CHAPTER 1

PARTI THEORY

THE WAVE FUNCTION

1.1 THE SCHRODINGER EQUATION

Imagine a particle of mass m, constrained to move along the x-axis, subject to
some specified force F(x.t) (Figure 1.1). The program of classical mechanics
is to determine the position of the particle at any given time: x(#). Once we
know that, we can figure out the velocity (v = dx/dt), the momentum (p =
mv), the kinetic energy (T = (1 /2)mv2), or any other dynamical variable of
interest. And how do we go about determining x(7)? We apply Newton’s sec-
ond law: F = ma. (For conservative systems—the only kind we shall con-
sider, and, fortunately, the only kind that occur at the microscopic level—the
force can be expressed as the derivative of a potential energy function,! F =
—dV/dx, and Newton’s law reads m d*x/dt?> = —3V/dx.) This, together with
appropriate initial conditions (typically the position and velocity at 1 = 0), deter-
mines x ().

Quantum mechanics approaches this same problem quite differently. In this
case what we’re looking for is the particle’s wave function, W (x, ), and we get
it by solving the Schrédinger equation:

oW h? 82w

_—_ W, 1.1
at 2m 9x2 tV [1.1]

lMag_mclic forces are an exception, but let’s not worry about them just yet. By the way. we shall
assume throughout this book that the motion is nonrelativistic (v < ¢).
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FIGURE 1.1: A “particle” constrained to move in one dimension under the influence
of a specified force.

Here i is the square root of —1, and /4 is Planck’s constant—or rather, his original
conslant (/) divided by 2x:

h _

h=-— =1.054572 x 1073J s. [1.2]
2w

The Schrodinger equation plays a role logically analogous to Newton’s second
law: Given suitable initial conditions (typically, ¥ (x, 0)), the Schrodinger equation
determines W(x, t) for all future time, just as, in classical mechanics, Newton’s
law determines x(¢) for all future time.?

1.2 THE STATISTICAL INTERPRETATION

But what exactly is this “wave function,” and what does it do for you once you’ve
got it? After all, a particle, by its nature, is localized at a point, whereas the wave
function (as its name suggests) is spread out in space (it’s a function of .x, for any
given time ). How can such an object represent the state of a particle? The answer
is provided by Born’s statistical interpretation of the wave function, which says
that |W (x, 1)|? gives the probability of finding the particle at point x, at time ¢ —or,
more precisely,’

- }7 .ge . pe .
f W )P dx = { probability of finding the particle } [1.3]

P between ¢ and b, at time t.

Probability is the area under the graph of | |?. For the wave function in Figure 1.2,
you would be quite likely to find the particle in the vicinity of point A, where |W¥|?
is large, and relatively unlikely to find it near point B.

2For a delightful first-hand account of the origins of the Schrédinger equation see the article by
Felix Bloch in Physics Today. December 1976.

3The wave function itself is complex, but [¥]? = W*W (where W* is the complex conjugate of
W) is real and nonnegative—as a probability. of course, must be.
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FIGURE 1.2: A typical wave function. The shaded area represents the probability of
finding the particle between a and b. The particle would be relatively likely to be found
near A, and unlikely to be found near B.

The statistical interpretation introduces a kind of indeterminacy into quan-
tum mechanics, for even if you know everything the theory has to tell you about
the particle (to wit: its wave function), still you cannot predict with certainty the
outcome of a simple experiment to measure its position—all quantum mechan-
ics has to offer is sratistical information about the possible results. This inde-
terminacy has been profoundly disturbing to physicists and philosophers alike,
and it is natural to wonder whether it is a fact of nature. or a defect in the
theory.

Suppose I do measure the position of the particle, and I find it to be at point
C.* Question: Where was the particle just before I made the measurement? There
are three plausible answers to this question, and they serve to characterize the main
schools of thought regarding quantum indeterminacy:

1. The realist position: The particle was at C. This certainly seems like a sen-
sible response, and it is the one Einstein advocated. Note, however, that if this is
true then quantum mechanics is an incomplete theory, since the particle really was
at C, and yet quantum mechanics was unable to tell us so. To the realist, indeter-
minacy is not a fact of nature, but a reflection of our ignorance. As d’Espagnat put
it, “the position of the particle was never indeterminate, but was merely unknown
to the experimenter.”> Evidently W is not the whole story—some additional infor-
mation (known as a hidden variable) is needed to provide a complete description
of the particle.

2. The orthodox position: The particle wasn't really anywhere. It was the act
of measurement that forced the particle to “take a stand” (though how and why it
decided on the point C we dare not ask). Jordan said it most starkly: “Observations
not only disturb what is to be measured, they produce it ... We compel (the

40f course. no measuring instrument is perfectly precisc: what I mean is that the particle was
found in the viciniry of C. to within the tolerance of the equipment.

SBernard d’Espagnat, “The Quantum Theory and Reality” (Scientific American, November 1979,
p. 165).
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particle) to assume a definite position.”® This view (the so-called Copenhagen
interpretation), is associated with Bohr and his followers. Among physicists it
has always been the most widely accepted position. Note, however, that if it is
correct there is something very peculiar about the act of measurement—something
that over half a century of debate has done precious little to illuminate.

3. The agnostic position: Refuse 1o answer. This is not quite as silly as it
sounds—after all, what sense can there be in making assertions about the status
of a particle before a measurement, when the only way of knowing whether you
were right is precisely to conduct a measurement, in which case what you get is no
longer “before the measurement?” It is metaphysics (in the pejorative sense of the
word) to worry about something that cannot, by its nature, be tested. Pauli said:
“One should no more rack one’s brain about the problem of whether something one
cannot know anything about exists all the same, than about the ancient question of
how many angels are able to sit on the point of a needle.”” For decades this was the
“fall-back™ position of most physicists: They’d try to sell you the orthodox answer,
but if you were persistent they'd retreat to the agnostic response, and terminate the
conversation,

Until fairly recently, all three positions (realist, orthodox, and agnostic) had
their partisans. But in 1964 John Bell astonished the physics community by showing
that it makes an observable difference whether the particle had a precise (though
unknown) position prior to the measurement, or not. Bell’s discovery effectively
eliminated agnosticism as a viable option, and made it an experimental question
whether 1 or 2 is the correct choice. I'll return to this story at the end of the book,
when you will be in a better position to appreciate Bell’s argument; for now, suffice
it to say that the experiments have decisively confirmed the orthodox interpreta-
tion:® A particle simply does not /iave a precise position prior to measurement, any
more than the ripples on a pond do; it is the measurement process that insists on
one particular number, and thereby in a sense creates the specific result, limited
only by the statistical weighting imposed by the wave function.

What if 1 made a second measurement, immediately after the first? Would I
get C again, or does the act of measurement cough up some completely new num-
ber each time? On this question everyone is in agreement: A repeated measurement
(on the same particle) must return the same value. Indeed, it would be tough to
prove that the particle was really found at C in the first instance, if this could not
be confirmed by immediate repetition of the measurement. How does the orthodox

5Quoted in a lovely article by N. David Mermin. “Is the moon there when nobody looks?"
(Physics Today. April 1985. p. 38).

7Quoted by Mermin (footnote 6). p. 40.

8This statement is a little 100 strong: There remain a few theoretical and experimental loopholes,
some ol which T shall discuss in the Afterword. There exist viable nonlocal hidden variable theories
(notably David Bohm's). and other {ormulations (such as the many worlds interpretation) that do not
fit cleanly into any of my thréc categories. But | think it is wisc. at least from a pedagogical point of
view. to adopt a clear and coherent platform at this stage. and worry about the alternatives later.
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FIGURE 1.3: Collapse of the wave function: graph of |¥[* immediately after a
measurement has found the particle at point C.

interpretation account for the fact that the second measurement is bound to yield
the value C? Evidently the first measurement radically alters the wave function,
so that it is now sharply peaked about C (Figure 1.3). We say that the wave func-
tion collapses, upon measurement, to a spike at the point C (it soon spreads out
again, in accordance with the Schrddinger equation, so the second measurement
must be made quickly). There are, then, two entirely distinct kinds of physical pro-
cesses: “ordinary” ones, in which the wave function evolves in a leisurely fashion
under the Schrédinger equation, and “‘measurements,” in which ¥ suddenly and
discontinuously collapses.’

1.3 PROBABILITY

1.3.1 Discrete Variables

Because of the statistical interpretation, probability plays a central role in quantum
mechanics, so I digress now for a brief discussion of probability theory. It is mainly
a question of introducing some notation and terminology, and I shall do it in the
context of a simple example.

Imagine a room containing fourteen people, whose ages are as follows:

one person aged 14,
one person aged 15,
three people aged 16,

9The role of measurement in quantum mechanics is so_ critical and so bizarre that you may
well be wondering what precisely constitutes a measurement. Does it have to do with the interaction
between a microscopic (quantum) system and a macroscopic (classical) measuring apparatus (as Bohr
insisted), or is it characterized by the leaving of a permanent “record” (as Heisenberg claimed), or does
it involve the intervention of a conscious “observer” (as Wigner proposed)? I'll return to this thorny
issue in the Afterword: for the moment let's take the naive view: A mecasurement is the kind of thing
that a scientist does in the laboratory. with rulers, stopwatches, Geiger counters, and so on.
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two people aged 22,
two people aged 24,
five people aged 25.

If we let N(j) represent the number of people of age j, then

N(14) = 1,
N(15) = 1,
N(16) = 3,
NQ22) =2,
NQ24) =2,
N(25) =5,

while N (17), for instance, is zero. The total number of people in the room is
o0
N => N3 [1.4]
j=0

(In the example, of course, N = 14.) Figure 1.4 is a histogram of the data. The
following are some questions one might ask about this distribution.

Question 1. If you selected one individual at random from this group, what
is the probability that this person’s age would be 15?7 Answer: One chance in
14, since there are 14 possible choices, all equally likely, of whom only one has
that particular age. If P(j) is the probability of getting age j, then P(14) =
1/14, P(15) =1/14, P(16) = 3/14, and so on. In general,

N(j)

P() == [1.5]

N()
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FIGURE 1.4: Histogram showing the number of people, N(j), with age j, for the
distribution in Section 1.3.1.
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Notice that the probability of getting either 14 or 15 is the sum of the individual
probabilities (in this case, 1/7). In particular, the sum of all the probabilities is
1—you’re certain to get some age:

Y P()=1 [1.6]

J=0

Question 2. What is the most probable age? Answer: 25, obviously; five
people share this age, whereas at most three have any other age. In general, the
most probable j is the j for which P(j) is a maximum.

Question 3. What is the median age? Answer: 23, for 7 people are younger
than 23, and 7 are older. (In general, the median is that value of j such that the
probability of getting a larger result is the same as the probability of getting a
smaller result.)

Question 4. What is the average (or mean) age? Answer:

(14) + (15) + 3(16) + 2(22) + 2(24) + 5(25) 294

14 14

In general, the average value of j (which we shall write thus: (j)) is

=2I.

oG

NG
() = Z—JN@ => " jPU). [1.7]
j=0

Notice that there need not be anyone with the average age or the median age—in
this example nobody happens to be 21 or 23. In quantum mechanics the average
is usually the quantity of interest; in that context it has come to be called the
expectation value. It’s a misleading term, since it suggests that this is the outcome
you would be most likely to get if you made a single measurement (that would
be the most probable value, not the average value)—but I'm afraid we’re stuck
with it,

Question 5. What is the average of the squares of the ages? Answer: You
could get 14 = 196, with probability 1/14, or 15?2 = 225, with probability 1/14,
or 16 = 256, with probability 3/14, and so on. The average, then, is

(=D i*PU). [1.8]
=0

In general, the average value of some function of j is given by

(FD) =Y FOHPU). [1.9]

J=0
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FIGURE 1.5: Two histograms with the same median, same average, and same most
probable value, but different standard deviations.

(Equations 1.6, 1.7, and 1.8 are, if you like, special cases of this formula.) Beware:
The average of the squares, (j?), is not equal, in general, to the square of the
average, (j)2. For instance, if the room contains just two babies, aged 1 and 3,
then (x%) =5, but (x)2 =

Now, there is a conspicuous difference between the two histograms in Figure 1.5,
even though they have the same median, the same average, the same most probable
value, and the same number of elements: The first is sharply peaked about the average
value, whereas the second is broad and flat. (The first might represent the age profile
for students in a big-city classroom, the second, perhaps, a rural one-room school-
house.) We need a numerical measure of the amount of “spread” in a distribution,
with respect to the average. The most obvious way to do this would be to find out
how far each individual deviates from the average,

Aj=j—{J). [1.10]

and compute the average of Aj. Trouble is, of course, that you get zero, since, by
the nature of the average, Aj is as often negative as positive:

(A)) =D G = UNPUY =D _JPG) = () D P()
= (j)—(j)=0.

(Note that (j) is constant—it does not change as you go from one member of
the sample to another—so it can be taken outside the summation.) To avoid this
irritating problem you might decide to average the absolute value of Aj. But
absolute values are nasty to work with; instead, we get around the sign problem
by squaring before averaging:

o = ((Aj)). [1.11]
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This quantity is known as the variance of the distribution; o itself (the square
root of the average of the square of the deviation from the average— gulp!) is
called the standard deviation. The latter is the customary measure of the spread
about (j).

There is a useful little theorem on variances:

ol = (A7) =Y (ANPG)Y =Y (= (iD?PU)
=D G =2+ DPG)

=Y jP() -2 ZJP(J)+ ZP(J)

o=/ (j% =N~ [1.12]

In practice, this is a much faster way to get o: Simply calculate (j2) and (j)?,
subtract, and take the square root. Incidentally, I warned you a moment ago that
(j?) is not, in general, equal to (j)2. Since ¢ is plainly nonnegative (from its
definition in Equation 1.11), Equation 1.12 implies that

2

(7% = ()% [1.13]

and the two are equal only when ¢ = 0, which is to say, for distributions with no
spread at all (every member having the same value).

1.3.2 Continuous Variables

So far, I have assumed that we are dealing with a discrete variable—that is, one
that can take on only certain isolated values (in the example, j had to be an
integer, since I gave ages only in years). But it is simple enough to generalize to
continuous distributions. If I select a random person off the street, the probability
that her age is precisely 16 years, 4 hours, 27 minutes, and 3.333 ... seconds is
zero. The only sensible thing to speak about is the probability that her age lies in
some interval —say, between 16 and 17. If the interval is sufficiently short, this
probability is proportional to the length of the interval. For example, the chance that
her age is between 16 and 16 plus rwo days is presumably twice the probability
that it is between 16 and 16 plus one day. (Unless, I suppose. there was some
extraordinary baby boom 16 years ago, on exactly that day—in which case we
have simply chosen an interval too long for the rule to apply. If the baby boom
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lasted six hours, we’ll take intervals of a second or less, to be on the safe side.
Technically, we're talking about infinitesimal intervals.) Thus

{ probability that an individual (chosen

at random) lies between x and (x + dx) ] = p(x)dx. [1.14]

The proportionality factor, p(x), is often loosely called “the probability of getting
Xx,” but this is sloppy language; a better term is probability density. The probability
that x lies between a and b (a finite interval) is given by the integral of p(x):

b
P =f p(x)dx. [1.15]
a
and the rules we deduced for discrete distributions translate in the obvious way:
+o0
1 =f px)dx. [1.16]
—cc
+oo
(x) = f xp(x)dx, [1.17]
-0
+oc
(f(x)) =f F)p(x)dx, [1.18]
-0
o = ((Ax)?) = (x?) — (x)% [1.19]

Example 1.1 Suppose I drop a rock off a cliff of height /1. As it falls. T snap
million photographs, at random intervals. On each picture I mcasure the distancy
the rock has fallen. Question: What is the average of all these distances” That
to say, what is the time average of the distance traveled?!”

Solution: The rock starts out at rest, and picks up speed as it falls; it spends more
time near the top, so the average distance must be less than /1/2. Ignoring air
resistance, the distance x at time 7 is

1,
‘(f) = —g21".
x(t) 23

The velocity is dx/dt = gt, and the total flight time is T = /2 /g. The probability
that the camera flashes in the interval dr is dt/T, so the probability that a given

A statistician will complain that I am confusing the average of a finite sample (a million, in
this case) with the “truc™ average (over the whole continuum). This can be an awkward problem for
the experimentalist, especially when the sample size is small, but here | am only concerned. of course,
with the true average. to which the sample average is presumably a good approximation.



Section 1.3: Probability

p(x)4

2h

»
¢ ot

h X
FIGURE 1.6: The probability density in Example 1.1: p(x) = 1/2+bx).
photograph shows a distance in the corresponding range dx is
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Evidently the probability density (Equation 1.14) is

O<x=<h)

1
p(x') - 2m9

(outside this range, of course, the probability density is zero).
We can check this result, using Equation 1.16:

hooq o th_
[)zmd"‘zﬁ(z‘ )0—1-
The average distance (Equation 1.17) is
N AR R h_h
(-l)—/(; Azmd.\ —m(gx )0—5,

which is somewhat less than #/2, as anticipated.

11

Figure 1.6 shows the graph of p(x). Notice that a probability density can
be infinite, though probability itself (the integral of p) must of course be finite

(indeed, less than or equal to 1).
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*Problem 1.1 For the distribution of ages in Section 1.3.1:

(a) Compute (;j2) and (j)2.

(b) Determine Aj for each j, and use Equation 1.11 to compute the standard
deviation.

(c) Use your results in (a) and (b) to check Equation 1.12.

Problem 1.2

(a) Find the standard deviation of the distribution in Example 1.1.

(b) What is the probability that a photograph, selected at random, would show a
distance x more than one standard deviation away from the average?

xProblem 1.3 Consider the gaussian distribution

p(x) — Ae—k(.\'—a)z‘

where A, a, and A are positive real constants. (Look up any integrals you need.)
(a) Use Equation 1.16 to determine A.
(b) Find (x), (x*), and 0.
(c) Sketch the graph of p(x).

1.4 NORMALIZATION

We return now to the statistical interpretation of the wave function (Equation 1.3),
which says that |¥ (x, 1)|? is the probability density for finding the particle at point
x, at time ¢. It follows (Equation 1.16) that the integral of |¥|*> must be 1 (the
particle’s got to be somewhere):

+o00
f |W(x, H)*dx = 1. [1.20]

—0

Without this, the statistical interpretation would be nonsense.

However, this requirement should disturb you: After all, the wave function is
supposed to be determined by the Schrodinger equation—we can't go imposing
an extraneous condition on W without checking that the two are consistent. Well, a
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glance at Equation 1.1 reveals that if W (x, t) is a solution, so too is AW (x, 1), where
A is any (complex) constant. What we must do, then, is pick this undetermined
multiplicative factor so as to ensure that Equation 1.20 is satisfied. This process
is called normalizing the wave function. For some solutions to the Schridinger
equation the integral is infinite; in that case no multiplicative factor is going to
make it 1. The same goes for the trivial solution ¥ = 0. Such non-normalizable
solutions cannot represent particles, and must be rejected. Physically realizable
states correspond to the square-integrable solutions to Schrodinger’s equation.!!

But wait a minute! Suppose I have normalized the wave function at time t = 0.
How do I know that it will stay normalized, as time goes on, and ¥ evolves? (You
can’t keep renormalizing the wave function, for then A becomes a function of 7,
and you no longer have a solution to the Schrodinger equation.) Fortunately, the
Schrédinger equation has the remarkable property that it automatically preserves the
normalization of the wave function—without this crucial feature the Schrodinger
equation would be incompatible with the statistical interpretation, and the whole
theory would crumble.

This is important, so we’d better pause for a careful proof. To begin with,

+o0 2 +oc 9 7d
—_ W(x. X = — | (x, | dx. 1.21
Gk f_m W O d [1.21]

(Note that the integral is a function only of t, so I use a total derivative (d/drt)
in the first expression, but the integrand is a function of x as well as ¢, so it's a
partial derivative (3/3t) in the second one.) By the product rule,

d ., 0 ov v
— |7 = — (V) = U — 1.22
SV = (W) + [122]

ot ot
Now the Schrédinger equation says that

oW [h8*WU
— = — _VV, 1.23
ot 2m dx* h [1.23]

and hence also (taking the complex conjugate of Equation 1.23)

ow* ih 92w*
= —— —VW*, 1.24
at 2m 9x? +ﬁ [1.:24]

SO

) ih LV EAV A 8 [ih o oW

— WP — (W — - — V)= — | — [ W*— — v, [1.25
8t| | 2m.( dx2 dx2 ) dx [Zm( dx  dx )] [1.23]

l]Evidenlly W(x.t) must go to zero faster than 1//|x], as [x| — oo. Incidentally. normalization
only fixes the modulus of A: the phase remains undetermined. However. as we shall see, the latter
carries no physical significance anyway.
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The integral in Equation 1.21 can now be evaluated explicitly:

d [t ih oW QWr N\ [t
4 W (x. D) dx = — (w* \y)]
dt J_o

ox ox

1.
2m [1.26]

— 00

But W (x. t) must go to zero as x goes to (1) infinity—otherwise the wave function
would not be normalizable.!> It follows that

d +00
;;f |W (x, )]*dx =0, [1.27]
-0

and hence that the integral is constant (independent of time); if ¥ is normalized
at + = 0, it srays normalized for all future time. QED

Problem 1.4 At time + = 0 a particle is represented by the wave function

X .
A—, if0<x <a,
a

U(x,0) = b—-x) .
A(b—a)' ifa<x<b,

0, otherwise,
where A, a, and b are constants.
(a) Normalize W (that is, find A, in terms of ¢ and b).
(b) Sketch W(x. 0), as a function of x.
(c) Where is the particle most likely to be found, at + = 0?

(d) What is the probability of finding the particle to the left of a? Check your
result in the limiting cases b = a and b = 2a.

(e) What is the expectation value of x?

xProblem 1.5 Consider the wave function
\I’(X. f) — Ae—l].\']e—iw!’

where A, A, and w are positive real constants. (We’ll see in Chapter 2 what potential
(V) actually produces such a wave function.)

(a) Normalize V.

(b) Determine the expectation values of x and x2.

