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Oscillatory Motion

Inside the pocket watch is a small disk
(called a torsional pendulum) that oscil-
lates back and forth at a very precise
rate and controls the watch gears. A
grandfather clock keeps accurate time
because of its pendulum. The tall
wooden case provides the space needed
by the long pendulum as it advances the
clock gears with each swing. In both of
these timepieces, the vibration of a care-
fully shaped component is critical to ac-
curate operation. What properties of os-
cillating objects make them so useful in
timing devices? (Photograph of pocket
watch, George Semple; photograph of grand-
father clock, Charles D. Winters) 
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very special kind of motion occurs when the force acting on a body is propor-
tional to the displacement of the body from some equilibrium position. If
this force is always directed toward the equilibrium position, repetitive back-

and-forth motion occurs about this position. Such motion is called periodic motion,
harmonic motion, oscillation, or vibration (the four terms are completely equivalent).

You are most likely familiar with several examples of periodic motion, such as
the oscillations of a block attached to a spring, the swinging of a child on a play-
ground swing, the motion of a pendulum, and the vibrations of a stringed musical
instrument. In addition to these everyday examples, numerous other systems ex-
hibit periodic motion. For example, the molecules in a solid oscillate about their
equilibrium positions; electromagnetic waves, such as light waves, radar, and radio
waves, are characterized by oscillating electric and magnetic field vectors; and in
alternating-current electrical circuits, voltage, current, and electrical charge vary
periodically with time.

Most of the material in this chapter deals with simple harmonic motion, in which
an object oscillates such that its position is specified by a sinusoidal function of
time with no loss in mechanical energy. In real mechanical systems, damping (fric-
tional) forces are often present. These forces are considered in optional Section
13.6 at the end of this chapter.

SIMPLE HARMONIC MOTION
Consider a physical system that consists of a block of mass m attached to the end of a
spring, with the block free to move on a horizontal, frictionless surface (Fig. 13.1).
When the spring is neither stretched nor compressed, the block is at the position

called the equilibrium position of the system. We know from experience that
such a system oscillates back and forth if disturbed from its equilibrium position.

We can understand the motion in Figure 13.1 qualitatively by first recalling
that when the block is displaced a small distance x from equilibrium, the spring 
exerts on the block a force that is proportional to the displacement and given by
Hooke’s law (see Section 7.3):

(13.1)

We call this a restoring force because it is is always directed toward the equilib-
rium position and therefore opposite the displacement. That is, when the block is
displaced to the right of in Figure 13.1, then the displacement is positive
and the restoring force is directed to the left. When the block is displaced to the
left of then the displacement is negative and the restoring force is directed
to the right.

Applying Newton’s second law to the motion of the block, together with Equa-
tion 13.1, we obtain

(13.2)

That is, the acceleration is proportional to the displacement of the block, and its
direction is opposite the direction of the displacement. Systems that behave in this
way are said to exhibit simple harmonic motion. An object moves with simple
harmonic motion whenever its acceleration is proportional to its displace-
ment from some equilibrium position and is oppositely directed.
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Figure 13.1 A block attached to
a spring moving on a frictionless
surface. (a) When the block is dis-
placed to the right of equilibrium
(x # 0), the force exerted by the
spring acts to the left. (b) When
the block is at its equilibrium posi-
tion (x ! 0), the force exerted by
the spring is zero. (c) When the
block is displaced to the left of
equilibrium (x $ 0), the force ex-
erted by the spring acts to the
right.
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An experimental arrangement that exhibits simple harmonic motion is illus-
trated in Figure 13.2. A mass oscillating vertically on a spring has a pen attached to
it. While the mass is oscillating, a sheet of paper is moved perpendicular to the di-
rection of motion of the spring, and the pen traces out a wavelike pattern.

In general, a particle moving along the x axis exhibits simple harmonic mo-
tion when x, the particle’s displacement from equilibrium, varies in time according
to the relationship

(13.3)

where A, %, and & are constants. To give physical significance to these constants,
we have labeled a plot of x as a function of t in Figure 13.3a. This is just the pattern
that is observed with the experimental apparatus shown in Figure 13.2. The ampli-
tude A of the motion is the maximum displacement of the particle in either the
positive or negative x direction. The constant % is called the angular frequency of
the motion and has units of radians per second. (We shall discuss the geometric
significance of % in Section 13.2.) The constant angle &, called the phase con-
stant (or phase angle), is determined by the initial displacement and velocity of
the particle. If the particle is at its maximum position at then 
and the curve of x versus t is as shown in Figure 13.3b. If the particle is at some
other position at the constants & and A tell us what the position was at time

The quantity is called the phase of the mo-
tion and is useful in comparing the motions of two oscillators.

Note from Equation 13.3 that the trigonometric function x is periodic and re-
peats itself every time %t increases by 2' rad. The period T of the motion is the
time it takes for the particle to go through one full cycle. We say that the par-
ticle has made one oscillation. This definition of T tells us that the value of x at time
t equals the value of x at time We can show that by using the pre-
ceding observation that the phase increases by 2' rad in a time T :

Hence, or

(13.4)T !
2'
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%T ! 2',

%t ( & ( 2' ! %(t ( T ) ( &
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T ! 2'/%t ( T.
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Figure 13.2 An experimental apparatus for demonstrating
simple harmonic motion. A pen attached to the oscillating
mass traces out a wavelike pattern on the moving chart paper.
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Figure 13.3 (a) An x – t curve for
a particle undergoing simple har-
monic motion. The amplitude of
the motion is A, the period is T,
and the phase constant is &. 
(b) The x – t curve in the special
case in which at and
hence & ! 0.
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The inverse of the period is called the frequency f of the motion. The fre-
quency represents the number of oscillations that the particle makes per
unit time:

(13.5)

The units of f are cycles per second ! s"1, or hertz (Hz).
Rearranging Equation 13.5, we obtain the angular frequency:

(13.6)

What would the phase constant & have to be in Equation 13.3 if we were describing an oscil-
lating object that happened to be at the origin at 

An object undergoes simple harmonic motion of amplitude A. Through what total distance
does the object move during one complete cycle of its motion? (a) A/2. (b) A. (c) 2A. (d) 4A.

We can obtain the linear velocity of a particle undergoing simple harmonic mo-
tion by differentiating Equation 13.3 with respect to time:

(13.7)

The acceleration of the particle is

(13.8)

Because we can express Equation 13.8 in the form

(13.9)

From Equation 13.7 we see that, because the sine function oscillates between
) 1, the extreme values of v are ) %A. Because the cosine function also oscillates
between ) 1, Equation 13.8 tells us that the extreme values of a are ) %2A. There-
fore, the maximum speed and the magnitude of the maximum acceleration of a
particle moving in simple harmonic motion are

(13.10)

(13.11)

Figure 13.4a represents the displacement versus time for an arbitrary value of
the phase constant. The velocity and acceleration curves are illustrated in Figure
13.4b and c. These curves show that the phase of the velocity differs from the
phase of the displacement by '/2 rad, or 90°. That is, when x is a maximum or a
minimum, the velocity is zero. Likewise, when x is zero, the speed is a maximum.

amax ! %2A

vmax ! %A 

a ! "%2x

x ! A cos(%t ( &),

a !
dv
dt
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v !
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dt

! "%A sin(%t ( &)

Quick Quiz 13.2
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Angular frequency

Velocity in simple harmonic
motion

Acceleration in simple harmonic
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Maximum values of speed and
acceleration in simple harmonic
motion
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Furthermore, note that the phase of the acceleration differs from the phase of the
displacement by ' rad, or 180°. That is, when x is a maximum, a is a maximum in
the opposite direction.

The phase constant & is important when we compare the motion of two or
more oscillating objects. Imagine two identical pendulum bobs swinging side by
side in simple harmonic motion, with one having been released later than the
other. The pendulum bobs have different phase constants. Let us show how the
phase constant and the amplitude of any particle moving in simple harmonic mo-
tion can be determined if we know the particle’s initial speed and position and the
angular frequency of its motion.

Suppose that at the initial position of a single oscillator is and its
initial speed is Under these conditions, Equations 13.3 and 13.7 give

(13.12)

(13.13)

Dividing Equation 13.13 by Equation 13.12 eliminates A, giving 
or

(13.14)

Furthermore, if we square Equations 13.12 and 13.13, divide the velocity equation
by %2, and then add terms, we obtain

Using the identity we can solve for A:
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Figure 13.4 Graphical representation of
simple harmonic motion. (a) Displacement
versus time. (b) Velocity versus time. (c) Ac-
celeration versus time. Note that at any speci-
fied time the velocity is 90° out of phase with
the displacement and the acceleration is 180°
out of phase with the displacement.



The following properties of a particle moving in simple harmonic motion are
important:

• The acceleration of the particle is proportional to the displacement but is in the
opposite direction. This is the necessary and sufficient condition for simple harmonic
motion, as opposed to all other kinds of vibration.

• The displacement from the equilibrium position, velocity, and acceleration all
vary sinusoidally with time but are not in phase, as shown in Figure 13.4.

• The frequency and the period of the motion are independent of the amplitude.
(We show this explicitly in the next section.)

Can we use Equations 2.8, 2.10, 2.11, and 2.12 (see pages 35 and 36) to describe the motion
of a simple harmonic oscillator?

Quick Quiz 13.3
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An Oscillating ObjectEXAMPLE 13.1
Solution Noting that the angles in the trigonometric func-
tions are in radians, we obtain, at s,

(d) Determine the maximum speed and maximum accel-
eration of the object.

Solution In the general expressions for v and a found in
part (b), we use the fact that the maximum values of the sine
and cosine functions are unity. Therefore, v varies between
) 4.00' m/s, and a varies between ) 4.00'2 m/s2. Thus,

m/s !

m/s2 !

We obtain the same results using and 
where m and rad/s.

(e) Find the displacement of the object between and
s.t ! 1.00

t ! 0
% ! 'A ! 4.00

amax ! %2A,vmax ! %A

39.5 m/s2amax ! 4.00'2

12.6 m/svmax ! 4.00'

27.9 m/s2! "(4.00'2 m/s2)("0.707) !

a ! "(4.00'2 m/s2) cos ! 5'

4 "

8.89 m/s!

v ! "(4.00' m/s) sin ! 5'

4 " ! "(4.00' m/s)("0.707)

"2.83 m ! (4.00 m)("0.707) !

x ! (4.00 m) cos !' (
'

4 " ! (4.00 m) cos ! 5'

4 " 

t ! 1.00
An object oscillates with simple harmonic motion along the x
axis. Its displacement from the origin varies with time accord-
ing to the equation

where t is in seconds and the angles in the parentheses are in
radians. (a) Determine the amplitude, frequency, and period
of the motion.

Solution By comparing this equation with Equation 13.3,
the general equation for simple harmonic motion—

)—we see that m and 
rad/s. Therefore, Hz and

s.
(b) Calculate the velocity and acceleration of the object at

any time t.

