec-
tron when it is a0 from the proton. How does this compare
with the wavelength of an electron in a ground-state Bohr or-
bit? (c) In order for the electron to be captured by the proton
to form a ground-state hydrogen atom, energy must be lost by
the system. How much energy?

11. Find the quantum number that characterizes the earth’s orbit
around the sun. The earth’s mass is 6.0 " 1024 kg, its orbital
radius is 1.5 " 1011 m, and its orbital speed is 3.0 " 104 m/s.

12. Suppose a proton and an electron were held together in a hy-
drogen atom by gravitational forces only. Find the formula for
the energy levels of such an atom, the radius of its ground-state
Bohr orbit, and its ionization energy in eV.

13. Compare the uncertainty in the momentum of an electron con-
fined to a region of linear dimension a0 with the momentum of
an electron in a ground-state Bohr orbit.

4.5 Energy Levels and Spectra

14. When radiation with a continuous spectrum is passed through
a volume of hydrogen gas whose atoms are all in the ground
state, which spectral series will be present in the resulting ab-
sorption spectrum?

15. What effect would you expect the rapid random motion of the
atoms of an excited gas to have on the spectral lines they 
produce?

16. A beam of 13.0-eV electrons is used to bombard gaseous hy-
drogen. What series of wavelengths will be emitted?

17. A proton and an electron, both at rest initially, combine to form
a hydrogen atom in the ground state. A single photon is emit-
ted in this process. What is its wavelength?

18. How many different wavelengths would appear in the spectrum
of hydrogen atoms initially in the n # 5 state?

19. Find the wavelength of the spectral line that corresponds to a
transition in hydrogen from the n # 10 state to the ground
state. In what part of the spectrum is this?

20. Find the wavelength of the spectral line that corresponds to a
transition in hydrogen from the n # 6 state to the n # 3 state.
In what part of the spectrum is this?

21. A beam of electrons bombards a sample of hydrogen.
Through what potential difference must the electrons have
been accelerated if the first line of the Balmer series is to be
emitted?

22. How much energy is required to remove an electron in the 
n # 2 state from a hydrogen atom?

23. The longest wavelength in the Lyman series is 121.5 nm and
the shortest wavelength in the Balmer series is 364.6 nm. Use
the figures to find the longest wavelength of light that could
ionize hydrogen.

24. The longest wavelength in the Lyman series is 121.5 nm. Use
this wavelength together with the values of c and h to find the
ionization energy of hydrogen.

25. An excited hydrogen atom emits a photon of wavelength % in
returning to the ground state. (a) Derive a formula that gives
the quantum number of the initial excited state in terms of %
and R. (b) Use this formula to find ni for a 102.55-nm
photon.

26. An excited atom of mass m and initial speed $ emits a photon
in its direction of motion. If $ (( c, use the requirement that
linear momentum and energy must both be conserved to show
that the frequency of the photon is higher by *$!$ + $!c than it
would have been if the atom had been at rest. (See also Exer-
cise 16 of Chap. 1.)

27. When an excited atom emits a photon, the linear momentum of
the photon must be balanced by the recoil momentum of the
atom. As a result, some of the excitation energy of the atom
goes into the kinetic energy of its recoil. (a) Modify Eq. (4.16)
to include this effect. (b) Find the ratio between the recoil en-
ergy and the photon energy for the n # 3S n # 2 transition
in hydrogen, for which Ef % Ei # 1.9 eV. Is the effect a major
one? A nonrelativistic calculation is sufficient here.

4.6 Correspondence Principle

28. Of the following quantities, which increase and which decrease
in the Bohr model as n increases? Frequency of revolution, elec-
tron speed, electron wavelength, angular momentum, potential
energy, kinetic energy, total energy.
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29. Show that the frequency of the photon emitted by a hydrogen
atom in going from the level n ! 1 to the level n is always
intermediate between the frequencies of revolution of the
electron in the respective orbits.

4.7 Nuclear Motion

30. An antiproton has the mass of a proton but a charge of %e. If a
proton and an antiproton orbited each other, how far apart
would they be in the ground state of such a system? Why
might you think such a system could not occur?