12 A good mathematician can supply you with pathological counterexamples, but they do not arise
in physics; for us the wave function always goes lo zero at infinity.
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(c) Find the standard deviation of x. Sketch the graph of |¥|?, as a function
of x, and mark the points ((x) 4+ o) and ({(x) — o), to illustrate the sense in
which o represents the “spread” in x. What is the probability that the particle
would be found outside this range?

1.5 MOMENTUM

For a particle in state W, the expectation value of x is

+o0
(x) = f x|W(x. 1) dx. [1.28]

[ —20

What exactly does this mean? It emphatically does not mean that if you measure
the position of one particle over and over again, [ x|W|%dx is the average of the
results you’ll get. On the contrary: The first measurement (whose outcome is inde-
terminate) will collapse the wave function to a spike at the value actually obtained,
and the subsequent measurements (if they’re performed quickly) will simply repeat
that same result. Rather, (x) is the average of measurements performed on particles
all in the state V, which means that either you must find some way of returning the
particle to its original state after each measurement, or else you have to prepare a
whole ensemble of particles, each in the same state W, and measure the positions of
all of them: (x) is the average of these results. (I like to picture a row of bottles on
a shelf, each containing a particle in the state W (relative to the center of the bottle).
A graduate student with a ruler is assigned to each bottle, and at a signal they all
measure the positions of their respective particles. We then construct a histogram
of the results, which should match |W|?, and compute the average, which should
agree with (x). (Of course, since we’re only using a finite sample, we can’t expect
perfect agreement, but the more bottles we use, the closer we ought to come.)) In
short, the expectation value is the average of repeated measurements on an ensem-
ble of identically prepared systems, not the average of repeated measurements on
one and the same system.

Now, as time goes on, (x) will change (because of the time dependence
of W), and we might be interested in knowing how fast it moves. Referring to
Equations 1.25 and 1.28, we see that!?

d(x) /‘ ] ) ih ] ( oV 9v*
x| PRdy = — | x— W — v} dx. 1.29
dt ! 8r| I dx 2m Xax ox ox g [ ]

13To keep things from gelting too cluttered. I'll suppress the limits of integration.
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This expression can be simplified using integration-by-parts:'4

d{(x) ik ( av W )
-~ o V) dx. 1.30
dt 2m dx ox ! [ ]

(I used the fact that dx/0x = 1, and threw away the boundary term, on the ground
that W goes to zero at (*) infinity.) Performing another integration by parts, on
the second term, we conclude:

= —— | W*—dx. [1.31]

What are we to make of this result? Note that we’re talking about the “veloc-
ity” of the expectation value of x, which is not the same thing as the velocity of
the particle. Nothing we have seen so far would enable us to calculate the velocity
of a particle. It’s not even clear what velocity means in quantum mechanics: If the
particle doesn’t have a determinate position (prior to measurement), neither does it
have a well-defined velocity. All we could reasonably ask for is the probability of
getting a particular value. We'll see in Chapter 3 how to construct the probability
density for velocity, given W; for our present purposes it will suffice to postu-
late that the expectation value of the velocity is equal to the time derivative of the
expectation value of position:

_dw
(v) = o [1.32]

Equation 1.31 tells us, then, how to calculate (v) directly from W.
Actually, it is customary to work with momentum (p = mv), rather than

velocity:
(p) =md('\_') = —ih[ (\U*?—g> dx. [1.33]

'4The product rule says that

d dg df
R (fe)=f T

from which it follows that
b d b d
. adg f . 1h
—dx=—| ——gdx .
T /,, o84+ fely

Under the integral sign. then, you can peel a derivative off one factor in a product. and slap it onto the
other one—it’ll cost you a minus sign. and you'll pick up a boundary term.
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Let me write the expressions for (x) and (p) in a more suggestive way:

(x) =/\I/*(x)‘-ll dx, [1.34]
(p) = / w* (E——?—) Ydx. [1.35]
v i 0x

We say that the operator!® x “represents” position, and the operator (h/i)(d/8x)
“represents” momentum, in quantum mechanics; to calculate expectation values we
“sandwich” the appropriate operator between ¥* and W, and integrate.

That’s cute, but what about other quantities? The fact is, al/l classical dynami-
cal variables can be expressed in terms of position and momentum. Kinetic energy,
for example, is

1, Pz
T=—-my =—,
2 2m

and angular momentum is
L=rxmv=rxp

(the latter, of course, does not occur for motion in one dimension). To calculate
the expectation value of any such quantity, Q(x. p), we simply replace every p
by (h/i)(3/dx), insert the resulting operator between W* and W, and integrate:

h o
(0. p)) =f\l!*Q (x, %ﬁ)wx. [1.36]
For example, the expectation value of the kinetic energy is
h? 9w
Ty=—— | ¥* Ix. 1.37
(7) 2m dx2 - [ ]

Equation 1.36 is a recipe for computing the expectation value of any dynamical
quantity, for a particle in state W: it subsumes Equations 1.34 and 1.35 as special
cases. I have tried in this section to make Equation 1.36 seem plausible, given
Born’s statistical interpretation, but the truth is that this represents such a radically
new way of doing business (as compared with classical mechanics) that it's a good
idea to get some practice using it before we come back (in Chapter 3) and put it
on a firmer theoretical foundation. In the meantime, if you prefer to think of it as
an axiom, that’s fine with me.

I5An “operator” is an instruction 10 do something to the function that follows it. The position
operator tells you to mudtiply by x: the momentum operator tells you to differentiate with respect o
x (and multiply the result by —ih). In this book all operators will be derivatives (d /dt, 112/(/!2.
i)z/r’)xé?,\'. etc.) or multipliers (2, i. x2. etc.). or combinations of these.
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Problem 1.6 Why can’t you do integration-by-parts directly on the middle expres-
sion in Equation 1.29—pull the time derivative over onto x, note that dx/dt = 0,
and conclude that d(x)/dt = 0?

xProblem 1.7 Calculate d(p)/dt. Answer:
d{p) <_ 8V>

—_— = 1.3
dt ax L1.38]

Equations 1.32 (or the first part of 1.33) and 1.38 are instances of Ehrenfest’s
theorem, which tells us that expectation values obey classical laws.

Problem 1.8 Suppose you add a constant Vj to the potential energy (by *‘constant”
I mean independent of x as well as 7). In classical mechanics this doesn’t change
anything, but what about guantum mechanics? Show that the wave function picks
up a time-dependent phase factor: exp(—i Vpt/ii). What effect does this have on
the expectation value of a dynamical variable?

1.6 THE UNCERTAINTY PRINCIPLE

Imagine that you're holding one end of a very long rope, and you generate a
wave by shaking it up and down rhythmically (Figure 1.7). If someone asked you
“Precisely where is that wave?” you’d probably think he was a little bit nutty: The
wave isn’t precisely anywhere—it’s spread out over 50 feet or so. On the other
hand, if he asked you what its wavelength is, you could give him a reasonable
answer: It looks like about 6 feet. By contrast, if you gave the rope a sudden jerk
(Figure 1.8), you'd get a relatively narrow bump traveling down the line. This time
the first question (Where precisely is the wave?) is a sensible one, and the second
(What is its wavelength?) seems nutty—it isn’t even vaguely periodic, so how
can you assign a wavelength to it? Of course, you can draw intermediate cases, in
which the wave is fairly well localized and the wavelength is fairly well defined,
but there is an inescapable trade-off here: The more precise a wave’s position is,
the less precise is its wavelength, and vice versa.!® A theorem in Fourier analysis
makes all this rigorous, but for the moment I am only concerned with the qualitative
argument.

16 Thar's why a piccolo player must be right on pitch. whereas a double-bass player can afford to
wear garden gloves. For the piccolo. a sixty-fourth note contains many full cycles. and the frequency
(we're working in the time domain now, instead of space) is well defined. whereas for the bass. at a
much lower register. the sixty-fourth note contains only a few cycles, and all you hear is a general sort
of “oomph.,” with no very clear pitch.
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10 20 30 40 50 x (feet)
FIGURE 1.7: A wave with a (fairly) well-defined wavelength, but an ill-defined

position.

/\ .
7 : 10 20 30 40 50 x (feet)

FIGURE 1.8: A wave with a (fairly) well-defined position, but an ill-defined wave-
length.

This applies, of course, to any wave phenomenon, and hence in particular to
the quantum mechanical wave function. Now the wavelength of W is related to the
momentum of the particle by the de Broglie formula:!’

h 2nh
p:——-:—,

3 . [1.39]

Thus a spread in wavelength corresponds to a spread in momentum, and our general
observation now says that the more precisely determined a particle’s position is,
the less precisely is its momentum. Quantitatively,

h
0x0p 2 5. [1.40]

where o, is the standard deviation in x, and o), is the standard deviation in p.
This is Heisenberg’s famous uncertainty principle. (We’ll prove it in Chapter 3,
but 1 wanted to mention it right away, so you can test it out on the examples in
Chapter 2.)

Please understand what the uncertainty principle means: Like position mea-
surements, momentum measurements yield precise answers—the *‘spread” here
refers to the fact that measurements on identically prepared systems do not yield
identical results. You can, if you want, construct a state such that repeated posi-
tion measurements will be very close together (by making ¥ a localized “spike”™),
but you will pay a price: Momentum measurements on this state will be widely
scattered. Or you can prepare a state with a reproducible momentum (by making

71 prove this in due course. Many authors take the de Broglie formula as an axiom, from
which they then deduce the association of momentum with the operator (/i/i)(3/dx). Although this is
a conceplually cleaner approach, it involves diverting mathematical complications that I would rather
save for later.
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¥ a long sinusoidal wave), but in that case, position measurements will be widely
scattered. And, of course, if you’re in a really bad mood you can create a state for
which neither position nor momentum is well defined: Equation 1.40 is an inequal-
ity, and there’s no limit on how big o, and o), can be—just make ¥ some long
wiggly line with lots of bumps and potholes and no periodic structure.

*Problem 1.9 A particle of mass m is in the state
W(x,1) = Ae—a[(mxz/h)+i1]'

where A and a are positive real constants.

(a) Find A.

(b) For what potential energy function V(x) does W satisfy the Schrodinger
equation?

(c) Calculate the expectation values of x, x2, p, and pz‘

(d) Find o, and o). Is their product consistent with the uncertainty principle?

FURTHER PROBLEMS FOR CHAPTER 1

Problem 1.10 Consider the first 25 digits in the decimal expansion of 7 (3, 1, 4,
1,5,9,...).

(a) If you selected one number at random, from this set, what are the probabilities
of getting each of the 10 digits?

(b) What is the most probable digit? What is the median digit? What is the
average value?

(c) Find the standard deviation for this distribution.

Problem 1.11 The needle on a broken car speedometer is free to swing, and
bounces perfectly off the pins at either end, so that if you give it a flick it is
equally likely to come to rest at any angle between 0 and .

(a) What is the probability density, p(6)? Hint: p(8)d8 is the probability that
the needle will come to rest between 6 and (8 +d8). Graph p(8) as a function
of 8, from —m/2 to 37 /2. (Of course, part of this interval is excluded, so p
is zero there.) Make sure that the total probability is 1.
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(b) Compute (8), (62), and o, for this distribution.

(c) Compute (sin@), (cos8), and (cos’ ).

Problem 1.12 We consider the same device as the previous problem, but this time
we are interested in the x-coordinate of the needle point—that is, the “shadow,”
or “projection,” of the needle on the horizontal line.

(a) What is the probability density p(x)? Graph p(x) as a function of x, from
—2r to +2r, where r is the length of the needle. Make sure the total prob-
ability is 1. Hint: p(x)dx is the probability that the projection lies between
x and (x + dx). You know (from Problem 1.11) the probability that 8 is in
a given range; the question is, what interval dx corresponds to the inter-
val d6?

(b) Compute (x), (x%), and o, for this distribution. Explain how you could have
obtained these results from part (c) of Problem 1.11.

* xProblem 1.13 Buffon’s needle. A needle of length / is dropped at random onto a
sheet of paper ruled with parallel lines a distance / apart. What is the probability
that the needle will cross a line? Hint: Refer to Problem 1.12.

Problem 1.14 Let P,,(r) be the probability of finding a particle in the range
(a < x < b), at time 1.

(a) Show that

dPab ‘
=J@.t)— J(b.1),
r (a.1) (b.1),
where
ih ow* A\
x.H=—|(V¥ —pF— ).
T Zm( ox Bx)

What are the units of J(x. t)? Comment: J is called the probability current,
because it tells you the rate at which probability is “flowing” past the point
x. If P,,(t) is increasing, then more probability is flowing into the region at
one end than flows out at the other.

(b) Find the probability current for the wave function in Problem 1.9. (This is
not a very pithy example, I'm afraid; we’ll encounter more substantial ones
in due course.)
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x xProblem 1.15 Suppose you wanted to describe an unstable particle, that spon-
taneously disintegrates with a “lifetime” t. In that case the total probability of
finding the particle somewhere should not be constant, but should decrease at
(say) an exponential rate:

+co
P(r)sf W (x, )|*dx = e '/7.

—0C

A crude way of achieving this result is as follows. In Equation 1.24 we tacitly
assumed that V (the potential energy) is real. That is certainly reasonable, but it
leads to the ‘““conservation of probability” enshrined in Equation 1.27. What if we
assign to V an imaginary part:

V=VW-Iirl,
where Vj is the true potential energy and I' is a positive real constant?

(a) Show that (in place of Equation 1.27) we now get

dpP 2r

dr h

(b) Solve for P(r), and find the lifetime of the particle in terms of T'.

Problem 1.16 Show that
d o0 "
Z - \1’1 ) dx =0

for any two (normalizable) solutions to the Schrodinger equation, ¥, and W5.

Problem 1.17 A particle is represented (at time t = 0) by the wave function

! _ A@* —x?). if —a < x < +a.
Vv, 0) = l 0. otherwise.
(a) Determine the normalization constant A.
(b) What is the expectation value of x (at time ¢ = 0)?

(c) What is the expectation value of p (at time r = 0)? (Note that you cannot
get it from p = mmd(x)/dt. Why not?)

(d) Find the expectation value of x2.
(e) Find the expectation value of p2.

(f) Find the uncertainty in x (oy).
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(g) Find the uncertainty in p (o).

(h) Check that your results are consistent with the uncertainty principle.

Problem 1.18 In general, quantum mechanics is relevant when the de Broglie
wavelength of the particle in question (#/p) is greater than the characteristic size
of the system (d). In thermal equilibrium at (Kelvin) temperature 7, the average
kinetic energy of a particle is

P 3t
2m 2"
(where kp is Boltzmann’s constant), so the typical de Broglie wavelength is
h
A= —— [1.41]

N 3mkgT

The purpose of this problem is to anticipate which systems will have to be treated
quantum mechanically, and which can safely be described classically.

(a) Seolids. The lattice spacing in a typical solid is around d = 0.3 nm. Find the
temperature below which the free!'® electrons in a solid are quantum mechan-
ical. Below what temperature are the nuclei in a solid quantum mechanical?
(Use sodium as a typical case.) Moral: The free electrons in a solid are
always quantum mechanical; the nuclei are almost never quantum mechani-
cal. The same goes for liquids (for which the interatomic spacing is roughly
the same), with the exception of helium below 4 K.

(b) Gases. For what temperatures are the atoms in an ideal gas at pressure P
quantum mechanical? Hint: Use the ideal gas law (PV = NkpT) to deduce
the interatomic spacing. Answer: T < (1/kg)(h?/3m)3/3P2/3. Obviously
(for the gas to show quantum behavior) we want m to be as small as possible.
and P as large as possible. Put in the numbers for helium at atmospheric
pressure. Is hydrogen in outer space (where the interatomic spacing is about
1 cm and the temperature is 3 K) quantum mechanical?

'$1n a solid the inner electrons are attached to a particular nucleus. and for them the relevant
size would be the radius of the atom. But the outermost electrons are not attached. and for them the
relevant distance is the lattice spacing. This problem pertains o the ourer electrons.



CHAPTER 2

TIME-INDEPENDENT
SCHRODINGER EQUATION

2.1 STATIONARY STATES

In Chapter 1 we talked a lot about the wave function, and how you use it to
calculate various quantities of interest. The time has come to stop procrastinating,
and confront what is, logically, the prior question: How do you get W(x.t) in the
first place? We need to solve the Schrodinger equation,

Y PPV Ly [2.1]
ot T T om ax2 ) '

for a specified potential! V(x.t). In this chapter (and most of this book) I shall
assume that V is independent of t. In that case the Schrédinger equation can be
solved by the method of separation of variables (the physicist’s first line of attack
on any partial differential equation): We look for solutions that are simple products,

W(x.1) = Y (x) o). [2.2]

where ¢ (lower-case) is a function of v alone, and ¢ is a function of t alone. On
its face, this is an absurd restriction, and we cannot hope to get more than a tiny

't is tiresome to keep saying “potential energy function.” so most people just call V the
“potential.” even though this invites occasional confusion with elecrric potential. which is actually
potential energy per unit charge.

24
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subset of all solutions in this way. But hang on, because the solutions we do obtain
turn out to be of great interest. Moreover (as is typically the case with separation
of variables) we will be able at the end to patch together the separable solutions
in such a way as to construct the most general solution.

For separable solutions we have

0w wd(p P2V 4y
ar T dr’ ax2  dx?
(ordinary derivatives, now), and the Schrodinger equation reads
do _ h? d>y
dt ~ 2m dx?

¢+ V.
Or, dividing through by ¥¢:

. lde n% 1 d*y

lh(p dt  2my dx? +V. 23]
Now, the left side is a function of ¢ alone, and the right side is a function of
x alone.? The only way this can possibly be true is if both sides are in fact
constant —otherwise, by varying ¢, I could change the left side without touching
the right side, and the two would no longer be equal. (That’s a subtle but crucial
argument, so if it’s new to you, be sure to pause and think it through.) For reasons
that will appear in a moment, we shall call the separation constant E. Then

1de
ih—— =
”(pdf
or
do I1E
—_— = ——0, 2.4
dt h(p‘ [2.4]
and
1 d*y
———— 4+ V=E,
2m Y dx? + '
or
R d2y
- Vi = Ev. 2.5
mdr T 14 14 [2.5]

Separation of variables has turned a partial differential equation into two ordi-
nary differential equations (Equations 2.4 and 2.5). The first of these (Equation 2.4)

2Note that this would nor be true if V were a function of 7 as well as x.
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is easy to solve (just multiply through by dr and integrate); the general solution is
C exp(—iEt/h), but we might as well absorb the constant C into ¥ (since the quantity
of interest is the product ¥ ¢). Then

o(t) = e TEIH, [2.6]

The second (Equation 2.5) is called the time-independent Schriodinger equation;
we can go no further with it until the potential V (x) is specified.

The rest of this chapter will be devoted to solving the time-independent
Schrodinger equation, for a variety of simple potentials. But before I get to
that you have every right to ask: What's so great about separable solutions?
After all, most solutions to the (time dependent) Schrédinger equation do not
take the form ¥ (x)e(t). I offer three answers—two of them physical, and one
mathematical:

1. They are stationary states. Although the wave function itself,

W(x, 1) =y x)e [2.7]
does (obviously) depend on ¢, the probability density,
(W0, P = W = yre My B = 1y (), [2.8]

does not—the time-dependence cancels out.> The same thing happens in calculat-
ing the expectation value of any dynamical variable; Equation 1.36 reduces to

hd

(Qx, p)) = f Vo (X, T'—) Vv dx. [2.9]
i dx

Every expectation value is constant in time; we might as well drop the factor ¢ ()
altogether, and simply use ¥ in place of W. (Indeed, it is common to refer to Y as
“the wave function,” but this is sloppy language that can be dangerous, and it is
important to remember that the true wave function always carries that exponential
time-dependent factor.) In particular, (x) is constant, and hence (Equation 1.33)
(p) = 0. Nothing ever happens in a stationary state.

2. They are states of definite total energy. In classical mechanics, the total
energy (kinetic plus potential) is called the Hamiltonian:

e py= 2
(v, p) ==+ V(). [2.10]

3For normalizable solutions. E must be real (see Problem 2.1(a)).
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The corresponding Hamiltonian operator, obtained by the canonical substitution
p— (h/i)(3/dx), is therefore*
. h? 8>

H=———4+V(kx). 2.11
2m 8x2+ @) [ ]

Thus the time-independent Schrédinger equation (Equation 2.5) can be written
Ay = EY, [2.12]

and the expectation value of the total energy is

(H)=f¢*1§¢dx=Ef|¢|2dx=Ef|wlzdx=E. [2.13]
(Notice that the normalization of W entails the normalization of ir.) Moreover,
Ay = H(AY) = H(EY) = E(Hy) = E*y,
and hence
(H?) = fw*ﬁzw dx = Ezf |y |>dx = E>.
So the variance of H is
oy =(H*) - (H?=E*—E*=0. [2.14]

But remember, if ¢ = 0, then every member of the sample must share the same
value (the distribution has zero spread). Conclusion: A separable solution has the
property that every measurement of the total energy is certain to return the value
E. (That’s why I chose that letter for the separation constant.)

3. The general solution is a linear combination of separable solutions. As
we’re about to discover, the time-independent Schrédinger equation (Equation 2.5)
yields an infinite collection of solutions (;(x), ¥2(x), ¥3(x),...), each with
its associated value of the separation constant (E, E,, E3,...); thus there is a
different wave function for each allowed energy:

Wi (x, 1) =Y )e TE Wy (x, 1) = Y (x)e B

Now (as you can easily check for yourself) the (time-dependent) Schrédinger
equation (Equation 2.1) has the property that any linear combination® of solutions

+Whenever confusion might arise. I'll put a “hat” (") on the operator, to distinguish it from the
dynamical variable it represents.

5 A linear combination of the functions f1(2). f2(2). ... is an expression of the form
f@O=ch@Q+afhl@+:--.

where ¢. ¢1. ... are any (complex) constants.
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is itself a solution. Once we have found the separable solutions, then, we can
immediately construct a much more general solution, of the form

oo
W(x. 1) =) e (x)e” B0, [2.15]

n=|

It so happens that every solution to the (time-dependent) Schrédinger equation
can be written in this form—it is simply a matter of finding the right constants
(c1, c2. ...) so as to fit the initial conditions for the problem at hand. You'll see
in the following sections how all this works out in practice, and in Chapter 3 we’ll
put it into more elegant language, but the main point is this: Once you’ve solved
the time-independent Schrodinger equation, you’re essentially done; getting from
there to the general solution of the time-dependent Schrédinger equation is, in
principle, simple and straightforward.