Solution

(c) Using the results of part (b), determine the position,
velocity, and acceleration of the object at s.t ! 1.00

"(4.00'2 m/s2) cos !'t (
'

4 " !

a !
dv
dt

! "(4.00' m/s) cos !'t (
'
4 " 

d
dt

 ('t)

"(4.00' m/s) sin !'t (
'

4 " !

v !
dx
dt

! "(4.00 m) sin !'t (
'

4 " 
d
dt

 ('t) 

T ! 1/f ! 2.00
f ! %/2' ! '/2' ! 0.500'

% !A ! 4.00x ! A cos(%t ( &

x ! (4.00 m) cos !'t (
'

4 "

Properties of simple harmonic
motion
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Solution The x coordinate at is

In part (c), we found that the x coordinate at s is
" 2.83 m; therefore, the displacement between and

s is

"5.66 m*x ! x f " x i ! "2.83 m " 2.83 m !

t ! 1.00
t ! 0

t ! 1.00

x i ! (4.00 m) cos !0 (
'

4 " ! (4.00 m)(0.707) ! 2.83 m

t ! 0 Because the object’s velocity changes sign during the first
second, the magnitude of *x is not the same as the distance
traveled in the first second. (By the time the first second is
over, the object has been through the point m
once, traveled to m, and come back to

Exercise What is the phase of the motion at s?

Answer 9'/4 rad.

t ! 2.00

x ! "2.83 m.)
x ! "4.00

x ! "2.83

THE BLOCK – SPRING SYSTEM REVISITED
Let us return to the block–spring system (Fig. 13.5). Again we assume that the sur-
face is frictionless; hence, when the block is displaced from equilibrium, the only
force acting on it is the restoring force of the spring. As we saw in Equation 13.2,
when the block is displaced a distance x from equilibrium, it experiences an accel-
eration If the block is displaced a maximum distance at some
initial time and then released from rest, its initial acceleration at that instant is
" kA/m (its extreme negative value). When the block passes through the equilib-
rium position , its acceleration is zero. At this instant, its speed is a maxi-
mum. The block then continues to travel to the left of equilibrium and finally
reaches at which time its acceleration is kA/m (maximum positive) and
its speed is again zero. Thus, we see that the block oscillates between the turning
points 

Let us now describe the oscillating motion in a quantitative fashion. Recall
that and so we can express Equation 13.2 as

(13.16)

If we denote the ratio k/m with the symbol %2, this equation becomes

(13.17)

Now we require a solution to Equation 13.17—that is, a function x(t) that sat-
isfies this second-order differential equation. Because Equations 13.17 and 13.9
are equivalent, each solution must be that of simple harmonic motion:

To see this explicitly, assume that x ! A cos(%t ( &). Then

Comparing the expressions for x and d 2x/dt2, we see that d 2x/dt2 ! " %2x, and
Equation 13.17 is satisfied. We conclude that whenever the force acting on a
particle is linearly proportional to the displacement from some equilibrium

d 2x
dt2 ! "%A 

d
dt

 sin(%t ( &) ! "%2A cos(%t ( &)

 
dx
dt

! A 
d
dt
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d 2x
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k
m

 x

a ! dv/dt ! d 2x/dt2,

x ! )A.

x ! "A,

x ! 0

x ! Aa ! "(k/m)x.

13.2

m

m

(a)
x

x = 0

a

x

m

(b)
x

x = 0

a = 0

(c)
x

x = 0

a

x

Figure 13.5 A block of mass m at-
tached to a spring on a frictionless
surface undergoes simple har-
monic motion. (a) When the block
is displaced to the right of equilib-
rium, the displacement is positive
and the acceleration is negative.
(b) At the equilibrium position,

, the acceleration is zero and
the speed is a maximum. (c) When
the block is displaced to the left of
equilibrium, the displacement is
negative and the acceleration is
positive.

x ! 0
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position and in the opposite direction (F ! " kx), the particle moves in sim-
ple harmonic motion.

Recall that the period of any simple harmonic oscillator is (Eq.
13.4) and that the frequency is the inverse of the period. We know from Equations 
13.16 and 13.17 that , so we can express the period and frequency of the
block–spring system as

(13.18)

(13.19)

That is, the frequency and period depend only on the mass of the block and
on the force constant of the spring. Furthermore, the frequency and period are
independent of the amplitude of the motion. As we might expect, the frequency is
greater for a stiffer spring (the stiffer the spring, the greater the value of k) and
decreases with increasing mass.

Special Case 1. Let us consider a special case to better understand the physi-
cal significance of Equation 13.3, the defining expression for simple harmonic
motion. We shall use this equation to describe the motion of an oscillating
block– spring system. Suppose we pull the block a distance A from equilibrium
and then release it from rest at this stretched position, as shown in Figure 13.6.
Our solution for x must obey the initial conditions that and at

It does if we choose & ! 0, which gives cos %t as the solution. To
check this solution, we note that it satisfies the condition that at be-
cause cos Thus, we see that A and & contain the information on initial
conditions.

Now let us investigate the behavior of the velocity and acceleration for this
special case. Because cos %t,

From the velocity expression we see that, because sin at as we
require. The expression for the acceleration tells us that at Physi-
cally, this negative acceleration makes sense because the force acting on the block
is directed to the left when the displacement is positive. In fact, at the extreme po-

t ! 0.a ! "%2A
t ! 0,vi ! 00 ! 0,

a !
dv
dt

! "%2A cos %t

v !
dx
dt

! "%A sin %t 

x ! A

0 ! 1.
t ! 0x i ! A

x ! At ! 0.
vi ! 0x i ! A

f !
1
T

!
1

2'
 √ k

m

T !
2'

%
! 2' √ m

k

% ! √k/m

T ! 2'/%

Period and frequency for a
block–spring system

QuickLab
Hang an object from a rubber band
and start it oscillating. Measure T.
Now tie four identical rubber bands
together, end to end. How should k
for this longer band compare with k
for the single band? Again, time the
oscillations with the same object. Can
you verify Equation 13.19?

A
x = 0

t = 0
xi = A
vi = 0

x = A cos ωtm ω

Figure 13.6 A block–spring system that starts from rest at In this case, & ! 0 and thus
cos %t.x ! A

x i ! A.
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sition shown in Figure 13.6, (to the left) and the initial acceleration is

Another approach to showing that cos %t is the correct solution involves
using the relationship tan (Eq. 13.14). Because at 
tan & ! 0 and thus & ! 0. (The tangent of ' also equals zero, but & ! ' gives the
wrong value for xi .)

Figure 13.7 is a plot of displacement, velocity, and acceleration versus time for
this special case. Note that the acceleration reaches extreme values of ) %2A while
the displacement has extreme values of ) A because the force is maximal at those
positions. Furthermore, the velocity has extreme values of ) %A, which both occur
at Hence, the quantitative solution agrees with our qualitative description
of this system.

Special Case 2. Now suppose that the block is given an initial velocity vi to the
right at the instant it is at the equilibrium position, so that and at

(Fig. 13.8). The expression for x must now satisfy these initial conditions. Be-
cause the block is moving in the positive x direction at and because at

the expression for x must have the form sin %t.
Applying Equation 13.14 and the initial condition that at we 

find that tan and Hence, Equation 13.3 becomes 
A cos ( which can be written sin %t. Furthermore, from Equa-
tion 13.15 we see that therefore, we can express x as

The velocity and acceleration in this case are

These results are consistent with the facts that (1) the block always has a maximum

a !
dv
dt

! "%vi sin %t

v !
dx
dt

! vi cos %t 

x !
vi

%
 sin %t

A ! vi/% ;
x ! A%t " '/2),

x !& ! "'/2.& ! "+
t ! 0,x i ! 0

x ! At ! 0,
x i ! 0t ! 0

t ! 0
v ! vix i ! 0

x ! 0.

t ! 0,vi ! 0& ! "vi/%x i

x ! A
"%2A ! "kA/m.

Fs ! "kA

x = A cos ωt
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Figure 13.7 Displacement, velocity, and ac-
celeration versus time for a block–spring sys-
tem like the one shown in Figure 13.6, undergo-
ing simple harmonic motion under the initial
conditions that at , and 
(Special Case 1). The origins at O, correspond
to Special Case 2, the block–spring system un-
der the initial conditions shown in Figure 13.8.

v i ! 0x i ! At ! 0

xi = 0
t = 0

v = vi

x = 0

vi

x = A sin ωt

m

ω

Figure 13.8 The block–spring
system starts its motion at the equi-
librium position at . If its ini-
tial velocity is vi to the right, the
block’s x coordinate varies as
x ! (v i /%) sin %t.

t ! 0
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speed at and (2) the force and acceleration are zero at this position. The
graphs of these functions versus time in Figure 13.7 correspond to the origin at O,.

What is the solution for x if the block is initially moving to the left in Figure 13.8?

Quick Quiz 13.4

x ! 0

Watch Out for Potholes!EXAMPLE 13.2
Hence, the frequency of vibration is, from Equation 13.19,

Exercise How long does it take the car to execute two com-
plete vibrations?

Answer 1.70 s.

1.18 Hzf !
1

2'  √ k
m

!
1

2'  √ 20 000 N/m
365 kg

!

A car with a mass of 1 300 kg is constructed so that its frame
is supported by four springs. Each spring has a force constant
of 20 000 N/m. If two people riding in the car have a com-
bined mass of 160 kg, find the frequency of vibration of the
car after it is driven over a pothole in the road.

Solution We assume that the mass is evenly distributed.
Thus, each spring supports one fourth of the load. The total
mass is 1 460 kg, and therefore each spring supports 365 kg.

A Block – Spring SystemEXAMPLE 13.3
(c) What is the maximum acceleration of the block?

Solution We use Equation 13.11:

(d) Express the displacement, speed, and acceleration as
functions of time.

Solution This situation corresponds to Special Case 1,
where our solution is cos %t. Using this expression and
the results from (a), (b), and (c), we find that

"(1.25 m/s2) cos 5.00ta ! %2A cos %t !

"(0.250 m/s) sin 5.00t v ! %A sin %t !

(0.050 m) cos 5.00t x ! A cos %t !

x ! A

1.25 m/s2amax ! %2A ! (5.00 rad/s)2(5.00 - 10"2 m) !

A block with a mass of 200 g is connected to a light spring for
which the force constant is 5.00 N/m and is free to oscillate
on a horizontal, frictionless surface. The block is displaced
5.00 cm from equilibrium and released from rest, as shown in
Figure 13.6. (a) Find the period of its motion.

Solution From Equations 13.16 and 13.17, we know that
the angular frequency of any block–spring system is

and the period is

(b) Determine the maximum speed of the block.

Solution We use Equation 13.10:

0.250 m/svmax ! %A ! (5.00 rad/s)(5.00 - 10"2 m) !

1.26 sT !
2'

%
!

2'

5.00 rad/s
!

