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C H A P T E R 2 4

Data Analysis. 
Probability Theory

We first show how to handle data numerically or in terms of graphs, and how to extract
information (average size, spread of data, etc.) from them. If these data are influenced by
“chance,” by factors whose effect we cannot predict exactly (e.g., weather data, stock
prices, life spans of tires, etc.), we have to rely on probability theory. This theory
originated in games of chance, such as flipping coins, rolling dice, or playing cards.
Nowadays it gives mathematical models of chance processes called random experiments
or, briefly, experiments. In such an experiment we observe a random variable X, that
is, a function whose values in a trial (a performance of an experiment) occur “by chance”
(Sec. 24.3) according to a probability distribution that gives the individual probabilities
with which possible values of X may occur in the long run. (Example: Each of the six
faces of a die should occur with the same probability, Or we may simultaneously
observe more than one random variable, for instance, height and weight of persons or
hardness and tensile strength of steel. This is discussed in Sec. 24.9, which will also give
the basis for the mathematical justification of the statistical methods in Chapter 25.

Prerequisite: Calculus.
References and Answers to Problems: App. 1 Part G, App. 2.

24.1 Data Representation. Average. Spread
Data can be represented numerically or graphically in various ways. For instance, your
daily newspaper may contain tables of stock prices and money exchange rates, curves or
bar charts illustrating economical or political developments, or pie charts showing how
your tax dollar is spent. And there are numerous other representations of data for special
purposes.

In this section we discuss the use of standard representations of data in statistics. (For
these, software packages, such as DATA DESK, R, and MINITAB, are available, and
Maple or Mathematica may also be helpful; see pp. 789 and 1009) We explain corresponding
concepts and methods in terms of typical examples.

E X A M P L E  1 Recording and Sorting

Sample values (observations, measurements) should be recorded in the order in which they occur. Sorting, that
is, ordering the sample values by size, is done as a first step of investigating properties of the sample and graphing
it. Sorting is a standard process on the computer; see Ref. [E35], listed in App. 1.

1>6.)
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Super alloys is a collective name for alloys used in jet engines and rocket motors, requiring high temperature
(typically F), high strength, and excellent resistance to oxidation. Thirty specimens of Hastelloy C (nickel-
based steel, investment cast) had the tensile strength (in recorded in the order obtained and
rounded to integer values,

(1)

Sorting gives

(2)

Graphic Representation of Data
We shall now discuss standard graphic representations used in statistics for obtaining
information on properties of data.

E X A M P L E  2 Stem-and-Leaf Plot (Fig. 507)

This is one of the simplest but most useful representations of data. For (1) it is shown in Fig. 507. The numbers
in (1) range from 78 to 99; see (2). We divide these numbers into 5 groups, 75–79, 80–84, 85–89, 90–94,
95–99. The integers in the tens position of the groups are 7, 8, 8, 9, 9. These form the stem in Fig. 507. The
first leaf is 789, representing 77, 78, 79. The second leaf is 1123344, representing 81, 81, 82, 83, 83, 84, 84.
And so on.

The number of times a value occurs is called its absolute frequency. Thus 78 has absolute frequency 1, the
value 89 has absolute frequency 5, etc. The column to the extreme left in Fig. 507 shows the cumulative absolute
frequencies, that is, the sum of the absolute frequencies of the values up to the line of the leaf. Thus, the number
10 in the second line on the left shows that (1) has 10 values up to and including 84. The number 23 in the next
line shows that there are 23 values not exceeding 89, etc. Dividing the cumulative absolute frequencies by

in Fig. 507) gives the cumulative relative frequencies 0.1, 0.33, 0.76, 0.93, 1.00.

E X A M P L E  3 Histogram (Fig. 508)

For large sets of data, histograms are better in displaying the distribution of data than stem-and-leaf plots. The
principle is explained in Fig. 508. (An application to a larger data set is shown in Sec. 25.7). The bases of the
rectangles in Fig. 508 are the x-intervals (known as class intervals) 74.5–79.5, 79.5–84.5, 84.5–89.5, 89.5–94.5,
94.5–99.5, whose midpoints (known as class marks) are respectively. The height of a
rectangle with class mark x is the relative class frequency defined as the number of data values in that
class interval, divided by in our case). Hence the areas of the rectangles are proportional to these
relative frequencies, 0.10, 0.23, 0.43, 0.17, 0.07, so that histograms give a good impression of the distribution
of data. !

n (! 30
frel(x),

x ! 77, 82, 87, 92, 97,

!n (! 30

!
77 78 79 81 81 82 83 83 84 84 86 86 87 87 87

88 88 88 89 89 89 89 89 90 90 91 91 92 93 99

89 77 88 91 88 93 99 79 87 84 86 82 88 89 78

90 91 81 90 83 83 92 87 89 86 89 81 87 84 89
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Fig. 507. Stem-and-leaf plot 
of the data in Example 1

Fig. 508. Histogram of the data in 
Example 1 (grouped as in Fig. 507)
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E X A M P L E  4 Boxplot. Median. Interquartile Range. Outlier

A boxplot of a set of data illustrates the average size and the spread of the values, in many cases the two most
important quantities characterizing the set, as follows.

The average size is measured by the median, or middle quartile, If the number n of values of the set is odd,
then is the middlemost of the values when ordered as in (2). If n is even, then is the average of the two
middlemost values of the ordered set. In (2) we have and thus 
(In general, will be a fraction if n is even.)

The spread of values can be measured by the range the largest value minus the smallest
one.

Better information on the spread gives the interquartile range Here is the middlemost
value (or the average of the two middlemost values) in the data above the median; and is the middlemost
value (or the average of the two middlemost values) in the data below the median. Hence in (2) we have

and 
The box in Fig. 509 extends vertically from to it has height The vertical lines below and

above the box extend from to so that they show R ! 22.xmax ! 99,xmin ! 77
IQR ! 6.qU;qL

IQR ! 89 " 83 ! 6.qU ! x23 ! 89, qL ! x8 ! 83,

qL

qUIQR ! qU " qL.

R ! xmax " xmin,
qM

87.5.qM ! 1
2 (x15 # x16) ! 1

2 (87 # 88) !n ! 30
qMqM

qM.
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Fig. 509. Boxplot of the data set (1)

The line above the box is suspiciously long. This suggests the concept of an outlier, a value that is more
than 1.5 times the IQR away from either end of the box; here 1.5 is purely conventional. An outlier indicates
that something might have gone wrong in the data collection. In (2) we have and we regard
99 as an outlier.

Mean. Standard Deviation. Variance.
Empirical Rule
Medians and quartiles are easily obtained by ordering and counting, practically without
calculation. But they do not give full information on data: you can change data values to
some extent without changing the median. Similarly for the quartiles.

The average size of the data values can be measured in a more refined way by the
mean

(3) x !
1
n   a

n

j!1

 x j !
1
n (x1 # x2 # Á # xn).

!
89 # 1.5 IQR ! 98,
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This is the arithmetic mean of the data values, obtained by taking their sum and dividing
by the data size n. Thus in (1),

Every data value contributes, and changing one of them will change the mean.
Similarly, the spread (variability) of the data values can be measured in a more refined

way by the standard deviation s or by its square, the variance

(4)

Thus, to obtain the variance of the data, take the difference of each data value from
the mean, square it, take the sum of these n squares, and divide it by (not n, as we
motivate in Sec. 25.2). To get the standard deviation s, take the square root of 

For example, using we get for the data (1) the variance

Hence the standard deviation is Note that the standard deviation
has the same dimension as the data values see at the beginning), which is an
advantage. On the other hand, the variance is preferable to the standard deviation in
developing statistical methods, as we shall see in Chap. 25.

CAUTION! Your CAS (Maple, for instance) may use instead of in (4),
but the latter is better when n is small (see Sec. 25.2).

Mean and standard deviation, introduced to give center and spread, actually give much
more information according to this rule.

Empirical Rule. For any mound-shaped, nearly symmetric distribution of data the intervals

contain about

respectively, of the data points.

E X A M P L E  5 Empirical Rule and Outliers. z-Score

For (1), with and the three intervals in the Rule are 
and contain (22 values remain, 5 are too small, and 5 too large), (28 values,

1 too small, and 1 too large), and respectively.
If we reduce the sample by omitting the outlier 99, mean and standard deviation reduce to 

approximately, and the percentage values become (5 and 5 values outside), (1 and 1 outside), and 
Finally, the relative position of a value x in a set of mean and standard deviation s can be measured by the

z-score

This is the distance of x from the mean measured in multiples of s. For instance, 
This is negative because 83 lies below the mean. By the Empirical Rule, the extreme z-values

are about and 3. !!3
4.8 " !0.77.

(83 ! 86.7)>z(83) "x

z(s) "
x ! x

s  .

x
100%.93%67%

sred " 4.3,xred " 86.2,
100%,

93%73%72.3 # x # 101.1
81.9 # x # 91.5, 77.1 # x # 96.3,s " 4.8,x " 86.7

68%, 95%, 99.7%,x $ s, x $ 2s, x $ 3s

1>(n ! 1)1>n
(kg>mm2,

s " 12006>87 ! 4.802.

s2 " 1
29 [(89 ! 260

3  )2 % (77 ! 260
3  )2 % Á % (89 ! 260

3  )2] " 2006
87 ! 23.06

x " 260>3,
s2.

n ! 1
x j ! x

s2 "
1

n ! 1
 a

n

j"1

 (x j ! x)2 "
1

n ! 1
 [(x1 ! x)2 % Á % (xn ! x)2].

x " 1
30 (89 % 77 % Á % 89) " 260

3 ! 86.7.
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SEC. 24.2 Experiments, Outcomes, Events 1015

1–10 DATA REPRESENTATIONS
Represent the data by a stem-and-leaf plot, a histogram, and
a boxplot:
1. Length of nails [mm]

2. Phone calls per minute in an office between A.M.
and A.M.

3. Systolic blood pressure of 15 female patients of ages
20–22

4. Iron content of 15 specimens of hermatite 

5. Weight of filled bags [g] in an automatic filling

6. Gasoline consumption [miles per gallon, rounded] of
six cars of the same model under similar conditions

7. Release time [sec] of a relay

1.3 1.2 1.4 1.5 1.3 1.3 1.4 1.1 1.5 1.4
1.6 1.3 1.5 1.1 1.4 1.2 1.3 1.5 1.4 1.4

15.0 15.5 14.5 15.0 15.5 15.0

203 199 198 201 200 201 201

72.8 70.4 71.2 69.2 70.3 68.9 71.1 69.8
71.5 69.7 70.5 71.3 69.1 70.9 70.6

(Fe2O3)[%]

156 158 154 133 141 130 144 137
151 146 156 138 138 149 139

6 6 4 2 1 7 0 4 6 7

9:10
9:00

19 21 19 20 19 20 21 20

8. Foundrax test of Brinell hardness (2.5 mm steel ball,
62.5 kg load, 30 sec) of 20 copper plates (values in

)

9. Efficiency of seven Voith Francis turbines of
runner diameter 2.3 m under a head range of 185 m

10.

11–16 AVERAGE AND SPREAD
Find the mean and compare it with the median. Find the
standard deviation and compare it with the interquartile range.
11. For the data in Prob. 1
12. For the phone call data in Prob. 2
13. For the medical data in Prob. 3
14. For the iron contents in Prob. 4
15. For the release times in Prob. 7
16. For the Brinell hardness data in Prob. 8
17. Outlier, reduced data. Calculate s for the data

Then reduce the data by deleting
the outlier and calculate s. Comment.

18. Outlier, reduction. Do the same tasks as in Prob. 17
for the hardness data in Prob. 8.

19. Construct the simplest possible data with but
What is the point of this problem?

20. Mean. Prove that must always lie between the
smallest and the largest data values.

x
qM ! 0.

x ! 100

4 1 3 10 2.

"0.51 0.12 "0.47 0.95 0.25 "0.18 "0.54

91.8 89.1 89.9 92.5 90.7 91.2 91.0

[%]

86 86 87 89 76 85 82 86 87 85
90 88 89 90 88 80 84 89 90 89

kg>mm2

P R O B L E M  S E T  2 4 . 1

24.2 Experiments, Outcomes, Events
We now turn to probability theory. This theory has the purpose of providing mathematical
models of situations affected or even governed by “chance effects,” for instance, in weather
forecasting, life insurance, quality of technical products (computers, batteries, steel sheets,
etc.), traffic problems, and, of course, games of chance with cards or dice. And the accuracy
of these models can be tested by suitable observations or experiments—this is a main
purpose of statistics to be explained in Chap. 25.

We begin by defining some standard terms. An experiment is a process of measurement
or observation, in a laboratory, in a factory, on the street, in nature, or wherever; so
“experiment” is used in a rather general sense. Our interest is in experiments that involve
randomness, chance effects, so that we cannot predict a result exactly. A trial is a single
performance of an experiment. Its result is called an outcome or a sample point. n trials
then give a sample of size n consisting of n sample points. The sample space S of an
experiment is the set of all possible outcomes.
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Random Experiments. Sample Spaces

(1) Inspecting a lightbulb. {Defective, Nondefective}.

(2) Rolling a die. 

(3) Measuring tensile strength of wire. S the numbers in some interval.

(4) Measuring copper content of brass. say.

(5) Counting daily traffic accidents in New York. S the integers in some interval.

(6) Asking for opinion about a new car model. {Like, Dislike, Undecided}.

The subsets of S are called events and the outcomes simple events.

E X A M P L E  7 Events

In (2), events are (“Odd number”), (“Even number”), etc. Simple
events are 

If, in a trial, an outcome a happens and (a is an element of A), we say that A
happens. For instance, if a die turns up a 3, the event A: Odd number happens. Similarly,
if C in Example 7 happens (meaning 5 or 6 turns up), then, say, happens.
Also note that S happens in each trial, meaning that some event of S always happens. All
this is quite natural.

Unions, Intersections, Complements of Events
In connection with basic probability laws we shall need the following concepts and facts
about events (subsets) of a given sample space S.

The union of A and B consists of all points in A or B or both.

The intersection of A and B consists of all points that are in both A and B.

If A and B have no points in common, we write

where is the empty set (set with no elements) and we call A and B mutually exclusive
(or disjoint) because, in a trial, the occurrence of A excludes that of B (and conversely)—
if your die turns up an odd number, it cannot turn up an even number in the same trial.
Similarly, a coin cannot turn up Head and Tail at the same time.

Complement of A. This is the set of all the points of S not in A. Thus,

In Example 7 we have hence 
Another notation for the complement of A is (instead of but we shall not

use this because in set theory is used to denote the closure of A (not needed in
our work).

Unions and intersections of more events are defined similarly. The union

!
m

j!1
 Aj ! A1 ! A2 ! Á ! Am

A
Ac),A

A ! Ac ! {1, 2, 3, 4, 5, 6} ! S.Ac ! B,

A " Ac ! $,  A ! Ac ! S.