A lot has happened in the last four pages, so let me recapitulate, from a
somewhat different perspective. Here's the generic problem: You’re given a (time-
independent) potential V(x), and the starting wave function ¥ (x, 0); your job is
to find the wave function, W (x, 1), for any subsequent time ¢. To do this you must
solve the (time-dependent) Schrodinger equation (Equation 2.1). The strategy® is
first to solve the time-independent Schrédinger equation (Equation 2.5); this yields,
in general, an infinite set of solutions (¥ (x), ¥2(x), ¥3(x), ...), each with its own
associated energy (E;, Ej, E3,...). To fit W(x,0) you write down the general
linear combination of these solutions:

W(x,0) =) cn ¥n(x): [2.16]

n=l1

the miracle is that you can always match the specified initial state by appropriate
choice of the constants c), ¢2, ¢3, ... . To construct W(x, r) you simply tack onto
each term its characteristic time dependence, exp(—i E,7 /h):

o 0
WG r) =) (e B =% ey (x, ). [2.17]

n=1 n=1

The separable solutions themselves,

W, (x, 1) = Y (x)e Bt/ [2.18]

60ccasionally you can solve the time-dependent Schrédinger equation without recourse to sep-
aration of variables—see. for instance. Problems 2.49 and 2.50. But such cases are extremely rare.
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are stationary states, in the sense that all probabilities and expectation values are
independent of time, but this property is emphatically not shared by the general
solution (Equation 2.17); the energies are different, for different stationary states,
and the exponentials do not cancel, when you calculate |¥|2.

Example 2.1 Suppose a particle starts out in a linear combination of just fwo
stationary states:

U (x.0) = ¢ (x) + 292 (x).

(To keep things simple I'll assume that the constants ¢, and the states ¥, (x) are
real.) What is the wave function W (x. t) at subsequent times? Find the probability
density, and describe its motion.

Solution: The first part is easy:
W(x, 1) = cayi@e BN 4 oayy(x)em BN,
where E| and E; are the energies associated with v, and . It follows that

WG, D = (B + cayae BN 1y e BT 4 e BT

= c}y? + c3¥3 + 2c1c291 Y2 cos[(Ex — Ep)t /h).

(I used Euler’s formula, expif = cos8 +i sin 6, to simplify the result.) Evidently
the probability density oscillates sinusoidally, at an angular frequency (E;— Ey)/h;
this is certainly not a stationary state. But notice that it took a linear combination
of states (with different energies) to produce motion.”

*xProblem 2.1 Prove the following three theorems:

(a) For normalizable solutions, the separation constant E must be real. Hint:
Write E (in Equation 2.7) as Eg + iI" (with Eg and I" real), and show that
if Equation 1.20 is to hold for all 7, I" must be zero.

(b) The time-independent wave function ¥ (x) can always be taken to be real
(unlike W (x. t), which is necessarily complex). This doesn’t mean that every
solution to the time-independent Schrodinger equation is real; what it says
is that if you've got one that is not, it can always be expressed as a linear
combination of solutions (with the same energy) that are. So you might as
well stick to y’s that are real. Hint: If ¢ (x) satisfies Equation 2.5, for a
given E, so too does its complex conjugate, and hence also the real linear
combinations (¢ + ¢*) and i (¥ — ¥*).

"This is nicely illustrated by an applet at the Web site http:/thorin.adnc.com/~topquark/
quantum/deepwellmain.html.



30 Chapter 2 Time-Independent Schrodinger Equation

(c) If V(x) is an even function (that is, V(—x) = V(x)) then ¥ (x) can always
be taken to be either even or odd. Hint: If ¥ (x) satisfies Equation 2.5, for
a given E, so too does {¥(—x), and hence also the even and odd linear
combinations ¥ (x) T ¥ (—x).

xProblem 2.2 Show that E must exceed the minimum value of V(x), for every
normalizable solution to the time-independent Schrodinger equation. What is the
classical analog to this statement? Hint: Rewrite Equation 2.5 in the form

d>y _ 2m N )
= F[V(-\) Elyr:

if E < Vmin, then ¢ and its second derivative always have the same sign—argue
that such a function cannot be normalized.

2.2 THE INFINITE SQUARE WELL

Suppose
0. if0<x<a,

co. otherwise [2.19]

Vix) = {

(Figure 2.1). A particle in this potential is completely free, except at the two ends
(x =0 and x = a), where an infinite force prevents it from escaping. A classical
model would be a cart on a frictionless horizontal air track, with perfectly elastic
bumpers—it just keeps bouncing back and forth forever. (This potential is artifi-
cial, of course, but I urge you to treat it with respect. Despite its simplicity—or
rather, precisely because of its simplicity—it serves as a wonderfully accessi-
ble test case for all the fancy machinery that comes later. We’ll refer back to it
frequently.)

V(x) A

—» FIGURE 2.1: The infinite square well poten-
a X tial (Equation 2.19).
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Outside the well, ¥(x) = O (the probability of finding the particle there is
zero). Inside the well, where V = 0, the time-independent Schrodinger equation
(Equation 2.5) reads

h.’Z dZw
—— L —EY, 2.2
2m dx? 4 (2201
or 5
d*y ) » _ 2mE
T = —k“y. where k = PR [2.21]

(By writing it in this way, I have tacitly assumed that £ > 0; we know from
Problem 2.2 that E < 0 won’t work.) Equation 2.21 is the classical simple har-
monic oscillatoy equation; the general solution is

¥(x) = Asinkx + Bcoskx, [2.22]

where A and B are arbitrary constants. Typically, these constants are fixed by the
boundary conditions of the problem. What are the appropriate boundary con-
ditions for ¥ (x)? Ordinarily, both W and dy/dx are continuous, but where the
potential goes to infinity only the first of these applies. (I'll prove these boundary
conditions, and account for the exception when V = oo, in Section 2.5; for now I
hope you will trust me.)

Continuity of ¥ (x) requires that

Y (0) =y¥(a) =0, [2.23]

so as to join onto the solution outside the well. What does this tell us about A and
B? Well,

¥(0) = Asin0 + B cosO = B,

so B =0, and hence
Y(x) = Asinkx. [2.24]

Then y(a) = Asinka, so either A = 0 (in which case we’re left with the triv-
ial—non-normalizable—solution ¥ (x) = 0), or else sinka = 0, which means
that

ka =0, *m +2m, 37, ... [2.25]

But k¥ = 0 is no good (again, that would imply ¥ (x) = 0), and the negative

solutions give nothing new, since sin(—8) = —sin(f) and we can absorb the
minus sign into A. So the distinct solutions are

@=%< withn =123, ... [2.26]
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v1(X) y2(X) y3(x)

- | . f
s , _
| AN T B Y AR

FIGURE 2.2: Thefirstthreestationary states of the infinitesquare well (Equation 2.28).

Curiously, the boundary condition at x = a does not determine the constant
A, but rather the constant k, and hence the possible values of E:

h2k2 }1271'2}72
E, = L . 2.2
" 2m 2ma? [2.27]

In radical contrast to the classical case, a quantum particle in the infinite square
well cannot have just any old energy—it has to be one of these special allowed
values.® To find A, we normalize :

4 7 .9 24 9 2
[ [A|” sin®(kx) dx = |A] =L so A" = =.
0 a

This only determines the magnitude of A, but it is simplest to pick the positive real
root: A = 4/2/a (the phase of A carries no physical significance anyway). Inside
the well, then, the solutions are

2 . /nmw
YUn(x) = \/gsm (TX) . [2.28]

As promised, the time-independent Schrédinger equation has delivered an
infinite set of solutions (one for each positive integer n). The first few of these are
plotted in Figure 2.2. They look just like the standing waves on a string of length a;
Y1, which carries the lowest energy, is called the ground state, the others, whose
energies increase in proportion to n2, are called excited states. As a collection, the
functions ¥, (x) have some interesting and important properties:

1. They are alternately even and odd, with respect to the center of the well:
Y is even, Y is odd, Y3 is even, and so on.?

8Notice that the quantization of energy emerged as a rather technical consequence of the bound-
ary conditions on solutions to the time-independent Schrédinger equation.

9To make this symmetry more apparent, some authors center the well at the origin (running it
from —a to +a). The cven functions are then cosines. and the odd ones are sines. See Problem 2.36.



Section 2.2: The Infinite Square Well 33

2. As you go up in energy, each successive state has one more node (zero-
crossing): ] has none (the end points don’t count), ¥, has one, Y3 has two, and
SO on.

3. They are mutually orthogonal, in the sense that

[ VUi (X)* ¥ (x)dx = 0, [2.29]

whenever m # n. Proof:

/ Y () Y (X)) dx = g foa sin (’—TE'C) sin (E\) dx

a a a

1 /‘“[ (m—n ) (m—{—n ):‘
= — cos Tx | —cos X dx
a Jo a , a

1 . (m—n 1 . (m+n
= {—ssin X ) — sin TX
(m—n)m a (m+n)m a

1 {sin[(m — ) B sin[(m + n)m] } —0

T (m —n) (m+n)

a

0

Note that this argument does nor work if m = n. (Can you spot the point at which
it fails?) In that case normalization tells us that the integral is 1. In fact, we can
combine orthogonality and normalization into a single statement:'?

f Yo (,\’)*1//‘,, (x) dx = dpa, [2.30]

where §,,, (the so-called Kronecker delta) is defined in the usual way,

S = { 0. ifm #n: [2.31]

1. ifm=n.

We say that the ¥'s are orthonormal.
4. They are complete, in the sense that any other function, f(x), can be
expressed as a linear combination of them:

o0 0
FO =Y enthu(x) = \/g Y cusin(=x). 2.32]

n=I n=l|

'0In this casc the s are real, so the * on ¥, is unnecessary. but for future purposes it's a good
idea to get in the habit of putting it there.
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I'm not about to prove the completeness of the functions sin (n7r.x/a), but if you’ve
studied advanced calculus you will recognize that Equation 2.32 is nothing but the
Fourier series for f(x), and the fact that “any” function can be expanded in this
way is sometimes called Dirichlet’s theorem.!!

The coefficients ¢, can be evaluated—for a given f(x)—by a method I call
Fourier’s trick, which beautifully exploits the orthonormality of {y,}: Multiply
both sides of Equation 2.32 by ¥,,(x)*, and integrate.

f ‘//m (-\)*f(x) dx = ch / Wm (-\')*I/fn (x) dx = ch‘smn =Cm- [2.33]

n=1 n=l

(Notice how the Kronecker delta kills every term in the sum except the one for
which n = m.) Thus the nth coefficient in the expansion of f(x) is'2

cp = f Yn(X)* f(x) dx. [2.34]

These four properties are extremely powerful, and they are not peculiar to the
infinite square well. The first is true whenever the potential itself is a symmetric
function; the second is universal, regardless of the shape of the potential.!> Orthog-
onality is also quite general—I'll show you the proof in Chapter 3. Completeness
holds for all the potentials you are likely to encounter, but the proofs tend to be
nasty and laborious; I'm afraid most physicists simply assume completeness, and
hope for the best.

The stationary states (Equation 2.18) of the infinite square well are evidently

2 . . 2
\I’,, (x. T) — \/;s.in (%)«) e—:(n a=h/2ma )l. [2.35]

I claimed (Equation 2.17) that the most general solution to the (time-dependent)
Schrodinger equation is a linear combination of stationary states:

o
2 ( F 22 2
V=Y e \[g sin (== ) e/, [2.36]

n=1

see, for example, Mary Bous, Mathematical Methods in the Physical Sciences, 2d ed. (New
York: John Wiley, 1983), p. 313: f(x) can even have a finite number of finite discontinuities.

121t doesn’t matter whether you use m or n as the “dummy index” here (as long as you are
consistent on the two sides of the equation. of course): wharever letler you usc. it just stands for “any
positive integer.”

3see. for example, John L. Powell and Bernd Crasemann, Quantum Mechanics (Addison-
Wesley, Reading. MA, 1961), p. 126.
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(If you doubt that this is a solution, by all means check it!) It remains only for
me to demonstrate that I can fit any prescribed initial wave function, W (x. 0), by
appropriate choice of the coefficients ¢,:

0

Y(x,0) = Cn¥n (X).
1

n=

The completeness of the {’s (confirmed in this case by Dirichlet’s theorem) guar-
antees that I can always express W(x.0) in this way, and their orthonormality
licenses the use of Fourier’s trick to determine the actual coefficients:

2 a
ey = \/j / sin (Ex) W(x. 0) dx. [2.37]
a Jo a

That does it: Given the initial wave function, ¥ (x.0), we first compute the
expansion coefficients ¢, , using Equation 2.37, and then plug these into Equation 2.36
to obtain W (x, ). Armed with the wave function, we are in a position to compute any
dynamical quantities of interest, using the procedures in Chapter 1. And this same
ritual applies to any potential—the only things that change are the functional form
of the ¥’s and the equation for the allowed energies.

Example 2.2 A particle in the infinite square well has the initial wave function
Y(x.0)=Ax(a—x). 0O=<x<a).

for some constant A (see Figure 2.3). Qutside the well, of course, ¥ = 0. Find
Wx. ).

A W(x, 0)

xY

a

FIGURE 2.3: The starting wave function in Example 2.2.
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Solution: First we need to determine A, by normalizing W (x. 0):

5
1—-/ |W(x.0)dx = |A]? / x2(a = x)? d¥_|A|~'§0’
SO
30
A=, —.
as

The nth coefficient is (Equation 2.37)

Ccy = ff qm T X /z—?.Y(Cl —x)dx
2:;_ [ /0 X sin (”: ) dx — /Oa x?sin (%‘,) dle
= 2;/3]_5 Ia I:(n[_;r)z sin (%\) - :—:T cos (E;—T-\):l :

_ [2 (%)R sin (%\) _ (maj/rc/zl;; 2 cos (%r)] :}

1 3 2 _
= 2J15 |:_a_ cos(nm) + 613("—JT)——2 cos(nm) + a’ 2 3 cos(O)jl

a’ i (nm)3 (nm)?

4/15

[cos(0) — cos(nm)]

- (nJ'r)3
_ 0. if n is even.
815/ (nm)3. if n is odd.

Thus (Equation 2.36):

/ 3
W(x.1) = @ (E) L sin (Er_\) e-—inzzzhr/’zmaz
o a 3 )
n=1.3.5.

Loosely speaking, ¢, tells you the “amount of ¥, that is contained in W.”
Some people like to say that |c,|? is the “probability of finding the particle in the
nth stationary state,” but this is bad language; the particle is in the state WV, not
W, . and, anyhow, in the laboratory you don’t “find a particle to be in a particular
state”—you measure some observable, and what you get is a number. As we’ll
see in Chapter 3, what |c, | tells you is the probability that a measurement of the



Section 2.2: The Infinite Square Well 37

energy would yield the value E, (a competent measurement will always return one
of the “allowed” values—hence the name—and |c,|? is the probability of getting
the particular value E).

Of course, the sum of these probabilities should be 1,

oc

Dl =1 [2.38]

n=1

Indeed, this follows from the normalization of W (the ¢,’s are independent of time,
so I'm going to do the proof for r = 0 if this bothers you, you can easily generalize
the argument to arbitrary 7).

oc * [ o
1=/|\ll(x.0)|2dx=/( c,,,w,,,(x)> (Zc,,lﬁ,,(x)) dx
1

= n=I|

= Z ZCJZC:: f Yo (X) Y (X) dx

m=| n=|

oo

[o <IN e o]
* 2
= E E Cmcnamn = E lcnl”.

n=1 m=lI n=l1

(Again, the Kronecker delta picks out the term m = n in the summation over m.)
Moreover, the expectation value of the energy must be

(H) =Y lcul*En. [2.39]

n=|

and this too can be checked directly: The time-independent Schrodinger equation
(Equation 2.12) says

H‘/’n = En lﬁn‘ [2-40]

SO

(H) = / W*HWY dx = f (Z mem)* i (Z“""”") dx
= Z ZC;;C,,E,, f \”,T,lﬁn dx = Z |C,,|2E,,.

Notice that the probability of getting a particular energy is independent of time, and
s0, a fortiori, is the expectation value of H. This is a manifestation of conservation
of energy in quantum mechanics.
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Example 2.3 In Example 2.2 the starting wave function (Figure 2.3) closely re-
sembles the ground state | (Figure 2.2). This suggests that |c|? should dominate,
and in fact 7

5
8v/15\"

|c||2=( : ) =0.998555 ... .
j‘r~

The rest of the coefficients make up the difference: !4

2
—, o _ (8V15 SR
Zlcnl “\ 3 Z n6

n=lI n=1.3.5....

The expectation value of the energy, in this example, is

2
(H) = i 815\ n’mw2h®> _ 480h> i 1 5K?
B 2ma?  wtma? n* ma?’

n=1.3.5... n=1.35....

n3a3

As one might expect, it is very close to E| = w2h%/2ma®—slightly larger, because
of the admixture of excited states.

Problem 2.3 Show that there is no acceptable solution to the (time-independent)
Schrodinger equation for the infinite square well with E = 0 or E < 0. (This is a
special case of the general theorem in Problem 2.2, but this time do it by explicitly
solving the Schrédinger equation, and showing that you cannot meet the boundary
conditions.)

#Problem 2.4 Calculate (x), (x), (p)., {(p*), oy, and o, for the nth stationary state
of the infinite square well. Check that the uncertainty principle is satisfied. Which
state comes closest to the uncertainty limit?

xProblem 2.5 A particle in the infinite square well has as its initial wave function
an even mixture of the first two stationary states:

W(x.0) = AlY (x) + Y2(x)].

1*You can look up the series

1 1 _71'6
T TEt " %0
and
Loy
+ 3 5 92

in math tables. under “Sums of Reciprocal Powers™ or “Riemann Zeta Function.”
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(a) Normalize ¥ (x, 0). (That is, find A. This is very easy, if you exploit the
orthonormality of | and yr». Recall that, having normalized ¥ at t+ = 0,
you can rest assured that it sfays normalized—if you doubt this, check it
explicitly after doing part (b).)

(b) Find W(x,t) and |W¥(x, r)|2. Express the latter as a sinusoidal function of
time, as in Example 2.1. To simplify the result, let w = 72f/2ma>.

(c) Compute (x). Notice that it oscillates in time. What is the angular frequency
of the oscillation? What is the amplitude of the oscillation? (If your amplitude
is greater than a/2, go directly to jail.)

(d) Compute (p). (As Peter Lorre would say, “Do it ze kveek vay, Johnny!™)

(e) If you measured the energy of this particle, what values might you get, and
what is the probability of getting each of them? Find the expectation value
of H. How does it compare with E| and E;?

Problem 2.6 Although the overall phase constant of the wave function is of no
physical significance (it cancels out whenever you calculate a measurable quantity),
the relative phase of the coefficients in Equation 2.17 does matter. For example,
suppose we change the relative phase of | and ¥, in Problem 2.5:

W(x, 0) = A[Y1(x) + €' Py (x)].
where ¢ is some constant. Find ¥ (x, r), |V (x, |3, and (x), and compare your

results with what you got before. Study the special cases ¢ = /2 and ¢ = 7.
(For a graphical exploration of this problem see the applet in footnote 7.)

xProblem 2.7 A particle in the infinite square well has the initial wave function!’

Ax, 0<x<a/2,
Ala—x). a/2<x<a.

V(x.0) = [

(a) Sketch W(x.0), and determine the constant A.
(b) Find W(x. ).

15There is no restriction in principle on the shape of the starting wave function. as long
as it is normalizable. In particular, W(r.0) need nol have a continuous derivative—in fact, it
doesn’t even have to be a continuous function. However. if you wy lo calculate {H) using
[ W(x. ) HW(x, 0)dy in such a case, you may encounler technical difficulties, because the second
derivative of W (x. 0) is ill-defined. It works in Problem 2.9 because the disconlinuilies occur at the end
points, where the wave function is zero anyway. In Problem 2.48 you'll see how lo manage cases like
Probiem 2.7.
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(c) What is the probability that a measurement of the energy would yield the
value E|?

(d) Find the expectation value of the energy.

Problem 2.8 A particle of mass m in the infinite square well (of width ) starts
out in the left half of the well, and is (at + = 0) equally likely to be found at any
point in that region.

(a) What is its initial wave function, W(x, 0)? (Assume it is real. Don’t forget
to normalize it.)

(b) What is the probability that a measurement of the energy would yield the
value 72h?%/2ma>?

Problem 2.9 For the wave function in Example 2.2, find the expectation value of
H, at time t = 0, the “old fashioned” way:

(H) =/\p(.x.0)*1§xu(x,0)dx.

Compare the result obtained in Example 2.3. Note: Because (H) is independent of
time, there is no loss of generality in using + = 0.

2.3 THE HARMONIC OSCILLATOR

The paradigm for a classical harmonic oscillator is a mass m attached to a spring

of force constant k. The motion is governed by Hooke’s law,
d%x
F=—kx=m—s
mos

(ignoring friction), and the solution is
x(t) = A sin(wt) + B cos(wt),

where

w= X [2.41]
Hi

is the (angular) frequency of oscillation. The potential energy is
1
V(x) = 5kxz; [2.42]

its graph is a parabola.
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V(x) A

~

FIGURE 2.4: Parabolic approximation (dashed curve) to an arbitrary potential, in
the neighborhood of a local minimum.

Of course, there’s no such thing as a perfect harmonic oscillator—if you
stretch it too far the spring is going to break, and typically Hooke’s law fails
long before that point is reached. But practically any potential is approximately
parabolic, in the neighborhood of a local minimum (Figure 2.4). Formally, if we
expand V(x) in a Taylor series about the minimum:

1 )
V(x) = V(xp) + V' (x0)(x — x0) + zV”(Xo)(X —Xx0)°+---,

subtract V (xg) (you can add a constant to V (x) with impunity, since that doesn’t
change the force), recognize that V' (xg) = 0 (since g is a minimum), and drop the
higher-order terms (which are negligible as long as (x — xg) stays small), we get

1 )
Vix) = EV”(xo)(x — x0)",

which describes simple harmonic oscillation (about the point xp), with an effective
spring constant k = V”(xg).!® That’s why the simple harmonic oscillator is so
important: Virtually any oscillatory motion is approximately simple harmonic, as
long as the amplitude is small.