31. A +% muon is in the n # 2 state of a muonic atom whose nu-
cleus is a proton. Find the wavelength of the photon emitted
when the muonic atom drops to its ground state. In what part
of the spectrum is this wavelength?

32. Compare the ionization energy in positronium with that in
hydrogen.

33. A mixture of ordinary hydrogen and tritium, a hydrogen iso-
tope whose nucleus is approximately 3 times more massive
than ordinary hydrogen, is excited and its spectrum observed.
How far apart in wavelength will the H& lines of the two kinds
of hydrogen be?

34. Find the radius and speed of an electron in the ground state of
doubly ionized lithium and compare them with the radius and
speed of the electron in the ground state of the hydrogen atom.
(Li!! has a nuclear charge of 3e.)

35. (a) Derive a formula for the energy levels of a hydrogenic
atom, which is an ion such as He! or Li2! whose nuclear
charge is !Ze and which contains a single electron.
(b) Sketch the energy levels of the He! ion and compare
them with the energy levels of the H atom. (c) An electron
joins a bare helium nucleus to form a He! ion. Find the
wavelength of the photon emitted in this process if the
electron is assumed to have had no kinetic energy when it
combined with the nucleus.

4.9 The Laser

36. For laser action to occur, the medium used must have at least
three energy levels. What must be the nature of each of these
levels? Why is three the minimum number?

37. A certain ruby laser emits 1.00-J pulses of light whose wave-
length is 694 nm. What is the minimum number of Cr3! ions
in the ruby?

38. Steam at 100°C can be thought of as an excited state of water
at 100°C. Suppose that a laser could be built based upon the
transition from steam to water, with the energy lost per mole-
cule of steam appearing as a photon. What would the fre-
quency of such a photon be? To what region of the spectrum
does this correspond? The heat of vaporization of water is
2260 kJ!kg and its molar mass is 18.02 kg!kmol.

Appendix: Rutherford Scattering

39. The Rutherford scattering formula fails to agree with the data at
very small scattering angles. Can you think of a reason?

40. Show that the probability for a 2.0-MeV proton to be scattered
by more than a given angle when it passes through a thin foil is
the same as that for a 4.0-MeV alpha particle.

41. A 5.0-MeV alpha particle approaches a gold nucleus with an
impact parameter of 2.6 " 10%13 m. Through what angle will it
be scattered?

42. What is the impact parameter of a 5.0-MeV alpha particle scat-
tered by 10° when it approaches a gold nucleus?

43. What fraction of a beam of 7.7-MeV alpha particles incident upon
a gold foil 3.0 " 10%7 m thick is scattered by less than 1°?

44. What fraction of a beam of 7.7-MeV alpha particles incident
upon a gold foil 3.0 " 10%7 m thick is scattered by 90° or
more?

45. Show that twice as many alpha particles are scattered by a foil
through angles between 60° and 90° as are scattered through
angles of 90° or more.

46. A beam of 8.3-MeV alpha particles is directed at an aluminum
foil.  It is found that the Rutherford scattering formula ceases to
be obeyed at scattering angles exceeding about 60°. If the
alpha-particle radius is assumed small enough to neglect here,
find the radius of the aluminum nucleus.

47. In special relativity, a photon can be thought of as having a
“mass” of m # E*!c2. This suggests that we can treat a photon
that passes near the sun in the same way as Rutherford treated
an alpha particle that passes near a nucleus, with an attractive
gravitational force replacing the repulsive electrical force. Adapt
Eq. (4.29) to this situation and find the angle of deflection ! for
a photon that passes b # Rsun from the center of the sun. The
mass and radius of the sun are respectively 2.0 " 1030 kg and
7.0 " 108 m. In fact, general relativity shows that this result is
exactly half the actual deflection, a conclusion supported by ob-
servations made during solar eclipses as mentioned in Sec. 1.10.
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CHAPTER 5