% ! √ k
m

! √ 5.00 N/m
200 - 10"3 kg

! 5.00 rad/s

ENERGY OF THE SIMPLE HARMONIC OSCILLATOR
Let us examine the mechanical energy of the block–spring system illustrated in
Figure 13.6. Because the surface is frictionless, we expect the total mechanical en-
ergy to be constant, as was shown in Chapter 8. We can use Equation 13.7 to ex-

13.3
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press the kinetic energy as

(13.20)

The elastic potential energy stored in the spring for any elongation x is given
by (see Eq. 8.4). Using Equation 13.3, we obtain

(13.21)

We see that K and U are always positive quantities. Because we can ex-
press the total mechanical energy of the simple harmonic oscillator as

From the identity sin2 we see that the quantity in square brackets is
unity. Therefore, this equation reduces to

(13.22)

That is, the total mechanical energy of a simple harmonic oscillator is a con-
stant of the motion and is proportional to the square of the amplitude. Note
that U is small when K is large, and vice versa, because the sum must be constant.
In fact, the total mechanical energy is equal to the maximum potential energy
stored in the spring when because at these points and thus there is
no kinetic energy. At the equilibrium position, where because the to-
tal energy, all in the form of kinetic energy, is again That is,

(at 

Plots of the kinetic and potential energies versus time appear in Figure 13.9a,
where we have taken & ! 0. As already mentioned, both K and U are always posi-
tive, and at all times their sum is a constant equal to the total energy of the
system. The variations of K and U with the displacement x of the block are plotted

1
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2 m%2A2 ! 1
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v ! 0x ! )A

E ! 1
2 kA2

. ( cos2 . ! 1,

E ! K ( U ! 1
2 kA2[sin2(%t ( &) ( cos2(%t ( &)]
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U ! 1
2 kx2 ! 1

2 kA2 cos2(%t ( &)

1
2 kx2

K ! 1
2 mv2 ! 1

2 m%2A2 sin2(%t ( &) Kinetic energy of a simple
harmonic oscillator

Potential energy of a simple
harmonic oscillator

Total energy of a simple harmonic
oscillator

K , U

1
2 kA2

U

K

U =    kx2

K =    mv2

1
2
1
2

φ = 0

(a)

T
t

T
2

K , U

(b)

A
x

–A O

φ

Figure 13.9 (a) Kinetic energy and potential energy versus time for a simple harmonic oscilla-
tor with & ! 0. (b) Kinetic energy and potential energy versus displacement for a simple har-
monic oscillator. In either plot, note that constant.K ( U !
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in Figure 13.9b. Energy is continuously being transformed between potential en-
ergy stored in the spring and kinetic energy of the block.

Figure 13.10 illustrates the position, velocity, acceleration, kinetic energy, and
potential energy of the block–spring system for one full period of the motion.
Most of the ideas discussed so far are incorporated in this important figure. Study
it carefully.

Finally, we can use the principle of conservation of energy to obtain the veloc-
ity for an arbitrary displacement by expressing the total energy at some arbitrary
position x as

(13.23)

When we check Equation 13.23 to see whether it agrees with known cases, we find
that it substantiates the fact that the speed is a maximum at and is zero at
the turning points x ! )A.

x ! 0

 v ! )√ k
m

 (A2 " x2) ! )%√A2 " x2

E ! K ( U ! 1
2 mv2 ( 1

2 kx2 ! 1
2 kA2 

Velocity as a function of position
for a simple harmonic oscillator

–A 0 A
x

amax

vmax

amax

vmax

amax

t x v a K U

0 A 0 –ω2A 0

T/4 0 –ωA 0 0

T/2 –A 0 ω2A 0

3T/4 0 ωA 0 0

T A 0 –ω2A 0 1
2 kA2

1
2 kA2

1
2 kA2

1
2 kA2

1
2 kA2

θmaxθ

θmaxθ

θmaxθ

ω

ω

ω

ω

ω

Figure 13.10 Simple harmonic motion for a block–spring system and its relationship to the
motion of a simple pendulum. The parameters in the table refer to the block–spring system, as-
suming that at thus, cos %t (see Special Case 1).x ! At ! 0;x ! A
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You may wonder why we are spending so much time studying simple harmonic
oscillators. We do so because they are good models of a wide variety of physical
phenomena. For example, recall the Lennard–Jones potential discussed in Exam-
ple 8.11. This complicated function describes the forces holding atoms together.
Figure 13.11a shows that, for small displacements from the equilibrium position,
the potential energy curve for this function approximates a parabola, which repre-
sents the potential energy function for a simple harmonic oscillator. Thus, we can
approximate the complex atomic binding forces as tiny springs, as depicted in Fig-
ure 13.11b. 

The ideas presented in this chapter apply not only to block–spring systems
and atoms, but also to a wide range of situations that include bungee jumping,
tuning in a television station, and viewing the light emitted by a laser. You will see
more examples of simple harmonic oscillators as you work through this book.

Oscillations on a Horizontal SurfaceEXAMPLE 13.4
(b) What is the velocity of the cube when the displace-

ment is 2.00 cm?

Solution We can apply Equation 13.23 directly:

The positive and negative signs indicate that the cube could
be moving to either the right or the left at this instant.

(c) Compute the kinetic and potential energies of the sys-
tem when the displacement is 2.00 cm.

)0.141 m/s!

  ! )√ 20.0 N/m
0.500 kg

 [(0.030 0 m)2 " (0.020 0 m)2]

v ! )√ k
m

 (A2 " x2) 

A 0.500-kg cube connected to a light spring for which the
force constant is 20.0 N/m oscillates on a horizontal, friction-
less track. (a) Calculate the total energy of the system and the
maximum speed of the cube if the amplitude of the motion is 
3.00 cm.

Solution Using Equation 13.22, we obtain

When the cube is at we know that and
therefore,

0.190 m/s vmax ! √ 18.0 - 10"3 J
0.500 kg

!

1
2 mv2

max ! 9.00 - 10"3 J 

E ! 1
2 mv2

max ;
U ! 0x ! 0,

9.00 - 10"3 J!

E ! K ( U ! 1
2 kA2 ! 1

2 (20.0 N/m) (3.00 - 10"2 m)2

U

r

Figure 13.11 (a) If the atoms in a molecule do not move too far from their equilibrium posi-
tions, a graph of potential energy versus separation distance between atoms is similar to the
graph of potential energy versus position for a simple harmonic oscillator. (b) Tiny springs ap-
proximate the forces holding atoms together.
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THE PENDULUM
The simple pendulum is another mechanical system that exhibits periodic mo-
tion. It consists of a particle-like bob of mass m suspended by a light string of
length L that is fixed at the upper end, as shown in Figure 13.12. The motion oc-
curs in the vertical plane and is driven by the force of gravity. We shall show that,
provided the angle . is small (less than about 10°), the motion is that of a simple
harmonic oscillator.

The forces acting on the bob are the force T exerted by the string and the
gravitational force mg. The tangential component of the gravitational force, 
mg sin ., always acts toward . ! 0, opposite the displacement. Therefore, the tan-
gential force is a restoring force, and we can apply Newton’s second law for mo-
tion in the tangential direction:

where s is the bob’s displacement measured along the arc and the minus sign indi-
cates that the tangential force acts toward the equilibrium (vertical) position. Be-
cause (Eq. 10.1a) and L is constant, this equation reduces to

The right side is proportional to sin . rather than to .; hence, with sin .
present, we would not expect simple harmonic motion because this expression is
not of the form of Equation 13.17. However, if we assume that . is small, we can
use the approximation sin . # .; thus the equation of motion for the simple pen-

d 2.

dt2 ! "
g
L

 sin .

s ! L.

/Ft ! "mg sin . ! m 
d 2s
dt2

13.4

8.11 
& 

8.12

Solution Using the result of (b), we find that

4.00 - 10"3 JU ! 1
2 kx2 ! 1

2 (20.0 N/m)(0.020 0 m)2 !

5.00 - 10"3 JK ! 1
2 mv2 ! 1

2 (0.500 kg)(0.141 m/s)2 !

Note that 

Exercise For what values of x is the speed of the cube 
0.100 m/s?

Answer ) 2.55 cm.

K ( U ! E.

θ

TL

s

m g sin

m

m g cos

m g

θ
θ

θ

Figure 13.12 When . is small, a
simple pendulum oscillates in sim-
ple harmonic motion about the
equilibrium position . ! 0. The
restoring force is mg sin ., the com-
ponent of the gravitational force
tangent to the arc.

The motion of a simple pendulum, captured
with multiflash photography. Is the oscillating
motion simple harmonic in this case? 
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dulum becomes

(13.24)

Now we have an expression of the same form as Equation 13.17, and we conclude
that the motion for small amplitudes of oscillation is simple harmonic motion.
Therefore, . can be written as . ! .max cos where .max is the maximum
angular displacement and the angular frequency % is

(13.25)% ! √ g
L

(%t ( &),

d 2.

dt2 ! "
g
L

 .

Angular frequency of motion for a
simple pendulum

The Foucault pendulum at the Franklin Institute in Philadelphia. This type of pendulum was first
used by the French physicist Jean Foucault to verify the Earth’s rotation experimentally. As the
pendulum swings, the vertical plane in which it oscillates appears to rotate as the bob successively
knocks over the indicators arranged in a circle on the floor. In reality, the plane of oscillation is
fixed in space, and the Earth rotating beneath the swinging pendulum moves the indicators into
position to be knocked down, one after the other.

Equation of motion for a simple
pendulum (small .)
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The period of the motion is

(13.26)

In other words, the period and frequency of a simple pendulum depend only
on the length of the string and the acceleration due to gravity. Because the
period is independent of the mass, we conclude that all simple pendulums that are
of equal length and are at the same location (so that g is constant) oscillate with
the same period. The analogy between the motion of a simple pendulum and that
of a block–spring system is illustrated in Figure 13.10.

The simple pendulum can be used as a timekeeper because its period depends
only on its length and the local value of g. It is also a convenient device for making
precise measurements of the free-fall acceleration. Such measurements are impor-
tant because variations in local values of g can provide information on the location
of oil and of other valuable underground resources.

A block of mass m is first allowed to hang from a spring in static equilibrium. It stretches the
spring a distance L beyond the spring’s unstressed length. The block and spring are then
set into oscillation. Is the period of this system less than, equal to, or greater than the pe-
riod of a simple pendulum having a length L and a bob mass m?

Quick Quiz 13.5

T !
2'

%
! 2' √ L

g

QuickLab
Firmly hold a ruler so that about half
of it is over the edge of your desk.
With your other hand, pull down and
then release the free end, watching
how it vibrates. Now slide the ruler so
that only about a quarter of it is free
to vibrate. This time when you release
it, how does the vibrational period
compare with its earlier value? Why?

A Connection Between Length and TimeEXAMPLE 13.5
Thus, the meter’s length would be slightly less than one-
fourth its current length. Note that the number of significant
digits depends only on how precisely we know g because the
time has been defined to be exactly 1 s.

Christian Huygens (1629–1695), the greatest clockmaker in
history, suggested that an international unit of length could
be defined as the length of a simple pendulum having a pe-
riod of exactly 1 s. How much shorter would our length unit
be had his suggestion been followed?

Solution Solving Equation 13.26 for the length gives

0.248 mL !
T 2g
4'2 !

(1 s)2(9.80 m/s2)
4'2 !

Physical Pendulum

Suppose you balance a wire coat hanger so that the hook is supported by your ex-
tended index finger. When you give the hanger a small displacement (with your
other hand) and then release it, it oscillates. If a hanging object oscillates about a
fixed axis that does not pass through its center of mass and the object cannot be
approximated as a point mass, we cannot treat the system as a simple pendulum.
In this case the system is called a physical pendulum.