The quantum problem is to solve the Schrodinger equation for the potential

1
Vx) = 5mwzx2 [2.43]

(it is customary to eliminate the spring constant in favor of the classical frequency,
using Equation 2.41). As we have seen, it suffices to solve the time-independent
Schrodinger equation:

Rdy 1,
R —mwx Y = . 2.44
2m dx? + me Y =Ey [ 1

16Note that V" (xg) = 0. since by assumption xq is a minimum. Only in the rare case V" (xp) = 0
is the oscillation not even approximately simple harmonic.
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In the literature you will find two entirely different approaches to this problem.
The first is a straightforward “brute force” solution to the differential equation,
using the power series method: it has the virtue that the same strategy can be
applied to many other potentials (in fact, we’ll use it in Chapter 4 to treat the
Coulomb potential). The second is a diabolically clever algebraic technique, using
so-called ladder operators. I’ll show you the algebraic method first, because it is
quicker and simpler (and a lot more fun);!7 if you want to skip the power series
method for now, that’s fine, but you should certainly plan to study it at some
stage.

2.3.1 Algebraic Method
To begin with, let’s rewrite Equation 2.44 in a more suggestive form:

—L[p2 + (mwx)*]y = Ev. [2.45]
2m

where p = (hi/i)d/dx is, of course, the momentum operator. The basic idea is to

factor the Hamiltonian,

1
H = —[p* + (mwx)?). [2.46]
2m
If these were numbers, it would be easy:
u? + v = (iu +v)(—iu + v).

Here, however, it’s not quite so simple, because p and x are operators, and oper-
ators do not, in general, commute (xp is not the same as px). Still, this does
motivate us to examine the quantities

ay = Jzﬁ (Fip + mwx) [2.47]

(the factor in front is just there to make the final results look nicer).
Well, what is the product a_a.?

1
a_ay = ——(ip+ mowx)(—ip+ mwx)
2hmw

1
= [p? + (nox)? — imow(xp — px)].
2himw

7We'll encounter some of the same strategies in the theory of angular momentum (Chapter 4),
and the technique generalizes to a broad class ol potentials in super-symmetric quantum mechanics
(sce. for example. Richard W. Robinett, Quantum Mechanics. (Oxford U.P.. New York, 1997). Section
14.4).
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As anticipated, there’s an extra term, involving (xp — px). We call this the com-
mutator of x and p; it is a measure of how badly they fuil to commute. In general,
the commutator of operators A and B (written with square brackets) is

[A,B]=AB — BA. [2.48]
In this notation,
G-ty = ——[p? + (mwx)’] — 2 [x, p] [2.49)
—G = P mwx o5 6 P)- .

We need to figure out the commutator of x and p. Warning: Operators are
notoriously slippery to work with in the abstract, and you are bound to make
mistakes unless you give them a “test function,” f(x), to act on. At the end you
can throw away the test function, and you’ll be left with an equation involving the
operators alone. In the present case we have:

] N _|.nd hd | h(df df o
[x, plf(x) = l:,\ e @) T (.xf)] =3 (xdx X P f) =ihf(x).
[2.50]
Dropping the test function, which has served its purpose,
[x. pl=ih. [2.51]

This lovely and ubiquitous result is known as the canonical commutation rela-
tion. '8
With this, Equation 2.49 becomes
1 1

—a+=—H+ —. 2.52
a-ay=——H+ 7 [2.52]

or |
H = hw (a-a.,. - 5) . [2.53]

Evidently the Hamiltonian does not factor perfectly—there’s that extra —1/2 on the
right. Notice that the ordering of a4+ and a_ is important here; the same argument.
with a on the left, yields

1 1
-=—H - —. 2.54
ata — 5 [2.54]
In particular,
[a—,a+] = 1. [2.55]

18In a deep sense all of the mysteries of quantum mechanics can be traced to the fact that position
and momentum do not commute. Indeed, some authors take the canonical commutation relation as an
axiom of the theory. and use it to derive p = (h/i)d/dx.
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So the Hamiltonian can equally well be written

H=lw (a+a_ + %) . [2.56]

In terms of a, then, the Schrodinger equation!® for the harmonic oscillator takes
the form

ho (aﬂ_uajF + %) v =Ey [2.57]

(in equations like this you read the upper signs all the way across, or else the lower
signs).

Now, here comes the crucial step: I claim that if ¥ satisfies the Schrodinger
equation with energy E, (that is: Hy = E), then ay satisfies the Schrodinger
equation with energy (E + hw): H(ayr) = (E + hw)(a+ ). Proof:

H@+y) =ho (a.,.a- + %) (a+v¥)=how ((1+cz_a+ + %a.,.) '

2
=a+(H +ho)y = a(E + hw)y = (E + hw)(a+ ).

| 1
= hway (a-a+ + 5) ¥ =ay [ﬁw (a+a_ +14+ —) w:l

(I used Equation 2.55 to replace a_a+ by ai+a— + 1, in the second line. Notice
that whereas the ordering of a4 and a_ does matter, the ordering of a4 and
any constants—such as h, w, and E—does not; an operator commutes with any
constant.)

By the same token, a_y is a solution with energy (E — hw):

H(a-¥) = how (a_a+ - é) (a_y) = hwa_ (a_,.a_ — %) v

=a_ [i’lw (a_a_l. -1- %) w] =a_(H — hw)Y =a_(E — ho)y

= (E — hw)(a=y).

Here, then, is a wonderful machine for generating new solutions, with higher and
lower energies—if we could just find one solution, to get started! We call a
ladder operators, because they allow us to climb up and down in energy; a4 is
the raising operator, and «_ the lowering operator. The “ladder” of states is
illustrated in Figure 2.5.

91'm getting tired of writing “‘time-independent Schrédinger equation,” so when it's clear from
the context which one I mean. I'll just call it the “Schrédinger equation.”
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FIGURE 2.5: The “ladder” of states for the harmonic oscillator.

But wait! What if I apply the lowering operator repeatedly? Eventually I'm
going to reach a state with energy less than zero, which (according to the general
theorem in Problem 2.2) does not exist! At some point the machine must fail.
How can that happen? We know that a_y is a new solution to the Schrodinger
equation, but there is no guarantee that it will be normalizable —it might be zero,
or its square-integral might be infinite. In practice it is the former: There occurs a
“lowest rung” (call it ¥7g) such that

a_yg = 0. [2.58]

We can use this to determine y(x):

1 d
—— | h— + mwx =0,
V2hmo ( dx ) Yo
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or
dyrg me
— = ——xp.
dx h Vo
This differential equation is easy to solve:

dyro me me -
Y =—— Jxdx = In = ———x“ 4+ constant,
Yo P Yo = =g ¥ constan

SO

Yo(x) = Ae™H .
We might as well normalize it right away:

o0 2 h
1 — IAlzf e—mw,\ /ﬁ d.l' — |A‘2 2.
-0 mo

so A% = /mw/mh, and hence

1/4
maw _mw 2
Yo(x) = (——) eI,

wh

[2.59]

To determine the energy of this state we plug it into the Schrédinger equation (in
the form of Equation 2.57), hiw(a+a— + 1/2)¥9 = Egyg, and exploit the fact that

a_yro = 0: |
E() = Eha)

[2.60]

With our foot now securely planted on the bottom rung (the ground state of the
quantum oscillator), we simply apply the raising operator (repeatedly) to generate

the excited states,?? increasing the energy by Aw with each step:

Yn(X) = An(ay)"Yo(x),  with E, = (n * %> e

[2.61]

where A, is the normalization constant. By applying the raising operator (repeat-
edly) to yo, then, we can (in principle) construct all?! the stationary states of

2OIn the case of the harmonic oscillator it is customary. for some reason, to depart from the usual
practice, and number the states starting with n = 0, instead of n = 1. Obviously, the lower limit on the

sum in a formula such as Equation 2.17 should be altered accordingly.

21 Note that we obtain all the (normalizable) solutions by this procedure. For if there were some
other solution, we could generate from it a second ladder. by repeated application of the raising and
lowering operators. But the bottom rung of this new ladder would have to satisfy Equation 2.58, and
since that leads inexorably to Equation 2.59, the bottom rungs would be the same, and hence the two

ladders would in fact be identical.
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the harmonic oscillator. Meanwhile, without ever doing that explicitly, we have
determined the allowed energies.

Example 2.4 Find the first excited state of the harmonic oscillator.

Solution: Using Equation 2.61,

A d 1/4 w2
101(.\') = A|a+1ﬁ0 = ! (—ﬁ— + mwx) (mw) e~ ¥

1=

2hmw dx Th
/4 [2.62]
A mo\'* [ 2mw —oe 2
=A|| —— Xe W
l mh /i

We can normalize it “by hand”:

2 x w3
f‘wllzd-\’ =]A;? - ( ’"w)f xZe™ T dx = |Ay %
mh h —0

so, as it happens, A} = 1.

I wouldn’t want to calculate ¥sq this way (applying the raising operator fifty
times!), but never mind: In principle Equation 2.61 does the job—except for the
normalization.

You can even get the normalization algebraically, but it takes some fancy
footwork, so watch closely. We know that a + ¥, is proportional to ¥, +1,

a+'¢n = Cn lpn+l . a_ 'an =d, lpn—l [263]

but what are the proportionality factors, ¢, and d,? First note that for “any”zz'

functions f(x) and g(x),

0 0
/ fflayrg)dx = f (ax f)*gdx. [2.64]
—00

-0

(In the language of linear algebra, as is the hermitian conjugate of a4 .)
Proof:

* dy = ——— *lTh— 4+ m ) dx,
/_Oof (a+g)dx — /_mf <¥1dx mwx | gdx

220f course, the integrals must exisz, and this means that f(x) and g(x) must go to zero at

*oo.
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and integration by parts takes [ f*(dg/dx)dx to — [(df/dx)*g dx (the boundary
terms vanish, for the reason indicated in footnote 22), so

Lm‘f*(aig)d'tzm[m [(i‘ha +m,wx)f} gdx:f—oo(aq:f)*gdx.

QED
In particular,

f (a:l:wn)*(a:t%)dx = f (a:]:aillfn)*‘//n dx.

But (invoking Equations 2.57 and 2.61)

ara_y, =nyy,. a—apy, = 4+ 1D)yy,. [2.65]

SO

o OO0 oC
f (s ¥n)* (as ) dx = |c, | f Yt dx = (n+1) f |y |* dx.
250 -0 —20

f (@) (@) dx = |dy f W P dx = n f 2 dx.

But since i, and v, 4| are normalized, it follows that leql> =n+1 and ld,,|2 =n,
and hence

a+¥p = v+ 1¥,u+1, a-yn = ﬁl”n—l- [2.66]
Thus
Vi =asvo. V2= ——arih = —= @)y
I = a+¥o. '_\/i+l_,\/§+ 0
R ; o 4
V3 = ﬁa+¢2———r-—3'2(d+) Yo. V4 \/Zawﬁ.% ——~,__4'3‘2(a+) Yo,

and so on. Clearly

1
w" = ﬁ((l.*)"lﬂ()‘ [2‘67]

which is to say that the normalization factor in Equation 2.61 is A, = 1/+/n! (in
particular, A| = 1, confirming our result in Example 2.4).
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As in the case of the infinite square well, the stationary states of the harmonic

oscillator are orthogonal:
roo

/ l”,’f, Yndx = §pn- [2.68]
—o0
This can be proved using Equation 2.65, and Equation 2.64 twice—first moving
a+ and then moving a_:

R 00
f 1//;:; (a+a—)¢n dx =n f w;; 1/,” d.\‘

=f ((l_l[f,,,)*(a_lll,,)d.\‘zf (a+(l_1/1,,,)*lﬁ,, dx

0
=m f Y Un dx.
—00

Unless m = n, then, [ ¥}, dx must be zero. Orthonormality means that we
can again use Fourier’s trick (Equation 2.34) to evaluate the coefficients, when we
expand W(x,0) as a linear combination of stationary states (Equation 2.16), and
len|? is again the probability that a measurement of the energy would yield the
value E,,.

Example 2.5 Find the expectation value of the potential energy in the nth state
of the harmonic oscillator.

Solution:

1o\ 1 5 [,
(V)= Fmwx” ) = Sma” n X Yndx.
—¢

There’s a beautiful device for evaluating integrals of this kind (involving powers
of x or p): Use the definition (Equation 2.47) to express x and p in terms of the
raising and lowering operators:

h h
Y= (g +al): p=i] —(ay —as). [2.69]
2mw 2

2.

In this example we are interested in x

5 h
= —
2mw

I:(a+)2 + (aya_) + (a—ay) + (a_)z] .
So

vy =5 [ i@ + @ran) + @-an) + @] v dr.
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But (a+)2\p,, is (apart from normalization) 1,42, which is orthogonal to ¥, and
the same goes for (a_)2y,, which is proportional to ¥,—2. So those terms drop
out, and we can usc Equation 2.65 to evaluate the remaining two:

h 1 1
(V) = —Z—U(n Fat D)= ho (n +§>.

As it happens, the expectation value of the potential energy is exactly half the
total (the other half, of course, is kinetic). This is a peculiarity of the harmonic
oscillator, as we’ll see later on.

«Problem 2.10

(a) Construct ¥a(x).
(b) Sketch vy, ¥, and ¥.

(c) Check the orthogonality of v, ¥, and 2, by explicit integration. Hint: If
you exploit the even-ness and odd-ness of the functions, there is really only
one integral left to do.

«Problem 2.11

(a) Compute (x), (p). (x2), and (p?), for the states ¥y (Equation 2.59) and ¥,
(Equation 2.62), by explicit integration. Comment: In this and other problems
involving the harmonic oscillator it simplifies matters if you introduce the
variable £ = /mw/R x and the constant & = (mew/mh)'/*,

(b) Check the uncertainty principle for these states.

(c) Compute (T) (the average kinetic energy) and (V) (the average potential
energy) for these states. (No new integration allowed!) Is their sum what you
would expect?

xProblem 2.12 Find (x), (p), (x2), (p?), and (T), for the nth stationary state of the
harmonic oscillator, using the method of Example 2.5. Check that the uncertainty
principle is satisfied.

Problem 2.13 A particle in the harmonic oscillator potential starts out in the state
W(x.0) = A[ByYo(x) + 4y (x)].

(a) Find A.
(b) Construct W(x., 1) and |W(x. 1)]3.
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(c) Find (x) and (p). Don’t get too excited if they oscillate at the classical
frequency; what would it have been had I specified yr;(x), instead of ¥ (x)?
Check that Ehrenfest’s theorem (Equation 1.38) holds for this wave function.

(d) If you measured the energy of this particle, what values might you get, and
with what probabilities?

Problem 2.14 A particle is in the ground state of the harmonic oscillator with
classical frequency w, when suddenly the spring constant quadruples, so o’ = 2w,
without initially changing the wave function (of course, ¥ will now evolve differ-
ently, because the Hamiltonian has changed). What is the probability that a mea-
surement of the energy would still return the value fiw/2? What is the probability
of getting hiw? [Answer: 0.943.]

2.3.2 Analytic Method
We return now to the Schrodinger equation for the harmonic oscillator,

mad*y 1
_%d% + Emw?'le,// = E. [2.70]

and solve it directly, by the series method. Things look a little cleaner if we
introduce the dimensionless variable

= /mh_w'x; [2.71]

in terms of & the Schrddinger equation reads

d>y 5
= — K, 2.72
e =€~ K [2.72]
where K is the energy, in units of (1/2)hw:
2F
= —, [2.73]
how

Our problem is to solve Equation 2.72, and in the process obtain the “allowed”
values of K (and hence of E).

To begin with, note that at very large £ (which is to say, at very large x), &2
completely dominates over the constant X, so in this regime

d*y
dg?

which has the approximate solution (check it!)

~ £2y, [2.74]

V(&) ~ AeF /2 4 Bt [2.75]
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The B term is clearly not normalizable (it blows up as |x| — ©0); the physically
acceptable solutions, then, have the asymptotic form

Y& = (e 72 atlarge ¢. [2.76]
This suggests that we “peel off” the exponential part,
Y (E) = h(E)e s, [2.77]

in hopes that what remains, /1(£), has a simpler functional form than ¥ (§) itself.23
Differentiating Equation 2.77,

¥ _ (ﬁ _ 5,,) R

dé — \dé
and
>y (d*h dh 4 2,
— == —26—+ E>*—Dh ) e /2,
= (G 2 e )R
so the Schrédinger equation (Equation 2.72) becomes
d>h dh
— —2(—+(K—-1Dh=0. 78
dE? 2€d§+( Dh [2.78]

I propose to look for solutions to Equation 2.78 in the form of power series
.24
in &:7

hE) =ao+ai§ + @ +--- =) a&l. [2.79]
Jj=0

Differentiating the series term by term,

dh ad .
&_é = ay +2mE + 3038 + - = ;0: jajgi™t,
and
d*h , X - ;
e 2a7+2-3a3 +3-4agE’ + - =) (j + D +2)a a8’

Jj=0

23Note that although we invoked some approximations o morivare Equation 2.77. what fol-
lows is evacr. The device of suipping off the asymplotic behavior iy the standard first step in
the power serics method for solving differential equations—see, for example. Boas (footnote 11).
Chapter 12.

HThis is known as the Frobenius method for solving a differential equation. According o
Taylor's thecorem. any rcasonably well-behaved function can be expressed as a power scries, so0
Equation 2.79 ordinarily involves no loss of gencrality. For conditions on the applicability of the
method. sce Boas (footnote 11) or George B. Arfken and Hans-Jurgen Weber, Mathematical Methods

Jor Physicists. Sth ed.. Academic Press. Orlando (2000). Section 8.5.
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Putting these into Equation 2.78, we find

oo

S [G + DG +2aje2 —2ja; + (K — Daj] g7 =0. [2.80]
j=0

It follows (from the uniqueness of power series expansions®) that the coefficient
of each power of & must vanish,

(J+ DG +2aje —2ja; + (K - 1Daj =0,

and hence that )
Qj+1-K)
G+DG+2
This recursion formula is entirely equivalent to the Schrodinger equation.
Starting with ag, it generates all the even-numbered coefficients:

ajya = [2.81]

_ (=K _6-K) _5-K)(1-K)
HZ - 2 aOs (14 - 12 2 = 24 (10,
and starting with «y, it generates the odd coefficients:
a C-KX), a 7= K)a 7= K)3~ K)a
= dr. = = .
? 6 " T 720 120 !

We write the complete solution as

h() = heven(§) + hoad (§). [2.82]

where

heven(§) = ap + a252 + (1454 + .

is an even function of &, built on agp, and
hodd(§) = a1§ + a3t +ast® + - -

is an odd function, built on a;. Thus Equation 2.81 determines /(£) in terms of
two arbitrary constants (cg and a;)—which is just what we would expect, for a
second-order differential equation.

However, not all the solutions so obtained are normalizable. For at very large
J» the recursion formula becomes (approximately)

ajpr = —dj
J+2 -y
J

258ce. for example. Arfken (footnote 24). Section 5.7.
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with the (approximate) solution

N
Y Gr

for some constant C, and this yields (at large &, where the higher powers dominate)

U 4ia Li2j 4 ot

Gt M e v e

Now, if 1 goes like exp(£2), then ¥ (remember y?—that’s what we’re trying to
calculate) goes like exp(£%/2) (Equation 2.77), which is precisely the asymptotic
behavior we didn’t want.2® There is only one way to wiggle out of this: For
normalizable solutions the power series must terminate. There must occur some
“highest” j (call it n), such that the recursion formula spits out @, +2 = 0 (this will
truncate either the series /foven OF the series /1p44; the otfier one must be zero from
the start: a; = 0 if n is even, and ay = O if n is odd). For physically acceptable
solutions, then, Equation 2.81 requires that

hE)~C Y

K=2n+1.

for some non-negative integer »n, which is to say (referring to Equation 2.73) that
the energy must be

1
E, = (n + 5) hw. forn=0.1,2..... [2.83]

Thus we recover, by a completely different method, the fundamental quantization
condition we found algebraically in Equation 2.61.

It seems at first rather surprising that the quantization of energy should
emerge from a technical detail in the power series solution to the Schrodinger
equation, but let’s look at it from a different perspective. Equation 2.70 has
solutions, of course, for any value of E (in fact, it has nvo linearly independent
solutions for every E). But almost all of these solutions blow up exponentially at
large x, and hence are not normalizable. Imagine, for example, using an E that
is slightly less than one of the allowed values (say, 0.49hw), and plotting the
solution (Figure 2.6(a)): the “‘tails” fly off to infinity. Now try an E slightly larger
(say, 0.51hw); the “tails™ now blow up in the other direction (Figure 2.6(b)). As
you tweak the parameter in tiny increments from 0.49 to 0.51, the tails flip over
when you pass through 0.5—only at precisely 0.5 do the tails go to zero, leaving
a normalizable solution.?’

261°s no surprise that the ill-behaved solutions are still contained in Equation 2.81: this recursion
relation is equivalent to the Schrédinger cquation, so it's gor to include both the asymptotic forms we
found in Equation 2.75.

2711 is possible to set this up on a computer. and discover the allowed cnergies “experimentally.”

You might call it the wag the dog method: When the tail wags. you know you’ve just passed over an
allowed value. See Problems 2.54-2.56.
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FIGURE 2.6: Solutions to the Schrodinger equation for (a) E = 0.49 hw, and
(b) E =0.51 ho.

For the allowed values of X, the recursion formula reads

—2(n — )

iy) = ———————;. 2.84
EGIDG+2Y (254

If n = 0, there is only one term in the series (we must pick a; = 0 to kill /444.
and j = 0 in Equation 2.84 yields a; = 0):

ho(§) = ap.
and hence

Yo(€) = age ™41
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(which, apart from the normalization, reproduces Equation 2.59). For n = 1 we
take ag = 0,8 and Equation 2.84 with j = 1 yields a3 = 0, so

hi(&) =aé.

and hence
V1(8) = ayge 2

(confirming Equation 2.62). For n = 2, j = 0 yields ax = —2ag, and j = 2 gives
as =0, so

ha (&) = ag(1 — 2€2).

and
Ya(§) = ag(l — 26%)e 572,

and so on. (Compare Problem 2.10, where this last result was obtained by algebraic
means.)