Quantum Mechanics

5.1 QUANTUM MECHANICS
Classical mechanics is an approximation of
quantum mechanics

5.2 THE WAVE EQUATION
It can have a variety of solutions, including
complex ones

5.3 SCHRÖDINGER’S EQUATION: 
TIME-DEPENDENT FORM

A basic physical principle that cannot be derived
from anything else

5.4 LINEARITY AND SUPERPOSITION
Wave functions add, not probabilities

5.5 EXPECTATION VALUES
How to extract information from a wave
function

5.6 OPERATORS
Another way to find expectation values

5.7 SCHRÖDINGER’S EQUATION: 
STEADY-STATE FORM

Eigenvalues and eigenfunctions
5.8 PARTICLE IN A BOX

How boundary conditions and normalization
determine wave functions

5.9 FINITE POTENTIAL WELL
The wave function penetrates the walls, which
lowers the energy levels

5.10 TUNNEL EFFECT
A particle without the energy to pass over a
potential barrier may still tunnel through it

5.11 HARMONIC OSCILLATOR
Its energy levels are evenly spaced

APPENDIX: THE TUNNEL EFFECT

Scanning tunneling micrograph of gold atoms on a carbon (graphite) substrate.
The cluster of gold atoms is about 1.5 nm across and three atoms high.
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A lthough the Bohr theory of the atom, which can be extended further than was
done in Chap. 4, is able to account for many aspects of atomic phenomena, it
has a number of severe limitations as well. First of all, it applies only to hy-

drogen and one-electron ions such as He! and Li2!—it does not even work for ordinary
helium. The Bohr theory cannot explain why certain spectral lines are more intense
than others (that is, why certain transitions between energy levels have greater
probabilities of occurrence than others). It cannot account for the observation that
many spectral lines actually consist of several separate lines whose wavelengths differ
slightly. And perhaps most important, it does not permit us to obtain what a really suc-
cessful theory of the atom should make possible: an understanding of how individual
atoms interact with one another to endow macroscopic aggregates of matter with the 
physical and chemical properties we observe.

The preceding objections to the Bohr theory are not put forward in an unfriendly
way, for the theory was one of those seminal achievements that transform scientific
thought, but rather to emphasize that a more general approach to atomic phenomena
is required. Such an approach was developed in 1925 and 1926 by Erwin Schrödinger,
Werner Heisenberg, Max Born, Paul Dirac, and others under the apt name of quantum
mechanics. “The discovery of quantum mechanics was nearly a total surprise. It de-
scribed the physical world in a way that was fundamentally new. It seemed to many
of us a miracle,” noted Eugene Wigner, one of the early workers in the field. By the
early 1930s the application of quantum mechanics to problems involving nuclei, atoms,
molecules, and matter in the solid state made it possible to understand a vast body of
data (“a large part of physics and the whole of chemistry,” according to Dirac) and—
vital for any theory—led to predictions of remarkable accuracy. Quantum mechanics
has survived every experimental test thus far of even its most unexpected conclusions.

5.1   QUANTUM MECHANICS

Classical mechanics is an approximation of quantum mechanics

The fundamental difference between classical (or Newtonian) mechanics and quantum
mechanics lies in what they describe. In classical mechanics, the future history of a par-
ticle is completely determined by its initial position and momentum together with the
forces that act upon it. In the everyday world these quantities can all be determined
well enough for the predictions of Newtonian mechanics to agree with what we find.

Quantum mechanics also arrives at relationships between observable quantities, but
the uncertainty principle suggests that the nature of an observable quantity is differ-
ent in the atomic realm. Cause and effect are still related in quantum mechanics, but
what they concern needs careful interpretation. In quantum mechanics the kind of cer-
tainty about the future characteristic of classical mechanics is impossible because the
initial state of a particle cannot be established with sufficient accuracy. As we saw in
Sec. 3.7, the more we know about the position of a particle now, the less we know
about its momentum and hence about its position later.

The quantities whose relationships quantum mechanics explores are probabilities.
Instead of asserting, for example, that the radius of the electron’s orbit in a ground-
state hydrogen atom is always exactly 5.3 " 10#11 m, as the Bohr theory does, quantum
mechanics states that this is the most probable radius. In a suitable experiment most
trials will yield a different value, either larger or smaller, but the value most likely to
be found will be 5.3 " 10#11 m.
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Quantum mechanics might seem a poor substitute for classical mechanics. However,
classical mechanics turns out to be just an approximate version of quantum mechanics.
The certainties of classical mechanics are illusory, and their apparent agreement with
experiment occurs because ordinary objects consist of so many individual atoms that
departures from average behavior are unnoticeable. Instead of two sets of physical prin-
ciples, one for the macroworld and one for the microworld, there is only the single set
included in quantum mechanics.