Ac

$

A " B ! $

A " B

A ! B

A, B, C, Á

D ! {4, 5, 6}

a # A

!{1}, {2}, Á , {6}.
C ! {5, 6}.B ! {2, 4, 6}A ! {1, 3, 5}

!S !

S: 50% to 90%,

S ! {1, 2, 3, 4, 5, 6}.

S !

1016 CHAP. 24 Data Analysis. Probability Theory

E X A M P L E S  1 – 6
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SEC. 24.2 Experiments, Outcomes, Events 1017

1JOHN VENN (1834–1923), English mathematician.

S S

A

B

A

Union A ∪ B Intersection A ∩ B

B

S

4

13

5

6
2

A

C

Fig. 510. Venn diagrams showing two events A and B in a sample space S
and their union A ! B (colored) and intersection A " B (colored)

Fig. 511. Venn diagram for the experiment of rolling a die, showing S, 
A ! {1, 3, 5}, C ! {5, 6}, A ! C ! {1, 3, 5, 6}, A " C ! {5}

1–12 SAMPLE SPACES, EVENTS
Graph a sample space for the experiments:
1. Drawing 3 screws from a lot of right-handed and left-

handed screws
2. Tossing 2 coins

3. Rolling 2 dice

4. Rolling a die until the first Six appears

5. Tossing a coin until the first Head appears

6. Recording the lifetime of each of 3 lightbulbs

P R O B L E M  S E T  2 4 . 2

of events consists of all points that are in at least one Similarly for the
union of infinitely many subsets of an infinite sample space
S (that is, S consists of infinitely many points). The intersection

of consists of the points of S that are in each of these events. Similarly for
the intersection of infinitely many subsets of S.

Working with events can be illustrated and facilitated by Venn diagrams1 for showing
unions, intersections, and complements, as in Figs. 510 and 511, which are typical
examples that give the idea.

E X A M P L E  8 Unions and Intersections of 3 Events

In rolling a die, consider the events

Then Can you sketch a Venn diagram
of this? Furthermore, hence (why?). !A ! B ! C ! SA ! B ! S,

A " B ! {4, 5}, B " C ! {2, 4}, C " A ! {4, 6}, A " B " C ! {4}.

A:  Number greater than 3,  B:  Number less than 6,  C:  Even number.

A1 " A2 " Á
A1, Á , Am

"
m

j!1 
Aj ! A1 " A2 " Á " Am

A1, A2, ÁA1 ! A2 ! Á
Aj.A1, Á , Am
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1018 CHAP. 24 Data Analysis. Probability Theory

7. Recording the daily maximum temperature X and the
daily maximum air pressure Y at Times Square in New
York

8. Choosing a committee of 2 from a group of 5 people
9. Drawing gaskets from a lot of 10, containing one

defective D, unitil D is drawn, one at a time and
assuming sampling without replacement, that is,
gaskets drawn are not returned to the lot. (More about
this in Sec. 24.6)

10. In rolling 3 dice, are the events A: Sum divisible by 3
and B: Sum divisible by 5 mutually exclusive?

11. Answer the questions in Prob. 10 for rolling 2 dice.
12. List all 8 subsets of the sample space 
13. In Prob. 3 circle and mark the events A: Faces are equal,

B: Sum of faces less than 5,
14. In drawing 2 screws from a lot of right-handed and

left-handed screws, let A, B, C, D mean at a least
1 right-handed, at least 1 left-handed, 2 right-handed,
2 left-handed, respectively. Are A and B mutually
exclusive? C and D?

15–20 VENN DIAGRAMS

15. In connection with a trip to Europe by some students,
consider the events P that they see Paris, G that they
have a good time, and M that they run out of money,
and describe in words the events in the
diagram.

1, Á , 7

A ! B, A " B, Ac, Bc.

S ! {a, b, c}.

16. Show that, by the definition of complement, for any
subset A of a sample space S.

17. Using a Venn diagram, show that if and only if

18. Using a Venn diagram, show that if and only if

19. (De Morgan’s laws) Using Venn diagrams, graph and
check De Morgan’s laws

20. Using Venn diagrams, graph and check the rules

 A " (B ! C) ! (A " B) ! (A " C).
 A ! (B " C) ! (A ! B) " (A ! C)

 (A " B)c ! Ac ! Bc.
 (A ! B)c ! Ac " Bc

A " B ! A.
A $ B

A ! B ! B.
A $ B

A ! Ac ! S,  A " Ac ! $.
(Ac)c ! A,  Sc ! $,  $c ! S,

24.3 Probability
The “probability” of an event A in an experiment is supposed to measure how frequently
A is about to occur if we make many trials. If we flip a coin, then heads H and tails T
will appear about equally often—we say that H and T are “equally likely.” Similarly, for
a regularly shaped die of homogeneous material (“fair die”) each of the six outcomes

will be equally likely. These are examples of experiments in which the sample
space S consists of finitely many outcomes (points) that for reasons of some symmetry
can be regarded as equally likely. This suggests the following definition.

D E F I N I T I O N  1 First Definition of Probability

If the sample space S of an experiment consists of finitely many outcomes (points)
that are equally likely, then the probability of an event A is

(1) P(A) !
Number of points in A

Number of points in S
  .

P(A)

1, Á , 6

M P

G

3

7

6

2

15

4

Problem 15
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SEC. 24.3 Probability 1019

From this definition it follows immediately that, in particular,

(2)

E X A M P L E  1 Fair Die

In rolling a fair die once, what is the probability of A of obtaining a 5 or a 6? The probability of B: “Even
number”?

Solution. The six outcomes are equally likely, so that each has probability Thus 
because has 2 points, and 

Definition 1 takes care of many games as well as some practical applications, as we shall
see, but certainly not of all experiments, simply because in many problems we do not
have finitely many equally likely outcomes. To arrive at a more general definition of
probability, we regard probability as the counterpart of relative frequency. Recall from
Sec. 24.1 that the absolute frequency of an event A in n trials is the number of times
A occurs, and the relative frequency of A in these trials is thus

(3)

Now if A did not occur, then If A always occurred, then These are
the extreme cases. Division by n gives

In particular, for we have because S always occurs (meaning that
some event always occurs; if necessary, see Sec. 24.2, after Example 7). Division
by n gives

Finally, if A and B are mutually exclusive, they cannot occur together. Hence the absolute
frequency of their union must equal the sum of the absolute frequencies of A and
B. Division by n gives the same relation for the relative frequencies,

We are now ready to extend the definition of probability to experiments in which equally
likely outcomes are not available. Of course, the extended definition should include
Definition 1. Since probabilities are supposed to be the theoretical counterpart of relative
frequencies, we choose the properties in as axioms. (Historically, such a
choice is the result of a long process of gaining experience on what might be best and
most practical.)

(4*), (5*), (6*)

(A " B ! $).frel(A ! B) ! frel(A) # frel(B)(6*)

A ! B

frel(S) ! 1.(5*)

f (S) ! nA ! S

0 % frel(A) % 1.(4*)

f (A) ! n.f (A) ! 0.

frel(A) !
f (A)

n !
Number of times A occurs

Number of trials  .

f (A)>n;
f (A)

!P(B) ! 3>6 ! 1>2.A ! {5, 6}
P(A) ! 2>6 ! 1>31>6.

P(A)

P(S) ! 1.
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D E F I N I T I O N  2 General Definition of Probability

Given a sample space S, with each event A of S (subset of S) there is associated a
number called the probability of A, such that the following axioms of
probability are satisfied.

1. For every A in S,

(4)

2. The entire sample space S has the probability

(5)

3. For mutually exclusive events A and see Sec. 24.2),

(6)

If S is infinite (has infinitely many points), Axiom 3 has to be replaced by
For mutually exclusive events 

In the infinite case the subsets of S on which is defined are restricted to form a
so-called -algebra, as explained in Ref. [GenRef6] (not [G6]!) in App. 1. This is of no
practical consequence to us.

Basic Theorems of Probability
We shall see that the axioms of probability will enable us to build up probability theory
and its application to statistics. We begin with three basic theorems. The first of them
is useful if we can get the probability of the complement more easily than 
itself.

T H E O R E M  1 Complementation Rule

For an event A and its complement in a sample space S,

(7)

P R O O F By the definition of complement (Sec. 24.2), we have and 
Hence by Axioms 2 and 3,

thus !P(Ac) ! 1 " P(A).1 ! P(S) ! P(A) # P(Ac),

A " Ac ! $.S ! A ! Ac

P(Ac) ! 1 " P(A).

Ac

P(A)Ac

s
P(A)

P(A1 ! A2 ! Á ) ! P(A1) # P(A2) # Á .(6r)

A1, A2, Á ,3r.

(A " B ! $).P(A ! B) ! P(A) # P(B)

B (A " B ! $;

P(S) ! 1.

0 % P(A) % 1.

P(A),

1020 CHAP. 24 Data Analysis. Probability Theory
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E X A M P L E  2 Coin Tossing

Five coins are tossed simultaneously. Find the probability of the event A: At least one head turns up. Assume
that the coins are fair.

Solution. Since each coin can turn up heads or tails, the sample space consists of outcomes. Since
the coins are fair, we may assign the same probability to each outcome. Then the event (No heads
turn up) consists of only 1 outcome. Hence and the answer is 

The next theorem is a simple extension of Axiom 3, which you can readily prove by
induction.

T H E O R E M  2 Addition Rule for Mutually Exclusive Events

For mutually exclusive events in a sample space S,

(8)

E X A M P L E  3 Mutually Exclusive Events

If the probability that on any workday a garage will get 10–20, 21–30, 31–40, over 40 cars to service is 0.20,
0.35, 0.25, 0.12, respectively, what is the probability that on a given workday the garage gets at least 21 cars
to service?

Solution. Since these are mutually exclusive events, Theorem 2 gives the answer 
Check this by the complementation rule.

In many cases, events will not be mutually exclusive. Then we have

T H E O R E M  3 Addition Rule for Arbitrary Events

For events A and B in a sample space,

(9)

P R O O F C, D, E in Fig. 512 make up and are mutually exclusive (disjoint). Hence by
Theorem 2,

This gives (9) because on the right by Axiom 3 and disjointness;
and also by Axiom 3 and disjointness. !P(E) ! P(B) " P(D) ! P(B) " P(A " B),

P(C) # P(D) ! P(A)

P(A ! B) ! P(C) # P(D) # P(E).

A ! B

P(A ! B) ! P(A) # P(B) " P(A " B).

!
0.35 # 0.25 # 0.12 ! 0.72.

P(A1 ! A2 ! Á Am) ! P(A1) # P(A2) # Á # P(Am).

A1, Á , Am

!P(A) ! 1 " P(Ac) ! 31>32.P(Ac) ! 1>32,
Ac(1>32)

25 ! 32

SEC. 24.3 Probability 1021
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Note that for mutually exclusive events A and B we have by definition and,
by comparing (9) and (6),

(10)

(Can you also prove this by (5) and (7)?)

E X A M P L E  4 Union of Arbitrary Events

In tossing a fair die, what is the probability of getting an odd number or a number less than 4?

Solution. Let A be the event “Odd number” and B the event “Number less than 4.” Then Theorem 3 gives
the answer

because “Odd number less than 4”

Conditional Probability. Independent Events
Often it is required to find the probability of an event B under the condition that an event
A occurs. This probability is called the conditional probability of B given A and is denoted
by In this case A serves as a new (reduced) sample space, and that probability is
the fraction of which corresponds to Thus

(11)

Similarly, the conditional probability of A given B is

(12)

Solving (11) and (12) for we obtain

T H E O R E M  4 Multiplication Rule

If A and B are events in a sample space S and then

(13)

E X A M P L E  5 Multiplication Rule

In producing screws, let A mean “screw too slim” and B “screw too short.” Let and let the conditional
probability that a slim screw is also too short be What is the probability that a screw that we pick
randomly from the lot produced will be both too slim and too short?

Solution. by Theorem 4.

Independent Events. If events A and B are such that

(14) P(A " B) ! P(A)P(B),

!P(A " B) ! P(A)P(B ƒ A) ! 0.1 ! 0.2 ! 0.02 ! 2%,

P(B ƒ A) ! 0.2.
P(A) ! 0.1

P(A " B) ! P(A)P(B ƒ A) ! P(B)P(A ƒ B).

P(A) & 0, P(B) & 0,

P(A " B),

[P(B) & 0].P(A ƒ B) !
P(A " B)

P(B)

[P(A) & 0].P(B ƒ A) !
P(A " B)

P(A)

A " B.P(A)
P(B ƒ A).

!! {1, 3}.A " B !

P(A ! B) ! 3
6 # 3

6 " 2
6 ! 2

3 

P($) ! 0.

A " B ! $
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they are called independent events. Assuming we see from (11)–(13)
that in this case

This means that the probability of A does not depend on the occurrence or nonoccurrence
of B, and conversely. This justifies the term “independent.”

Independence of m Events. Similarly, m events are called independent if

(15a)

as well as for every k different events 

(15b)

where 

Accordingly, three events A, B, C are independent if and only if

(16)

Sampling. Our next example has to do with randomly drawing objects, one at a time,
from a given set of objects. This is called sampling from a population, and there are
two ways of sampling, as follows.

1. In sampling with replacement, the object that was drawn at random is placed back to
the given set and the set is mixed thoroughly. Then we draw the next object at random.

2. In sampling without replacement the object that was drawn is put aside.

E X A M P L E  6 Sampling With and Without Replacement

A box contains 10 screws, three of which are defective. Two screws are drawn at random. Find the probability
that neither of the two screws is defective.

Solution. We consider the events

A: First drawn screw nondefective.

B: Second drawn screw nondefective.

Clearly, because 7 of the 10 screws are nondefective and we sample at random, so that each screw
has the same probability of being picked. If we sample with replacement, the situation before the second
drawing is the same as at the beginning, and The events are independent, and the answer is

If we sample without replacement, then as before. If A has occurred, then there are 9 screws left
in the box, 3 of which are defective. Thus and Theorem 4 yields the answer

Is it intuitively clear that this value must be smaller than the preceding one? !

P(A " B) ! 7
10 ! 23 ! 47%.

P(B ƒ A) ! 6
9 ! 2

3 ,
P(A) ! 7

10 ,

P(A " B) ! P(A)P(B) ! 0.7 ! 0.7 ! 0.49 ! 49%.

P(B) ! 7
10 .

( 1
10 )

P(A) ! 7
10 

 P(A " B " C ) ! P(A)P(B)P(C).

 P(C " A) ! P(C )P(A),

 P(B " C ) ! P(B)P(C),

 P(A " B) ! P(A)P(B),

k ! 2, 3, Á , m " 1.

P(Aj1
" Aj2

" Á " Ajk
) ! P(Aj1

)P(Aj2
) Á P(Ajk

)

Aj1
, Aj2

, Á , Ajk
.