In general, /,,(§) will be a polynomial of degree » in &, involving even powers
only, if n is an even integer, and odd powers only, if n is an odd integer. Apart
from the overall factor (ag or a;) they are the so-called Hermite polynomials,
H,,(f).29 The first few of them are listed in Table 2.1. By tradition, the arbitrary
multiplicative factor is chosen so that the coefficient of the highest power of &
is 2". With this convention, the normalized® stationary states for the harmonic

oscillator are
mao |

1/4
B ided o —£2/2
Yu(x) = (ﬂ - ) mH,,(&)e : [2.85]

They are identical (of course) to the ones we obtained algebraically in Equation 2.67.

TABLE 2.1: The first few Hermite
polynomials, Hy(£).

Hy=1,

H =2t
Hy=482-2,
Hy =88 - 12¢,

Hy=168%— 4882 + 12,
Hs = 328> — 16083 + 120€.

28Note that there is a completely different set of cocfficients a; for each value of n.

The Hermile polynomials have been studied extensively in the mathematical literature, and
there are many tools and tricks for working with them. A few of these are explored in Problem 2.17.

301 shall not work out the normalization constant here: if you are interested in knowing how it is
done, see for example Leonard Schiff, Quanrum Mechanics, 3rd ed., McGraw-Hill, New York (1968).
Section 13.
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In Figure 2.7(a) I have plotted ,(x) for the first few »’'s. The quantum
oscillator is strikingly different from its classical counterpart—not only are the
energies quantized, but the position distributions have some bizarre features. For
instance, the probability of finding the particle outside the classically allowed range
(that is, with x greater than the classical amplitude for the energy in question) is
not zero (see Problem 2.15), and in all odd states the probability of finding the
particle at the center is zero. Only at large n do we begin to see some resemblance
to the classical case. In Figure 2.7(b) I have superimposed the classical position
distribution on the quantum one (for 7 = 100); if you smoothed out the bumps,
the two would fit pretty well (however, in the classical case we are talking about
the distribution of positions over time for one oscillator, whereas in the quantum
case we are talking about the distribution over an ensemble of identically prepared
systems).3!

Problem 2.15 In the ground state of the harmonic oscillator, what is the probability
(correct to three significant digits) of finding the particle outside the classically
allowed region? Hint: Classically, the energy of an oscillator is E = (1/2)ka® =
(1/2)mw?a®, where a is the amplitude. So the “classically allowed region” for an
oscillator of energy E extends from —y/2E /mw? to ++/2E /mw?. Look in a math
table under “Normal Distribution” or “Error Function” for the numerical value of
the integral.

Problem 2.16 Use the recursion formula (Equation 2.84) to work out Hs(&) and
He(&). Invoke the convention that the coefficient of the highest power of & is 2"
to fix the overall constant.

* xProblem 2.17 In this problem we explore some of the more useful theorems (stated
without proof) involving Hermite polynomials.

(a) The Rodrigues formula says that
2 d\" _p
Hy (&) = (=1)"e* (E) e ¥ [2.86]
Use it to derive H3 and Hjy.

(b) The following recursion relation gives you H,4| in terms of the two preced-
ing Hermite polynomials:

Hy11(8) = 26 Hy(§) — 2n Hy—1(8). [2.87]

Use it, together with your answer in (a), to obtain Hs and Hg.

3The parallel is perhaps more direct if you interpret the classical distribution as an ensemble of
oscillators all with the same energy. but with random starting times.
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FIGURE 2.7: (a) The first four stationary states of the harmonic oscillator. This
material is used by permission of John Wiley & Sons, Inc.; Stephen Gasiorowicz,
Quantum Physics, John Wiley & Sons, Inc., 1974. (b) Graph of |¥1ggl2, with the
classical distribution (dashed curve) superimposed.
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(c) If you differentiate an nth-order polynomial, you get a polynomial of order
(n — 1). For the Hermite polynomials, in fact,

dHy,
d§

Check this, by differentiating Hs and Hg.

— 2nH,_|(&). [2.88]

(d) H, (&) is the nth z-derivative, at z = 0, of the generating function exp(—zz+
2z£€), or, to put it another way, it is the coefficient of z"/n! in the Taylor
series expansion for this function:

[o¢]
-2

TN =N S H8). [2.89]

n=0

Use this to rederive Hy, H;, and H>.

2.4 THE FREE PARTICLE

We turn next to what should have been the simplest case of all: the free particle
(V(x) = 0 everywhere). Classically this would just mean motion at constant veloc-
ity, but in quantum mechanics the problem is surprisingly subtle and tricky. The
time-independent Schrédinger equation reads

ﬁZ dZ
- d:ﬁ — Ey. [2.90]
or ,
2 JInE
d_‘_,”_=—k2¢. where k = 2"F. 2.91]
X“ 1

So far, it’s the same as inside the infinite square well (Equation 2.21), where the
potential is also zero; this time, however, I prefer to write the general solution in
exponential form (instead of sines and cosines), for reasons that will appear in due
course:

Y(x) = Ae™ + Be ¥, [2.92]

Unlike the infinite square well, there are no boundary conditions to restrict the
possible values of k (and hence of E); the free particle can carry any (positive)
energy. Tacking on the standard time dependence, exp(—i Et/h),

W(x, 1) = Aeik(i\‘—%l) + Be—fk(.\'-%—%%l)' [2.93]

Now, any function of x and r that depends on these variables in the special
combination (x % vt) (for some constant v) represents a wave of fixed profile,
traveling in the Fx-direction, at speed v. A fixed point on the waveform (for
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example, a maximum or a minimum) corresponds to a fixed value of the argument,
and hence to x and ¢ such that

x T vt =constant. or x = Fut + constant.

Since every point on the waveform is moving along with the same velocity, its
shape doesn’t change as it propagates. Thus the first term in Equation 2.93 repre-
sents a wave traveling to the right, and the second represents a wave (of the same
energy) going to the /eft. By the way, since they only differ by the sign in front of
k, we might as well write

ey MK ‘
W (x. 1) = Ae'®—3a D [2.94]
and let £ run negative to cover the case of waves traveling to the left:

VvV2mE
h

k > 0= traveling to the right,

+
- k < 0= traveling to the left.

k [2.95]

with [

Evidently the “stationary states” of the free particle are propagating waves; their
wavelength is A = 27 /|k|, and, according to the de Broglie formula (Equation 1.39),

they carry momentum
p = hk. [2.96]

The speed of these waves (the coefficient of ¢ over the coefficient of x) is

hlk| | E
Vquantum = S = m [2.97]

On the other hand, the classical speed of a free particle with energy E is given by
E= (]./2)mv2 (pure kinetic, since V = 0), so

2E :
W = 2Uquantum- [2.98]

Uclassical =

Apparently the quantum mechanical wave function travels at half the speed of the
particle it is supposed to represent! We’ll return to this paradox in a moment—there
is an even more serious problem we need to confront first: This wave function is
not normalizable. For

+00 +oo
f Wi dx = |A|2f dx = |A|*(00). [2.99]
~00 -0

In the case of the free particle, then, the separable solutions do not represent
physically realizable states. A free particle cannot exist in a stationary state; or,
to put it another way, there is no such thing as a free particle with a definite
energy.



Section 2.4: The Free Particle 61

But that doesn’t mean the separable solutions are of no use to us, for they
play a mathematical role that is entirely independent of their physical interpre-
tation. The general solution to the time-dependent Schrédinger equation is still a
linear combination of separable solutions (only this time it's an integral over the
continuous variable k, instead of a sum over the discrete index n):

] e ikx =12 1)
V(x.t) = o @ (ke ™" dk. [2.100]
—00

(The quantity 1/+/27 is factored out for convenience; what plays the role of the
coefficient ¢, in Equation 2.17 is the combination (1 /«/E)(b(k) dk.) Now this
wave function can be normalized (for appropriate ¢ (k)). But it necessarily carries
a range of k’s, and hence a range of energies and speeds. We call it a wave
packet. 2

In the generic quantum problem, we are given W(x.0), and we are asked to
find W(x.1). For a free particle the solution takes the form of Equation 2.100;
the only question is how to determine ¢(k) so as to match the initial wave
function:

U(x.0) = o (k)e'™ dk. [2.101]

1 +o0
\/27’[ ~/;oo

This is a classic problem in Fourier analysis: the answer is provided by Plancherel’s
theorem (see Problem 2.20):

] . +o0 .
F(k)e™ dk < F(k)= b fe *dx. | [2.102]

1 +o<
f‘”‘?ﬁf_m Nzl

F (k) is called the Fourier transform of f(x); f(x) is the inverse Fourier trans-
form of F(k) (the only difference is in the sign of the exponent). There is, of
course, some restriction on the allowable functions: The integrals have to exist.>?
For our purposes this is guaranteed by the physical requirement that W (x. 0) itself

32Sinusoidal waves extend out to infinity. and they arc not normalizable. But superpositions of
such waves lead to interference. which allows for localization and normalizability.

3The necessary and sufficient condition on f(x) is that f_ocx ]f(‘.\')lzd.\' be finite. (In that

case f_xx |F (k)]zdk is also finite. and in fact the two integrals are equal.) Sec Arlken (footnote 24).
Section 15.5.
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be normalized. So the solution to the generic quantum problem, for the free particle,
is Equation 2.100, with

o (k) = W (x. 0)e "+ dx. [2.103]

75 |-

Example 2.6 A free particle, which is initially localized in the range —a < x < q,
is released at time r = O:

A, if —a<x<a,
V(x.0) = l 0. otherwise,

where A and a are positive real constants. Find W (x, 7).

Solution: First we need to normalize W (x. 0):

o0 a
1
1 =/ [W(x.0)?dx = |A|? dx =2alAP? = A= —.
-0 —a v 2a
Next we calculate ¢ (k), using Equation 2.103:

1 1 a —ik\'d 1 e—ik,\' a
e Tdx =

V21 A 2a J-a 2Jma —ik 1-a

1 gika _ g=ika 1 sin(ka)
N 2i T Jma k-

Finally, we plug this back into Equation 2.100:

¢k) =

x sm(ka) itk ni2

W(x.1) = =20 dk. [2.104]

=g

Unfortunately, this integral cannot be solved in terms of elementary functions,
though it can of course be evaluated numerically (Figure 2.8). (There are, in fact,
precious few cases in which the integral for W (x.t) (Equation 2.100) can be cal-
culated explicitly; see Problem 2.22 for a particularly beautiful example.)

It is illuminating to explore the limiting cases. If a is very small, the starting
wave function is a nicely localized spike (Figure 2.9(a)). In this case we can use
the small angle approximation to write sin(ka) = ka, and hence

¢(k)&’\/z;
V4
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FIGURE 2.8: Graph of |¥(x, £)|? (Equation 2.104) at £ = 0 (the rectangle) and at
t= maz/h (the curve).
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FIGURE 2.9: Example 2.6, for small 4. (a) Graph of ¥ (x, 0). (b) Graph of ¢ (k).

it’s flar, since the k’s cancelled out (Figure 2.9(b)). This is an example of the
uncertainty principle: If the spread in position is small, the spread in momentum
(and hence in k—see Equation 2.96) must be large. At the other extreme (large
«a) the spread in position is broad (Figure 2.10(a)) and

() = \/Esin(ka)‘
T ka

Now, sinz/z has its maximum at z = 0, and drops to zero at z = T & (which, in
this context, means k = t 7 /a). So for large a, ¢ (k) is a sharp spike about k = 0
(Figure 2.10(b)). This time it’s got a well-defined momentum but an ill-defined
position.
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A ¥(x, 0) 4 (k)
Valn
1
Vaa
b'¢ n k3 k
a a

(a) (b)

FIGURE 2.10: Example 2.6, for large a. (a) Graph of ¥(x, 0). (b) Graph of ¢ (k).

I return now to the paradox noted earlier; the fact that the separable solution
Wi (x, t) in Equation 2.94 travels at the “wrong” speed for the particle it osten-
sibly represents. Strictly speaking, the problem evaporated when we discovered
that W, is not a physically realizable state. Nevertheless, it is of interest to dis-
cover how information about velocity is contained in the free particle wave function
(Equation 2.100). The essential idea is this: A wave packet is a superposition of
sinusoidal functions whose amplitude is modulated by ¢ (Figure 2.11); it consists of
“ripples” contained within an “envelope.” What corresponds to the particle velocity
is not the speed of the individual ripples (the so-called phase velocity), but rather
the speed of the envelope (the group velocity)—which, depending on the nature
of the waves, can be greater than, less than, or equal to, the velocity of the ripples
that go to make it up. For waves on a string, the group velocity is the same as the
phase velocity. For water waves it is one-half the phase velocity, as you may have
noticed when you toss a rock into a pond (if you concentrate on a particular ripple,
you will see it build up from the rear, move forward through the group, and fade
away at the front, while the group as a whole propagates out at half the speed). What
I need to show is that for the wave function of a free particle in quantum mechanics

xY

FIGURE 2.11: A wave packet. The “enve-
lope” travels at the group velocity; the “rip-
ples” travel at the phase velocity.
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the group velocity is twice the phase velocity—just right to represent the classical
particle speed.

The problem, then, is to determine the group velocity of a wave packet with
the general form

1 oo i(hx—wt)
W(x, 1) = _Jz_nf o (k)e dk.
-0

(In our case w = (hk?/2m), but what I have to say now applies to any kind
of wave packet, regardless of its dispersion relation—the formula for w as a
function of k.) Let us assume that ¢ (k) is narrowly peaked about some particular
value kq. (There is nothing illegal about a broad spread in k, but such wave packets
change shape rapidly—since different components travel at different speeds—so
the whole notion of a “group,” with a well-defined velocity, loses its meaning.)
Since the integrand is negligible except in the vicinity of kg, we may as well
Taylor-expand the function w (k) about that point, and keep only the leading terms:

w (k) = wo + wyk — ko).

where wy, is the derivative of w with respect to k, at the point ko.
Changing variables from k to s = k — kg (to center the integral at kg), we
have

1 +oo : ,
W(x, 1) = & (ko + S)ei[(ku+s).\'—(wn+wﬂs)IJ ds.

B VZJI -
Att =0,

W(x,0) = b '+m¢(k + 5)et thot9)x g
' N \/27’[ —00 0 .

and at later times
1 . Y e . .
W(x.t) = JT_e!(—w()t+k(pw‘,r) f & (ko + s)el(k<)+S)(x—wot) ds.
T J—0

Except for the shift from x to (x — wyt), the integral is the same as the one in
Y (x, 0). Thus
W(x, 1) = e~ @kl (x — o1, 0). [2.105]

Apart from the phase factor in front (which won’t affect |¥|? in any event) the
wave packet evidently moves along at a speed wj:

dw
Ugroup = E [2.106]
(evaluated at k = kq). This is to be contrasted with the ordinary phase velocity

w
Uphase = ? . [2.107]
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In our case, w = (hk2/2;71), so w/k = (hk/2m), whereas dw/dk = (hk/m), which
is twice as great. This confirms that it is the group velocity of the wave packet,
not the phase velocity of the stationary states, that matches the classical particle
velocity:

Uclassical = Vgroup = 2Uphase' [2.108]

Problem 2.18 Show that [Ae™** + Be~**] and [C cos kx + D sin kx] are equivalent
ways of writing the same function of x, and determine the constants C and D in
terms of A and B, and vice versa. Comment: In quantum mechanics, when V = 0,
the exponentials represent fraveling waves, and are most convenient in discussing
the free particle, whereas sines and cosines correspond to standing waves, which
arise naturally in the case of the infinite square well.

Problem 2.19 Find the probability current, J (Problem 1.14) for the free particle
wave function Equation 2.94. Which direction does the probability current flow?

* xProblem 2.20 This problem is designed to guide you through a “proof” of Plan-
cherel’s theorem, by starting with the theory of ordinary Fourier series on a finite
interval, and allowing that interval to expand to infinity.

(a) Dirichlet’s theorem says that “any” function f(x) on the interval [—a, +a]
can be expanded as a Fourier series:

oo

flx) = Z[a,, sin(nmx/a) + b, cos(nmx/a))l.
n=0

Show that this can be written equivalently as

o0

f(\)= Z C,,ei’mx/“.

n=—oc
What is ¢,, in terms of @, and b,?

(b) Show (by appropriate modification of Fourier’s trick) that

l +a . )
Ch = —/ f(.l’)e_”m'\/a dx.
2a J_,
(c) Eliminate n and ¢, in favor of the new variables k = (nm/a) and F(k) =
/2/m ac,. Show that (a) and (b) now become
+a

Q" . 1 .
— FK)e™ Ak: Fk) = — Fx)e™ ™ dx,
V2T 17-—-2—:00 A2m J-a

where Ak is the increment in &k from one n to the next.

For) =
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(d) Take the limit @ — oo to obtain Plancherel’s theorem. Comment: In view
of their quite different origins, it is surprising (and delightful) that the two
formulas—one for F(k) in terms of f(x), the other for f(x) in terms of
F (k)—have such a similar structure in the limit ¢ — 0.

Problem 2.21 A free particle has the initial wave function
W(x.0) = Ae™W,
where A and g are positive real constants.
(a) Normalize ¥ (x.0).
(b) Find ¢ (k).
(c) Construct W(x, r), in the form of an integral.

(d) Discuss the limiting cases (a very large, and a very small).

xProblem 2.22 The gaussian wave packet. A free particle has the initial wave
function

Y(x,0) = Ae=%,
where A and a are constants (a is real and positive).
(a) Normalize ¥ (x.0).
(b) Find W(x, 1). Hint: Integrals of the form
+oc -
/ e~ @x +bx) g

-

can be handled by “completing the square™: Let y = /a [x + (b/2a)], and
note that (ax2 + bx) = _\'2 — (b2/4a). Answer:

W(x. 1) (20)1/4 e_“’-"z/l1+(2iﬁal/m‘)]
X, = — .
T V1 + Qihat/m)

(c) Find |W(x, r)|>. Express your answer in terms of the quantity

a
w= \/1 ¥ Qhat/m)*

Sketch |W|? (as a function of x) at + = 0, and again for some very large 1.
Qualitatively, what happens to |¥|?, as time goes on?

(d) Find (x), (p), (x2), (pz), oy, and op. Partial answer: (pl) = ah?, but it
may take some algebra to reduce it to this simple form.

(e) Does the uncertainty principle hold? At what time ¢ does the system come
closest to the uncertainty limit?
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2.5 THE DELTA-FUNCTION POTENTIAL

2.5.1 Bound States and Scattering States

We have encountered two very different kinds of solutions to the time-independent
Schrédinger equation: For the infinite square well and the harmonic oscillator they
are normalizable, and labeled by a discrete index n; for the free particle they are
non-normalizable, and labeled by a continuous variable k. The former represent
physically realizable states in their own right, the latter do not; but in both cases the
general solution to the time-dependent Schrodinger equation is a linear combination
of stationary states—for the first type this combination takes the form of a sum
(over n), whereas for the second it is an integral (over k). What is the physical
significance of this distinction?

In classical mechanics a one-dimensional time-independent potential can give
rise to two rather different kinds of motion. If V (x) rises higher than the particle’s
total energy (E) on either side (Figure 2.12(a)), then the particle is “stuck” in the
potential well—it rocks back and forth between the turning points, but it cannot
escape (unless, of course, you provide it with a source of extra energy, such as
a motor, but we’re not talking about that). We call this a bound state. If, on the
other hand, E exceeds V (x) on one side (or both), then the particle comes in from
“infinity,” slows down or speeds up under the influence of the potential, and returns
to infinity (Figure 2.12(b)). (It can’t get trapped in the potential unless there is some
mechanism, such as friction, to dissipate energy, but again, we’re not talking about
that.) We call this a scattering state. Some potentials admit only bound states (for
instance, the harmonic oscillator); some allow only scattering states (a potential
hill with no dips in it, for example); some permit both kinds, depending on the
energy of the particle.

The two kinds of solutions to the Schrodinger equation correspond precisely to
bound and scattering states. The distinction is even cleaner in the quantum domain,
because the phenomenon of tunneling (which we’ll come to shortly) allows the
particle to “leak”™ through any finite potential barrier, so the only thing that matters
is the potential at infinity (Figure 2.12(c)):

{ E <[V(—00) and V(4+o0)]= bound state, [2.109]
E > [V(-00) or V(4o00)]= scattering state. ’

In “real life” most potentials go to zero at infinity, in which case the criterion
simplifies even further:

[2.110]

E <0= bound state,
E > 0= scattering state.

Because the infinite square well and harmonic oscillator potentials go to infinity as
x — T oo, they admit bound states only; because the free particle potential is zero
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Classical turning points

(a)

xY

Classical turning point

(b)

Classical turning points

xY

(©

FIGURE 2.12: (a) A bound state. (b) Scattering states. (c) A classical bound state, but
a quantum scattering state.

everywhere, it only allows scattering states.>® In this section (and the following
one) we shall explore potentials that give rise to both kinds of states.

3f you are irritatingly observant. you may have noticed that the general theorem requiring
E > Vpin (Problem 2.2) does not really apply to scattering states. since they are not normalizable
anyway. If this bothers you, try solving the Schrédinger equation with E < (. for the free particle, and
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3(x)

s>~ FIGURE 2.13: The Dirac delta function
x  (Equation 2.111).

2.5.2 The Delta-Function Well

The Dirac delta function is an infinitely high, infinitesimally narrow spike at the
origin, whose area is 1 (Figure 2.13):

e +00
5(.\-)510-‘ if x # 0 } with/ () dx = 1. (2.111]

oo, ifx=0 o

Technically, it isn’t a function at all, since it is not finite at x = 0 (mathematicians
call it a generalized function, or distribution).>> Nevertheless, it is an extremely
useful construct in theoretical physics. (For example, in electrodynamics the charge
density of a point charge is a delta function.) Notice that §(x —a) would be a spike
of area 1 at the point a. If you multiply §(x — a) by an ordinary function f(x),
it’s the same as multiplying by f(a),

Fx)é(x —a) = fla)d(x —a), [2.112]

because the product is zero anyway except at the point a. In particular,

+o0

+00
f()8(x —a)dx = f(a)/ 3(x —a)dx = f(a). [2.113]

-0

That’s the most important property of the delta function: Under the integral sign it
serves to “pick out” the value of f(x) at the point a. (Of course, the integral need
not go from —oo to +oo: all that matters is that the domain of integration include
the point a, so @ — € to a + € would do, for any € > 0.)