Consider a rigid body pivoted at a point O that is a distance d from the center
of mass (Fig. 13.13). The force of gravity provides a torque about an axis through
O, and the magnitude of that torque is mgd sin ., where . is as shown in Figure
13.13. Using the law of motion / where I is the moment of inertia about0 ! I1,

Period of motion for a simple
pendulum
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the axis through O, we obtain

The minus sign indicates that the torque about O tends to decrease .. That is, the
force of gravity produces a restoring torque. Because this equation gives us the
angular acceleration d 2./dt2 of the pivoted body, we can consider it the equation
of motion for the system. If we again assume that . is small, the approximation 
sin . # . is valid, and the equation of motion reduces to

(13.27)

Because this equation is of the same form as Equation 13.17, the motion is simple
harmonic motion. That is, the solution of Equation 13.27 is . ! .max cos(%t ( &),
where .max is the maximum angular displacement and

The period is

(13.28)

One can use this result to measure the moment of inertia of a flat rigid body. If
the location of the center of mass—and hence the value of d —are known, the mo-
ment of inertia can be obtained by measuring the period. Finally, note that Equation
13.28 reduces to the period of a simple pendulum (Eq. 13.26) when I ! md 2—that
is, when all the mass is concentrated at the center of mass.

T !
2'

%
! 2' √ I

mgd

% ! √ mgd
I

d 2.

dt2 ! "! mgd
I " . ! "%2.

"mgd sin . ! I 
d 2.

dt2

Period of motion for a physical
pendulum

Pivot O

θ
d

d sin θ
CM

m g

Figure 13.13 A physical pendu-
lum.

A Swinging RodEXAMPLE 13.6
Exercise Calculate the period of a meter stick that is piv-
oted about one end and is oscillating in a vertical plane.

Answer 1.64 s.

A uniform rod of mass M and length L is pivoted about one
end and oscillates in a vertical plane (Fig. 13.14). Find the
period of oscillation if the amplitude of the motion is small.

Solution In Chapter 10 we found that the moment of in-
ertia of a uniform rod about an axis through one end is

The distance d from the pivot to the center of mass is
L/2. Substituting these quantities into Equation 13.28 gives

Comment In one of the Moon landings, an astronaut walk-
ing on the Moon’s surface had a belt hanging from his space
suit, and the belt oscillated as a physical pendulum. A scien-
tist on the Earth observed this motion on television and used
it to estimate the free-fall acceleration on the Moon. How did
the scientist make this calculation?

2' √ 2L
3g

T ! 2' √
1
3 ML2

Mg 
L
2

!

1
3ML2.

Pivot

O

L

CM

Mg

Figure 13.14 A rigid rod oscillating about a pivot through one end
is a physical pendulum with and, from Table 10.2, I ! 1

3 ML2.d ! L/2
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Torsional Pendulum

Figure 13.15 shows a rigid body suspended by a wire attached at the top to a fixed
support. When the body is twisted through some small angle ., the twisted wire ex-
erts on the body a restoring torque that is proportional to the angular displace-
ment. That is,

where 2 (kappa) is called the torsion constant of the support wire. The value of 2
can be obtained by applying a known torque to twist the wire through a measur-
able angle .. Applying Newton’s second law for rotational motion, we find

(13.29)

Again, this is the equation of motion for a simple harmonic oscillator, with 
and a period

(13.30)

This system is called a torsional pendulum. There is no small-angle restriction in this
situation as long as the elastic limit of the wire is not exceeded. Figure 13.16 shows
the balance wheel of a watch oscillating as a torsional pendulum, energized by the
mainspring.

COMPARING SIMPLE HARMONIC MOTION WITH
UNIFORM CIRCULAR MOTION

We can better understand and visualize many aspects of simple harmonic motion
by studying its relationship to uniform circular motion. Figure 13.17 is an over-
head view of an experimental arrangement that shows this relationship. A ball is
attached to the rim of a turntable of radius A, which is illuminated from the side
by a lamp. The ball casts a shadow on a screen. We find that as the turntable ro-
tates with constant angular speed, the shadow of the ball moves back and forth in
simple harmonic motion.

13.5

T ! 2' √ I
2

% ! √2/I

d 2.

dt2 ! "
2

I
 . 

 0 ! "2. ! I 
d 2.

dt2

0 ! "2.

8.8

Period of motion for a torsional
pendulum

O

P
maxθ

Figure 13.15 A torsional pendu-
lum consists of a rigid body sus-
pended by a wire attached to a
rigid support. The body oscillates
about the line OP with an ampli-
tude .max .

Balance wheel

Figure 13.16 The balance wheel of this antique pocket watch is a torsional pendulum and reg-
ulates the time-keeping mechanism.
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Consider a particle located at point P on the circumference of a circle of ra-
dius A, as shown in Figure 13.18a, with the line OP making an angle & with the x
axis at . We call this circle a reference circle for comparing simple harmonic mo-
tion and uniform circular motion, and we take the position of P at as our ref-
erence position. If the particle moves along the circle with constant angular speed
% until OP makes an angle . with the x axis, as illustrated in Figure 13.18b, then at
some time t # 0, the angle between OP and the x axis is . ! %t ( &. As the parti-
cle moves along the circle, the projection of P on the x axis, labeled point Q ,
moves back and forth along the x axis, between the limits 

Note that points P and Q always have the same x coordinate. From the right
triangle OPQ , we see that this x coordinate is

(13.31)

This expression shows that the point Q moves with simple harmonic motion along
the x axis. Therefore, we conclude that

x ! A cos(%t ( &)

x ! )A.

t ! 0
t ! 0

simple harmonic motion along a straight line can be represented by the projec-
tion of uniform circular motion along a diameter of a reference circle.

We can make a similar argument by noting from Figure 13.18b that the projec-
tion of P along the y axis also exhibits simple harmonic motion. Therefore, uni-
form circular motion can be considered a combination of two simple har-
monic motions, one along the x axis and one along the y axis, with the two
differing in phase by 90°.

This geometric interpretation shows that the time for one complete revolution
of the point P on the reference circle is equal to the period of motion T for simple
harmonic motion between That is, the angular speed % of P is the same
as the angular frequency % of simple harmonic motion along the x axis (this is why
we use the same symbol). The phase constant & for simple harmonic motion cor-
responds to the initial angle that OP makes with the x axis. The radius A of the ref-
erence circle equals the amplitude of the simple harmonic motion.

x ! )A.

Lamp
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Q
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A

Screen

Turntable

Shadow
of ball

P

φ

(a)

ω

P

x
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Ay t = 0

(b)
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θ = ωt  + φ

O

v = ωA

v

P
vx

vx QO
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a = ω 
2A
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a

ax QO
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y
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y

x

y

x

θ ω φ

ω ω

A

Figure 13.17 An experimental
setup for demonstrating the con-
nection between simple harmonic
motion and uniform circular mo-
tion. As the ball rotates on the
turntable with constant angular
speed, its shadow on the screen
moves back and forth in simple
harmonic motion.

Figure 13.18 Relationship between the uniform circular motion of a point P and the simple
harmonic motion of a point Q. A particle at P moves in a circle of radius A with constant angular
speed %. (a) A reference circle showing the position of P at . (b) The x coordinates of
points P and Q are equal and vary in time as cos(%t ( &). (c) The x component of the ve-
locity of P equals the velocity of Q . (d) The x component of the acceleration of P equals the ac-
celeration of Q .

x ! A
t ! 0



408 C H A P T E R  1 3 Oscillatory Motion

Because the relationship between linear and angular speed for circular mo-
tion is (see Eq. 10.10), the particle moving on the reference circle of radius
A has a velocity of magnitude %A. From the geometry in Figure 13.18c, we see that
the x component of this velocity is " %A sin(%t ( &). By definition, the point Q
has a velocity given by dx/dt. Differentiating Equation 13.31 with respect to time,
we find that the velocity of Q is the same as the x component of the velocity of P.

The acceleration of P on the reference circle is directed radially inward toward
O and has a magnitude From the geometry in Figure 13.18d, we see
that the x component of this acceleration is This value is also
the acceleration of the projected point Q along the x axis, as you can verify by tak-
ing the second derivative of Equation 13.31.

cos(%t ( &)."%2A
v2/A ! %2A.

v ! r%

Circular Motion with Constant Angular SpeedEXAMPLE 13.7

Note that & in the cosine function must be in radians.
(b) Find the x components of the particle’s velocity and

acceleration at any time t.

Solution

From these results, we conclude that vmax ! 24.0 m/s and
that amax ! 192 m/s2. Note that these values also equal the
tangential speed %A and the centripetal acceleration %2A.

"(192 m/s2) cos(8.00t " 0.841) !

ax !
dvx

dt
! ("24.0 m/s)(8.00 rad/s) cos(8.00t " 0.841)

"(24.0 m/s) sin(8.00t " 0.841) !

vx !
dx
dt

! ("3.00 m)(8.00 rad/s) sin(8.00t " 0.841) 

(3.00 m) cos (8.00t " 0.841)x !
A particle rotates counterclockwise in a circle of radius 
3.00 m with a constant angular speed of 8.00 rad/s. At ,
the particle has an x coordinate of 2.00 m and is moving to
the right. (a) Determine the x coordinate as a function of
time.

Solution Because the amplitude of the particle’s motion
equals the radius of the circle and % ! 8.00 rad/s, we have

We can evaluate & by using the initial condition that 
2.00 m at 

If we were to take our answer as & ! 48.2°, then the coordi-
nate x ! (3.00 m) cos (8.00t ( 48.2°) would be decreasing at
time t ! 0 (that is, moving to the left). Because our particle is
first moving to the right, we must choose & ! "48.2° !
"0.841 rad. The x coordinate as a function of time is then

 & ! cos"1 ! 2.00 m
3.00 m "

2.00 m ! (3.00 m) cos(0 ( &) 

t ! 0:
x !

x ! A cos(%t ( &) ! (3.00 m) cos(8.00t ( &)

t ! 0

Optional Section

DAMPED OSCILLATIONS
The oscillatory motions we have considered so far have been for ideal systems—
that is, systems that oscillate indefinitely under the action of a linear restoring
force. In many real systems, dissipative forces, such as friction, retard the motion.
Consequently, the mechanical energy of the system diminishes in time, and the
motion is said to be damped.

One common type of retarding force is the one discussed in Section 6.4,
where the force is proportional to the speed of the moving object and acts in the
direction opposite the motion. This retarding force is often observed when an ob-
ject moves through air, for instance. Because the retarding force can be expressed
as R ! " bv (where b is a constant called the damping coefficient) and the restoring

13.6
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force of the system is " kx, we can write Newton’s second law as

(13.32)

The solution of this equation requires mathematics that may not be familiar to you
yet; we simply state it here without proof. When the retarding force is small com-
pared with the maximum restoring force—that is, when b is small—the solution
to Equation 13.32 is

(13.33)

where the angular frequency of oscillation is

(13.34)

This result can be verified by substituting Equation 13.33 into Equation 13.32.
Figure 13.19a shows the displacement as a function of time for an object oscil-

lating in the presence of a retarding force, and Figure 13.19b depicts one such sys-
tem: a block attached to a spring and submersed in a viscous liquid. We see that
when the retarding force is much smaller than the restoring force, the oscil-
latory character of the motion is preserved but the amplitude decreases in
time, with the result that the motion ultimately ceases. Any system that be-
haves in this way is known as a damped oscillator. The dashed blue lines in Fig-
ure 13.19a, which define the envelope of the oscillatory curve, represent the expo-
nential factor in Equation 13.33. This envelope shows that the amplitude decays
exponentially with time. For motion with a given spring constant and block
mass, the oscillations dampen more rapidly as the maximum value of the retarding
force approaches the maximum value of the restoring force.