Wave Function

As mentioned in Chap. 3, the quantity with which quantum mechanics is concerned
is the wave function ! of a body. While ! itself has no physical interpretation, the
square of its absolute magnitude !!!2 evaluated at a particular place at a particular time
is proportional to the probability of finding the body there at that time. The linear mo-
mentum, angular momentum, and energy of the body are other quantities that can be
established from !. The problem of quantum mechanics is to determine ! for a body
when its freedom of motion is limited by the action of external forces.

Wave functions are usually complex with both real and imaginary parts. A proba-
bility, however, must be a positive real quantity. The probability density !!!2 for a com-
plex ! is therefore taken as the product !*! of ! and its complex conjugate !*. 
The complex conjugate of any function is obtained by replacing i (""#1#) by #i
wherever it appears in the function. Every complex function ! can be written in the
form

Wave function ! " A $ iB

where A and B are real functions. The complex conjugate !* of ! is

Complex conjugate !* " A # iB

and so !!!2 " !*! " A2 # i2B2 " A2 $ B2

since i2 " #1. Hence !!!2 " !*! is always a positive real quantity, as required.

Normalization

Even before we consider the actual calculation of !, we can establish certain require-
ments it must always fulfill. For one thing, since !!!2 is proportional to the probabil-
ity density P of finding the body described by !, the integral of !!!2 over all space
must be finite—the body is somewhere, after all. If

$%

#%
!!!2 dV " 0

the particle does not exist, and the integral obviously cannot be % and still mean any-
thing. Furthermore, !!!2 cannot be negative or complex because of the way it is de-
fined. The only possibility left is that the integral be a finite quantity if ! is to describe
properly a real body.

It is usually convenient to have !!!2 be equal to the probability density P of find-
ing the particle described by !, rather than merely be proportional to P. If !!!2 is to
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equal P, then it must be true that

Normalization $%

#%
!!!2 dV " 1 (5.1)

since if the particle exists somewhere at all times,

$%

#%
P dV " 1

A wave function that obeys Eq. (5.1) is said to be normalized. Every acceptable
wave function can be normalized by multiplying it by an appropriate constant; we shall
shortly see how this is done.

Well-Behaved Wave Functions

Besides being normalizable, ! must be single-valued, since P can have only one value at
a particular place and time, and continuous. Momentum considerations (see Sec. 5.6)
require that the partial derivatives &!%&x, &!%&y, &!%&z be finite, continuous, and single-
valued. Only wave functions with all these properties can yield physically meaningful
results when used in calculations, so only such “well-behaved” wave functions are ad-
missible as mathematical representations of real bodies. To summarize:

1 ! must be continuous and single-valued everywhere.
2 &!%&x, &!%&y, &!%&z must be continuous and single-valued everywhere.
3 ! must be normalizable, which means that ! must go to 0 as x → '%, y → '%,
z → '% in order that &!!!2 dV over all space be a finite constant.

These rules are not always obeyed by the wave functions of particles in model
situations that only approximate actual ones. For instance, the wave functions of a par-
ticle in a box with infinitely hard walls do not have continuous derivatives at the walls,
since ! " 0 outside the box (see Fig. 5.4). But in the real world, where walls are never
infinitely hard, there is no sharp change in ! at the walls (see Fig. 5.7) and the de-
rivatives are continuous. Exercise 7 gives another example of a wave function that is
not well-behaved.

Given a normalized and otherwise acceptable wave function !, the probability that
the particle it describes will be found in a certain region is simply the integral of the
probability density !!!2 over that region. Thus for a particle restricted to motion in the
x direction, the probability of finding it between x1 and x2 is given by

Probability Px1x2
" $x2

x1

!!!2 dx (5.2)

We will see examples of such calculations later in this chapter and in Chap. 6.

5.2   THE WAVE EQUATION

It can have a variety of solutions, including complex ones

Schrödinger’s equation, which is the fundamental equation of quantum mechanics in
the same sense that the second law of motion is the fundamental equation of New-
tonian mechanics, is a wave equation in the variable !.
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