Let’s consider a potential of the form

V(x) = —ad(x), [2.114]

note that even linear combinations of thesc solutions cannot be normalized. The positive encrgy solutions
by themselves constitute a complete sct.

33 The delta function can be thought of as the limir of a sequence of functions, such as rectangles
(or triangles) of cver-increasing height and ever-decreasing width,
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where o is some positive constant.3® This is an artificial potential, to be sure (so was
the infinite square well), but it’s delightfully simple to work with, and illuminates
the basic theory with a minimum of analytical clutter. The Schrédinger equation
for the delta-function well reads

’,-12 dZw

—— = —ad(xX)y = Ey; 2.115

5 i NV = EY: [2.115]

it yields both bound states (E < 0) and scattering states (E > 0).
We’ll look first at the bound states. In the region x < 0, V(x) =0, so

dzw 2mE
i v =2y, [2.116]
where
K = —”_f'"E [2.117]
1

(E is negative, by assumption, so « is real and positive.) The general solution to
Equation 2.116 is
V(x) = Ae™™ " + Be*t, [2.118]

but the first term blows up as x — —o0, so we must choose A = 0:
Y(x) =B, (x <0). [2.119]

In the region x > 0, V(x) is again zero, and the general solution is of the form
F exp(—«x) + G exp(kx); this time it’s the second term that blows up (as x —
+00), so

Y(x)=Fe ™. (x> 0). [2.120]

It remains only to stitch these two functions together, using the appropriate
boundary conditions at x = 0. I quoted earlier the standard boundary conditions
for y:

L.y is always continuous; [2.121]
2.dy/dx is continuous except at points where the potential is infinite. )
In this case the first boundary condition tells us that F = B, so
N | Bet. (x <0).
Yx) = { B, (x> 0): [2.122]

36The delta function itself carries units of 1/length (see Equation 2.111). so « has the dimensions
energy X lengih.
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>y

FIGURE 2.14: Bound state wave function for the delta-function potential (Equa-
tion 2.122),

¥ (x) is plotted in Figure 2.14. The second boundary condition tells us nothing;
this is (like the infinite square well) the exceptional case where V is infinite at the
join, and it’s clear from the graph that this function has a kink at x = 0. Moreover,
up to this point the delta function has not come into the story at all. Evidently the
delta function must determine the discontinuity in the derivative of ¥, at x = 0.
I'll show you now how this works, and as a by-product we’ll see why dy/dx is
ordinarily continuous.

The idea is to integrate the Schrédinger equation, from —e to +e€, and then
take the limit as € — O:

2 +e g2 +e +¢
A v dx+f Vi)Y (x)dx = Ef Y(x)dx. [2.123]

T o 2
2m J_¢ dx —¢ —¢

The first integral is nothing but dvr/dx, evaluated at the two end points; the last
integral is zero, in the limit € — 0, since it’s the area of a sliver with vanishing
width and finite height. Thus

dy , dy
T)=1 -
A ((lx ) el—% ( dx

Typically, the limit on the right is again zero, and that’s why d/dx is ordinarily
continuous. But when V(x) is infinite at the boundary, this argument fails. In
particular, if V(x) = —ad(x), Equation 2.113 yields

A (i‘-/’—) _ 2 o). [2.125]

_w

+€ dx

2m +e
) = — hm)/ V) y(x)dx. [2.124]

h2 e—=0J_¢

dx h?
For the case at hand (Equation 2.122),

dy/dx = —Bke ™, for (x > 0). so0 d¢/dx|+ = —B«,
dy/dx = +Bke*t*, for (x <0), sody/dx|_ = +B«.
and hence A(dy/dx) = —2Bk. And ¥ (0) = B. So Equation 2.125 says
ma

K= FeR [2.126]
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and the allowed energy (Equation 2.117) is

E_ 7721(2_ ma? (2.127]
T 2m oK% )

Finally, we normalize i :
S ® ec ;. _ 1B
f ¥ (x)|*dx = 2|B|2f e dy = — = 1.
so (choosing, for convenience, the positive real root):

VAL

B=.k= p

[2.128]

Evidently the delta-function well, regardless of its “strength” «, has exactly one
bound state:

2
N ———r E ma

Y(x) = Te ; = — TER [2.129]

What about scattering states, with E > 0?7 For x < 0 the Schrédinger equation
reads

2
where
k= ‘/2;:7 [2.130]
is realhand positive. The general solution is
¥ (x) = Ae™ + Be™h¥, [2.131]

and this time we cannot rule out either term, since neither of them blows up.
Similarly, for x > 0, _ '
Y(x) = Fe® 4+ Ge™** . [2.132]

The continuity of ¥ (x) at x = 0 requires that
F+G=A+8B. [2.133]
The derivatives are

dyr/dx = ik (Fe™ — Ge™™*) . for (x > 0), so dy/dx|, =ik(F - G),
dy/dx =ik (Ae™ — Be=™*) | for (x < 0), sody/dx|_=ik(A— B).
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and hence A(dy/dx) = ik(F — G — A + B). Meanwhile, ¥ (0) = (A + B), so the
second boundary condition (Equation 2.125) says

2ma

ik(F—G—A+B)=-"3
ﬁ"

(A + B), [2.134]

or, more compactly,

F—G = A(1 +2if) — B(1 — 2iB). where = ;’T‘z [2.135]
[

Having imposed both boundary conditions, we are left with two equations
(Equations 2.133 and 2.135) in four unknowns (A, B, F, and G)—five, if you
count k. Normalization won’t help—this isn’t a normalizable state. Perhaps we’d
better pause, then, and examine the physical significance of these various con-
stants. Recall that exp(ikx) gives rise (when coupled with the time-dependent
factor exp(—i Et/h)) to a wave function propagating to the right, and exp(—ikx)
leads to a wave propagating to the left. It follows that A (in Equation 2.131) is the
amplitude of a wave coming in from the left, B is the amplitude of a wave return-
ing to the left, F (Equation 2.132) is the amplitude of a wave traveling off to the
right, and G is the amplitude of a wave coming in from the right (see Figure 2.15).
In a typical scattering experiment particles are fired in from one direction—Ilet’s
say, from the left. In that case the amplitude of the wave coming in from the right
will be zero:

G =0, (for scattering from the left); [2.136]

A is the amplitude of the incident wave, B is the amplitude of the reflected wave,
and F is the amplitude of the transmitted wave. Solving Equations 2.133 and
2.135 for B and F, we find
] |
LA S
1—iB 1 —iB
(If you want to study scattering from the right, set A = 0; then G is the incident
amplitude, F is the reflected amplitude, and B is the transmitted amplitude.)

B

A. [2.137]

A

A eikx Feikx
—_ . —_
Be—ikx Ge—ikx

x Y

FIGURE 2.15: Scattering from a delta func-
tion well.
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Now, the probability of finding the particle at a specified location is given by
|W|2, so the relarive3” probability that an incident particle will be reflected back is

_ B _ B

R=—5=——.
AR 1482

[2.138]

R is called the reflection coefficient. (If you have a beam of particles, it tells
you the fraction of the incoming number that will bounce back.) Meanwhile, the
probability of transmission is given by the transmission coefficient

|F|? !
= = . 2.139
AF = 1152 2159
Of course, the sum of these probabilities should be 1—and it is:
R+T=1. [2.140]

Notice that R and T are functions of 8, and hence (Equations 2.130 and 2.135)
of E:

1 1
T

R = _, = : 2.141
1+ QR2E/ma?)’ 1 4+ (ma?/2R%E) : ]

The higher the energy, the greater the probability of transmission (which certainly
seems reasonable).

This is all very tidy, but there is a sticky matter of principle that we cannot
altogether ignore: These scattering wave functions are not normalizable, so they
don’t actually represent possible particle states. But we know what the resolution to
this problem is: We must form normalizable linear combinations of the stationary
states, just as we did for the free particle—true physical particles are represented
by the resulting wave packets. Though straightforward in principle, this is a messy
business in practice, and at this point it is best to turn the problem over to a
computer.*® Meanwhile, since it is impossible to create a normalizable free-particle
wave function without involving a range of energies, R and T should be interpreted
as the approximate reflection and transmission probabilities for particles in the
vicinity of E.

Incidentally, it might strike you as peculiar that we were able to analyze a
quintessentially time-dependent problem (particle comes in, scatters off a potential,

3 This is not a normalizable wave function. so the absolute probability of finding the particle
at a particular location is not well defined; nevertheless. the ratio of probabilities for the incident and
reflected waves is meaningful. More on this in the next paragraph.

38Numerical studies of wave packets scattering off wells and barriers reveal extraordinarily rich
structure. The classic analysis is A. Goldberg, H. M. Schey. and J. L. Schwartz, Am. J. Phys. 35, 177
(1967); more recent work can be found on the Web.
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V(x) = od(x)

[

| X  FIGURE 2.16: The delta-function barrier.

and flies off to infinity) using stationary states. After all, ¥ (in Equations 2.131
and 2.132) is simply a complex, time-independent, sinusoidal function, extending
(with constant amplitude) to infinity in both directions. And yet, by imposing
appropriate boundary conditions on this function we were able to determine the
probability that a particle (represented by a localized wave packet) would bounce
off, or pass through, the potential. The mathematical miracle behind this is, I
suppose, the fact that by taking linear combinations of states spread over all space,
and with essentially trivial time dependence, we can construct wave functions that
are concentrated about a (moving) point, with quite elaborate behavior in time (see
Problem 2.43).

As long as we’ve got the relevant equations on the table, let’s look briefly at
the case of a delta-function barrier (Figure 2.16). Formally, all we have to do is
change the sign of «. This kills the bound state, of course (Problem 2.2). On the
other hand, the reflection and transmission coefficients, which depend only on ol
are unchanged. Strange to say, the particle is just as likely to pass through the barrier
as to cross over the well! Classically, of course, a particle cannot make it over an
infinitely high barrier, regardless of its energy. In fact, classical scattering problems
are pretty dull: If £ > Vpax, then T = 1 and R = O—the particle certainly
makes it over; if E < Vyax then T = 0 and R = 1—it rides up the hill until
it runs out of steam, and then returns the same way it came. Quantum scattering
problems are much richer: The particle has some nonzero probability of passing
through the potential even if E < Vinux. We call this phenomenon tunneling; it is
the mechanism that makes possible much of modern electronics—not to mention
spectacular advances in microscopy. Conversely, even if E > Vpax there is a
possibility that the particle will bounce back—though I wouldn’t advise driving
off a cliff in the hope that quantum mechanics will save you (see Problem 2.35).

xProblem 2.23 Evaluate the following integrals:
(a) fH(* —3x2 +2x — D8(x +2) dx.
(b) j}fo[cos(lx) +2]16(x — ) dx.
(c) _+,' exp(|x]| + 3)8(x — 2) dx.
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Problem 2.24 Delta functions live under integral signs, and two expressions (D (x)
and D;(x)) involving delta functions are said to be equal if

+00 +00
f)D(x)dx = F(x)Da(x)dx.

-0 -
for every (ordinary) function f(x).
(a) Show that

8(cx) = ﬁrﬁ(x). [2.142]

where c is a real constant. (Be sure to check the case where ¢ is negative.)
(b) Let 8(x) be the step function:

1, ifx>0.

0. ifx <0. [2.143]

6(x) = {

(In the rare case where it actually matters, we define 8(0) to be 1/2.) Show
that df/dx = §(x).

* xProblem 2.25 Check the uncertainty principle for the wave function in

Equation 2.129. Hint: Calculating (p?) is tricky, because the derivative of ¥ has
a step discontinuity at x = 0. Use the result in Problem 2.24(b). Partial answer:

(p?) = (ma/m)?.

*xProblem 2.26 What is the Fourier transform of §(x)? Using Plancherel’s theorem,
show that
1 +oo
§(x) = — f ™ dk. [2.144]
27 J
Comment: This formula gives any respectable mathematician apoplexy. Although
the integral is clearly infinite when x = 0, it doesn’t converge (to zero or any-
thing else) when x s O, since the integrand oscillates forever. There are ways
to patch it up (for instance, you can integrate from —L to +L, and interpret
Equation 2.144 to mean the average value of the finite integral, as L — o0).
The source of the problem is that the delta function doesn’t meet the requirement
(square-integrability) for Plancherel’s theorem (see footnote 33). In spite of this,
Equation 2.144 can be extremely useful, if handled with care.

*xProblem 2.27 Consider the double delta-function potential
Vx) =—a[d(x +a) + 5(x — a)],

where o and « are positive constants.
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(a) Sketch this potential.

(b) How many bound states does it possess? Find the allowed energies, for « =
h%/ma and for @ = h?/4ma, and sketch the wave functions.

* xProblem 2.28 Find the transmission coefficient for the potential in Problem 2.27.

2.6 THE FINITE SQUARE WELL

As a last example, consider the finite square well potential

~_ ] VY, for —a<x<a,

where Vj is a (positive) constant (Figure 2.17). Like the delta-function well, this
potential admits both bound states (with E < 0) and scattering states (with £ > 0).
We’ll look first at the bound states.

In the region x < —a the potential is zero, so the Schrodinger equation reads

h* d*y v
_— — Ev. = K2,
2m dx? . or dx2 Y
where
K = ——-—“_2’"5 [2.146]

is real and positive. The general solution is ¥ (x) = A exp(—«x) + B exp(«x), but
the first term blows up (as x — —00), so the physically admissible solution (as
before—see Equation 2.119) is

(x) = Be*', forx < —a. [2.147]
14

A V(x)

—a a

FIGURE 2.17: The finite square well
(Equation 2.145).
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In the region —a < x < a, V(x) = —Vj, and the Schrédinger equation reads
n? d*y A
- — Vo = EVY, = ="y,
2m dx? ov v. o dx? 4
where

V2m(E + V)
i
Although E is negative, for bound states, it must be greater than —Vj, by the

old theorem E > Vpin (Problem 2.2); so / is also real and positive. The general
solution is3?

[ . [2.148]

¥(x) = Csin(lx) + Dcos(lx), for —a <x < a, [2.149]

where C and D are arbitrary constants. Finally, in the region x > « the potential
is again zero; the general solution is {(x) = Fexp(—«x) + G exp(kx), but the
second term blows up (as x — 00), so we are left with

Y(x)=Fe ™. forx>a. [2.150]

The next step is to impose boundary conditions: ¥ and dvy/dx continuous at
—a and +a. But we can save a little time by noting that this potential is an even
function, so we can assume with no loss of generality that the solutions are either
even or odd (Problem 2.1(c)). The advantage of this is that we need only impose
the boundary conditions on one side (say, at +a); the other side is then automatic,
since ¥ (—x) = F ¥ (x). I'll work out the even solutions; you get to do the odd
ones in Problem 2.29. The cosine is even (and the sine is odd), so I'm looking for
solutions of the form

Fe™*, for x > a.
Y(x) =13 Dcos(lx). for0<x <a. [2.151]
Y (—x). for x <0.

The continuity of y(x), at x = «a, says
Fe™“ = Dcos(la). [2.152]
and the continuity of dyr/dx, says
—kFe™ % = —IDsin(la). [2.153]
Dividing Equation 2.153 by Equation 2.152, we find that
k = Itan(la). [2.154]

3You can. it you like, write the general solution in exponential form (C'ef™® + D'e=/¥). This
leads to the same final result. but since the potential is symmetric we know the solutions will be either
even or odd. and the sine/cosine notation allows us to exploit this directly.
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FIGURE 2.18: Graphical solution to Equation 2.156, for 2y = 8 (even states).

This is a formula for the allowed energies, since x and / are both functions
of E. To solve for E, we first adopt some nicer notation: Let

z=la, and zp= ;_—l\/ 2mVy. [2.155]
i

According to Equations 2.146 and 2.148, (k> + %) = 2m Vo /h?, so ka = \[z5 — 2%,

and Equation 2.154 reads
tanz = ,/(z0/2)® — 1. [2.156]

This is a transcendental equation for z (and hence for E) as a function of zp
(which is a measure of the “size” of the well). It can be solved numerically, using
a computer, or graphically, by plotting tanz and +/(z9/z)? — 1 on the same grid,
and looking for points of intersection (see Figure 2.18). Two limiting cases are of
special interest:

1. Wide, deep well. If z( is very large, the intersections occur just slightly
below z, = nm/2, with n odd; it follows that

2242
nemw-h*

E,+Vyx 20 m
nt Vo= o o)

[2.157]
But E + Vy is the energy above the bottom of the well, and on the right side
we have precisely the infinite square well energies, for a well of width 2a (see
Equation 2.27)—or rather, half of them, since this n is odd. (The other ones, of
course, come from the odd wave functions, as you’ll discover in Problem 2.29.) So
the finite square well goes over to the infinite square well, as V) — oco; however,
for any finite Vy there are only a finite number of bound states.

2. Shallow, narrow well. As zo decreases, there are fewer and fewer bound
states, until finally (for zy < m /2, where the lowest odd state disappears) only one
remains. It is interesting to note, however, that there is always one bound state, no
matter 1ow “weak” the well becomes.
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You’re welcome to normalize i (Equation 2.151), if you’re interested

(Problem 2.30), but I'm going to move on now to the scattering states (E > 0).
To the left, where V(x) = 0, we have

Y (x) = Ae™® + Be ™™, for (x < —a). [2.158]

where (as usual)

V2mE

k= 2.15
P [2.159]
Inside the well, where V(x) = —Vp,
¥ (x) = Csin(Ix) + Dcos(Ix), for (—a < x < a), [2.160]
where, as before,
V2 Vi
[ = M_ [2.161]
h
To the right, assuming there is no incoming wave in this region, we have
¥ (x) = Fe™. [2.162]

Here A is the incident amplitude, B is the reflected amplitude, and F is the trans-
mitted amplitude.*0
There are four boundary conditions: Continuity of i (x) at —a says
Ae*@ 4 Be™ = —Csin(la) + D cos(la), [2.163]
continuity of dyr/dx at —a gives
ik[Ae~ike — Be* @] = I[C cos(la) + D sin(la)] [2.164]
continuity of ¥ (x) at +a yields
Csin(la) + D cos(la) = Fe'*®, [2.165]

and continuity of dyr/dx at +a requires

I[C cos(la) — Dsin(la)] = ik Fe'*. [2.166]

Owe could look for even and odd functions. as we did in the casc of bound states. but the
scaltering problem is inherently asymmetric, since the waves come in from one side only, and the
exponential notation (representing traveling waves) is more natural in this context.
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TA

£

FIGURE 2.19: Transmission coefficient as a function of energy (Equation 2.169).

We can use two of these to eliminate C and D, and solve the remaining two for

B and F (see Problem 2.32):
.sin(2la)

2 2
=1——)U —k7)r. 1
B=i ] (= =k"F [2.167]

e—Zi/\’uA
F —

= — : [2.168]
cos(2la) — i &5 sin(2la)

The transmission coefficient (T = |F|?/|A|*), expressed in terms of the orig-
inal variables, is given by

Vi 2a
T =14+ -—-% ——sin® [ —/2m(E + Vo) ). 2.169

+4E(E+V0) sin (ﬁ m(E + Vp) [ ]
Notice that T = 1 (the well becomes “transparent™) whenever the sine is zero,

which is to say, when
2
%V 2m(E, + Vo) = nm, [2.170]
i

where » is any integer. The energies for perfect transmission, then, are given by
2222

nemw=h*

2m(2a)?’

which happen to be precisely the allowed energies for the infinite square well. T
is plotted in Figure 2.19, as a function of energy.*!

En+VO: [2.171]

xProblem 2.29 Analyze the odd bound state wave functions for the finite square
well. Derive the transcendental equation for the allowed energies, and solve it
graphically. Examine the two limiting cases. Is there always an odd bound state?

1 This remarkable phenomenon has been observed in the laboratory, in the form of the Ramsauer-
Townsend effect. For an illuminating discussion see Richard W. Robinett. Quantum Mechanics. Oxford
U.P.. 1997. Section 12.4.1.
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Problem 2.30 Normalize ¥ (x) in Equation 2.151, to determine the constants D
and F.

Problem 2.31 The Dirac delta function can be thought of as the limiting case of a
rectangle of area 1, as the height goes to infinity and the width goes to zero. Show
that the delta-function well (Equation 2.114) is a “weak” potential (even though it
is infinitely deep), in the sense that zg — 0. Determine the bound state energy for
the delta-function potential, by treating it as the limit of a finite square well. Check
that your answer is consistent with Equation 2.129. Also show that Equation 2.169
reduces to Equation 2.141 in the appropriate limit.

Problem 2.32 Derive Equations 2.167 and 2.168. Hint: Use Equations 2.165 and
2.166 to solve for C and D in terms of F:

k N k N
C = [sin(la) + iT cos(la)] e*F;, D= [cos(la) - i7 siu(la)] ek F,

Plug these back into Equations 2.163 and 2.164. Obtain the transmission coefficient,
and confirm Equation 2.169.

* %xProblem 2.33 Determine the transmission coefficient for a rectangular barrier
(same as Equation 2.145, only with V(x) = +Vy > 0 in the region —a < x < a).
Treat separately the three cases E < Vp, E = Vy, and E > Vj (note that the
wave fm}‘ction inside the barrier is different in the three cases). Partial answer: For
E < Vp,*?

V2 2
T '=14 —0  ginh? (T"\/zm(vo — E)) )
7

4E(Vy — E)

xProblem 2.34 Consider the “step” potential:

0, ifx<0.
Vx) = [ Vo. ifx > 0.

(a) Calculate the reflection coefficient, for the case £ < Vj, and comment on
the answer.

(b) Calculate the reflection coefficient for the case E > V.

(c) For a potential such as this, which does not go back to zero to the right of
the barrier, the transmission coefficient is nor simply |F|*/|A|? (with A the

42This is a good example of tunneling— classically the particle would bounce back.
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AVix)

Q—>~

xy

_Vo

FIGURE 2.20: Scattering from a “cliff”” (Problem 2.35).