P(A1 " Á " Am) ! P(A1) Á P(Am)

A1, Á , Am

P(A ƒ B) ! P(A),  P(B ƒ A) ! P(B).

P(A) & 0, P(B) & 0,
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24.4 Permutations and Combinations
Permutations and combinations help in finding probabilities by systematically
counting the number a of points of which an event A consists; here, k is the number of
points of the sample space S. The practical difficulty is that a may often be surprisingly
large, so that actual counting becomes hopeless. For example, if in assembling some
instrument you need 10 different screws in a certain order and you want to draw them

P(A) ! a>k

1024 CHAP. 24 Data Analysis. Probability Theory

1. In rolling 3 fair dice, what is the probability of obtaining
a sum not greater than 16?

2. In rolling 2 fair dice, what is the probability of a sum
greater than 3 but not exceeding 6?

3. Three screws are drawn at random from a lot of 100
screws, 10 of which are defective. Find the probability
of the event that all 3 screws drawn are nondefective,
assuming that we draw (a) with replacement, (b) without
replacement.

4. In Prob. 3 find the probability of E: At least 1 defective
(i) directly, (ii) by using complements; in both cases
(a) and (b).

5. If a box contains 10 left-handed and 20 right-handed
screws, what is the probability of obtaining at least
one right-handed screw in drawing 2 screws with
replacement?

6. Will the probability in Prob. 5 increase or decrease if we
draw without replacement. First guess, then calculate.

7. Under what conditions will it make practically no
difference whether we sample with or without
replacement?

8. If a certain kind of tire has a life exceeding 40,000 miles
with probability 0.90, what is the probability that a set
of these tires on a car will last longer than 40,000 miles?

9. If we inspect photocopy paper by randomly drawing 5
sheets without replacement from every pack of 500,
what is the probability of getting 5 clean sheets although

of the sheets contain spots?
10. Suppose that we draw cards repeatedly and with

replacement from a file of 100 cards, 50 of which refer
to male and 50 to female persons. What is the
probability of obtaining the second “female” card before
the third “male” card?

11. A batch of 200 iron rods consists of 50 oversized rods,
50 undersized rods, and 100 rods of the desired length.
If two rods are drawn at random without replacement,
what is the probability of obtaining (a) two rods of the

0.4%

desired length, (b) exactly one of the desired length,
(c) none of the desired length?

12. If a circuit contains four automatic switches and we
want that, with a probability of during a given
time interval the switches to be all working, what
probability of failure per time interval can we admit
for a single switch?

13. A pressure control apparatus contains 3 electronic
tubes. The apparatus will not work unless all tubes are
operative. If the probability of failure of each tube
during some interval of time is 0.04, what is the
corresponding probability of failure of the apparatus?

14. Suppose that in a production of spark plugs the fraction
of defective plugs has been constant at over a long
time and that this process is controlled every half hour
by drawing and inspecting two just produced. Find the
probabilities of getting (a) no defectives, (b) 1
defective, (c) 2 defectives. What is the sum of these
probabilities?

15. What gives the greater probability of hitting at least
once: (a) hitting with probability and firing 1 shot,
(b) hitting with probability and firing 2 shots,
(c) hitting with probability and firing 4 shots? First
guess.

16. You may wonder whether in (16) the last relation
follows from the others, but the answer is no. To see
this, imagine that a chip is drawn from a box containing
4 chips numbered 000, 011, 101, 110, and let A, B, C
be the events that the first, second, and third digit,
respectively, on the drawn chip is 1. Show that then
the first three formulas in (16) hold but the last one
does not hold.

17. Show that if B is a subset of A, then 

18. Extending Theorem 4, show that 

19. Make up an example similar to Prob. 16, for instance,
in terms of divisibility of numbers.

P(A)P(B ƒ A)P(C ƒ A " B).
P(A " B " C ) !

P(B) % P(A).

1>81>41>2

2%

99%,

P R O B L E M  S E T  2 4 . 3
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randomly from a box (which contains nothing else) the probability of obtaining them in
the required order is only because there are

orders in which they can be drawn. Similarly, in many other situations the numbers of
orders, arrangements, etc. are often incredibly large. (If you are unimpressed, take 20
screws—how much bigger will the number be?)

Permutations
A permutation of given things (elements or objects) is an arrangement of these things in
a row in some order. For example, for three letters a, b, c there are 
permutations: abc, acb, bac, bca, cab, cba. This illustrates (a) in the following theorem.

T H E O R E M  1 Permutations

(a) Different things. The number of permutations of n different things taken
all at a time is

(1) (read “n factorial ”).

(b) Classes of equal things. If n given things can be divided into c classes of
alike things differing from class to class, then the number of permutations of
these things taken all at a time is

(2)

Where is the number of things in the jth class.

P R O O F (a) There are n choices for filling the first place in the row. Then things are still
available for filling the second place, etc.

(b) alike things in class 1 make permutations collapse into a single permutation
(those in which class 1 things occupy the same positions), etc., so that (2) follows
from (1).

E X A M P L E  1 Illustration of Theorem 1(b)

If a box contains 6 red and 4 blue balls, the probability of drawing first the red and then the blue balls is

A permutation of n things taken k at a time is a permutation containing only k of the
n given things. Two such permutations consisting of the same k elements, in a different
order, are different, by definition. For example, there are 6 different permutations of the
three letters a, b, c, taken two letters at a time, ab, ac, bc, ba, ca, cb.

A permutation of n things taken k at a time with repetitions is an arrangement obtained
by putting any given thing in the first position, any given thing, including a repetition of the
one just used, in the second, and continuing until k positions are filled. For example, there

!P ! 6!4!>10! ! 1>210 ! 0.5%.

!
n1

n1!n1

n " 1

n j

(n1 # n2 # Á # nc ! n)
n!

n1!n2! Á nc!

n! ! 1 ! 2 ! 3 Á  n

3! ! 1 ! 2 ! 3 ! 6

10! ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 9 ! 10 ! 3,628,800

1>3,628,800
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are different such permutations of a, b, c taken 2 letters at a time, namely, the
preceding 6 permutations and aa, bb, cc. You may prove (see Team Project 14):

T H E O R E M  2 Permutations

The number of different permutations of n different things taken k at a time without
repetitions is

(3a)

and with repetitions is

(3b)

E X A M P L E  2 Illustration of Theorem 2

In an encrypted message the letters are arranged in groups of five letters, called words. From (3b) we see that
the number of different such words is

From (3a) it follows that the number of different such words containing each letter no more than once is

Combinations
In a permutation, the order of the selected things is essential. In contrast, a combination
of given things means any selection of one or more things without regard to order. There
are two kinds of combinations, as follows.

The number of combinations of n different things, taken k at a time, without
repetitions is the number of sets that can be made up from the n given things, each set
containing k different things and no two sets containing exactly the same k things.

The number of combinations of n different things, taken k at a time, with repetitions
is the number of sets that can be made up of k things chosen from the given n things,
each being used as often as desired.

For example, there are three combinations of the three letters a, b, c, taken two letters
at a time, without repetitions, namely, ab, ac, bc, and six such combinations with
repetitions, namely, ab, ac, bc, aa, bb, cc.

T H E O R E M  3 Combinations

The number of different combinations of n different things taken, k at a time, without
repetitions, is

(4a)

and the number of those combinations with repetitions is

(4b) an # k " 1
k

b .
an

k
b !

n!
k!(n " k)!

!
n(n " 1) Á (n " k # 1)

1 ! 2 Á k
 ,

!26!>(26 " 5)! ! 26 ! 25 ! 24 ! 23 ! 22 ! 7,893,600.

265 ! 11,881,376.

nk.

n(n " 1)(n " 2) Á (n " k # 1) !
n!

(n " k)! 

32 ! 9

1026 CHAP. 24 Data Analysis. Probability Theory

c24.qxd  11/3/10  5:12 PM  Page 1026



P R O O F The statement involving (4a) follows from the first part of Theorem 2 by noting that there
are permutations of k things from the given n things that differ by the order of the
elements (see Theorem 1), but there is only a single combination of those k things of the
type characterized in the first statement of Theorem 3. The last statement of Theorem 3
can be proved by induction (see Team Project 14).

E X A M P L E  3 Illustration of Theorem 3

The number of samples of five lightbulbs that can be selected from a lot of 500 bulbs is [see (4a)]

Factorial Function
In (1)–(4) the factorial function is basic. By definition,

(5)

Values may be computed recursively from given values by

(6)

For large n the function is very large (see Table A3 in App. 5). A convenient approximation
for large n is the Stirling formula2

(7)

where is read “asymptotically equal” and means that the ratio of the two sides of (7)
approaches 1 as n approaches infinity.

E X A M P L E  4 Stirling Formula

n! By (7) Exact Value Relative Error

4! 23.5 24 2.1%
10! 3,598,696 3,628,800 0.8%
20! 2.42279 ! 1018 2,432,902,008,176,640,000 0.4%

Binomial Coefficients
The binomial coefficients are defined by the formula

(8) (k ' 0, integer).aa
k
b !

a(a " 1)(a " 2) Á (a " k # 1)

k!
 

!

"

(e ! 2.718 Á )n! " 12pn an
e  bn

(n # 1)! ! (n # 1)n!.

0! ! 1.

!a500

5
b !

500!

5!495!
!

500 ! 499 ! 498 ! 497 ! 496

1 ! 2 ! 3 ! 4 ! 5
! 255,244,687,600.

!

k!

SEC. 24.4 Permutations and Combinations 1027
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Note the large numbers in the answers to some of these
problems, which would make counting cases hopeless!
1. In how many ways can a company assign 10 drivers to

n buses, one driver to each bus and conversely?
2. List (a) all permutations, (b) all combinations without

repetitions, (c) all combinations with repetitions, of 5
letters a, e, i, o, u taken 2 at a time.

3. If a box contains 4 rubber gaskets and 2 plastic gaskets,
what is the probability of drawing (a) first the plastic
and then the rubber gaskets, (b) first the rubber and
then the plastic ones? Do this by using a theorem and
checking it by multiplying probabilities.

4. An urn contains 2 green, 3 yellow, and 5 red balls. We
draw 1 ball at random and put it aside. Then we draw
the next ball, and so on. Find the probability of drawing

at first the 2 green balls, then the 3 yellow ones, and
finally the red ones.

5. In how many different ways can we select a committee
consisting of 3 engineers, 2 physicists, and 2 computer
scientists from 10 engineers, 5 physicists, and 6
computer scientists? First guess.

6. How many different samples of 4 objects can we draw
from a lot of 50?

7. Of a lot of 10 items, 2 are defective. (a) Find the
number of different samples of 4. Find the number of
samples of 4 containing (b) no defectives, (c) 1
defective, (d) 2 defectives.

8. Determine the number of different bridge hands. (A
bridge hand consists of 13 cards selected from a full
deck of 52 cards.)

P R O B L E M  S E T  2 4 . 4

The numerator has k factors. Furthermore, we define

(9) in particular,

For integer we obtain from (8)

(10)

Binomial coefficients may be computed recursively, because

(11)

Formula (8) also yields

(12)

There are numerous further relations; we mention two important ones,

(13)

and

(14) (r ' 0, integer).a
r

k!0

  apkb a q
r " k

b ! ap # q
r
b

(k ' 0, n ' 1,
both integer)a

n%1

s!0

  ak # s
k
b ! an # k

k # 1
b

(k ' 0, integer)
(m ( 0).

a"m
k
b ! ("1)k  am # k " 1

k
b

(k ' 0, integer).aa
k
b # a a

k # 1
b ! aa # 1

k # 1
b

(n ' 0, 0 % k % n).an
k
b ! a n

n " k
b

a ! n

a0
0
b ! 1.aa

0
b ! 1,
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24.5 Random Variables. 
Probability Distributions

In Sec. 24.1 we considered frequency distributions of data. These distributions show the
absolute or relative frequency of the data values. Similarly, a probability distribution
or, briefly, a distribution, shows the probabilities of events in an experiment. The quantity
that we observe in an experiment will be denoted by X and called a random variable
(or stochastic variable) because the value it will assume in the next trial depends on
chance, on randomness—if you roll a die, you get one of the numbers from 1 to 6, but
you don’t know which one will show up next. Thus Number a die turns up is a
random variable. So is Elasticity of rubber (elongation at break). (“Stochastic” means
related to chance.)

If we count (cars on a road, defective screws in a production, tosses until a die shows
the first Six), we have a discrete random variable and distribution. If we measure
(electric voltage, rainfall, hardness of steel), we have a continuous random variable and
distribution. Precise definitions follow. In both cases the distribution of X is determined
by the distribution function

(1)

this is the probability that in a trial, X will assume any value not exceeding x.

CAUTION! The terminology is not uniform. is sometimes also called the
cumulative distribution function.

F(x)

F(x) ! P(X % x);

X !
X !

SEC. 24.5 Random Variables. Probability Distributions 1029

9. In how many different ways can 6 people be seated at
a round table?

10. If a cage contains 100 mice, 3 of which are male, what
is the probability that the 3 male mice will be included
if 10 mice are randomly selected?

11. How many automobile registrations may the police
have to check in a hit-and-run accident if a witness
reports KDP7 and cannot remember the last two digits
on the license plate but is certain that all three digits
were different?

12. If 3 suspects who committed a burglary and 6 innocent
persons are lined up, what is the probability that a
witness who is not sure and has to pick three persons
will pick the three suspects by chance? That the witness
picks 3 innocent persons by chance?

13. CAS PROJECT. Stirling formula. (a) Using (7),
compute approximate values of for 
(b) Determine the relative error in (a). Find an
empirical formula for that relative error.
(c) An upper bound for that relative error is

Try to relate your empirical formula to this.
(d) Search through the literature for further information
on Stirling’s formula. Write a short eassy about your

e1>12n " 1.

n ! 1, Á , 20.n!

findings, arranged in logical order and illustrated with
numeric examples.

14. TEAM PROJECT. Permutations, Combinations.
(a) Prove Theorem 2.
(b) Prove the last statement of Theorem 3.
(c) Derive (11) from (8).
(d) By the binomial theorem,

so that has the coefficient Can you

conclude this from Theorem 3 or is this a mere
coincidence?
(e) Prove (14) by using the binomial theorem.
(f) Collect further formulas for binomial coefficients
from the literature and illustrate them numerically.

15. Birthday problem. What is the probability that in a
group of 20 people (that includes no twins) at least
two have the same birthday, if we assume that the
probability of having birthday on a given day is 
for every day. First guess. Hint. Consider the com-
plementary event.

1>365

Ank B .akbn%k

(a # b)n ! a
n

k!0

  ankb akbn%k,
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For (1) to make sense in both the discrete and the continuous case we formulate con-
ditions as follows.