It is convenient to express the angular frequency of a damped oscillator in the
form

where represents the angular frequency in the absence of a retarding
force (the undamped oscillator) and is called the natural frequency of the sys-
tem. When the magnitude of the maximum retarding force 
the system is said to be underdamped. As the value of R approaches kA, the am-
plitudes of the oscillations decrease more and more rapidly. This motion is repre-
sented by the blue curve in Figure 13.20. When b reaches a critical value bc such
that bc/2m ! %0 , the system does not oscillate and is said to be critically damped.
In this case the system, once released from rest at some nonequilibrium position,
returns to equilibrium and then stays there. The graph of displacement versus
time for this case is the red curve in Figure 13.20.

If the medium is so viscous that the retarding force is greater than the restor-
ing force—that is, if and —the system is over-
damped. Again, the displaced system, when free to move, does not oscillate but
simply returns to its equilibrium position. As the damping increases, the time it
takes the system to approach equilibrium also increases, as indicated by the black
curve in Figure 13.20.

In any case in which friction is present, whether the system is overdamped or
underdamped, the energy of the oscillator eventually falls to zero. The lost me-
chanical energy dissipates into internal energy in the retarding medium.

b/2m # %0R max ! bvmax # kA

R max ! bvmax $ kA,

%0 ! √k/m

% ! √%0 

2 " ! b
2m "2

% ! √ k
m

" ! b
2m "2

x ! Ae" b
2mt cos(%t ( &)

"kx " b 
dx
dt

! m 
d 2x
dt2  

 /Fx ! "kx " bv ! max A

x

0 t

A e

(a)

(b)

m

b
2m

– t

Figure 13.19 (a) Graph of dis-
placement versus time for a
damped oscillator. Note the de-
crease in amplitude with time. 
(b) One example of a damped os-
cillator is a mass attached to a
spring and submersed in a viscous
liquid.

x

a
b

c

t

Figure 13.20 Graphs of dis-
placement versus time for (a) an
underdamped oscillator, (b) a criti-
cally damped oscillator, and (c) an
overdamped oscillator.
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An automotive suspension system consists of a combination of springs and shock absorbers,
as shown in Figure 13.21. If you were an automotive engineer, would you design a suspen-
sion system that was underdamped, critically damped, or overdamped? Discuss each case.

Optional Section

FORCED OSCILLATIONS
It is possible to compensate for energy loss in a damped system by applying an ex-
ternal force that does positive work on the system. At any instant, energy can be
put into the system by an applied force that acts in the direction of motion of the
oscillator. For example, a child on a swing can be kept in motion by appropriately
timed pushes. The amplitude of motion remains constant if the energy input per
cycle exactly equals the energy lost as a result of damping. Any motion of this type
is called forced oscillation.

A common example of a forced oscillator is a damped oscillator driven by an
external force that varies periodically, such as where % is the angu-
lar frequency of the periodic force and Fext is a constant. Adding this driving force
to the left side of Equation 13.32 gives

(13.35)

(As earlier, we present the solution of this equation without proof.) After a suffi-
ciently long period of time, when the energy input per cycle equals the energy lost
per cycle, a steady-state condition is reached in which the oscillations proceed with
constant amplitude. At this time, when the system is in a steady state, the solution
of Equation 13.35 is

(13.36)x ! A cos(%t ( &)

Fext cos %t " kx " b 
dx
dt

! m 
d 2x
dt2

F ! Fext  cos %t,

13.7

Quick Quiz 13.6

Oil or
other viscous
fluid

Piston
with holes

(a)

Shock absorber
Coil spring

(b)

Figure 13.21 (a) A shock absorber consists of a piston oscillating in a chamber filled with oil.
As the piston oscillates, the oil is squeezed through holes between the piston and the chamber,
causing a damping of the piston’s oscillations. (b) One type of automotive suspension system, in
which a shock absorber is placed inside a coil spring at each wheel.

web
To learn more about shock
absorbers, visit
http://www.hdridecontrol.com
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where

(13.37)

and where is the angular frequency of the undamped oscillator 
One could argue that in steady state the oscillator must physically have the same fre-
quency as the driving force, and thus the solution given by Equation 13.36 is ex-
pected. In fact, when this solution is substituted into Equation 13.35, one finds that
it is indeed a solution, provided the amplitude is given by Equation 13.37.

Equation 13.37 shows that, because an external force is driving it, the motion
of the forced oscillator is not damped. The external agent provides the necessary
energy to overcome the losses due to the retarding force. Note that the system os-
cillates at the angular frequency % of the driving force. For small damping, the am-
plitude becomes very large when the frequency of the driving force is near the nat-
ural frequency of oscillation. The dramatic increase in amplitude near the natural
frequency %0 is called resonance, and for this reason %0 is sometimes called the
resonance frequency of the system.

The reason for large-amplitude oscillations at the resonance frequency is that
energy is being transferred to the system under the most favorable conditions. We
can better understand this by taking the first time derivative of x in Equation
13.36, which gives an expression for the velocity of the oscillator. We find that v is
proportional to sin When the applied force F is in phase with the veloc-
ity, the rate at which work is done on the oscillator by F equals the dot product
F # v. Remember that “rate at which work is done” is the definition of power. Be-
cause the product F # v is a maximum when F and v are in phase, we conclude that
at resonance the applied force is in phase with the velocity and that the
power transferred to the oscillator is a maximum.

Figure 13.22 is a graph of amplitude as a function of frequency for a forced os-
cillator with and without damping. Note that the amplitude increases with decreas-
ing damping (b : 0) and that the resonance curve broadens as the damping in-
creases. Under steady-state conditions and at any driving frequency, the energy
transferred into the system equals the energy lost because of the damping force;
hence, the average total energy of the oscillator remains constant. In the absence
of a damping force (b ! 0), we see from Equation 13.37 that the steady-state am-
plitude approaches infinity as % : %0 . In other words, if there are no losses in the
system and if we continue to drive an initially motionless oscillator with a periodic
force that is in phase with the velocity, the amplitude of motion builds without
limit (see the red curve in Fig. 13.22). This limitless building does not occur in
practice because some damping is always present.

The behavior of a driven oscillating system after the driving force is removed
depends on b and on how close % was to %0 . This behavior is sometimes quantified
by a parameter called the quality factor Q. The closer a system is to being un-
damped, the greater its Q. The amplitude of oscillation drops by a factor of 
e . . . ) in Q/' cycles.

Later in this book we shall see that resonance appears in other areas of physics.
For example, certain electrical circuits have natural frequencies. A bridge has nat-
ural frequencies that can be set into resonance by an appropriate driving force. A
dramatic example of such resonance occurred in 1940, when the Tacoma Narrows
Bridge in the state of Washington was destroyed by resonant vibrations. Although
the winds were not particularly strong on that occasion, the bridge ultimately col-
lapsed (Fig. 13.23) because the bridge design had no built-in safety features.

(!2.718

(%t ( &).

(b ! 0).%0 ! √k/m

A !
Fext/m

√(%2 " %0 

2)2 ( ! b%

m "2

A
b = 0
Undamped

Small b

Large b

ω00
ω

ω

Figure 13.22 Graph of ampli-
tude versus frequency for a
damped oscillator when a periodic
driving force is present. When the
frequency of the driving force
equals the natural frequency %0 ,
resonance occurs. Note that the
shape of the resonance curve de-
pends on the size of the damping
coefficient b.

QuickLab
Tie several objects to strings and sus-
pend them from a horizontal string,
as illustrated in the figure. Make two
of the hanging strings approximately
the same length. If one of this pair,
such as P, is set into sideways motion,
all the others begin to oscillate. But
Q , whose length is the same as that of
P, oscillates with the greatest ampli-
tude. Must all the masses have the
same value?

Q
P
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Many other examples of resonant vibrations can be cited. A resonant vibration
that you may have experienced is the “singing” of telephone wires in the wind. Ma-
chines often break if one vibrating part is at resonance with some other moving
part. Soldiers marching in cadence across a bridge have been known to set up res-
onant vibrations in the structure and thereby cause it to collapse. Whenever any
real physical system is driven near its resonance frequency, you can expect oscilla-
tions of very large amplitudes.

SUMMARY

When the acceleration of an object is proportional to its displacement from some
equilibrium position and is in the direction opposite the displacement, the object
moves with simple harmonic motion. The position x of a simple harmonic oscilla-
tor varies periodically in time according to the expression

(13.3)

where A is the amplitude of the motion, % is the angular frequency, and & is the
phase constant. The value of & depends on the initial position and initial velocity
of the oscillator. You should be able to use this formula to describe the motion of
an object undergoing simple harmonic motion.

The time T needed for one complete oscillation is defined as the period of
the motion:

(13.4)

The inverse of the period is the frequency of the motion, which equals the num-
ber of oscillations per second.

The velocity and acceleration of a simple harmonic oscillator are

(13.7)

(13.8)

(13.23)v ! )%√A2 " x2

a !
dv
dt

! "%2A cos(%t ( &)

v !
dx
dt

! "%A sin(%t ( &) 

T !
2'

%

x ! A cos(%t ( &)

Figure 13.23 (a) In 1940 turbulent winds set up torsional vibrations in the Tacoma Narrows
Bridge, causing it to oscillate at a frequency near one of the natural frequencies of the bridge
structure. (b) Once established, this resonance condition led to the bridge’s collapse.

(a) (b)
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Thus, the maximum speed is %A, and the maximum acceleration is %2A. The speed
is zero when the oscillator is at its turning points, and is a maximum when
the oscillator is at the equilibrium position The magnitude of the accelera-
tion is a maximum at the turning points and zero at the equilibrium position. You
should be able to find the velocity and acceleration of an oscillating object at any
time if you know the amplitude, angular frequency, and phase constant.

A block–spring system moves in simple harmonic motion on a frictionless sur-
face, with a period

(13.18)

The kinetic energy and potential energy for a simple harmonic oscillator vary with
time and are given by

(13.20)

(13.21)

These three formulas allow you to analyze a wide variety of situations involving os-
cillations. Be sure you recognize how the mass of the block and the spring con-
stant of the spring enter into the calculations.

The total energy of a simple harmonic oscillator is a constant of the motion
and is given by

(13.22)

The potential energy of the oscillator is a maximum when the oscillator is at its
turning points and is zero when the oscillator is at the equilibrium position. The
kinetic energy is zero at the turning points and a maximum at the equilibrium po-
sition. You should be able to determine the division of energy between potential
and kinetic forms at any time t .