(d)

incident amplitude and F the transmitted amplitude), because the transmitted
wave travels at a different speed. Show that

E —Vy |F|?
T =/ - O:A:z, [2.172]

for E > V. Hint: You can figure it out using Equation 2.98, or—more ele-
gantly, but less informatively—from the probability current (Problem 2.19).
What is T, for E < V?

For E > Vj, calculate the transmission coefficient for the step potential, and
check that T + R = 1.

Problem 2.35 A particle of mass m and kinetic energy E > 0 approaches an
abrupt potential drop Vg (Figure 2.20).

(a)

(b)

(c)

What is the probability that it will “reflect” back, if E = V/3? Hint: This
is just like Problem 2.34, except that the step now goes down, instead of up.

I drew the figure so as to make you think of a car approaching a cliff, but
obviously the probability of “bouncing back” from the edge of a cliff is fur
smaller than what you got in (a)—unless you're Bugs Bunny. Explain why
this potential does not correctly represent a cliff. Hinr: In Figure 2.20 the
potential energy of the car drops discontinuously to —Vp, as it passes x = 0;
would this be true for a falling car?

When a free neutron enters a nucleus, it experiences a sudden drop in poten-
tial energy, from V = 0 outside to around —12 MeV (million electron volts)
inside. Suppose a neutron, emitted with kinetic energy 4 MeV by a fission
event, strikes such a nucleus. What is the probability it will be absorbed,
thereby initiating another fission? Hint: You calculated the probability of
reflection in part (a); use T = 1 — R to get the probability of transmission
through the surface.
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FURTHER PROBLEMS FOR CHAPTER 2

Problem 2.36 Solve the time-independent Schrédinger equation with appropri-
ate boundary conditions for the “‘centered” infinite square well: V(x) = 0 (for
—a < x < +a), V(x) = oo (otherwise). Check that your allowed energies are
consistent with mine (Equation 2.27), and confirm that your i/'s can be obtained
from mine (Equation 2.28) by the substitution x — (x + a)/2 (and appropriate
renormalization). Sketch your first three solutions, and compare Figure 2.2. Note
that the width of the well is now 2a.

Problem 2.37 A particle in the infinite square well (Equation 2.19) has the initial
wave function

W(x.0) = Asin’*(rx/a) (0 <x <a).

Determine A, find W(x. ), and calculate (x), as a function of time. What is the
expectation value of the energy? Hint: sin” 6 and cos” 6 can be reduced, by repeated
application of the trigonometric sum formulas, to linear combinations of sin(m8)
and cos(m®), withm =0.1.2, ... .n.

xProblem 2.38 A particle of mass m is in the ground state of the infinite square well
(Equation 2.19). Suddenly the well expands to twice its original size—the right
wall moving from a to 2a—Ileaving the wave function (momentarily) undisturbed.
The energy of the particle is now measured.

(a) What is the most probable result? What is the probability of getting that
result?

(b) What is the next most probable result, and what is its probability?

(c) What is the expectation value of the energy? Hint: If you find yourself
confronted with an infinite series, try another method.

Problem 2.39

(a) Show that the wave function of a particle in the infinite square well returns
to its original form after a quantum revival time T = 4ma?/7h. That is:
Y(x.T) = W¥(x.0) for any state (nor just a stationary state).

(b) What is the classical revival time, for a particle of energy E bouncing back
and forth between the walls?

(c) For what energy are the two revival times equal?**

43The fact that the classical and quantum revival times bear no obvious relation to one another
(and the quantum one doesn’t even depend on the energy) is a curious paradox: see Daniel Styer.
Am. J. Phys. 69, 56 (2001).
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Problem 2.40 A particle of mass m is in the potential

o0 (x <0),
Vx) =1 —320%/ma* (0 <x <a).
0 (x > a).

(a) How many bound states are there?

(b) In the highest-energy bound state, what is the probability that the particle
would be found outside the well (x > a)? Answer: 0.542, so even though it
is “bound” by the well, it is more likely to be found outside than inside!

Problem 2.41 A particle of mass m in the harmonic oscillator potential
(Equation 2.43) starts out in the state

)
Y(x,00=A (,l -2 M,\) e""z“: )
V &

for some constant A.

2

(a) What is the expectation value of the energy?

(b) At some later time T the wave function is

)
Y(x,T)=B (] +2 /%U_x) e—’%},ﬂx“’
1

for some constant B. What is the smallest possible value of T?

Problem 2.42 Find the allowed energies of the half harmonic oscillator

N (1/2me*x2. for x > 0.
Vo) = [ 0. for x < 0.
(This represents, for example. a spring that can be stretched, but not compressed.)

Hint: This requires some careful thought, but very little actual computation.

* xProblem 2.43 In Problem 2.22 you analyzed the stationary gaussian free particle
wave packet. Now solve the same problem for the traveling gaussian wave packet,
starting with the initial wave function

\Ij(x., 0) — Ae—ﬂ.\"z el./.\‘~

where [ is a real constant.
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* xProblem.2.44 Solve the time-independent Schrodinger equation for a centered
infinite square well with a delta-function barrier in the middle:

ad(x), for —a <x < +a,
00, for |x| > a.

V(x)=l

Treat the even and odd wave functions separately. Don’t bother to normalize them.
Find the allowed energies (graphically, if necessary). How do they compare with
the corresponding energies in the absence of the delta function? Explain why the
odd solutions are not affected by the delta function. Comment on the limiting cases
a — 0 and o — co.

Problem 2.45 If two (or more) distinct** solutions to the (time-independent)
Schrodinger equation have the same energy E, these states are said to be degen-
erate. For example, the free particle states are doubly degenerate—one solution
representing motion to the right, and the other motion to the left. But we have never
encountered normalizable degenerate solutions, and this is no accident. Prove the
following theorem: In one dimension® there are no degenerate bound states. Hint:
Suppose there are rwo solutions, ¥ and ¥, with the same energy E. Multiply the
Schrédinger equation for y; by ¥, and the Schrodinger equation for 2 by ¥y,
and subtract, to show that (Y»dy/dx — ydy/dx) is a constant. Use the fact
that for normalizable solutions ¥ — 0 at * 00 to demonstrate that this constant is
in fact zero. Conclude that /> is a multiple of v{, and hence that the two solutions
are not distinct.

Problem 2.46 Imagine a bead of mass m that slides frictionlessly around a circular
wire ring of circumference L. (This is just like a free particle, except that ¢ (x +
L) = ¥ (x).) Find the stationary states (with appropriate normalization) and the
corresponding allowed energies. Note that there are nwo independent solutions for
each energy E,—corresponding to clockwise and counter-clockwise circulation;
call them ¥} (x) and ¥, (x). How do you account for this degeneracy, in view of
the theorem in Problem 2.45 (why does the theorem fail, in this case)?

x xProblem 2.47 Attention: This is a strictly qualitative problem—no calculations
allowed! Consider the “double square well” potential (Figure 2.21). Suppose the

+1f two solutions differ only by a multiplicative constant (so that. once normalized. they differ
only by a phase factor ¢/®). they represent the same physical state. and in this sense they are nor distinct
solutions. Technically, by *‘distinct™ I mean “linearly independent.”

B higher dimensions such degeneracy is very common. as we shall see in Chapter 4. Assume
that the potential does not consist of isolated picces separated by regions where V = co—1wo isolated
infinite square wells. for instance, would give rise to degencrate bound states. for which the particle is
cither in the one or in the other.
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FIGURE 2.21: The double square well (Problem 2.47).

depth Vj and the width a are fixed, and large enough so that several bound states
occur.

(a) Sketch the ground state wave function ¥ and the first excited state v,
(1) for the case b = 0, (ii) for b = a, and (iii) for b > a.

(b) Qualitatively, how do the corresponding energies (E| and E3) vary, as b goes
from 0 to co? Sketch E|(b) and E2(b) on the same graph.

(c) The double well is a very primitive one-dimensional model for the potential
experienced by an electron in a diatomic melecule (the two wells represent
the attractive force of the nuclei). If the nuclei are free to move, they will
adopt the configuration of minimum energy. In view of your conclusions in
(b), does the electron tend to draw the nuclei together, or push them apart?
(Of course, there is also the internuclear repulsion to consider, but that’s a
separate problem.)

Problem 2.48 In Problem 2.7(d) you got the expectation value of the energy by
summing the series in Equation 2.39, but 1 warned you (in footnote 15) not to try it
the “old fashioned way,” (H) = f Y(x.0)*HWY(x.0)dx, because the discontinu-
ous first derivative of W(x. 0) renders the second derivative problematic. Actually,
you could have done it using integration by parts, but the Dirac delta function
affords a much cleaner way to handle such anomalies.

(a) Calculate the first derivative of W(x.0) (in Problem 2.7), and express the
answer in terms of the step function, 8(x — a/2), defined in Equation 2.143.
(Don’t worry about the end points—just the interior region 0 < x < a.)

(b) Exploit the result of Problem 2.24(b) to write the second derivative of W (x, 0)
in terms of the delta function.

(c) Evaluate the integral [ W(x.0)*HW(x,0)dx, and check that you get the
same answer as before.
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* % xProblem 2.49
(a) Show that

1/4 2 .
mo mw ( , a el Lht it
,[ = — —_ . R —_— —
W(x,t) (nh) exp[ T (,x + 2(l—l—e ) + - 2axe )]

satisfies the time-dependent Schrodinger equation for the harmonic oscillator
potential (Equation 2.43). Here a is any real constant with the dimensions of
length, 46

(b) Find |W(x, 1)|?, and describe the motion of the wave packet.

(c) Compute (x) and (p), and check that Ehrenfest’s theorem (Equation 1.38) is
satisfied.

* xProblem 2.50 Consider the moving delta-function well:
Vix,t) = —ad(x — vt),
where v is the (constant) velocity of the well.

(a) Show that the time-dependent Schrédinger equation admits the exact solution
W(x. 1) = Vma p—mals—vi|/h? o —iLE+(1/2mud)—mux]/h
A h ’

where E = —ma?/2h? is the bound-state energy of the starionary delta
function. Hint: Plug it in and check it! Use the result of Problem 2.24(b).

(b) Find the expectation value of the Hamiltonian in this state, and comment on
the result.

* % xProblem 2.51 Consider the potential

2.2

’-
V() = —— % sech?(ax),
m

where ¢ is a positive constant, and *“sech” stands for the hyperbolic secant.
(a) Graph this potential.
(b) Check that this potential has the ground state
Yo(x) = A sech(ax).

and find its energy. Normalize v, and sketch its graph.

40This rare cxample of an exact closed-form solution to the time-dependent Schréidinger equation
was discovered by Schrédinger himself, in 1926,
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(c) Show that the function

Yr(x) = A (

ik—a tanh(ax)) ik

: e™,
ik +ua

(where k = ~/2mE/h, as usual) solves the Schrédinger equation for any

(positive) energy E. Since tanhz — —1 as z - —o0,

Vi (x) = Ae™** . for large negative x.

This represents, then, a wave coming in from the left with no accompany-
ing reflected wave (i.e., no term exp(—ikx)). What is the asymptotic form
of Yy (x) at large positive x? What are R and T, for this potential? Com-
ment: This is a famous example of a reflectionless potential —every incident
particle, regardless of its energy, passes right through.*’ .

Problem 2.52 The scattering matrix. The theory of scattering generalizes in
a pretty obvious way to arbitrary localized potentials (Figure 2.22). To the left
(Region I), V(x) =0, so

v 2mE

Y(x) = Ae™ 4+ Be™**  where k = p [2.173]
1
To the right (Region III), V (x) is again zero, so
Y(x) = Fe* 4 Ge™**, [2.174]

In between (Region II), of course, I can’t tell you what i is until you specify the
potential, but because the Schrodinger equation is a linear, second-order differential
equation, the general solution has got to be of the form

Y(x) = Cf(x)+ Dg(x).

where f(x) and g(x) are two linearly independent particular solutions.*® There
will be four boundary conditions (two joining Regions I and I, and two joining

Ae'kx V(x) Fe'kx
_ —_—
E Jr— -—
Be—lkx Ge—lkx
- >
U/ X
Region | Region Il Region |l

FIGURE 2.22: Scattering from an arbitrary localized potential (V(x) = 0 except in
Region II); Problem 2.52.

+7R. E. Crandall and B. R. Lilt. Annals of Physics. 146, 458 (1983).

*8Sce any book on ditferential cquations— for example, J. L. Van Iwaarden. Ordinary Differential
Equartions with Numerical Teclmigues. Harcourt Brace Jovanovich, San Diego, 1985, Chapter 3.
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Regions II and III). Two of these can be used to eliminate C and D, and the other
two can be “solved” for B and F in terms of A and G:

B=81A+812G. F =854+ §»G.

The four coefficients S;;, which depend on & (and hence on E), constitute a 2 x 2
matrix S, called the scattering matrix (or S-matrix, for short). The S-matrix tells
you the outgoing amplitudes (B and F) in terms of the incoming amplitudes (A

and G):
B\ (Sun Sn2 A
(F) B (521 Szg) (G) : [2.175]

In the typical case of scattering from the left, G = 0, so the reflection and trans-
mission coefficients are

=Ll s 52N Cime e
T AR 6o 1A G0 i
For scattering from the right, A = 0, and
_IFP 2 |BJ? )
R, = GE =|82l°. T, = GE = |S12]°. [2.177]
1GI 14— G T 4=0
(a) Construct the S-matrix for scattering from a delta-function well (Equa-
tion 2.114).

(b) Construct the S-matrix for the finite square well (Equation 2.145). Hint: This
requires no new work, if you carefully exploit the symmetry of the problem.

* % xProblem 2.53 The transfer matrix. The S-matrix (Problem 2.52) tells you the
outgoing amplitudes (B and F) in terms of the incoming amplitudes (A and
G)—Equation 2.175. For some purposes it is more convenient to work with the
transfer matrix, M, which gives you the amplitudes to the right of the potential
(F and G) in terms of those to the /eft (A and B):

F — My Mp A
(G) B (MZl Mp_g) (B) [2.178]

(a) Find the four elements of the M-matrix, in terms of the elements of the
S-matrix, and vice versa. Express R;, T, R,, and T, (Equations 2.176 and
2.177) in terms of elements of the M-matrix.

(b) Suppose you have a potential consisting of two isolated pieces (Figure 2.23).
Show that the M-matrix for the combination is the product of the two
M -matrices for each section separately:

M = M;M;,. [2.179]

(This obviously generalizes to any number of pieces, and accounts for the
usefulness of the M-matrix.)
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FIGURE 2.23: A potential consisting of two isolated pieces (Problem 2.53).
(c) Construct the M-matrix for scattering from a single delta-function potential
at point a:
V(i) =—ad(x —a).

(d) By the method of part (b), find the M-matrix for scattering from the double
delta function

Vix)=—ald(x+a)+5(x —a)].

What is the transmission coefficient for this potential?

Problem 2.54 Find the ground state energy of the harmonic oscillator, to five sig-
nificant digits, by the “wag-the-dog” method. That is, solve Equation 2.72 numer-
ically, varying K until you get a wave function that goes to zero at large &. In
Mathematica, appropriate input code would be

Plot[Evaluate[u[x)/.NDSolve[{u”’[x] -(x* - K)*u[x] == 0, u[0] == 1,

w'[0] == 0}, u[x], {x, 10~8, 10}, MaxSteps -> 10000]], {x, a, b},

PlotRange -> {c, d}];
(Here (a, b) is the horizontal range of the graph, and (c, d) is the vertical range—
start with a =0, b = 10, ¢ = —10, d = 10.) We know that the correct solution is
K =1, so you might start with a “guess” of K = 0.9. Notice what the “tail” of the
wave function does. Now try K = 1.1, and note that the tail flips over. Somewhere
in between those values lies the correct solution. Zero in on it by bracketing K °
tighter and tighter. As you do so, you may want to adjust a, b, ¢, and d, to zero
in on the cross-over point.

Problem 2.55 Find the first three excited state energies (to five significant digits)
for the harmonic oscillator, by wagging the dog (Problem 2.54). For the first (and
third) excited state you will need to set #[0] == 0. 4'[0] == 1.

Problem 2.56 Find the first four allowed energies (to five significant digits) for
the infinite square well, by wagging the dog. Hint: Refer to Problem 2.54, making
appropriate changes to the differential equation. This time the condition you are
looking for is u(1) = 0.




CHAPTER 3

FORMALISM

3.1 HILBERT SPACE

In the last two chapters we have stumbled on a number of interesting properties of
simple quantum systems. Some of these are “accidental” features of specific poten-
tials (the even spacing of energy levels for the harmonic oscillator, for example),
but others seem to be more general, and it would be nice to prove them once and
for all (the uncertainty principle, for instance, and the orthogonality of stationary
states). The purpose of this chapter is to recast the theory in a more powerful form,
with that in mind. There is not much here that is genuinely new; the idea, rather,
is to make coherent sense of what we have already discovered in particular cases.

Quantum theory is based on two constructs: wave functions and operators. The
state of a system is represented by its wave function, observables are represented
by operators. Mathematically, wave functions satisfy the defining conditions for
abstract vectors, and operators act on them as linear transformations. So the
natural language of quantum mechanics is linear algebra.!

But it is not, I suspect, a form of linear algebra with which you are immediately
familiar. In an N-dimensional space it is simplest to represent a vector, |a), by the
N-tuple of its components, {a,}, with respect to a specified orthonormal basis:

o) > a= :_ . [3.1]

ay

r you have never studied linear algebra, you should read the Appendix before continuing.
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The inner product, («|8), of two vectors (generalizing the dot product in three
dimensions) is the complex number,

(a|BY =aiby +asby+---+ayby. [3.2]

Linear transformations, T, are represented by matrices (with respect to the specified
basis), which act on vectors (to produce new vectors) by the ordinary rules of matrix
multiplication:

ny f2 - NN a
hhy M -+ hny aj

B)=Tla) >b=Ta=| . i . N (3.3]
Il N2 - INN an

But the “‘vectors™ we encounter in quantum mechanics are (for the most part)
Sfunctions, and they live in infinite-dimensional spaces. For them the N-tuple/matrix
notation is awkward, at best, and manipulations that are well-behaved in the finite-
dimensional case can be problematic. (The underlying reason is that whereas the
finite sum in Equation 3.2 always exists, an infinite sum—or an integral —may not
converge, in which case the inner product does not exist, and any argument involving
inner products is immediately suspect.) So even though most of the terminology and
notation should be familiar, it pays to approach this subject with caution.

The collection of all functions of x constitutes a vector space, but for our
purposes it is much too large. To represent a possible physical state, the wave
function ¥ must be normalized :

f |\11|2d,\- =1.

The set of all square-integrable functions, on a specified interval

b
f(x) such that f | FOO*dx < oo. [3.4]

a
constitutes a (much smaller) vector space (see Problem 3.1(a)). Mathematicians
call it La(a. b); physicists call it Hilbert space.? In quantum mechanics, then,

Wave functions live in Hilbert space. [3.5]

ZFor us. the limits (a and b) will almost always be % 0. but we might as well keep things more
general for the moment.

*Technically. a Hilbert space is a complete inner product space, and the collection of square-
integrable Tunctions is only one example of a Hilbent space—indeed. every finite-dimensional vector
space is trivially a Hilbert space. But since L1 is the arcna of quantuin mechanics, it's what physieists
generally mean when they say “Hilbert spacc.” By the way. the word complete here means that any
Cauchy sequence of functions in Hilbert space converges (o a function that is also in the space: it has no
“holes™ in it. just as the set of all real numbers has no holes (by contrast, the space of all polynomials,
Tor example, like the set of all rdrional numbers. certainly does have holes in it). The completeness
of a space has nothing to do with the completencss (same word. unfortunately) of a ser of finctions.
which is the property that any other function can be expressed as a linear combination of them.
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We define the inner product of two functions, f(x) and g(x), as follows:

b
(fley= | F(x)eg(x)dx. [3.6]

If f and g are both square-integrable (that is, if they are both in Hilbert space),
their inner product is guaranteed to exist (the integral in Equation 3.6 converges to
a finite number).* This follows from the integral Schwarz inequality:’

b b b
f f)glx) dX’ < \[f Lf @) dX/ lg(x)|?dx. (3.7]

You can check for yourself that Equation 3.6 satisfies all the conditions for an inner
product (Problem 3.1(b)). Notice in particular that

(glf) = (flg)*. [3.8]

Moreover, the inner product of f(x) with itself,

b
Mﬂ=fumWw. 3.9]

a

is real and non-negative; it’s zero only® when f(x) = 0.

A function is said to be normalized if its inner product with itself is 1; two
functions are orthogonal if their inner product is 0; and a set of functions, {fy},
is orthonormal if they are normalized and mutually orthogonal:

(fmlfn) = Spn- [3.10]

Finally, a set of functions is complete if any other function (in Hilbert space) can
be expressed as a linear combination of them:

F) =D en ful). [3.11]

n=lI

+In Chapter 2 we were obliged on occasion to work with functions that were nor normalizable.
Such functions lic outside Hilbert space, and we are going o have to handle them with special care, as
you will see shortly. For the moment, 1 shall assume that all the functions we encounter are in Hilbert
space.

5For a proof. see F. Riesz and B. Sz.-Nagy. Functional Analysis (Unger, New York, 1955),
Section 21. In a finite dimensional vector space the Schwarz inequality, ](alﬂ)|2 < (x|a)(B]B). is
easy to prove (see Problem A.5). But that proof assumies the existence of the inner products, which is
precisely what we are trying to establish here.

SWhat about a function that is zero everywhere except at a few isolated points? The integral
(Equation 3.9) would still vanish, cven though the function itself does not. If this bothers you, you
should have been a math major. In physics such pathological functions do not occur, but in any case, in
Hilbert space two functions that have the same square integral are considered equivalent. Technically,
vectors in Hilbert space represent equivalence classes of functions.
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If the functions { f,, (x)} are orthonormal, the coefficients are given by Fourier’s trick:

en = (ful F)- [3.12]

as you can check for yourself. I anticipated this terminology, of course, back
in Chapter 2. (The stationary states for the infinite square well (Equation 2.28)
constitute a complete orthonormal set on the interval (0. a); the stationary states
for the harmonic oscillator (Equation 2.67 or 2.85) are a complete orthonormal set
on the interval (—oo. 00).)