D E F I N I T I O N Random Variable

A random variable X is a function defined on the sample space S of an experiment.
Its values are real numbers. For every number a the probability

with which X assumes a is defined. Similarly, for any interval I the probability

with which X assumes any value in I is defined.

Although this definition is very general, in practice only a very small number of distributions
will occur over and over again in applications.

From (1) we obtain the fundamental formula for the probability corresponding to an
interval 

(2)

This follows because (“X assumes any value not exceeding a”) and 
(“X assumes any value in the interval ”) are mutually exclusive events, so that
by (1) and Axiom 3 of Definition 2 in Sec. 24.3

and subtraction of on both sides gives (2).

Discrete Random Variables and Distributions
By definition, a random variable X and its distribution are discrete if X assumes only finitely
many or at most countably many values called the possible values of X,
with positive probabilities 
whereas the probability is zero for any interval I containing no possible value.

Clearly, the discrete distribution of X is also determined by the probability function
of X, defined by

(3)

From this we get the values of the distribution function by taking sums,

(4) F(x) ! a
xj%x

  f (x j) ! a
xj%x

  pj

F(x)

( j ! 1, 2, Á ),f (x) ! b 

pj if x ! x j

0 otherwise

f (x)

P(X # I )
p3 ! P(X ! x3), Á ,p1 ! P(X ! x1), p2 ! P(X ! x2),

x1, x2, x3, Á ,

F(a)

 ! F(a) # P(a ) X % b)

 F(b) ! P(X % b) ! P(X % a) # P(a ) X % b)

a ) x % b
a ) X % bX % a

P(a ) X % b) ! F(b) " F(a).

a ) x % b,

P(X # I )

P(X ! a)
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where for any given x we sum all the probabilities for which is smaller than or equal
to that of x. This is a step function with upward jumps of size at the possible values

of X and constant in between.

E X A M P L E  1 Probability Function and Distribution Function

Figure 513 shows the probability function and the distribution function of the discrete random variable

X has the possible values with probability each. At these x the distribution function
has upward jumps of magnitude Hence from the graph of we can construct the graph of and
conversely.

In Figure 513 (and the next one) at each jump the fat dot indicates the function value at the jump! !

F(x)f (x)1>6.
1>6x ! 1, 2, 3, 4, 5, 6

X ! Number a fair die turns up.

F (x)f (x)

x j

pj

x jpj

F(x)

1

f (x)

1
2

16

0 5

0 5

x

x

1

20
36

10
36

30
36

0 5 10 12

0 5 10 12

F(x)

f (x)

x

x

16

Fig. 513. Probability function ƒ(x) 
and distribution function F(x) of the

random variable X ! Number 
obtained in tossing a fair die once

Fig. 514. Probability function ƒ(x) and
distribution function F(x) of the random
variable X ! Sum of the two numbers
obtained in tossing two fair dice once

E X A M P L E  2 Probability Function and Distribution Function

The random variable Sum of the two numbers two fair dice turn up is discrete and has the possible values
There are equally likely outcomes 

where the first number is that shown on the first die and the second number that on the other die. Each such
outcome has probability . Now occurs in the case of the outcome in the case of the
two outcomes in the case of the three outcomes and so on. Hence

have the values

x 2 3 4 5 6 7 8 9 10 11 12

ƒ(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36
F(x) 1/36 3/36 6/36 10/36 15/36 21/36 26/36 30/36 33/36 35/36 36/36

Figure 514 shows a bar chart of this function and the graph of the distribution function, which is again a step
function, with jumps (of different height!) at the possible values of X. !

f (x) ! P(X ! x) and F(x) ! P(X % x)
(1, 3), (2, 2), (3, 1);(1, 2) and (2, 1); X ! 4

(1, 1); X ! 3X ! 21>36

(1, 1) (1, 2), Á , (6, 6),6 ! 6 ! 362 (! 1 # 1), 3, 4, Á , 12 (! 6 #  6).
X !
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Two useful formulas for discrete distributions are readily obtained as follows. For the
probability corresponding to intervals we have from (2) and (4)

(5) (X discrete).

This is the sum of all probabilities for which satisfies (Be careful about
) From this and (Sec. 24.3) we obtain the following formula.

(6) (sum of all probabilities).

E X A M P L E  3 Illustration of Formula (5)

In Example 2, compute the probability of a sum of at least 4 and at most 8.

Solution.

E X A M P L E  4 Waiting Time Problem. Countably Infinite Sample Space

In tossing a fair coin, let Number of trials until the first head appears. Then, by independence of events
(Sec. 24.3),

etc.

and in general Also, (6) can be confirmed by the sum formula for the geometric
series,

Continuous Random Variables and Distributions
Discrete random variables appear in experiments in which we count (defectives in a
production, days of sunshine in Chicago, customers standing in a line, etc.). Continuous
random variables appear in experiments in which we measure (lengths of screws, voltage
in a power line, Brinell hardness of steel, etc.). By definition, a random variable X and
its distribution are of continuous type or, briefly, continuous, if its distribution function

[defined in (1)] can be given by an integral

(7)  F(x) ! #
x

%&

f (v) dv

F(x)

! ! "1 # 2 ! 1.

 
1

2
#

1

4
#

1

8
# Á ! "1 #

1

1 " 1
2 

P(X ! n) ! (1
2 )n, n ! 1, 2, Á .

 P(X ! 3) ! P(T TH ) ! 1
2 ' 1

2 ' 1
2 !

1
8 ,

(T ! Tail) P(X ! 2) ! P(TH )  ! 1
2 ! 1

2  !
1
4

(H ! Head) P(X ! 1) ! P(H )  ! 1
2 

X !

!P(3 ) X % 8) ! F(8) " F(3) ! 26
36 " 3

36 ! 23
36 .

a
j

 pj ! 1

P(S) ! 1) and % !
a ) x j % b.x jpj

P(a ) X % b) ! F(b) " F(a) ! a
a)xj%b

pj
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(we write v because x is needed as the upper limit of the integral) whose integrand 
called the density of the distribution, is nonnegative, and is continuous, perhaps except
for finitely many x-values. Differentiation gives the relation of f to F as

(8)

for every x at which is continuous.
From (2) and (7) we obtain the very important formula for the probability corresponding

to an interval:

(9)

This is the analog of (5).
From (7) and (Sec. 24.3) we also have the analog of (6):

(10)

Continuous random variables are simpler than discrete ones with respect to intervals.
Indeed, in the continuous case the four probabilities corresponding to 

and with any fixed are all the same.
Can you see why? (Answer. This probability is the area under the density curve, as in
Fig. 515, and does not change by adding or subtracting a single point in the interval of
integration.) This is different from the discrete case! (Explain.)

The next example illustrates notations and typical applications of our present formulas.

a and b (( a)a % X % ba ) X ) b, a % X ) b,
a ) X % b,

#
&

%&
 
f (v) dv ! 1.

P(S) ! 1

P(a ) X % b) ! F(b) " F(a) ! #
b

a
 
f (v) dv.

f (x)

 f (x) ! Fr(x)

f (x),

SEC. 24.5 Random Variables. Probability Distributions 1033

Curve of density
f (x)

P(a < X ≤ b)

ba x

Fig. 515. Example illustrating formula (9)

E X A M P L E  5 Continuous Distribution

Let X have the density function and zero otherwise. Find the distribution
function. Find the probabilities . Find x such that 

Solution. From (7) we obtain 

and From this and (9) we get

P("1
2 % X % 1

2) ! F(1
2) " F("1

2) ! 0.75 #
1>2

%1>2(1 " v2) dv ! 68.75%

F(x) ! 1 if x ( 1.

F(x) ! 0.75 #
x

%1

(1 " v2) dv ! 0.5 # 0.75x " 0.25x3   if "1 ) x % 1,

F(x) ! 0 if x % "1,

P(X % x) ! 0.95.P("1
2 % X % 1

2) and P( 
1
4 % X % 2)

f (x) ! 0.75(1 " x2) if "1 % x % 1
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1034 CHAP. 24 Data Analysis. Probability Theory

(because for a continuous distribution) and

(Note that the upper limit of integration is 1, not 2. Why?) Finally,

Algebraic simplification gives A solution is approximately.
Sketch and mark and 0.73, so that you can see the results (the probabilities) as areas under

the curve. Sketch also 

Further examples of continuous distributions are included in the next problem set and in
later sections.

!F(x).
x ! "1

2 , 12 , 14 ,f (x)
x ! 0.73,3x " x3 ! 1.8.

P(X % x) ! F(x) ! 0.5 # 0.75x " 0.25x3 ! 0.95.

P(1
4 % X % 2) ! F(2) " F(1

4) ! 0.75 #
1

1>4(1 " v2) dv ! 31.64%.

P("1
2 % X % 1

2) ! P("1
2 ) X % 1

2)

1. Graph the probability function 
k suitable) and the distribution function.

2. Graph the density function 
k suitable) and the distribution function.

3. Uniform distribution. Graph f and F when the density
of X is and 0 else-
where. Find 

4. In Prob. 3 find c and such that 
95% and 

5. Graph f and F when 
Can f have further positive values?

6. A box contains 4 right-handed and 6 left-handed
screws. Two screws are drawn at random without
replacement. Let X be the number of left-handed
screws drawn. Find the probabilities 

and 

7. Let X be the number of years before a certain kind of
pump needs replacement. Let X have the probability
function Find k. Sketch f
and F.

8. Graph the distribution function if
and the density Find x

such that 

9. Let X [millimeters] be the thickness of washers.
Assume that X has the density if

and 0 otherwise. Find k. What is the
probability that a washer will have thickness between
0.95 mm and 1.05 mm?

0.9 ) x ) 1.1
f (x) ! kx

F(x) ! 0.9.
f (x).x ( 0, F(x) ! 0 if x % 0,

F(x) ! 1 " e%3x

f (x) ! kx3, x ! 0, 1, 2, 3, 4,

P(0.5 ) X ) 10).P(X ( 1),P(X ' 1),
P(X % 1),P(1 ) X ) 2),P(X ! 2),P(X ! 1),
P(X ! 0),

f (1) ! 3
8.

f ("1) !f ("2) ! f (2) ! 1
8,

P(0 ) X )  c!) ! 95%.
P("c ) X ) c) !c!

P(0 % X % 2).
f (x) ! k ! const if "2 % x % 2

f (x) ! kx2 (0 % x % 5;

4, 5;
(x ! 1, 2, 3,f (x) ! kx2 10. If the diameter X of axles has the density if

and 0 otherwise, how many
defectives will a lot of 500 axles approximately contain
if defectives are axles slimmer than 119.91 or thicker
than 120.09?

11. Find the probability that none of three bulbs in a traffic
signal will have to be replaced during the first 1500
hours of operation if the lifetime X of a bulb is a random
variable with the density 
when otherwise, where x is
measured in multiples of 1000 hours.

12 Let X be the ratio of sales to profits of some company.
Assume that X has the distribution function if

if if
Find and sketch the density. What is the probability

that X is between profit) and 

13. Suppose that in an automatic process of filling oil
cans, the content of a can (in gallons) is 
where X is a random variable with density

when and 0 when 
Sketch In a lot of 1000 cans, about how
many will contain 100 gallons or more? What is the
probability that a can will contain less than 99.5
gallons? Less than 99 gallons?

14. Find the probability function of Number of times
a fair die is rolled until the first Six appears and show
that it satisfies (6).

15. Let X be a random variable that can assume every real
value. What are the complements of the events 

b ) X % c?b % X % c,X ( c,X ' c,X ) b,
X % b,

X !

f (x) and F(x).
ƒ x ƒ ( 1.ƒ x ƒ % 1f (x) ! 1 " ƒ x ƒ

Y ! 100 # X,

5 (20% profit)?2.5 (40%
x ' 3.

F(x) ! 1  2 % x ) 3,F(x) ! (x2 " 4)>5 x ) 2,
F(x) ! 0

1 % x % 2 and f (x) ! 0
f (x) ! 630.25 " (x " 1.5)24

119.9 % x % 120.1
f (x) ! k

P R O B L E M  S E T  2 4 . 5
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24.6 Mean and Variance of a Distribution
The mean and variance of a random variable X and of its distribution are the theoretical
counterparts of the mean and variance of a frequency distribution in Sec. 24.1 and
serve a similar purpose. Indeed, the mean characterizes the central location and the variance
the spread (the variability) of the distribution. The mean (mu) is defined by

(a) (Discrete distribution)

(1)

(b) (Continuous distribution)

and the variance (sigma square) by

(a) (Discrete distribution)

(2)

(b) (Continuous distribution).

(the positive square root of is called the standard deviation of X and its distribution.
f is the probability function or the density, respectively, in (a) and (b).

The mean is also denoted by and is called the expectation of X because it gives
the average value of X to be expected in many trials. Quantities such as and that
measure certain properties of a distribution are called parameters. and are the two
most important ones. From (2) we see that

(3)

(except for a discrete “distribution” with only one possible value, so that We
assume that and exist (are finite), as is the case for practically all distributions that
are useful in applications.

E X A M P L E  1 Mean and Variance

The random variable Number of heads in a single toss of a fair coin has the possible values and
with probabilities and From (la) we thus obtain the mean

and (2a) yields the variance

E X A M P L E  2 Uniform Distribution. Variance Measures Spread

The distribution with the density

if a ) x ) bf (x) !
1

b " a

!s2 ! (0 " 1
2 )2 ! 1

2 # (1 " 1
2 )2 ! 1

2 ! 1
4 .

! ! 0 ! 1
2 # 1 ! 1

2 ! 1
2 ,

P(X ! 1) ! 1
2.P(X ! 0) ! 1

2X ! 1
X ! 0X !

s2!
s2 ! 0).

s2 ( 0

s2!
s2!

E(X )!

s2)s

s2 ! #
&

%&

(x " !)2f (x) dx

s2 ! a
j

 (x j " !)2f (x j)

s2

 ! ! #
&

%&

 x f (x) dx

 ! ! a
j

 x j f (x j)

!

s2x
s2!

SEC. 24.6 Mean and Variance of a Distribution 1035
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and otherwise is called the uniform distribution on the interval From (1b) (or from Theorem 1,
below) we find that and (2b) yields the variance

Figure 516 illustrates that the spread is large if and only if is large. !s2

s2 ! #
b

a

 ax "
a # b

2
 b2 

1

b " a
 dx !

(b " a)2

12
 .

! ! (a # b)>2,
a ) x ) b.f ! 0
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1

0 1 0 1 2–1

1

1

0 1 0 1 2–1

1

F(x)

f (x)

F(x)

f (x)

x

x

x

x

!   2 =     " σ 1
12 !   2 =     " σ 3

4

Fig. 516. Uniform distributions having the same mean (0.5) but different variances s2

Symmetry. We can obtain the mean without calculation if a distribution is symmetric.
Indeed, you may prove

T H E O R E M  1 Mean of a Symmetric Distribution

If a distribution is symmetric with respect to that is, 
then (Examples 1 and 2 illustrate this.)