A simple pendulum of length L moves in simple harmonic motion. For small
angular displacements from the vertical, its period is

(13.26)

For small angular displacements from the vertical, a physical pendulum
moves in simple harmonic motion about a pivot that does not go through the cen-
ter of mass.  The period of this motion is

(13.28)

where I is the moment of inertia about an axis through the pivot and d is the dis-
tance from the pivot to the center of mass. You should be able to distinguish when
to use the simple-pendulum formula and when the system must be considered a
physical pendulum.

Uniform circular motion can be considered a combination of two simple har-
monic motions, one along the x axis and the other along the y axis, with the two
differing in phase by 90°.

T ! 2' √ I
mgd

T ! 2' √ L
g

E ! 1
2 kA2

U ! 1
2 kx2 ! 1

2 kA2 cos2(%t ( &)

K ! 1
2 mv2 ! 1

2 m%2A2 sin2(%t ( &)

T !
2'

%
! 2' √ m

k

x ! 0.
x ! )A,

QUESTIONS

2. If the coordinate of a particle varies as cos %t,
what is the phase constant in Equation 13.3? At what posi-
tion does the particle begin its motion?

x ! "A1. Is a bouncing ball an example of simple harmonic motion?
Is the daily movement of a student from home to school
and back simple harmonic motion? Why or why not?
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PROBLEMS

find (a) the displacement of the particle, (b) its velocity,
and (c) its acceleration. (d) Find the period and ampli-
tude of the motion.

5. A particle moving along the x axis in simple harmonic
motion starts from its equilibrium position, the origin,
at and moves to the right. The amplitude of its
motion is 2.00 cm, and the frequency is 1.50 Hz. 
(a) Show that the displacement of the particle is given
by Determine (b) the maxi-
mum speed and the earliest time (t # 0) at which the
particle has this speed, (c) the maximum acceleration
and the earliest time (t # 0) at which the particle has
this acceleration, and (d) the total distance traveled be-
tween and s.

6. The initial position and initial velocity of an object mov-
ing in simple harmonic motion are xi and vi ; the angular
frequency of oscillation is %. (a) Show that the position
and velocity of the object for all time can be written as

(b) If the amplitude of the motion is A, show that

v2 " ax ! vi 

2 " aix i ! %2A2

v(t) ! "x i% sin %t ( vi cos %t

x(t) ! x i cos %t ( ! vi

% " sin %t

t ! 1.00t ! 0

x ! (2.00 cm) sin(3.00't).

t ! 0

Section 13.1 Simple Harmonic Motion
1. The displacement of a particle at s is given by

the expression where x
is in meters and t is in seconds. Determine (a) the fre-
quency and period of the motion, (b) the amplitude of
the motion, (c) the phase constant, and (d) the dis-
placement of the particle at s.

2. A ball dropped from a height of 4.00 m makes a per-
fectly elastic collision with the ground. Assuming that
no energy is lost due to air resistance, (a) show that the
motion is periodic and (b) determine the period of the
motion. (c) Is the motion simple harmonic? Explain.

3. A particle moves in simple harmonic motion with a fre-
quency of 3.00 oscillations/s and an amplitude of 
5.00 cm. (a) Through what total distance does the parti-
cle move during one cycle of its motion? (b) What is its
maximum speed? Where does this occur? (c) Find the
maximum acceleration of the particle. Where in the
motion does the maximum acceleration occur?

4. In an engine, a piston oscillates with simple harmonic
motion so that its displacement varies according to the
expression

where x is in centimeters and t is in seconds. At ,t ! 0

x ! (5.00 cm) cos(2t ( '/6)

t ! 0.250

x ! (4.00 m) cos(3.00't ( '),
t ! 0.250

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

3. Does the displacement of an oscillating particle between
and a later time t necessarily equal the position of

the particle at time t? Explain.
4. Determine whether the following quantities can be in the

same direction for a simple harmonic oscillator: (a) dis-
placement and velocity, (b) velocity and acceleration, 
(c) displacement and acceleration.

5. Can the amplitude A and the phase constant & be deter-
mined for an oscillator if only the position is specified at

? Explain.
6. Describe qualitatively the motion of a mass–spring system

when the mass of the spring is not neglected.
7. Make a graph showing the potential energy of a station-

ary block hanging from a spring, Why is
the lowest part of the graph offset from the origin?

8. A block–spring system undergoes simple harmonic motion
with an amplitude A. Does the total energy change if the
mass is doubled but the amplitude is not changed? Do the
kinetic and potential energies depend on the mass? Explain.

9. What happens to the period of a simple pendulum if the
pendulum’s length is doubled? What happens to the pe-
riod if the mass of the suspended bob is doubled?

10. A simple pendulum is suspended from the ceiling of a sta-
tionary elevator, and the period is determined. Describe
the changes, if any, in the period when the elevator 

U ! 1
2 ky2 ( mgy.

t ! 0

t ! 0
(a) accelerates upward, (b) accelerates downward, and
(c) moves with constant velocity.

11. A simple pendulum undergoes simple harmonic motion
when . is small. Is the motion periodic when . is large?
How does the period of motion change as . increases?

12. Will damped oscillations occur for any values of b and k?
Explain.

13. As it possible to have damped oscillations when a system
is at resonance? Explain.

14. At resonance, what does the phase constant & equal in
Equation 13.36? (Hint: Compare this equation with the
expression for the driving force, which must be in phase
with the velocity at resonance.)

15. Some parachutes have holes in them to allow air to move
smoothly through them. Without such holes, sometimes
the air that has gathered beneath the chute as a para-
chutist falls is released from under its edges alternately
and periodically, at one side and then at the other. Why
might this periodic release of air cause a problem?

16. If a grandfather clock were running slowly, how could we
adjust the length of the pendulum to correct the time?

17. A pendulum bob is made from a sphere filled with water.
What would happen to the frequency of vibration of this
pendulum if the sphere had a hole in it that allowed the
water to leak out slowly?
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Section 13.2 The Block – Spring System Revisited
Note: Neglect the mass of the spring in all problems in this
section.

7. A spring stretches by 3.90 cm when a 10.0-g mass is
hung from it. If a 25.0-g mass attached to this spring os-
cillates in simple harmonic motion, calculate the period
of the motion.

8. A simple harmonic oscillator takes 12.0 s to undergo
five complete vibrations. Find (a) the period of its mo-
tion, (b) the frequency in hertz, and (c) the angular
frequency in radians per second.

9. A 0.500-kg mass attached to a spring with a force con-
stant of 8.00 N/m vibrates in simple harmonic motion
with an amplitude of 10.0 cm. Calculate (a) the maxi-
mum value of its speed and acceleration, (b) the speed
and acceleration when the mass is 6.00 cm from the
equilibrium position, and (c) the time it takes the mass
to move from to cm.

10. A 1.00-kg mass attached to a spring with a force con-
stant of 25.0 N/m oscillates on a horizontal, frictionless
track. At , the mass is released from rest at

cm. (That is, the spring is compressed by
3.00 cm.) Find (a) the period of its motion; (b) the
maximum values of its speed and acceleration; and 
(c) the displacement, velocity, and acceleration as func-
tions of time.

11. A 7.00-kg mass is hung from the bottom end of a verti-
cal spring fastened to an overhead beam. The mass is
set into vertical oscillations with a period of 2.60 s. Find
the force constant of the spring.

12. A block of unknown mass is attached to a spring with a
spring constant of 6.50 N/m and undergoes simple har-
monic motion with an amplitude of 10.0 cm. When the
mass is halfway between its equilibrium position and the
end point, its speed is measured to be ( 30.0 cm/s. Cal-
culate (a) the mass of the block, (b) the period of the
motion, and (c) the maximum acceleration of the
block.

13. A particle that hangs from a spring oscillates with an an-
gular frequency of 2.00 rad/s. The spring–particle sys-
tem is suspended from the ceiling of an elevator car and
hangs motionless (relative to the elevator car) as the car
descends at a constant speed of 1.50 m/s. The car then
stops suddenly. (a) With what amplitude does the parti-
cle oscillate? (b) What is the equation of motion for the
particle? (Choose upward as the positive direction.)

14. A particle that hangs from a spring oscillates with an an-
gular frequency %. The spring–particle system is sus-
pended from the ceiling of an elevator car and hangs
motionless (relative to the elevator car) as the car de-
scends at a constant speed v. The car then stops sud-
denly. (a) With what amplitude does the particle oscil-
late? (b) What is the equation of motion for the
particle? (Choose upward as the positive direction.)

15. A 1.00-kg mass is attached to a horizontal spring. The
spring is initially stretched by 0.100 m, and the mass is

x ! "3.00
t ! 0

x ! 8.00x ! 0

released from rest there. It proceeds to move without
friction. After 0.500 s, the speed of the mass is zero.
What is the maximum speed of the mass?

Section 13.3 Energy of the Simple Harmonic Oscillator
Note: Neglect the mass of the spring in all problems in this
section.

16. A 200-g mass is attached to a spring and undergoes sim-
ple harmonic motion with a period of 0.250 s. If the to-
tal energy of the system is 2.00 J, find (a) the force con-
stant of the spring and (b) the amplitude of the motion.

17. An automobile having a mass of 1 000 kg is driven into
a brick wall in a safety test. The bumper behaves as a
spring of constant 5.00 - 106 N/m and compresses 
3.16 cm as the car is brought to rest. What was the
speed of the car before impact, assuming that no energy
is lost during impact with the wall?

18. A mass–spring system oscillates with an amplitude of
3.50 cm. If the spring constant is 250 N/m and the mass
is 0.500 kg, determine (a) the mechanical energy of the
system, (b) the maximum speed of the mass, and 
(c) the maximum acceleration.

19. A 50.0-g mass connected to a spring with a force con-
stant of 35.0 N/m oscillates on a horizontal, frictionless
surface with an amplitude of 4.00 cm. Find (a) the total
energy of the system and (b) the speed of the mass
when the displacement is 1.00 cm. Find (c) the kinetic
energy and (d) the potential energy when the displace-
ment is 3.00 cm.

20. A 2.00-kg mass is attached to a spring and placed on a
horizontal, smooth surface. A horizontal force of 20.0 N
is required to hold the mass at rest when it is pulled
0.200 m from its equilibrium position (the origin of the
x axis). The mass is now released from rest with an ini-
tial displacement of m, and it subsequently
undergoes simple harmonic oscillations. Find (a) the
force constant of the spring, (b) the frequency of the
oscillations, and (c) the maximum speed of the mass.
Where does this maximum speed occur? (d) Find the
maximum acceleration of the mass. Where does it oc-
cur? (e) Find the total energy of the oscillating system.
Find (f) the speed and (g) the acceleration when the
displacement equals one third of the maximum 
value.

21. A 1.50-kg block at rest on a tabletop is attached to a hor-
izontal spring having force constant of 19.6 N/m. The
spring is initially unstretched. A constant 20.0-N hori-
zontal force is applied to the object, causing the spring
to stretch. (a) Determine the speed of the block after it
has moved 0.300 m from equilibrium, assuming that the
surface between the block and the tabletop is friction-
less. (b) Answer part (a) for a coefficient of kinetic fric-
tion of 0.200 between the block and the tabletop.

22. The amplitude of a system moving in simple harmonic
motion is doubled. Determine the change in (a) the to-
tal energy, (b) the maximum speed, (c) the maximum
acceleration, and (d) the period.

x i ! 0.200

WEB
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23. A particle executes simple harmonic motion with an
amplitude of 3.00 cm. At what displacement from the
midpoint of its motion does its speed equal one half of
its maximum speed?