Transformation of Mean and Variance
Given a random variable X with mean and variance we want to calculate the mean
and variance of where and are given constants. This problem is
important in statistics, where it often appears.

T H E O R E M  2 Transformation of Mean and Variance

(a) If a random variable X has mean and variance then the random
variable

(4)

has the mean and variance where

(5) and s*2 ! a2
2s2.!* ! a1 # a2!

s*2,!*

(a2 ( 0)X* ! a1 # a2X

s2,!

a2a1X* ! a1 # a2X,
s2,!

! ! c.
f (c " x) ! f (c # x),x ! c,

!

c24.qxd  11/3/10  5:12 PM  Page 1036



(b) In particular, the standardized random variable Z corresponding to X,
given by

(6)

has the mean 0 and the variance 1.

P R O O F We prove (5) for a continuous distribution. To a small interval I of length on the
x-axis there corresponds the probability [approximately; the area of a rectangle
of base and height Then the probability must equal that for the
corresponding interval on the -axis, that is, where is the density of 
and is the length of the interval on the -axis corresponding to I. Hence for
differentials we have Also, by (4), so that (1b)
applied to gives

On the right the first integral equals 1, by (10) in Sec. 24.5. The second intergral is 
This proves (5) for It implies

From this and (2) applied to again using we obtain the second
formula in (5),

For a discrete distribution the proof of (5) is similar.
Choosing and we obtain (6) from (4), writing For these

formula (5) gives and as claimed in (b).

Expectation, Moments
Recall that (1) defines the expectation (the mean) of X, the value of X to be expected on
the average, written More generally, if is nonconstant and continuous for
all x, then is a random variable. Hence its mathematical expectation or, briefly, itsg(X )

g(x)! ! E(X ).

!s*2 ! 1,!* ! 0a1, a2

X* ! Z.a2 ! 1>sa1 ! "!>s
s*2 ! #

&

%&

(x* " !*)2f *(x*) dx* ! a2
2 #

&

%&

(x " !)2f (x) dx ! a2
2s2.

f *(x*) dx* ! f (x) dx,X*,

x* " !* ! (a1 # a2x) " (a1 # a2!) ! a2(x " !).

!*.
!.

 ! a1 #
&

%&

 f (x) dx # a2 #
&

%&

 x f (x) dx.

 ! #
&

%&

(a1 # a2x) f (x) dx

 !* ! #
&

%&

 x*f *(x*) dx*

X*
x* ! a1 # a2xf *(x*) dx* ! f (x) dx.

x*¢x*
X*f *f *(x*)¢x*,x*

f (x)¢xf (x)].¢x
f (x)¢x

¢x

Z !
X " !

s
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expectation is the value of to be expected on the average, defined [similarly
to (1)] by

(7) or

In the first formula, f is the probability function of the discrete random variable X. In the
second formula, f is the density of the continuous random variable X. Important special
cases are the kth moment of X (where 

(8)

and the kth central moment of 

(9)

This includes the first moment, the mean of X

(10)

It also includes the second central moment, the variance of X

(11)

For later use you may prove

(12) E(1) ! 1.

[(9) with k ! 2].s2 ! E([X " !]2)

[(8) with k ! 1].! ! E(X )

E([X " !]k) ! a
j

 (x j " !)kf (x j)  or  #
&

%&

(x " !)kf (x) dx.

X (k ! 1, 2, Á )

E(Xk) ! a
j

 x j
kf (x j)  or  #

&

%&

 xkf (x) dx

k ! 1, 2, Á )

E(g(X)) ! #
&

%&

 g(x) f (x) dx.E(g(X)) ! a
j

 g(x j) f (x j)

g(X )E(g(X ))

1038 CHAP. 24 Data Analysis. Probability Theory

1–8 MEAN, VARIANCE
Find the mean and variance of the random variable X with
probability function or density 
1. suitable)
2.
3. Uniform distribution on 
4. with X as in Prob. 3
5.
6. if and 0 otherwise
7.
8. Number of times a fair coin is flipped until the

first Head appears. (Calculate only.)
9. If the diameter X [cm] of certain bolts has the density

for and 0
for other x, what are , and Sketch f (x).s2?k, !

0.9 ) x ) 1.1f (x) ! k(x " 0.9)(1.1 " x)

!
X !

f (x) ! Ce%x>2 (x ! 0)
"1 % x % 1f (x) ! k(1 " x2)

f (x) ! 4e%4x (x ' 0)
Y ! 13(X " !)>p [0, 2p]
X ! Number a fair die turns up
f (x) ! kx (0 % x % 2, k

f (x).

10. If, in Prob. 9, a defective bolt is one that deviates from
1.00 cm by more than 0.06 cm, what percentage of
defectives should we expect?

11. For what choice of the maximum possible deviation
from 1.00 cm shall we obtain defectives in Probs. 9
and 10?

12. What total sum can you expect in rolling a fair die
20 times? Do the experiment. Repeat it a number of
times and record how the sum varies.

13. What is the expected daily profit if a store sells X air
conditioners per day with probability 

and the profit
per conditioner is 

14. Find the expectation of where X is uniformly
distributed on the interval "1 % x % 1.

g(X ) ! X2,

$55?
f (13) ! 0.2f (12) ! 0.4,f (11) ! 0.3,

f (10) ! 0.1,

10%

P R O B L E M  S E T  2 4 . 6
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24.7 Binomial, Poisson, and Hypergeometric
Distributions

These are the three most important discrete distributions, with numerous applications.

Binomial Distribution
The binomial distribution occurs in games of chance (rolling a die, see below, etc.),
quality inspection (e.g., counting of the number of defectives), opinion polls (counting
number of employees favoring certain schedule changes, etc.), medicine (e.g., recording
the number of patients who recovered on a new medication), and so on. The conditions
of its occurrence are as follows.

We are interested in the number of times an event A occurs in n independent trials. In
each trial the event A has the same probability Then in a trial, A will not occur
with probability In n trials the random variable that interests us is

X can assume the values and we want to determine the corresponding
probabilities. Now means that A occurs in x trials and in trials it does not
occur. This may look as follows.

(1)

Here is the complement of A, meaning that A does not occur (Sec. 24.2). We now
use the assumption that the trials are independent, that is, they do not influence each other.
Hence (1) has the probability (see Sec. 24.3 on independent events)

B ! Ac

A A Á A  B B Á B.

n " xX ! x
0, 1, Á , n,

X ! Number of times the event A occurs in n trials.

q ! 1 " p.
P(A) ! p.

SEC. 24.7 Binomial, Poisson, and Hypergeometric Distributions 1039

15. A small filling station is supplied with gasoline every
Saturday afternoon. Assume that its volume X of sales
in ten thousands of gallons has the probability density

if and 0 otherwise.
Determine the mean, the variance, and the standardized
variable.

16. What capacity must the tank in Prob. 15 have in order
that the probability that the tank will be emptied in a
given week be 

17. James rolls 2 fair dice, and Harry pays k cents to James,
where k is the product of the two faces that show on
the dice. How much should James pay to Harry for
each game to make the game fair?

18. What is the mean life of a lightbulb whose life X [hours]
has the density 

19. Let X be discrete with probability function 
Find the expectation of 

20. TEAM PROJECT. Means, Variances, Expectations.
(a) Show that E(X " !) ! 0, s2 ! E(X2) " !2.

X3.1
8,  f (1) ! f (2) ! 3

8.
f (0) ! f (3) !

f (x) ! 0.001e%0.001x (x ' 0)?

5%?

0 % x % 1f (x) ! 6x(1 " x)

(b) Prove (10)–(12).
(c) Find all the moments of the uniform distribution
on an interval 

(d) The skewness of a random variable X is defined
by

(13)

Show that for a symmetric distribution (whose third
central moment exists) the skewness is zero.

(e) Find the skewness of the distribution with density
when and otherwise.

Sketch 

(f) Calculate the skewness of a few simple discrete
distributions of your own choice.

(g) Find a nonsymmetric discrete distribution with
3 possible values, mean 0, and skewness 0.

f (x).
f (x) ! 0x ( 0f (x) ! xe%x

g !
1

s3
 E([X " !]3).

g

a % x % b.

} }

x times n " x times
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Now (1) is just one order of arranging x A’s and B’s. We now use Theorem 1(b)
in Sec. 24.4, which gives the number of permutations of n things (the n outcomes of the
n trials) consisting of 2 classes, class 1 containing the A’s and class 2 containing
the B’s. This number is

Accordingly, , multiplied by this binomial coefficient, gives the probability 
of that is, of obtaining A precisely x times in n trials. Hence X has the probability
function

(2)

and otherwise. The distribution of X with probability function (2) is called the
binomial distribution or Bernoulli distribution. The occurrence of A is called success
(regardless of what it actually is; it may mean that you miss your plane or lose your watch)
and the nonoccurrence of A is called failure. Figure 517 shows typical examples. Numeric
values can be obtained from Table A5 in App. 5 or from your CAS.

The mean of the binomial distribution is (see Team Project 16)

(3)

and the variance is (see Team Project 16)

(4)

For the symmetric case of equal chance of success and failure this gives the
mean the variance and the probability function

(x ! 0, 1, Á , n). f (x) ! an
x
b  a1

2
 bn(2*)

n>4,n>2,
(p ! q ! 1

2)

s2 ! npq.

! ! np

f (x) ! 0

(x ! 0, 1, Á , n) f (x) ! an
x
b  pxqn%x

X ! x,
P(X ! x)(1*)

n!
x!(n " x)!

! an
x
b .

n " n1 ! n " x
n1 ! x

n " x

pp Á p '  qq Á q ! pxqn%x.(1*)

1040 CHAP. 24 Data Analysis. Probability Theory} }
x times n " x times

50

0.5

50 50 50 500

p = 0.1 p = 0.2 p = 0.5 p = 0.8 p = 0.9

Fig. 517. Probability function (2) of the binomial distribution for n 5 and various values of p!
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E X A M P L E  1 Binomial Distribution

Compute the probability of obtaining at least two “Six” in rolling a fair die 4 times.

Solution. The event “At least two ‘Six’” occurs if we obtain 2 or
3 or 4 “Six.” Hence the answer is

Poisson Distribution
The discrete distribution with infinitely many possible values and probability function

(5)

is called the Poisson distribution, named after S. D. Poisson (Sec. 18.5). Figure 518
shows (5) for some values of It can be proved that this distribution is obtained as a
limiting case of the binomial distribution, if we let and so that the mean

approaches a finite value. (For instance, may be kept constant.) The
Poisson distribution has the mean and the variance (see Team Project 16)

(6)

Figure 518 gives the impression that, with increasing mean, the spread of the distribution
increases, thereby illustrating formula (6), and that the distribution becomes more and
more (approximately) symmetric.

s2 ! !.

!
! ! np! ! np

n : *p : 0
!.

(x ! 0, 1, Á ) f (x) !
!x

x!
 e%!

! !
1

64
 (6 ! 25 # 4 ! 5 # 1) !

171

1296
! 13.2%.

 P ! f (2) # f (3) # f (4) ! a4
2
b  a1

6
 b2  a5

6
 b2 # a4

3
b  a1

6
 b3  a5

6
 b # a4

4
b  a1

6
 b4 

p ! P(A) ! P(“Six”) ! 1
6, q ! 5

6, n ! 4.

SEC. 24.7 Binomial, Poisson, and Hypergeometric Distributions 1041

50

0.5

50 50 5 100

 = 5 = 2 = 1 = 0.5µ µ µ µ

Fig. 518. Probability function (5) of the Poisson distribution for various values of !

E X A M P L E  2 Poisson Distribution

If the probability of producing a defective screw is what is the probability that a lot of 100 screws
will contain more than 2 defectives?

Solution. The complementary event is Not more than 2 defectives. For its probability we get, from the
binomial distribution with mean , the value [see (2)]

P(Ac) ! a100
0
b  0.99100 # a100

1
b  0.01 ! 0.9999 # a100

2
b  0.012 ! 0.9998.

! ! np ! 1
Ac: 

p ! 0.01,
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Since p is very small, we can approximate this by the much more convenient Poisson distribution with mean
obtaining [see (5)]

Thus Show that the binomial distribution gives so that the Poisson approximation
is quite good.

E X A M P L E  3 Parking Problems. Poisson Distribution

If on the average, 2 cars enter a certain parking lot per minute, what is the probability that during any given
minute 4 or more cars will enter the lot?

Solution. To understand that the Poisson distribution is a model of the situation, we imagine the minute to
be divided into very many short time intervals, let p be the (constant) probability that a car will enter the lot
during any such short interval, and assume independence of the events that happen during those intervals. Then
we are dealing with a binomial distribution with very large n and very small p, which we can approximate by
the Poisson distribution with

because 2 cars enter on the average. The complementary event of the event “4 cars or more during a given
minute” is “3 cars or fewer enter the lot” and has the probability

Answer: (Why did we consider that complement?)

Sampling with Replacement
This means that we draw things from a given set one by one, and after each trial we
replace the thing drawn (put it back to the given set and mix) before we draw the next
thing. This guarantees independence of trials and leads to the binomial distribution.
Indeed, if a box contains N things, for example, screws, M of which are defective, the
probability of drawing a defective screw in a trial is Hence the probability of
drawing a nondefective screw is and (2) gives the probability of
drawing x defectives in n trials in the form

(7)

Sampling without Replacement. 
Hypergeometric Distribution
Sampling without replacement means that we return no screw to the box. Then we no
longer have independence of trials (why?), and instead of (7) the probability of drawing
x defectives in n trials is

(x ! 0, 1, Á , n).f (x) ! an
x
b  aM

N
 bx 

 a1 "
M
N

 bn%x

q ! 1 " p ! 1 " M>N,
p ! M>N.

!14.3%.

 ! 0.857.

 f (0) # f (1) # f (2) # f (3) ! e%2
 
 a20

0!
#

21

1!
#

22

2!
#

23

3!
 b

! ! np ! 2,

!
P(A) ! 7.94%,P(A) ! 8.03%.

 ! 91.97%.

 P(Ac) ! e%1
 
 (1 # 1 # 1

2)

! ! np ! 100 ! 0.01 ! 1,
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(8)

The distribution with this probability function is called the hypergeometric distribution
(because its moment generating function (see Team Project 16) can be expressed by the
hypergeometric function defined in Sec. 5.4, a fact that we shall not use).

Derivation of (8). By (4a) in Sec. 24.4 there are

(a) different ways of picking n things from N,

(b) different ways of picking x defectives from M,

(c) different ways of picking nondefectives from 

and each way in (b) combined with each way in (c) gives the total number of mutually
exclusive ways of obtaining x defectives in n drawings without replacement. Since (a) is
the total number of outcomes and we draw at random, each such way has the probability

From this, (8) follows.

The hypergeometric distribution has the mean (Team Project 16)

(9)

and the variance

(10)

E X A M P L E  4 Sampling with and without Replacement

We want to draw random samples of two gaskets from a box containing 10 gaskets, three of which are defective.
Find the probability function of the random variable 

Solution. We have For sampling with replacement, (7) yields

For sampling without replacement we have to use (8), finding

!f (x) ! a3
x
b  a 7

2 " x
b^a10

2
b ,  f (0) ! f (1) !

21

45
 ! 0.47, f (2) !

3

45
 ! 0.07.

f (x) ! a2
x
b  a 3

10
 bx 

 a 7

10
 b2%x

,  f (0) ! 0.49, f (1) ! 0.42, f (2) ! 0.09.

N ! 10, M ! 3, N " M ! 7, n ! 2.

X ! Number of defectives in the sample.

s2 !
nM(N " M)(N " n)

N 2(N " 1)
 .

! ! n 
M
N

 

!1^aNnb .
N " M,n " xaN " M

n " x
b

aM
x
b

aN
n
b

(x ! 0, 1, Á , n). f (x) !

aM
x
b  aN " M

n " x
b

aN
n
b  
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If N, M, and are large compared with n, then it does not matter too much whether
we sample with or without replacement, and in this case the hypergeometric distribution
may be approximated by the binomial distribution (with which is somewhat
simpler.

Hence, in sampling from an indefinitely large population (“infinite population”), we
may use the binomial distribution, regardless of whether we sample with or without
replacement.

p ! M>N),

N " M
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1. Mark the positions of in Fig. 517. Comment.
2. Graph (2) for as in Fig. 517 and compare with

Fig. 517.
3. In Example 3, if 5 cars enter the lot on the average,

what is the probability that during any given minute 6
or more cars will enter? First guess. Compare with
Example 3.

4. How do the probabilities in Example 4 of the text
change if you double the numbers: drawing 4 gaskets
from 20, 6 of which are defective? First guess.

5. Five fair coins are tossed simultaneously. Find the
probability function of the random variable Number
of heads and compute the probabilities of obtaining no
heads, precisely 1 head, at least 1 head, not more than
4 heads.

6. Suppose that of steel rods made by a machine are
defective, the defectives occurring at random during
production. If the rods are packaged 100 per box, what
is the Poisson approximation of the probability that a
given box will contain defectives?

7. Let X be the number of cars per minute passing a certain
point of some road between 8 A.M. and 10 A.M. on a
Sunday. Assume that X has a Poisson distribution with
mean 5. Find the probability of observing 4 or fewer
cars during any given minute.

8. Suppose that a telephone switchboard of some
company on the average handles 300 calls per hour,
and that the board can make at most 10 connections
per minute. Using the Poisson distribution, estimate the
probability that the board will be overtaxed during a
given minute. (Use Table A6 in App. 5 or your CAS.)

9. Rutherford–Geiger experiments. In 1910, E.
Rutherford and H. Geiger showed experimentally that
the number of alpha particles emitted per second in a
radioactive process is a random variable X having a
Poisson distribution. If X has mean 0.5, what is the
probability of observing two or more particles during
any given second?

10. Let be the probability that a certain type of
lightbulb will fail in a 24-hour test. Find the probability

p ! 2%

x ! 0, 1, Á , 5

4%

X !

n ! 8
! that a sign consisting of 15 such bulbs will burn 24

hours with no bulb failures.
11. Guess how much less the probability in Prob. 10 would

be if the sign consisted of 100 bulbs. Then calculate.
12. Suppose that a certain type of magnetic tape contains,

on the average, 2 defects per 100 meters. What is the
probability that a roll of tape 300 meters long will
contain (a) x defects, (b) no defects?

13. Suppose that a test for extrasensory perception consists
of naming (in any order) 3 cards randomly drawn from
a deck of 13 cards. Find the probability that by chance
alone, the person will correctly name (a) no cards, (b) 1
card, (c) 2 cards, (d) 3 cards.

14. If a ticket office can serve at most 4 customers per
minute and the average number of customers is 120 per
hour, what is the probability that during a given minute
customers will have to wait? (Use the Poisson
distribution, Table 6 in Appendix 5.)

15. Suppose that in the production of 60-ohm radio
resistors, nondefective items are those that have a
resistance between 58 and 62 ohms and the probability
of a resistor’s being defective is The resistors
are sold in lots of 200, with the guarantee that all
resistors are nondefective. What is the probability that
a given lot will violate this guarantee? (Use the Poisson
distribution.)

16. TEAM PROJECT. Moment Generating Function.
The moment generating function G(t) is defined by

or

where X is a discrete or continuous random variable,
respectively.
(a) Assuming that termwise differentiation and differ-
entiation under the integral sign are permissible, show

G(t) ! E(etX) ! #
&

%&

 etxf (x) dx

G(t) ! E(etXj) ! a
j

 etxjf (x j)

0.1%.

P R O B L E M  S E T  2 4 . 7
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SEC. 24.8 Normal Distribution 1045

that where in
particular, 
(b) Show that the binomial distribution has the
moment generating function

(c) Using (b), prove (3).
(d) Prove (4).
(e) Show that the Poisson distribution has the moment
generating function and prove (6).

(f) Prove 

Using this, prove (9).
17. Multinomial distribution. Suppose a trial can result

in precisely one of k mutually exclusive events

x  aM
x

 b ! M  aM " 1
x " 1

b .G(t) ! e%!e!et

 ! (pet # q)n.

 G(t) ! a
n

x!0

 etx an
x
b  pxqn%x ! a

n

x!0

 an
x

 b ( pet)xqn%x

! ! Gr(0).
G(k) ! dkG>dt k,E(Xk) ! G(k)(0), with probabilities respectively,

where Suppose that n independent
trials are performed. Show that the probability of
getting ’ ’s is

where and 
The distribution having this probability

function is called the multinomial distribution.
18. A process of manufacturing screws is checked every

hour by inspecting n screws selected at random from
that hour’s production. If one or more screws are
defective, the process is halted and carefully examined.
How large should n be if the manufacturer wants the
probability to be about that the process will be
halted when of the screws being produced are
defective? (Assume independence of the quality of any
screw from that of the other screws.)

10%
95%

xk ! n.
x1 # Á #0 % x j % n, j ! 1, Á , k,

f (x1, Á , xk) !
n!

x! Á xk!
 p1

x1 Á pk
xk

s, Á , xk Akx1 A1

p1 # Á # pk ! 1.
p1, Á , pk,A1, Á , Ak

24.8 Normal Distribution
Turning from discrete to continuous distributions, in this section we discuss the normal
distribution. This is the most important continuous distribution because in applications many
random variables are normal random variables (that is, they have a normal distribution)
or they are approximately normal or can be transformed into normal random variables in a
relatively simple fashion. Furthermore, the normal distribution is a useful approximation of
more complicated distributions, and it also occurs in the proofs of various statistical tests.

The normal distribution or Gauss distribution is defined as the distribution with the
density

(1)

where exp is the exponential function with base This is simpler than it may
at first look. has these features (see also Fig. 519).

1. is the mean and the standard deviation.

2. is a constant factor that makes the area under the curve of from 
to equal to 1, as it must be by (10), Sec. 24.5.

3. The curve of is symmetric with respect to because the exponent is
quadratic. Hence for it is symmetric with respect to the y-axis (Fig. 519,
“bell-shaped curves”).

4. The exponential function in (1) goes to zero very fast—the faster the smaller the
standard deviation is, as it should be (Fig. 519).s

x ! 0! ! 0
x ! !f (x)

*
"*f (x)1>(s12p)

s!

f (x)
e ! 2.718 Á .

(s ( 0)f (x) !
1

s12p
  exp c" 

1

2
 ax " !

s
 b2 d
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Distribution Function F(x)
From (7) in Sec. 24.5 and (1) we see that the normal distribution has the distribution
function

(2)

Here we needed x as the upper limit of integration and wrote v (instead of x) in the integrand.
For the corresponding standardized normal distribution with mean 0 and standard

deviation 1 we denote by . Then we simply have from (2)

(3)

This integral cannot be integrated by one of the methods of calculus. But this is no serious
handicap because its values can be obtained from Table A7 in App. 5 or from your CAS.
These values are needed in working with the normal distribution. The curve of is
S-shaped. It increases monotone (why?) from 0 to 1 and intersects the vertical axis at 
(why?), as shown in Fig. 520.

Relation Between and Although your CAS will give you values of in
(2) with any and directly, it is important to comprehend that and why any such an

can be expressed in terms of the tabulated standard as follows.£(z),F(x)
s!

F(x)≥(z).F(x)

1
2

£(z)

£(z) !
112p

 #
z

%*

e%u2>2du.

£(z)F(x)

F(x) !
1

s12p
 #

x

%*

exp c" 
1

2
 av " !

s
 b2 d  dv.
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f (x)

x0 21–1–2

1.0

0.5

1.5 σ = 0.25

σ = 0.5

σ = 1.0

Fig. 519. Density (1) of the normal distribution with for various values of s! ! 0

y

x0 2 31–1–2–3

0.2

0.4

0.6

0.8

1.0 Φ(x)

Fig. 520. Distribution function of the normal distribution with mean 0 and variance 1£(z)
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T H E O R E M  1 Use of the Normal Table A7 in App. 5

The distribution function of the normal distribution with any and [see (2)]
is related to the standardized distribution function in (3) by the formula

(4)

P R O O F Comparing (2) and (3) we see that we should set

Then gives

as the new upper limit of integration. Also thus Together, since
drops out,

Probabilities corresponding to intervals will be needed quite frequently in statistics in
Chap. 25. These are obtained as follows.

T H E O R E M  2 Normal Probabilities for Intervals

The probability that a normal random variable X with mean and standard
deviation assume any value in an interval is

(5)

P R O O F Formula (2) in Sec. 24.5 gives the first equality in (5), and (4) in this section gives the
second equality.

Numeric Values
In practical work with the normal distribution it is good to remember that about of all values
of X to be observed will lie between about between and practically all
between the three-sigma limits More precisely, by Table A7 in App. 5,

(a)

(6) (b)

(c)

Formulas (6a) and (6b) are illustrated in Fig. 521.

P(! " 3s ) X % ! # 3s) ! 99.7%.

P(! " 2s ) X % ! # 2s) ! 95.5%

P(! " s ) X % ! # s) ! 68%

! + 3s.
! + 2s,95%! + s,

2
3

!

P(a ) X % b) ! F(b) " F(a) ! £ab " !

s  b " £aa " !

s  b .

a ) x % bs
!

!F(x) !
1

s12p
 #

(x%!)>s
%&

e%u2>2 s du ! £ax " !

s  b .

s
dv ! s du.v " ! ! su,

u !
x " !
s  v ! xu !

v " !

s  .

F(x) ! £ax " !

s  b .

£(z)
s!F(x)
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The formulas in (6) show that a value deviating from by more than or will
occur in one of about 3, 20, and 300 trials, respectively.

3ss, 2s,!
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95.5%

2.25%2.25%
16%

68%

16%

µ µ--      σµ          -- 2          σµ          + 2          σµ       +      σµ       

(a) (b)

Fig. 521. Illustration of formula (6)

In tests (Chap. 25) we shall ask, conversely, for the intervals that correspond to certain
given probabilities; practically most important are the probabilities of and

For these, Table A8 in App. 5 gives the answers and
respectively. More precisely,

(a)

(7) (b)

(c)

Working with the Normal Tables A7 and A8 in App. 5
There are two normal tables in App. 5, Tables A7 and A8. If you want probabilities, use
Table A7. If probabilities are given and corresponding intervals or x-values are wanted,
use Table A8. The following examples are typical. Do them with care, verifying all values,
and don’t just regard them as dull exercises for your software. Make sketches of the density
to see whether the results look reasonable.

E X A M P L E  1 Reading Entries from Table A7

If X is standardized normal (so that then

E X A M P L E  2 Probabilities for Given Intervals, Table A7

Let X be normal with mean 0.8 and variance 4 (so that ). Then by (4) and (5)

or, if you like it better, (similarly in the other cases)

! P(1.0 % X % 1.8) ! £(0.5) " £(0.1) ! 0.6915 " 0.5398 ! 0.1517.

 P(X ' 1) ! 1 " P(X % 1) ! 1 " £a1 " 0.8

2
b ! 1 " 0.5398 ! 0.4602

 P(X % 2.44) ! PaX " 0.80

2
 %

2.44 " 0.80

2
 b ! P(Z % 0.82) ! 0.7939

P(X % 2.44) ! F(2.44) ! £  a2.44 " 0.80

2
 b ! £(0.82) ! 0.7939 ! 80%

s ! 2

! P(1.0 % X % 1.8) ! £(1.8) " £(1.0) ! 0.9641 " 0.8413 ! 0.1228.

 P(X ' 1) ! 1 " P(X % 1) ! 1 " 0.8413 ! 0.1587) by (7), Sec. 24.3

 P(X % "1.16) ! 1 " £(1.16) ! 1 " 0.8770 ! 0.1230 ! 12.3%

 P(X % 2.44) ! 0.9927 ! 991
4 %

! ! 0, s ! 1),

P(! " 3.29s ) X % ! # 3.29s) ! 99.9%.

P(! " 2.58s ) X % ! # 2.58s) ! 99%

P(! " 1.96s ) X % ! # 1.96s) ! 95%

! + 3.3s,
! + 2s, ! + 2.6s,99.9%.

95%, 99%,
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E X A M P L E  3 Unknown Values c for Given Probabilities, Table A8

Let X be normal with mean 5 and variance 0.04 (hence standard deviation 0.2). Find c or k corresponding to
the given probability

E X A M P L E  4 Defectives

In a production of iron rods let the diameter X be normally distributed with mean 2 in. and standard deviation
0.008 in.

(a) What percentage of defectives can we expect if we set the tolerance limits at in.?

(b) How should we set the tolerance limits to allow for defectives?

Solution. (a) because from (5) and Table A7 we obtain for the complementary event the probability

(b) because, for the complementary event, we have

or

so that Table A8 gives

Normal Approximation of the Binomial Distribution
The probability function of the binomial distribution is (Sec. 24.7)

(8)

If n is large, the binomial coefficients and powers become very inconvenient. It is of great
practical (and theoretical) importance that, in this case, the normal distribution provides
a good approximation of the binomial distribution, according to the following theorem,
one of the most important theorems in all probability theory.

(x ! 0, 1, Á , n).f (x) ! anx b pxqn%x

!
2 # c " 2

0.008
! 2.054,  c ! 0.0164.

0.98 ! £  a2 # c " 2

0.008
 b ,

0.98 ! P(X % 2 # c)

0.96 ! P(2 " c % X % 2 # c)

2 + 0.0164

 ! 983
4 %.