24. A mass on a spring with a constant of 3.24 N/m vi-
brates, with its position given by the equation 

cm) cos(3.60t rad/s). (a) During the first 
cycle, for 0 $ t $ 1.75 s, when is the potential energy 
of the system changing most rapidly into kinetic energy?
(b) What is the maximum rate of energy transfor-
mation?

Section 13.4 The Pendulum
25. A man enters a tall tower, needing to know its height.

He notes that a long pendulum extends from the ceil-
ing almost to the floor and that its period is 12.0 s. 
(a) How tall is the tower? (b) If this pendulum is taken
to the Moon, where the free-fall acceleration is 
1.67 m/s2, what is its period there?

26. A “seconds” pendulum is one that moves through its
equilibrium position once each second. (The period of
the pendulum is 2.000 s.) The length of a seconds pen-
dulum is 0.992 7 m at Tokyo and 0.994 2 m at Cam-
bridge, England. What is the ratio of the free-fall accel-
erations at these two locations?

27. A rigid steel frame above a street intersection supports
standard traffic lights, each of which is hinged to hang
immediately below the frame. A gust of wind sets a light
swinging in a vertical plane. Find the order of magni-
tude of its period. State the quantities you take as data
and their values.

28. The angular displacement of a pendulum is repre-
sented by the equation . ! (0.320 rad)cos %t, where .
is in radians and % ! 4.43 rad/s. Determine the period
and length of the pendulum.

29. A simple pendulum has a mass of 0.250 kg and a length
of 1.00 m. It is displaced through an angle of 15.0° and
then released. What are (a) the maximum speed, 
(b) the maximum angular acceleration, and 
(c) the maximum restoring force?

30. A simple pendulum is 5.00 m long. (a) What is the pe-
riod of simple harmonic motion for this pendulum if it
is hanging in an elevator that is accelerating upward at
5.00 m/s2? (b) What is its period if the elevator is accel-
erating downward at 5.00 m/s2? (c) What is the period
of simple harmonic motion for this pendulum if it is
placed in a truck that is accelerating horizontally at 
5.00 m/s2?

31. A particle of mass m slides without friction inside a
hemispherical bowl of radius R . Show that, if it starts
from rest with a small displacement from equilibrium,
the particle moves in simple harmonic motion with an
angular frequency equal to that of a simple pendulum
of length R . That is, 

32. A mass is attached to the end of a string to form a sim-
ple pendulum. The period of its harmonic motion is

% ! √g/R .

x ! (5.00

measured for small angular displacements and three
lengths; in each case, the motion is clocked with a stop-
watch for 50 oscillations. For lengths of 1.000 m, 
0.750 m, and 0.500 m, total times of 99.8 s, 86.6 s, and
71.1 s, respectively, are measured for the 50 oscillations.
(a) Determine the period of motion for each length.
(b) Determine the mean value of g obtained from these
three independent measurements, and compare it with
the accepted value. (c) Plot T 2 versus L, and obtain a
value for g from the slope of your best-fit straight-line
graph. Compare this value with that obtained in part
(b).

33. A physical pendulum in the form of a planar body
moves in simple harmonic motion with a frequency of
0.450 Hz. If the pendulum has a mass of 2.20 kg and the
pivot is located 0.350 m from the center of mass, deter-
mine the moment of inertia of the pendulum.

34. A very light, rigid rod with a length of 0.500 m extends
straight out from one end of a meter stick. The stick is
suspended from a pivot at the far end of the rod and is
set into oscillation. (a) Determine the period of oscilla-
tion. (b) By what percentage does this differ from a
1.00-m-long simple pendulum?

35. Consider the physical pendulum of Figure 13.13. (a) If
ICM is its moment of inertia about an axis that passes
through its center of mass and is parallel to the axis that
passes through its pivot point, show that its period is

where d is the distance between the pivot point and the
center of mass. (b) Show that the period has a mini-
mum value when d satisfies 

36. A torsional pendulum is formed by attaching a wire to
the center of a meter stick with a mass of 2.00 kg. If the
resulting period is 3.00 min, what is the torsion constant
for the wire?

37. A clock balance wheel has a period of oscillation of
0.250 s. The wheel is constructed so that 20.0 g of mass
is concentrated around a rim of radius 0.500 cm. What
are (a) the wheel’s moment of inertia and (b) the tor-
sion constant of the attached spring?

Section 13.5 Comparing Simple Harmonic 
Motion with Uniform Circular Motion

38. While riding behind a car that is traveling at 3.00 m/s,
you notice that one of the car’s tires has a small hemi-
spherical boss on its rim, as shown in Figure P13.38. 
(a) Explain why the boss, from your viewpoint behind
the car, executes simple harmonic motion. (b) If the 
radius of the car’s tires is 0.300 m, what is the boss’s pe-
riod of oscillation?

39. Consider the simplified single-piston engine shown in
Figure P13.39. If the wheel rotates with constant angu-
lar speed, explain why the piston rod oscillates in sim-
ple harmonic motion.

md 2 ! ICM .

T ! 2'√ ICM ( md 2

mgd

WEB
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riod and (b) the amplitude of the motion. (Hint: As-
sume that there is no damping—that is, that 
b ! 0—and use Eq. 13.37.)

45. Considering an undamped, forced oscillator 
show that Equation 13.36 is a solution of Equation
13.35, with an amplitude given by Equation 13.37.

46. A weight of 40.0 N is suspended from a spring that has a
force constant of 200 N/m. The system is undamped
and is subjected to a harmonic force with a frequency of
10.0 Hz, which results in a forced-motion amplitude of
2.00 cm. Determine the maximum value of the force.

47. Damping is negligible for a 0.150-kg mass hanging from
a light 6.30-N/m spring. The system is driven by a force
oscillating with an amplitude of 1.70 N. At what fre-
quency will the force make the mass vibrate with an am-
plitude of 0.440 m?

48. You are a research biologist. Before dining at a fine
restaurant, you set your pager to vibrate instead of
beep, and you place it in the side pocket of your suit
coat. The arm of your chair presses the light cloth
against your body at one spot. Fabric with a length of
8.21 cm hangs freely below that spot, with the pager at
the bottom. A co-worker telephones you. The motion of
the vibrating pager makes the hanging part of your coat
swing back and forth with remarkably large amplitude.
The waiter, maître d’, wine steward, and nearby diners
notice immediately and fall silent. Your daughter pipes
up and says, “Daddy, look! Your cockroaches must have
gotten out again!” Find the frequency at which your
pager vibrates.

ADDITIONAL PROBLEMS
49. A car with bad shock absorbers bounces up and down

with a period of 1.50 s after hitting a bump. The car has
a mass of 1 500 kg and is supported by four springs of
equal force constant k. Determine the value of k.

50. A large passenger with a mass of 150 kg sits in the mid-
dle of the car described in Problem 49. What is the new
period of oscillation?

51. A compact mass M is attached to the end of a uniform
rod, of equal mass M and length L , that is pivoted at the
top (Fig. P13.51). (a) Determine the tensions in the rod

(b ! 0),

Piston

A

x = "A x(t )

ω

Boss

Figure P13.38

L

P

y

Pivot

y = 0M

Figure P13.39

(Optional)
Section 13.6 Damped Oscillations

40. Show that the time rate of change of mechanical energy
for a damped, undriven oscillator is given by

and hence is always negative. (Hint: Dif-
ferentiate the expression for the mechanical energy of
an oscillator, and use Eq. 13.32.)

41. A pendulum with a length of 1.00 m is released from an
initial angle of 15.0°. After 1 000 s, its amplitude is re-
duced by friction to 5.50°. What is the value of b/2m ?

42. Show that Equation 13.33 is a solution of Equation
13.32 provided that 

(Optional)
Section 13.7 Forced Oscillations

43. A baby rejoices in the day by crowing and jumping up
and down in her crib. Her mass is 12.5 kg, and the crib
mattress can be modeled as a light spring with a force
constant of 4.30 kN/m. (a) The baby soon learns to
bounce with maximum amplitude and minimum effort
by bending her knees at what frequency? (b) She learns
to use the mattress as a trampoline—losing contact
with it for part of each cycle—when her amplitude ex-
ceeds what value?

44. A 2.00-kg mass attached to a spring is driven by an ex-
ternal force F ! (3.00 N) cos(2't). If the force con-
stant of the spring is 20.0 N/m, determine (a) the pe-

b 2 $ 4mk.

E ! 1
2 mv2 ( 1

2 kx2,

dE/dt ! "bv2

Figure P13.51
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at the pivot and at the point P when the system is sta-
tionary. (b) Calculate the period of oscillation for small
displacements from equilibrium, and determine this pe-
riod for L ! 2.00 m. (Hint: Assume that the mass at the
end of the rod is a point mass, and use Eq. 13.28.)

52. A mass, m1 ! 9.00 kg, is in equilibrium while connected
to a light spring of constant k ! 100 N/m that is fas-
tened to a wall, as shown in Figure P13.52a. A second
mass, m2 ! 7.00 kg, is slowly pushed up against mass
m1 , compressing the spring by the amount A ! 0.200 m
(see Fig. P13.52b). The system is then released, and
both masses start moving to the right on the frictionless
surface. (a) When m1 reaches the equilibrium point, m2
loses contact with m1 (see Fig. P13.52c) and moves to
the right with speed v. Determine the value of v. 
(b) How far apart are the masses when the spring is
fully stretched for the first time (D in Fig. P13.52d)?
(Hint: First determine the period of oscillation and the
amplitude of the m1 – spring system after m2 loses con-
tact with m1 .)

in Figure P13.53, and the coefficient of static friction
between the two is 3s ! 0.600. What maximum ampli-
tude of oscillation can the system have if block B is not
to slip?

54. A large block P executes horizontal simple harmonic
motion as it slides across a frictionless surface with a fre-
quency f. Block B rests on it, as shown in Figure P13.53,
and the coefficient of static friction between the two is
3s . What maximum amplitude of oscillation can the sys-
tem have if the upper block is not to slip?

55. The mass of the deuterium molecule (D2) is twice 
that of the hydrogen molecule (H2). If the vibrational
frequency of H2 is 1.30 - 1014 Hz, what is the vibra-
tional frequency of D2 ? Assume that the “spring con-
stant’’ of attracting forces is the same for the two 
molecules.

56. A solid sphere (radius ! R) rolls without slipping in a
cylindrical trough (radius ! 5R), as shown in Figure
P13.56. Show that, for small displacements from equilib-
rium perpendicular to the length of the trough, the
sphere executes simple harmonic motion with a period
T ! 2' √28R/5g.

WEB

5R

R

B

P

µsµ

A

m1 m2

v

v

m1 m2

m1 m2

m1

(a)

(b)

(c)

(d)

k

k

k

k

D

57. A light cubical container of volume a3 is initially filled
with a liquid of mass density 4. The container is initially
supported by a light string to form a pendulum of
length Li , measured from the center of mass of the
filled container. The liquid is allowed to flow from the
bottom of the container at a constant rate (dM/dt). At
any time t, the level of the liquid in the container is h

53. A large block P executes horizontal simple harmonic
motion as it slides  across a frictionless surface with a
frequency of f ! 1.50 Hz. Block B rests on it, as shown

Figure P13.52

Figure P13.53 Problems 53 and 54.