 ! 0.9876

 ! 0.9938 " (1 " 0.9938)

 ! £(2.5) " £("2.5)

 P(1.98 % X % 2.02) ! £a2.02 " 2.00

0.008
 b " £a1.98 " 2.00

0.008
 b

11
4 %

4%

2 + 0.02

!P(X ' c) ! 1%,   thus P(X % c) ! 99%,   
c " 5

0.2
! 2.326,   c ! 5.465.

P(5 " k % X % 5 # k) ! 90%,   5 # k ! 5.329   (as before; why?)

P(X % c) ! 95%,   £ac " 5

0.2
 b ! 95%,   

c " 5

0.2
! 1.645,   c ! 5.329 
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T H E O R E M  3 Limit Theorem of De Moivre and Laplace

For large n,

(9)

Here f is given by (8). The function

(10)

is the density of the normal distribution with mean and variance
(the mean and variance of the binomial distribution). The symbol (read
asymptotically equal) means that the ratio of both sides approaches 1 as n approaches

. Furthermore, for any nonnegative integers a and b

(11)

A proof of this theorem can be found in [G3] listed in App. 1. The proof shows that the term
0.5 in and is a correction caused by the change from a discrete to a continuous distribution.ba

a !
a " np " 0.51npq

 ,   b !
b " np # 0.51npq

 .

P(a % X % b) ! a
b

x!a
 anxb pxqn%x " £(b) " £(a),

(( a),*

"
s2 ! npq! ! np

f *(x) !
112p1npq

  e%z2>2,  z !
x " np1npq

 

(x ! 0, 1, Á , n).f (x) " f *(x)
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1. Let X be normal with mean 10 and variance 4. Find

2. Let X be normal with mean 105 and variance 25. Find

3. Let X be normal with mean 50 and variance 9.
Determine c such that 

4. Let X be normal with mean 3.6 and variance 0.01. Find
c such that 

5. If the lifetime X of a certain kind of automobile battery
is normally distributed with a mean of 5 years and a
standard deviation of 1 year, and the manufacturer wishes
to guarantee the battery for 4 years, what percentage of
the batteries will he have to replace under the guarantee?

6. If the standard deviation in Prob. 5 were smaller, would
that percentage be larger or smaller?

7. A manufacturer knows from experience that the
resistance of resistors he produces is normal with mean

X " 3.6 % c) ! 99.9%.P("c )
P(X % c) ! 50%, P(X ( c) ! 10%,

50 # c) ! 50%.1%, P(50 " c ) X )
P(X ) c) ! 5%, P(X ( c) !

P(X % 112.5), P(x ( 100), P(110.5 ) X ) 111.25).

P(X ( 12), P(X ) 10), P(X ) 11), P(9 ) X ) 13).
and standard deviation What

percentage of the resistors will have resistance between
and Between and 

8. The breaking strength X [kg] of a certain type of plastic
block is normally distributed with a mean of 1500 kg
and a standard deviation of 50 kg. What is the maximum
load such that we can expect no more than of the
blocks to break?

9. If the mathematics scores of the SAT college entrance
exams are normal with mean 480 and standard deviation
100 (these are about the actual values over the past
years) and if some college sets 500 as the minimum
score for new students, what percent of students would
not reach that score?

10. A producer sells electric bulbs in cartons of 1000 bulbs.
Using (11), find the probability that any given carton
contains not more than defective bulbs, assuming
the production process to be a Bernoulli experiment
with probability that any given bulb will be
defective). First guess. Then calculate.

p ! 1%(!

1%

5%

160 ,?140 ,152 ,?148 ,

s ! 5 ,.! ! 150 ,

P R O B L E M  S E T 2 4 . 8
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11. If sick-leave time X used by employees of a company
in one month is (very roughly) normal with mean 1000
hours and standard deviation 100 hours, how much
time t should be budgeted for sick leave during the next
month if t is to be exceeded with probability of only

12. If the monthly machine repair and maintenance cost X
in a certain factory is known to be normal with mean

and standard deviation what is the
probability that the repair cost for the next month will
exceed the budgeted amount of 

13. If the resistance X of certain wires in an electrical
network is normal with mean and standard
deviation , how many of 1000 wires will meet
the specification that they have resistance between
0.009 and ?

14. TEAM PROJECT. Normal Distribution. (a) Derive
the formulas in (6) and (7) from the appropriate normal
table.
(b) Show that Give an example.
(c) Find the points of inflection of the curve of (1).
(d) Considering and introducing polar coordi-
nates in the double integral (a standard trick worth
remembering), prove

£2(*)

£("z) ! 1 " £(z).

0.011 ,

0.001 ,
0.01 ,

$15,000?

$2000,$12,000

20%?

(12)

(e) Show that in (1) is indeed the standard deviation
of the normal distribution. [Use (12).]
(f ) Bernoulli’s law of large numbers. In an experiment
let an event A have probability and let X
be the number of times A happens in n independent trials.
Show that for any given 

(g) Transformation. If X is normal with mean and
variance show that is
normal with mean and variance

15. WRITING PROJECT. Use of Tables, Use of CAS.
Give a systematic discussion of the use of Tables A7 and
A8 for obtaining 

as well as 
include simple examples. If you have

a CAS, describe to what extent it makes the use of those
tables superfluous; give examples.

X ) ! # c) ! k;
P(! " c )P(X ( c) ! k,P(X ) c) ! k,

P(a ) X ) b),P(X ( a),P(X ) b),

s*2 ! c1
2s2.

!* ! c1! # c2

X* ! c1X # c2 (c1 ( 0)s2,
!

as n : *.P a `  Xn " p ` % Pb: 1

P ( 0,

p (0 ) p ) 1),

s

£(*) !
112p

 #
&

%&

e%u2>2 du ! 1.
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24.9 Distributions of Several Random Variables
Distributions of two or more random variables are of interest for two reasons:

1. They occur in experiments in which we observe several random variables, for
example, carbon content X and hardness Y of steel, amount of fertilizer X and yield of
corn Y, height weight and blood pressure of persons, and so on.

2. They will be needed in the mathematical justification of the methods of statistics in
Chap. 25.

In this section we consider two random variables X and Y or, as we also say, a two-
dimensional random variable For the outcome of a trial is a pair of numbers

briefly which we can plot as a point in the XY-plane.
The two-dimensional probability distribution of the random variable is given

by the distribution function

(1)

This is the probability that in a trial, X will assume any value not greater than x and in
the same trial, Y will assume any value not greater than y. This corresponds to the blue
region in Fig. 522, which extends to to the left and below. determines theF(x, y)"*

F(x, y) ! P(X % x, Y % y).

(X, Y)
(X, Y ) ! (x, y),X ! x, Y ! y,

(X, Y )(X, Y ).

X3X2,X1,
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probability distribution uniquely, because in analogy to formula (2) in Sec. 24.5, that is,
we now have for a rectangle (see Prob. 16)

(2)

As before, in the two-dimensional case we shall also have discrete and continuous
random variables and distributions.

Discrete Two-Dimensional Distributions
In analogy to the case of a single random variable (Sec. 24.5), we call and its
distribution discrete if can assume only finitely many or at most countably infinitely
many pairs of values with positive probabilities, whereas the probability
for any domain containing none of those values of is zero.

Let be any of those pairs and let (where we admit that
may be 0 for certain pairs of subscripts i, j). Then we define the probability function

of by

(3) if and otherwise;

here, and independently. In analogy to (4), Sec. 24.5, we now have
for the distribution function the formula

(4)

Instead of (6) in Sec. 24.5 we now have the condition

(5)

E X A M P L E  1 Two-Dimensional Discrete Distribution

If we simultaneously toss a dime and a nickel and consider

then X and Y can have the values 0 or 1, and the probability function is

otherwise. !f (0, 0) ! f (1, 0) ! f (0, 1) ! f (1, 1) ! 1
4 , f (x, y) ! 0

 Y ! Number of heads the nickel turns up,

 X ! Number of heads the dime turns up,

a
i
a

j

 f (x i, yj) ! 1.

F(x, y) ! a
xi%x

  a
yj%y

  f (x i, yj).

j ! 1, 2, Ái ! 1, 2, Á

f (x, y) ! 0x ! x i, y ! yjf (x, y) ! pij

(X, Y )f (x, y)
pij

P(X ! x i, Y ! yj) ! pij(x i, yj)
(X, Y )

(x1, y1), (x2, y2), Á
(X, Y )

(X, Y )

P(a1 ) X % b1, a2 ) Y % b2) ! F(b1, b2) " F(a1, b2) " F(b1, a2) # F(a1, a2).

P(a ) X % b) ! F(b) " F(a),
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X

Y

Fig. 522. Formula (1)
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Continuous Two-Dimensional Distributions
In analogy to the case of a single random variable (Sec. 24.5) we call and its
distribution continuous if the corresponding distribution function can be given by
a double integral

(6)

whose integrand f, called the density of is nonnegative everywhere, and is
continuous, possibly except on finitely many curves.

From (6) we obtain the probability that assume any value in a rectangle (Fig. 523)
given by the formula

(7)

E X A M P L E  2 Two-Dimensional Uniform Distribution in a Rectangle

Let R be the rectangle The density (see Fig. 524)

(8) if is in R, otherwise

defines the so-called uniform distribution in the rectangle R; here is the area of R.
The distribution function is shown in Fig. 525. !

k ! (b1 " a1)(b2 " a2)

f (x, y) ! 0(x, y)f (x, y) ! 1>ka1 ) x % b1, a2 ) y % b2.

P(a1 ) X % b1, a2 ) Y % b2) ! #
b2

a2

#
b1

a1

 f (x, y) dx dy.

(X, Y )

(X, Y ),

F(x, y) ! #
y

%&

 #
x

%&

 f (x*, y*) dx* dy*

F(x, y)
(X, Y )
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a1

a2

b2

b1

Y

X

Fig. 523. Notion of a two-dimensional distribution

    1α
    2α

    1β
   2β

0

x
y

Fig. 524. Density function (8) of the
uniform distribution

1

    1α
    2α

    1β
   2β

0

x
y

Fig. 525. Distribution function of the 
uniform distribution defined by (8)

Marginal Distributions of a Discrete Distribution
This is a rather natural idea, without counterpart for a single random variable. It amounts
to being interested only in one of the two variables in say, X, and asking for its
distribution, called the marginal distribution of X in So we ask for the probability(X, Y ).

(X, Y ),
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Since is discrete, so is X. We get its probability function,
call it from the probability function of by summing over y:

(9)

where we sum all the values of that are not 0 for that x.
From (9) we see that the distribution function of the marginal distribution of X is

(10)

Similarly, the probability function

(11)

determines the marginal distribution of Y in . Here we sum all the values of that
are not zero for the corresponding y. The distribution function of this marginal distribution is

(12)

E X A M P L E  3 Marginal Distributions of a Discrete Two-Dimensional Random Variable

In drawing 3 cards with replacement from a bridge deck let us consider

The deck has 52 cards. These include 4 queens, 4 kings, and 4 aces. Hence in a single trial a queen has probability
and a king or ace This gives the probability function of 

and otherwise. Table 24.1 shows in the center the values of and on the right and lower margins
the values of the probability functions and of the marginal distributions of X and Y, respectively.

Table 24.1 Values of the Probability Functions ƒ(x, y), ƒ1(x), ƒ2(y) in Drawing
Three Cards with Replacement from a Bridge Deck, where X is the Number
of Queens Drawn and Y is the Number of Kings or Aces Drawn

x
y 0 1 2 3 ƒ1(x)

0 _1000
2197

_600
2197

_120
2197

_8
2197

_1728
2197

1 _300
2197

_120
2197

_12
2197 0 _432

2197

2 _30
2197

_6
2197 0 0 _36

2197

3 _1
2197 0 0 0 _1

2197

ƒ2(y) _1331
2197

_726
2197

_132
2197

_8
2197

!f2(y)f1(x)
f (x, y)f (x, y) ! 0

(x # y % 3)f (x, y) !
3!

x!y!(3 " x " y)!
  a 1

13
 bx a 2

13
 by a10

13
 b3%x%y

(X, Y ),8
52 ! 2

13.4
52 ! 1

13

(X, Y ),  X ! Number of queens,  Y ! Number of kings or aces.

F2( y) ! P(X arbitrary, Y % y) ! a
y*%y

 f2( y*).

f (x, y)(X, Y )

f2( y) ! P(X arbitrary, Y % y) ! a
x

 f (x, y)

F1(x) ! P(X % x, Y arbitrary) ! a
x*%x

 f1(x*).

f (x, y)

f1(x) ! P(X ! x, Y arbitrary) ! a
y

 f (x, y)

(X, Y )f (x, y)f1(x),
(X, Y )P(X ! x, Y arbitrary).
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Marginal Distributions of a Continuous Distribution
This is conceptually the same as for discrete distributions, with probability functions and
sums replaced by densities and integrals. For a continuous random variable with
density we now have the marginal distribution of X in , defined by the
distribution function

(13)

with the density of X obtained from by integration over y,

(14)

Interchanging the roles of X and Y, we obtain the marginal distribution of Y in 
with the distribution function

(15)

and density

(16)

Independence of Random Variables
X and Y in a (discrete or continuous) random variable are said to be independent if

(17)

holds for all Otherwise these random variables are said to be dependent. These
definitions are suggested by the corresponding definitions for events in Sec. 24.3.

Necessary and sufficient for independence is

(18)

for all x and y. Here the f ’s are the above probability functions if is discrete or
those densities if is continuous. (See Prob. 20.)

E X A M P L E  4 Independence and Dependence

In tossing a dime and a nickel, may
assume the values 0 or 1 and are independent. The random variables in Table 24.1 are dependent. !

X ! Number of heads on the dime, Y ! Number of heads on the nickel

(X, Y )
(X, Y )

f (x, y) ! f1(x)f2(y)

(x, y).

F(x, y) ! F1(x)F2(y)

(X, Y )

f2(y) ! #
&

%&

 f (x, y) dx.

F2(y) ! P("* ) X ) *, Y % y) ! #
y

%&

 f2(y*) dy*

(X, Y )

f1(x) ! #
&

%&

 f (x, y) dy.

f (x, y)f1

F1(x) ! P(X % x, "* ) Y ) *) ! #
x

%&

 f1(x*) dx*

(X, Y )f (x, y)
(X, Y )
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Extension of Independence to n-Dimensional Random Variables. This will be needed
throughout Chap. 25. The distribution of such a random variable is
determined by a distribution function of the form

The random variables are said to be independent if

(19)

for all Here is the distribution function of the marginal distribution of
in X, that is,

Otherwise these random variables are said to be dependent.

Functions of Random Variables
When we write Taking a nonconstant continuous
function defined for all x, y, we obtain a random variable For example,
if we roll two dice and X and Y are the numbers the dice turn up in a trial, then 
is the sum of those two numbers (see Fig. 514 in Sec. 24.5).