Figure P13.56
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59. A pendulum of length L and mass M has a spring of
force constant k connected to it at a distance h below its
point of suspension (Fig. P13.59). Find the frequency of
vibration of the system for small values of the amplitude
(small .). (Assume that the vertical suspension of
length L is rigid, but neglect its mass.)

60. A horizontal plank of mass m and length L is pivoted at
one end. The plank’s other end is supported by a spring
of force constant k (Fig. P13.60). The moment of iner-
tia of the plank about the pivot is (a) Show that
the plank, after being displaced a small angle . from its
horizontal equilibrium position and released, moves
with simple harmonic motion of angular frequency 

(b) Evaluate the frequency if the mass is
5.00 kg and the spring has a force constant of 100 N/m.
% ! √3k/m.

1
3 mL2.

Pivot

θ

k

h
θ

L

k

M

m

(a)

61. One end of a light spring with a force constant of 
100 N/m is attached to a vertical wall. A light string is
tied to the other end of the horizontal spring. The
string changes from horizontal to vertical as it passes
over a 4.00-cm-diameter solid pulley that is free to turn
on a fixed smooth axle. The vertical section of the
string supports a 200-g mass. The string does not slip at
its contact with the pulley. Find the frequency of oscilla-
tion of the mass if the mass of the pulley is (a) negligi-
ble, (b) 250 g, and (c) 750 g.

62. A 2.00-kg block hangs without vibrating at the end of a
spring (k ! 500 N/m) that is attached to the ceiling of
an elevator car. The car is rising with an upward acceler-
ation of g/3 when the acceleration suddenly ceases (at

). (a) What is the angular frequency of oscillation
of the block after the acceleration ceases? (b) By what
amount is the spring stretched during the acceleration
of the elevator car? (c) What are the amplitude of the
oscillation and the initial phase angle observed by a
rider in the car? Take the upward direction to be posi-
tive.

63. A simple pendulum with a length of 2.23 m and a mass
of 6.74 kg is given an initial speed of 2.06 m/s at its
equilibrium position. Assume that it undergoes simple
harmonic motion, and determine its (a) period, (b) to-
tal energy, and (c) maximum angular displacement.

t ! 0

Figure P13.58 (a) Mass–spring system for Problems 58 and 68.
(b) Bungee-jumping from a bridge. (Telegraph Colour Library/
FPG International)

Figure P13.59

Figure P13.60

(b)

and the length of the pendulum is L (measured relative
to the instantaneous center of mass). (a) Sketch the ap-
paratus and label the dimensions a, h, Li , and L . 
(b) Find the time rate of change of the period as a
function of time t. (c) Find the period as a function of
time.

58. After a thrilling plunge, bungee-jumpers bounce freely
on the bungee cords through many cycles. Your little
brother can make a pest of himself by figuring out the
mass of each person, using a proportion he set up by
solving this problem: A mass m is oscillating freely on a
vertical spring with a period T (Fig. P13.58a). An un-
known mass m, on the same spring oscillates with a pe-
riod T ,. Determine (a) the spring constant k and 
(b) the unknown mass m,.



420 C H A P T E R  1 3 Oscillatory Motion

67. A ball of mass m is connected to two rubber bands of
length L , each under tension T, as in Figure P13.67.
The ball is displaced by a small distance y perpendicular
to the length of the rubber bands. Assuming that the
tension does not change, show that (a) the restoring
force is " (2T/L)y and (b) the system exhibits simple
harmonic motion with an angular frequency
% ! √2T/mL .

68. When a mass M, connected to the end of a spring of
mass g and force constant k, is set into simple
harmonic motion, the period of its motion is

A two-part experiment is conducted with the use of vari-
ous masses suspended vertically from the spring, as
shown in Figure P13.58a. (a) Static extensions of 17.0,
29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured for M
values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, respec-
tively. Construct a graph of Mg versus x, and perform a
linear least-squares fit to the data. From the slope of
your graph, determine a value for k for this spring. 
(b) The system is now set into simple harmonic motion,
and periods are measured with a stopwatch. With M !
80.0 g, the total time for 10 oscillations is measured to
be 13.41 s. The experiment is repeated with M values of
70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding
times for 10 oscillations of 12.52, 11.67, 10.67, 9.62, and
7.03 s. Compute the experimental value for T for each
of these measurements. Plot a graph of T 2 versus M,
and determine a value for k from the slope of the linear
least-squares fit through the data points. Compare this
value of k with that obtained in part (a). (c) Obtain a
value for ms from your graph, and compare it with the
given value of 7.40 g.

69. A small, thin disk of radius r and mass m is attached
rigidly to the face of a second thin disk of radius R and
mass M, as shown in Figure P13.69. The center of the
small disk is located at the edge of the large disk. The
large disk is mounted at its center on a frictionless axle.
The assembly is rotated through a small angle . from its
equilibrium position and released. (a) Show that the

T ! 2'√ M ( (ms/3)
k

ms ! 7.40

WEB
R

M

θθ

mv

y

L L

x

dx

M

v

Figure P13.66

Figure P13.67

Figure P13.69

64. People who ride motorcycles and bicycles learn to look
out for bumps in the road and especially for washboard-
ing, which is a condition of many equally spaced ridges
worn into the road. What is so bad about washboarding?
A motorcycle has several springs and shock absorbers in
its suspension, but you can model it as a single spring
supporting a mass. You can estimate the spring constant
by thinking about how far the spring compresses when
a big biker sits down on the seat. A motorcyclist travel-
ing at highway speed must be particularly careful of
washboard bumps that are a certain distance apart.
What is the order of magnitude of their separation dis-
tance? State the quantities you take as data and the val-
ues you estimate or measure for them.

65. A wire is bent into the shape of one cycle of a cosine
curve. It is held in a vertical plane so that the height y
of the wire at any horizontal distance x from the center
is given by rad/m)]. A
bead can slide without friction on the stationary wire.
Show that if its excursion away from is never large,
the bead moves with simple harmonic motion. Deter-
mine its angular frequency. (Hint: cos for
small ..)

66. A block of mass M is connected to a spring of mass m
and oscillates in simple harmonic motion on a horizon-
tal, frictionless track (Fig. P13.66). The force constant
of the spring is k, and the equilibrium length is !. Find
(a) the kinetic energy of the system when the block has
a speed v, and (b) the period of oscillation. (Hint: As-
sume that all portions of the spring oscillate in phase
and that the velocity of a segment dx is proportional to
the distance x from the fixed end; that is, /!]v.
Also, note that the mass of a segment of the spring is

!]dx.)dm ! [m/

vx ! [x

. $ 1 " . 2/2

x ! 0

y ! 20.0 cm[1 " cos(0.160x
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ANSWERS TO QUICK QUIZZES

13.3 No, because in simple harmonic motion, the accelera-
tion is not constant.

13.4 where 
13.5 From Hooke’s law, the spring constant must be

If we substitute this value for k into Equation
13.18, we find that

This is the same as Equation 13.26, which gives the pe-
riod of a simple pendulum. Thus, when an object
stretches a vertically hung spring, the period of the sys-
tem is the same as that of a simple pendulum having a
length equal to the amount of static extension of the
spring.

T ! 2'√ m
k

! 2'√ m
mg/L

! 2'√ L
g

k ! mg/L .

A ! vi/%.x ! "A sin %t,

13.1 Because A can never be zero, & must be any value that
results in the cosine function’s being zero at . In
other words, & ! cos"1(0). This is true at & ! '/2,
3'/2 or,  more generally, & ! ) n'/2, where n is any
nonzero odd integer. If we want to restrict our choices
of & to values between 0 and 2', we need to know
whether the object was moving to the right or to the left
at . If it was moving with a positive velocity, then 
& ! 3'/2. If vi $ 0, then & ! '/2.

13.2 (d) 4A. From its maximum positive position to the equi-
librium position, it travels a distance A, by definition of
amplitude. It then goes an equal distance past the equi-
librium position to its maximum negative position. It
then repeats these two motions in the reverse direction
to return to its original position and complete one cycle.

t ! 0

t ! 0

m

(a)

k1 k2

(b)

k1 k2

m

speed of the center of the small disk as it passes through
the equilibrium position is

(b) Show that the period of the motion is

70. Consider the damped oscillator illustrated in Figure
13.19. Assume that the mass is 375 g, the spring con-
stant is 100 N/m, and kg/s. (a) How long
does it takes for the amplitude to drop to half its initial
value? (b) How long does it take for the mechanical en-
ergy to drop to half its initial value? (c) Show that, in
general, the fractional rate at which the amplitude de-
creases in a damped harmonic oscillator is one-half the
fractional rate at which the mechanical energy de-
creases.

71. A mass m is connected to two springs of force constants
k1 and k2 , as shown in Figure P13.71a and b. In each
case, the mass moves on a frictionless table and is dis-
placed from equilibrium and then released. Show that
in the two cases the mass exhibits simple harmonic mo-
tion with periods

(a)

(b)

72. Consider a simple pendulum of length L ! 1.20 m that
is displaced from the vertical by an angle .max and then
released. You are to predict the subsequent angular dis-
placements when .max is small and also when it is large.
Set up and carry out a numerical method to integrate

T ! 2'√ m
k1 ( k2

T ! 2'√ m(k1 ( k2)
k1k2

b ! 0.100

T ! 2' % (M ( 2m)R2 ( mr 2

2mgR &1/2

v ! 2 % Rg(1 " cos .)
(M/m) ( (r/R)2 ( 2 &

1/2

the equation of motion for the simple pendulum:

Take the initial conditions to be . ! .max and d./dt ! 0
at . On one trial choose .max ! 5.00°, and on an-
other trial take .max ! 100°. In each case, find the dis-
placement . as a function of time. Using the same val-
ues for .max, compare your results for . with those
obtained from .max cos %t . How does the period for the
large value of .max compare with that for the small value
of .max ? Note: Using the Euler method to solve this dif-
ferential equation, you may find that the amplitude
tends to increase with time. The fourth-order
Runge–Kutta method would be a better choice to solve
the differential equation. However, if you choose *t
small enough, the solution that you obtain using Euler’s
method can still be good.

t ! 0

d 2.

dt2 ! "
g
L

 sin .

Figure P13.71
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13.6 If your goal is simply to stop the bounce from an ab-
sorbed shock as rapidly as possible, you should critically
damp the suspension. Unfortunately, the stiffness of this
design makes for an uncomfortable ride. If you under-
damp the suspension, the ride is more comfortable but
the car bounces. If you overdamp the suspension, the
wheel is displaced from its equilibrium position longer
than it should be. (For example, after hitting a bump,
the spring stays compressed for a short time and the

wheel does not quickly drop back down into contact
with the road after the wheel is past the bump—a dan-
gerous situation.) Because of all these considerations,
automotive engineers usually design suspensions to be
slightly underdamped. This allows the suspension to ab-
sorb a shock rapidly (minimizing the roughness of the
ride) and then return to equilibrium after only one or
two noticeable oscillations.