In the case of a discrete random variable we may obtain the probability function
of by summing all for which equals the value of z

considered; thus

(20)

Hence the distribution function of Z is

(21)

where we sum all values of for which 
In the case of a continuous random variable we similarly have

(22)

where for each z we integrate the density of over the region in
the xy-plane, the boundary curve of this region being g(x, y) ! z.

g(x, y) % z(X, Y )f (x, y)

F(z) ! P(Z % z) ! ##
g(x,y)%z

f (x, y) dx dy

(X, Y )
g(x, y) % z.f (x, y)

F(z) ! P(Z % z) ! aa
g(x,y)%z

 f (x, y)

f (z) ! P(Z ! z) ! aa
g(x,y)!z

 f (x, y).

g(x, y)f (x, y)Z ! g(X, Y )f (z)
(X, Y )

Z ! X # Y
Z ! g(X, Y ).g(x, y)

X1 ! X, X2 ! Y, x1 ! x, x2 ! y.n ! 2,

Fj(x j) ! P(Xj % x j, Xk arbitrary, k ! 1, Á , n, k & j).

Xj

Fj(x j)(x1, Á , xn).

F(x1, Á , xn) ! F1(x1)F2(x2) Á Fn(xn)

X1, Á , Xn

F(x1, Á , xn) ! P(X1 % x1, Á , Xn % xn).

X ! (X1, Á , Xn)
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Addition of Means
The number

(23)

is called the mathematical expectation or, briefly, the expectation of . Here it is
assumed that the double series converges absolutely and the integral of 
over the xy-plane exists (is finite). Since summation and integration are linear processes,
we have from (23)

(24)

An important special case is

and by induction we have the following result.

T H E O R E M  1 Addition of Means

The mean (expectation) of a sum of random variables equals the sum of the means
(expectations), that is,

(25)

Furthermore, we readily obtain

T H E R O E M  2 Multiplication of Means

The mean (expectation) of the product of independent random variables equals the
product of the means (expectations), that is,

(26)

P R O O F If X and Y are independent random variables (both discrete or both continuous), then
In fact, in the discrete case we have

E(XY ) ! a
x

 a
y

 xyf (x, y) ! a
x

 xf1(x) a
y

 yf2( y) ! E(X )E(Y ),

E(XY ) ! E(X )E(Y ).

E(X1X2
Á Xn) ! E(X1)E(X2) Á E(Xn).

E(X1 # X2 # Á # Xn) ! E(X1) # E(X2) # Á # E(Xn).

E(X # Y ) ! E(X ) # E(Y ),

E(ag(X, Y ) # bh(X, Y )) ! aE(g(X, Y )) # bE(h(X, Y )).

ƒ g(x, y) ƒ f (x, y)
g(X, Y )

E(g(X, Y )) ! e a
x

 a
y

 g(x, y) f (x, y)   [(X, Y ) discrete]

#
&

%&
 #

&

%&
 g(x, y) f (x, y) dx dy    [(X, Y ) continuous]
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and in the continuous case the proof of the relation is similar. Extension to n independent
random variables gives (26), and Theorem 2 is proved.

Addition of Variances
This is another matter of practical importance that we shall need. As before, let 
and denote the mean and variance of Z by and Then we first have (see Team Project
20(a) in Problem Set 24.6)

From (24) we see that the first term on the right equals

For the second term on the right we obtain from Theorem 1

By substituting these expressions into the formula for we have

From Team Project 20, Sec. 24.6, we see that the expression in the first line on the right
is the sum of the variances of X and Y, which we denote by and respectively. The
quantity in the second line (except for the factor 2) is

(27)

and is called the covariance of X and Y. Consequently, our result is

(28)

If X and Y are independent, then

hence and

(29)

Extension to more than two variables gives the basic

T H E O R E M  3 Addition of Variances

The variance of the sum of independent random variables equals the sum of the
variances of these variables.

s2 ! s1
2 # s2

2.

sXY ! 0,

E(XY ) ! E(X )E(Y );

s2 ! s1
2 # s2

2 # 2sXY.

sXY ! E(XY ) " E(X )E(Y )

s2
2,s1

2

# 2[E(XY ) " E(X )E(Y )].

s2 ! E(X2) " [E(X )]2 # E(Y2) " [E(Y )]2

s2

[E(Z )]2 ! [E(X ) # E(Y )]2 ! [E(X )]2 # 2E(X )E(Y ) # [E(Y )]2.

E(Z2) ! E(X2 # 2XY # Y2) ! E(X2) # 2E(XY ) # E(Y2).

s2 ! E([Z " !]2) ! E(Z2) " [E(Z )]2.

s2.!
Z ! X # Y

!
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CAUTION! In the numerous applications of Theorems 1 and 3 we must always
remember that Theorem 3 holds only for independent variables.

This is the end of Chap. 24 on probability theory. Most of the concepts, methods, and
special distributions discussed in this chapter will play a fundamental role in the next
chapter, which deals with methods of statistical inference, that is, conclusions from
samples to populations, whose unknown properties we want to know and try to discover
by looking at suitable properties of samples that we have obtained.
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1. Let when and and
zero elsewhere. Find k. Find 
and 

2. Find and if 
has the density if 

3. Let if and 0 other-
wise. Find k. Sketch Find 

4. Find the density of the marginal distribution of X in
Prob. 2.

5. Find the density of the marginal distribution of Y in
Fig. 524.

6. If certain sheets of wrapping paper have a mean weight
of 10 g each, with a standard deviation of 0.05 g, what
are the mean weight and standard deviation of a pack
of 10,000 sheets?

7. What are the mean thickness and the standard deviation
of transformer cores each consisting of 50 layers of
sheet metal and 49 insulating paper layers if the metal
sheets have mean thickness 0.5 mm each with a
standard deviation of 0.05 mm and the paper layers
have mean 0.05 mm each with a standard deviation of
0.02 mm?

8. Let X [cm] and Y [cm] be the diameters of a pin and
hole, respectively. Suppose that has the density

if

and 0 otherwise. (a) Find the marginal distributions.
(b) What is the probability that a pin chosen at random
will fit a hole whose diameter is 1.00?

9. Using Theorems 1 and 3, obtain the formulas for the
mean and the variance of the binomial distribution.

10. Using Theorem 1, obtain the formula for the mean of
the hypergeometric distribution. Can you use Theorem
3 to obtain the variance of that distribution?

11. A 5-gear assembly is put together with spacers between
the gears. The mean thickness of the gears is 5.020 cm
with a standard deviation of 0.003 cm. The mean
thickness of the spacers is 0.040 cm with a standard
deviation of 0.002 cm. Find the mean and standard
deviation of the assembled units consisting of 5 randomly
selected gears and 4 randomly selected spacers.

0.98 ) x ) 1.02, 1.00 ) y ) 1.04f (x, y) ! 625

(X, Y)

P(Y ( X ).P(X # Y % 1),f (x, y).
x ( 0, y ( 0, x # y ) 3f (x, y) ! k

x # y % 8.y ' 0,x ' 0,f (x, y) ! 1
32

(X, Y)P(X % 1, Y % 1)P(X ( 4, Y ( 4)
P(9 % X % 13, Y % 1).

P(X % 11, 1 % Y % 1.5)
0 % y % 28 % x % 12f (x, y) ! k 12. If the mean weight of certain (empty) containers is 5 lb

the standard deviation is 0.2 lb, and if the filling of the
containers has mean weight 100 lb and standard
deviation 0.5 lb, what are the mean weight and the
standard deviation of filled containers?

13. Find when has the density

if

and 0 otherwise.
14. An electronic device consists of two components. Let

X and Y [years] be the times to failure of the first and
second components, respectively. Assume that 
has the density if and 
and 0 otherwise. (a) Are X and Y dependent or
independent? (b) Find the densities of the marginal
distributions. (c) What is the probability that the first
component will have a lifetime of 2 years or longer?

15. Give an example of two different discrete distributions
that have the same marginal distributions.

16. Prove (2).
17. Let have the probability function

Are X and Y independent?
18. Let have the density

if 

and 0 otherwise. Determine k. Find the densities of the
marginal distributions. Find the probability

19. Show that the random variables with the densities

and

if and and
elsewhere, have the same marginal

distribution.
20. Prove the statement involving (18).

g(x, y) ! 0
f (x, y) ! 00 % x % 1, 0 % y % 1

g(x, y) ! (x # 1
2 )(y # 1

2 )

f (x, y) ! x # y

P(X2 # Y2 ) 1
4).

x2 # y2 ) 1f (x, y) ! k

(X, Y )

f (0, 1) ! f (1, 0) ! 3
8.

f (0, 0) ! f (1, 1) ! 1
8,

(X, Y )

y ( 0x ( 0f (x, y) ! 4e%2(x#y)
(X, Y )

x ' 0, y ' 0f (x, y) ! 0.25e%0.5(x#y)

(X, Y )P(X ( Y )

P R O B L E M  S E T 2 4 . 9
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1. What are stem-and-leaf plots? Boxplots? Histograms?
Compare their advantages.

2. What properties of data are measured by the mean? The
median? The standard deviation? The variance?

3. What do we mean by an experiment? An outcome? An
event? Give examples.

4. What is a random variable? Its distribution function?
Its probability function or density?

5. State the definition of probability from memory. Give
simple examples.

6. What is sampling with and without replacement? What
distributions are involved?

7. When is the Poisson distribution a good approximation
of the binomial distribution? The normal distribution?

8. Explain the use of the tables of the normal distribution.
If you have a CAS, how would you proceed without
the tables?

9. State the main theorems on probability. Illustrate them
by simple examples.

10. State the most important facts about distributions of
two random variables and their marginal distributions.

11. Make a stem-and-leaf plot, histogram, and boxplot of the
data 110, 113, 109, 118, 110, 115, 104, 111, 116, 113.

12. Same task as in Prob. 11. for the data 13.5, 13.2, 12.1,
13.6, 13.3.

13. Find the mean, standard deviation, and variance in
Prob. 11.

14. Find the mean, standard deviation, and variance in
Prob. 12.

15. Show that the mean always lies between the smallest
and the largest data value.

16. What are the outcomes in the sample space of the
experiment of simultaneously tossing three coins?

17. Plot a histogram of the data 8, 2, 4, 10 and guess and s
by inspecting the histogram. Then calculate and s.

18. Using a Venn diagram, show that if and only if

19. Suppose that of bolts made by a machine are
defective, the defectives occurring at random during
production. If the bolts are packaged 50 per box, what
is the binomial approximation of the probability that a
given box will contain defectives?

20. Of a lot of 12 items, 3 are defective. (a) Find the number
of different samples of 3 items. Find the number of
samples of 3 items containing (b) no defectives, (c) 1
defective, (d) 2 defectives, (e) 3 defectives.

21. Find the probability function of Number of times
of tossing a fair coin until the first head appears.

22. If the life of ball bearings has the density 
if and 0 otherwise, what is k? What is the
probability 

23. Find the mean and variance of a discrete random variable
X having the probability function 

24. Let X be normal with mean 14 and variance 4. Determine
c such that 

25. Let X be normal with mean 80 and variance 9. Find
and P(78 ) X ) 82).P(X ( 83), P(X ) 81), P(X ) 80),

P(X % c) ! 99.5%.
P(X % c) ! 5%,P(X % c) ! 95%,

f (2) ! 1
4 .

f (0) ! 1
4 ,  f (1) ! 1

2 ,

P(X ' 1)?
0 % x % 2

f (x) ! ke%x

X !

x ! 0, 1, Á , 5

3%
A " B ! A.

A $ B
x, s2,

x

C H A P T E R  2 4  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S

A random experiment, briefly called experiment, is a process in which the result
(“outcome”) depends on “chance” (effects of factors unknown to us). Examples are
games of chance with dice or cards, measuring the hardness of steel, observing weather
conditions, or recording the number of accidents in a city. (Thus the word “experiment”
is used here in a much wider sense than in common language.) The outcomes are
regarded as points (elements) of a set S, called the sample space, whose subsets are
called events. For events E we define a probability by the axioms (Sec. 24.3)

(1)

(Ej " Ek ! $ ).P(E1 ! E2 ! Á ) ! P(E1) # P(E2) # Á
P(S) ! 1

0 % P(E) % 1

P(E)

SUMMARY OF CHAPTER 24
Data Analysis. Probability Theory
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These axioms are motivated by properties of frequency distributions of data
(Sec. 24.1).

The complement of E has the probability

(2)

The conditional probability of an event B under the condition that an event A
happens is (Sec. 24.3)

(3)

Two events A and B are called independent if the probability of their simultaneous
appearance in a trial equals the product of their probabilities, that is, if

(4)

With an experiment we associate a random variable X. This is a function defined
on S whose values are real numbers; furthermore, X is such that the probability

with which X assumes any value a, and the probability with
which X assumes any value in an interval are defined (Sec. 24.5). The
probability distribution of X is determined by the distribution function

(5)

In applications there are two important kinds of random variables: those of the
discrete type, which appear if we count (defective items, customers in a bank, etc.)
and those of the continuous type, which appear if we measure (length, speed,
temperature, weight, etc.).

A discrete random variable has a probability function

(6)

Its mean and variance are (Sec. 24.6)

(7) and

where the are the values for which X has a positive probability. Important discrete
random variables and distributions are the binomial, Poisson, and hypergeometric
distributions discussed in Sec. 24.7.

A continuous random variable has a density

(8) [see (5)].

Its mean and variance are (Sec. 24.6)

(9) and s2 ! #
&

%&

(x " !)2f (x) dx.! ! #
&

%&

 x f (x) dx

f (x) ! Fr(x)

x j

s2 ! a
j

(x j " !)2f (x j)! ! a
j

 x j f (x j)

s2!

f (x) ! P(X ! x).

F(x) ! P(X % x).

a ) X % b
P(a ) X % b)P(X ! a)

P(A " B) ! P(A)P(B).

[P(A) ( 0].P(B ƒ A) !
P(A " B)

P(A)
 

P(Ec) ! 1 " P(E).

Ec

Summary of Chapter 24 1061
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Very important is the normal distribution (Sec. 24.8), whose density is

(10)

and whose distribution function is (Sec. 24.8; Tables A7, A8 in App. 5)

(11)

A two-dimensional random variable (X, Y ) occurs if we simultaneously observe
two quantities (for example, height X and weight Y of adults). Its distribution function
is (Sec. 24.9)

(12)

X and Y have the distribution functions (Sec. 24.9)

(13) Y arbitrary) and

respectively; their distributions are called marginal distributions. If both X and Y
are discrete, then (X, Y ) has a probability function

If both X and Y are continuous, then (X, Y ) has a density f (x, y).

f (x, y) ! P(X ! x, Y ! y).

F2(y) ! P(x arbitrary, Y % y)F1(x) ! P(X % x,

F(x, y) ! P(X % x, Y % y).

F(x) ! £ax " !

s  b .

f (x) !
1

s12p
  exp c" 

1

2
  ax " !

s
 b2 d
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