Problem 3.1

(a) Show that the set of all square-integrable functions is a vector space (refer
to Section A.l for the definition). Hint: The main problem is to show that
the sum of two square-integrable functions is itself square-integrable. Use
Equation 3.7. Is the set of all normalized functions a vector space?

(b) Show that the integral in Equation 3.6 satisfies the conditions for an inner
product (Section A.2).

*Problem 3.2

(a) For what range of v is the function f(x) = x" in Hilbert space, on the
interval (0. 1)? Assume v is real, but not necessarily positive.

(b) For the specific case v = 1/2, is f(x) in this Hilbert space? What about
£/ ()2 How about (d/dx)f ()7

3.2 OBSERVABLES

3.2.1 Hermitian Operators

The expectation value of an observable Q(x. p) can be expressed very neatly in
inner-product notation:’

(0) =f¢*Q‘Pd-\'=(‘PIQW>- [3.13]

"Remember that Q is the vperator constructed from @ by the replacement p — p = (h/i)d/dx.
These operators arc linear. in the sense that

Q[uf(.\') +bg(x)] = le_f(.\') + bQ.g(.\').

for any functions /" and g and any complex numbers « and b. They constitute linear transformations
(Section A.3) on the space of all Tunctions. However. they somelimes carry a function inside Hilbert
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Now, the outcome of a measurement has got to be real, and so, a fortiori, is the
average of many measurements:

(0) = (O)*. [3.14]

But the complex conjugate of an inner product reverses the order (Equation 3.8), so
(W1Q¥) = (QW|W). [3.15]

and this must hold true for any wave function W. Thus operators representing
observables have the very special property that

(F10F) =(QfIf) forall f(x). [3.16]

We call such operators hermitian.
Actually, most books require an ostensibly stronger condition:

(f10g) = (O flg) forall f(x)and all g(x). [3.17]

But it turns out, in spite of appearances, that this is perfectly equivalent to my
definition (Equation 3.16), as you will prove in Problem 3.3. So use whichever
you like. The essential point is that a hermitian operator can be applied either to
the first member of an inner product or to the second, with the same result, and
hermitian operators naturally arise in quantum mechanics because their expectation
values are real:

Observables are represented by hermitian operators. [3.18]

Well, let’s check this. Is the momentum operator, for example, hermitian?

hd © (hd
(f158) f 72 dx=%pg +f (li) gdx={p.
—00  J_ oo \ i dx

I used integration by parts, of course, and threw away the boundary term for the
usual reason: If f(x) and g(x) are square integrable, they must go to zero at = 00.8

g). [3.19]

space into a function outside it (see Problem 3.2(b)). and in this cuse the domain of the operator may
have to be restricted.

SActually. this is not quite truc. As | mention in Chapter 1. there exist pathological functions
that are square-integrable but deo not go to zero at infinity. However, such functions do not arise in
physics. and if you are worried about it we will simply restrict the domain of our operators to exclude
them. On finite intervals. though. you really do have to be more carcful with the boundary terms,
and an operator that is hermitian on (—00. 00) may not be hermitian on (0, o0) or (—x, 7). If you're
wondering about the infinite square well. it’s safest to think of those wave functions as residing on the
infinite line—they just happen to be zere outside (0. ).
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Notice how the complex conjugation of { compensates for the minus sign picked
up from integration by parts—the operator d/dx (without the i) is not hermitian,
and it does not represent a possible observable.

«Problem 3.3 Show that if (1|Qh) = (Qh|h) for all functions / (in Hilbert space),
then (flég) = (Qflg) for all f and g (i.e., the two definitions of “hermi-
tian"—Equations 3.16 and 3.17—are equivalent). Hint: First let h = f + g, and
then let h = f +ig.

Problem 3.4
(a) Show that the sum of two hermitian operators is hermitian.

(b) Suppose O is hermitian, and « is a complex number. Under what condition
(on @) is @ Q hermitian?

(c) When is the product of two hermitian operators hermitian?

(d) Show that the position operator (X = x) and the hamiltonian operator (H =
—(h?/2m)d?/dx?* 4 V (x)) are hermitian.

Problgm 3.5 The hermitian conjugate (or adjoint) of an operator O is the oper-
ator Q" such that

(f108) = (07 flg) (for all f and g). [3.20]
’ )

(A hermitian operator, then, is equal to its hermitian conjugate: Q = o*

(a) Find the hermitian conjugates of x, i, and d/dx.

(b) Construct the hermitian conjugate of the harmonic oscillator raising operator,
a4+ (Equation 2.47).

(c) Show that (OR) = RT Q7.

3.2.2 Determinate States

Ordinarily, when you measure an observable Q on an ensemble of identically
prepared systems, all in the same state W, you do not get the same result each
time—this is the indeterminacy of quantum mechanics.® Question: Would it be
possible to prepare a state such that every measurement of Q is certain to return
the same value (call it ¢)? This would be, if you like, a determinate state, for
the observable Q. (Actually, we already know one example: Stationary states are
determinate states of the Hamiltonian; a measurement of the total energy, on a

I'm talking about competent measurements, of course—it's always possible to make a mistake.
and simply get the wrong answer. but that's not the fault of quantum mechanics.
P 2
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particle in the stationary state W, is certain to yield the corresponding “allowed”
energy E,.)

Well, the standard deviation of Q, in a determinate state, would be zero, which
is to say,

o2 = (0 — (0 = (WI(Q — ¢)*¥) = (O —)¥|(0 —)¥) =0. [3.21]

(Of course, if every measurement glves g, their average is also g: (Q) = ¢q. I also
used the fact that O, and hence also Q — g, is a hermitian operator, to move one
factor over to the first term in the inner product.) But the only function whose inner
product with itself vanishes is 0, so

OV =qWv. [3.22]

This is the eigenvalue equation for the operator Q; W is an eigenfunction of 0,
and ¢ is the corresponding eigenvalue. Thus

Determinate states are eigenfunctions of Q [3.23]

Measurement of Q on such a state is certain to yield the eigenvalue, ¢.

Note that the eigenvalue is a number (not an operator or a function). You can
multiply any eigenfunction by a constant, and it is still an eigenfunction, with the
same eigenvalue. Zero does not count as an eigenfunction (we exclude it by defi-
nition—otherwise every number would be an eigenvalue, since 00= q0 =0 for
any operator O and all q). But there’s nothing wrong with zero as an eigenvalue.
The collection of all the eigenvalues of an operator is called its spectrum. Some-
times two (or more) linearly independent eigenfunctions share the same eigenvalue;
in that case the spectrum is said to be degenerate.

For example, determinate states of the total energy are eigenfunctions of the
Hamiltonian: .

Hy = Ey. [3.24]

which is precisely the time-independent Schrédinger equation. In this context we
use the letter E for the eigenvalue, and the lower case  for the eigenfunction (tack
on the factor exp(—i Et/h) to make it W, if you like; it’s still an eigenfunction
of H).

Example 3.1 Consider the operator
O=i—, [3.25]
where ¢ is the usual polar coordinate in two dimensions. (This operator might arise

in a physical context if we were studying the bead-on-a-ring; see Problem 2.46.)
Is Q hermitian? Find its eigenfunctions and eigenvalues.
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Solution: Here we are working with functions f(¢) on the finite interval 0 < ¢ <
2w, and stipulate that

flo+2m) = f(9). [3.26]
since ¢ and ¢ + 27 describe the same physical point. Using integration by parts,
. 27 dg 27 . (df* A
oa= [ 7 (i55) o =i - [ a2 ~)edo =010
f1Qzg A 6 fg|, A o flg

so O is hermitian (this time the boundary term disappears by virtue of Equation 3.26).
The eigenvalue equation,

. d
l-—

10 (@) =qf(@). [3.27]

has the general solution '
f(p) = Ae™9?, [3.28]

Equation 3.26 restricts the possible values of the ¢:
e =1 = ¢=0 *I1.%2,... [3.29]

The spectrum of this operator is the set of all integers, and it is nondegenerate.

Problem 3.6 Consider the operator O = d?/d¢?, where (as in Example 3.1)
¢ is the azimuthal angle in polar coordinates, and the functions are subject to
Equation 3.26. Is O hermitian? Find its eigenfunctions and eigenvalues. What is
the spectrum of 0? Is the spectrum degenerate?

3.3 EIGENFUNCTIONS OF A HERMITIAN OPERATOR

Our attention is thus directed to the eigenfunctions of hermitian operators (phys-
ically: determinate states of observables). These fall into two categories: If the
spectrum is discrete (i.e., the eigenvalues are separated from one another) then the
eigenfunctions lie in Hilbert space and they constitute physically realizable states.
If the spectrum is continuous (i.e., the eigenvalues fill out an entire range) then
the eigenfunctions are not normalizable, and they do not represent possible wave
functions (though linear combinations of them—involving necessarily a spread
in eigenvalues—may be normalizable). Some operators have a discrete spectrum
only (for example, the Hamiltonian for the harmonic oscillator), some have only a
continuous spectrum (for example, the free particle Hamiltonian), and some have
both a discrete part and a continuous part (for example, the Hamiltonian for a
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finite square well). The discrete case is easier to handle, because the relevant inner
products are guaranteed to exist—in fact, it is very similar to the finite-dimensional
theory (the eigenvectors of a hermitian matrix). I'll treat the discrete case first, and
then the continuous one.

3.3.1 Discrete Spectra

Mathematically, the normalizable eigenfunctions of a hermitian operator have two
important properties:

Theorem 1: Their eigenvalues are real.

Proof: Suppose

A

Of =qf.
(i.e., f(x) is an eigenfunction of Q, with eigenvalue ¢), and'®
(F101) = (QF1F)
(Q is hermitian). Then

g{(f1f) =q*(fIf)

(g is a number, so it comes outside the integral, and because the first function
in the inner product is complex conjugated (Equation 3.6), so too is the g on
the right). But (| f) cannot be zero (f(x) = 0 is not a legal eigenfunction),
so ¢ = q*, and hence ¢ is real. QED

This is comforting: If you measure an observable on a particle in a determinate
state, you will at least get a real number.

Theorem 2: Eigenfunctions belonging to distinct eigenvalues are ortho-
gonal.

Proof: Suppose
Of=qf and Qg=gq's.
and O is hermitian. Then (f|0g) = (O flg), so
q'{flg) =q*{flg)

(again, the inner products exist because the eigenfunctions are in Hilbert
space by assumption). But ¢ is real (from Theorem 1), so if ¢’ # ¢ it must
be that (f|g) =0. QED

101t is here that we assume the eigenfunctions arc in Hilbert spacc—otherwise the inner product
might not exist at all.
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That’s why the stationary states of the infinite square well, for example, or the
harmonic oscillator, are orthogonal—they are eigenfunctions of the Hamiltonian
with distinct eigenvalues. But this property is not peculiar to them, or even to the
Hamiltonian—the same holds for determinate states of any observable.
Unfortunately, Theorem 2 tells us nothing about degenerate states (¢’ = ¢).
However, if two (or more) eigenfunctions share the same eigenvalue, any lin-

ear combination of them is itself an eigenfunction, with the same eigenvalue

(Problem 3.7(a)), and we can use the Gram-Schmidt orthogonalization proce-
dure (Problem A.4) to construct orthogonal eigenfunctions within each degenerate
subspace. It is almost never necessary to do this explicitly (thank God!), but it can
always be done in principle. So even in the presence of degeneracy the eigenfunc-
tions can be chosen to be orthogonal, and in setting up the formalism of quantum
mechanics we shall assume that this has already been done. That licenses the use
of Fourier’s trick, which depends on the orthonormality of the basis functions.

In a finite-dimensional vector space the eigenvectors of a hermitian matrix
have a third fundamental property: They span the space (every vector can be
expressed as a linear combination of them). Unfortunately, the proof does not
generalize to infinite-dimensional spaces. But the property itself is essential to the
internal consistency of quantum mechanics, so (following Dirac!!) we will take it
as an axiom (or, more precisely, as a restriction on the class of hermitian operators
that can represent observables):

Axiom: The eigenfunctions of an observable operator are complete: Any
function (in Hilbert space) can be expressed as a linear combination of
them. !

Problem 3.7

(a) Suppose that f(x) and g(x) are two eigenfunctions of an operator O, with
the same eigenvalue ¢. Show that any linear combination of .f and g is itself
an eigenfunction of Q. with eigenvalue q.

(b) Check that f(x) = exp(x) and g(x) = exp(—x) are eigenfunctions of the
operator d>/dx?, with the same eigenvalue. Construct two linear combina-
tions of f and g that are orthogonal eigenfunctions on the interval (—1. 1).

Ip. A. M. Dirac. The Principles of Quantum Mechanics. Oxford University Press, New York
(1958).

i . . . .

2In some specific cases completeness is provable (we know that the stationary states of the
infinite square well. for example. ure complete, because ol Dirichlet’s theorem). It is a little awk-
ward (0 call something an “axiom™ that is provable in some cases. but | don’t know a better way to
handle it.
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Problem 3.8

(a) Check that the eigenvalues of the hermitian operator in Example 3.1 are real.
Show that the eigenfunctions (for distinct eigenvalues) are orthogonal.

(b) Do the same for the operator in Problem 3.6.

3.3.2 Continuous Spectra

If the spectrum of a hermitian operator is continuous, the eigenfunctions are not
normalizable, and the proofs of Theorems 1 and 2 fail, because the inner products
may not exist. Nevertheless, there is a sense in which the three essential properties
(reality, orthogonality, and completeness) still hold. I think it’s best to approach
this subtle case through specific examples.

Example 3.2 Find the eigenfunctions and eigenvalues of the momentum operator.

Solution: Let f,(x) be the eigenfunction and p the eigenvalue:

hd

lTE;fp (x) = pfp(x). [3.30]

The general solution is
fp(x) = AePN

This is not square-integrable, for any (complex) value of p—the momentum oper-
ator has no eigenfunctions in Hilbert space. And yet, if we restrict ourselves to
real eigenvalues, we do recover a kind of ersarz “orthonormality.” Referring to
Problems 2.24(a) and 2.26,

m x . ’
/ Fr) fp(x)dx = |A|2/ PP g = |AP2rh 8(p — p).  [3.31]
-0 -0

If we pick A = 1/4/2nh, so that

1 .
) — ipx/h
fp(x) WerT e . [3.32]
then
(fplfo) =8(p —p. [3.33]

which is strikingly reminiscent of true orthonormality (Equation 3.10)—the indices
are now continuous variables, and the Kronecker delta has become a Dirac delta,
but otherwise it looks just the same. I'll call Equation 3.33 Dirac orthonormality.
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Most important, the eigenfunctions are complete, with the sum (in Equation 3.11)
replaced by an integral: Any (square-integrable) function f(x) can be written in
the form

e 1 x -
flx)= f c(p) fp(x)dp= \/—Z—T—h- / c(p)e ™ dp. [3.34]
o @] -

The expansion coefficient (now a function, c(p)) is obtained, as always, by Fourier’s
trick:
0

(fprlf) =f C(I’)(.fp’lfp)dpzf c(p)8(p—pHdp=c(p)). [3.35]

—o0 —oG

Alternatively, you can get them from Plancherel's theorem (Equation 2.102), for
the expansion (Equation 3.34) is nothing but a Fourier transform.

The eigenfunctions of momentum (Equation 3.32) are sinusoidal, with wave-
length
2nh
=
This is the old de Broglie formula (Equation 1.39), which I promised to prove at
the appropriate time. It turns out to be a little more subtle than de Broglie imagined,
because we now know that there is actually 120 such thing as a particle with deter-
minate momentum. But we could make a normalizable wave packet with a narrow
range of momenta, and it is to such an object that the de Broglie relation applies.
What are we to make of Example 3.2?7 Although none of the eigenfunctions
of p lives in Hilbert space, a certain family of them (those with real eigenvalues)
reside in the nearby “suburbs,” with a kind of quasi-normalizability. They do not
represent possible physical states, but they are still very useful (as we have already
seen, in our study of one-dimensional scattering).l3

[3.36]

Example 3.3 Find the eigenfunctions and eigenvalues of the position operator.

Solution: Let g, (x) be the eigenfunction and y the eigenvalue:

X gy(x) = ygy(x). [3.37]

I3What about the cigenfunctions with nonreal cigenvalues? These are not merely non-
normalizable—they actually blow up at + oc. Functions in what | called the “suburbs™ of Hilbert space
(the entire metropolitan area is sometimes called a “rigged Hilbert space”: see. for example, Leslie
Ballentine’s Quantum Mechanics: A Modern Development, World Scientific, 1998) have the property
that although they have no (finite) inner product with themselves, they do admit inner products with all
members of Hilbert space. This is not true for eigenfunctions of p with nonreal eigenvalues. In particu-
lar. T showed that the momentum operator is hermitian for functions in Hilbert space. but the argument
depended on dropping the boundary term (in Equation 3.19). That term is still zero if g is an eigenfunc-
tion of p with a real eigenvalue (as long as f is in Hilbert space), but not if the eigenvalue has an imag-
inary part. In this sense any complex number is an eigenvalue of the operator p, but only real numbers
are eigenvalues of the hermitian operator p—the others lic outside the space over which p is hermitian.
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Here y is a fixed number (for any given eigenfunction), but x is a continuous
variable. What function of x has the property that multiplying it by x is the same
as multiplying it by the constant y? Obviously it's got to be zero, except at the one
point x = y; in fact, it is nothing but the Dirac delta function:

gy(x) = As(x — ).

This time the eigenvalue has to be real; the eigenfunctions are not square-integrable,
but again they admit Dirac orthonormality:

0 o
/ gy (x) gy(x) dx = | AP f B(x — ¥)8(x — y)dx = |APS(y — ). [3.38]
o0 —00

If we pick A =1, so
&y (x) =8(x — y). [3.39]

then
(g,\"'|g_\') =6&(y — .V’)- [3.40]

These eigenfunctions are also complete:

,f(X):/. c(y) gy(.\')dy=f Ce(8x — ¥ dy, [3.41]
~00 -0
with

c(» = f(y) [3.42]

(trivial, in this case, but you can get it from Fourier's trick if you insist).

If the spectrum of a hermitian operator is continuous (so the eigenvalues are
labeled by a continuous variable— p or y. in the examples; z, generically, in what
follows), the eigenfunctions are not normalizable, they are not in Hilbert space and
they do not represent possible physical states; nevertheless, the eigenfunctions with
real eigenvalues are Dirac orthonormalizable and complete (with the sum now an
integral). Luckily, this is all we really require.

Problem 3.9

(a) Cite a Hamiltonian from Chapter 2 (orher than the harmonic oscillator) that
has only a discrete spectrum.

(b) Cite a Hamiltonian from Chapter 2 (other than the free particle) that has only
a continuous spectrum.
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(c) Cite a Hamiltonian from Chapter 2 (other than the finite square well) that
has both a discrete and a continuous part to its spectrum.

Problem 3.10 Is the ground state of the infinite square well an eigenfunction of
momentum? If so, what is its momentum? If not, why not?

3.4 GENERALIZED STATISTICAL INTERPRETATION

In Chapter 1 I showed you how to calculate the probability that a particle would be
found in a particular location, and how to determine the expectation value of any
observable quantity. In Chapter 2 you learned how to find the possible outcomes
of an energy measurement and their probabilities. I am now in a position to state
the generalized statistical interpretation, which subsumes all of this and enables
you to figure out the possible results of any measurement, and their probabilities.
Together with the Schrédinger equation (which tells you how the wave function
evolves in time) it is the foundation of quantum mechanics.

Generalized statistical interpretation: If you measure an observable Q (x, p)
on a particle in the state W(x.t), you are certain to get one of the eigenvalues of
the hermitian operator Q(x. —ikd/dx). If the spectrum of O is discrete, the prob-
ability of getting the particular eigenvalue ¢, associated with the orthonormalized
eigenfunction f;(x) is

leal®.  where ¢y = (fy|W). [3.43]

If the spectrum is continuous, with real eigenvalues ¢(z) and associated Dirac-
orthonormalized eigenfunctions f-(x), the probability of getting a result in the
range dz is

lc(z)|*dz  where ¢(z) = (f:|W). [3.44]

Upon measurement, the wave function “collapses” to the corresponding eigen-
state. !4

The statistical interpretation is radically different from anything we encounter
in classical physics. A somewhat different perspective helps to make it plausible:
The eigenfunctions of an observable operator are complete, so the wave function
can be written as a linear combination of them:

W(x 1) =) eufulx). [3.45]

141n the casc of continuous spectra the collapse is Lo a narrow range about the measured value,
depending on the precision of the measuring device.
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(For simplicity, I'll assume that the spectrum is discrete; it’s easy to generalize this
argument to the continuous case.) Because the eigenfunctions are orthonormal, the
coefficients are given by Fourier’s trick:!?

cn = (fulW) = / fu ()W (x, 1) dx. [3.46]

Qualitatively, ¢, tells you “how much f, is contained in W,” and given that a
measurement has to return one of the eigenvalues of O, it seems reasonable that
the probability of getting the particular eigenvalue ¢, would be determined by the
“amount of f,” in W. But because probabilities are determined by the absolute
square of the wave function, the precise measure is actually lcn|?. That's the
essential burden of the generalized statistical interpretation.!®

Of course, the toral probability (summed over all possible outcomes) has got
to be one:

Z |L'n|2 = l. [3.47]

H

and sure enough, this follows from the normalization of the wave function:

1= (W) = (> arfr } doenku))=
n’ n n
=Y D chebum =Y _cren =) leul. [3.48]
n H

n' n

’

> chenlfurl fu)
] n

Similarly, the expectation value of Q should be the sum over all possible outcomes
of the eigenvalue times the probability of getting that eigenvalue:

(D)= qulenl™. [3.49]

Indeed,
Q)= (WIOWy = (D entw ) {QD cntu ), [3.50]

I5Notice thal the time dependence—which is not at issue here—is carried by the coefficients;
to make this explicit. we should really write ¢, (r).

16 Again, I am scrupulously avoiding the all-too-common assertion “ley|? is the probability that
the particle is in the state f,.” This is nonsense. The particle is in the stale W. period. Rather, lenl? is
the probability that a measurement of Q would yield the value ¢,. It is true that such a measurement

will collapse the state to the eigenfunction f, so onc could correctly say “je |2 is the probability that
a particle which is now in the state ¥ will be in the state f;, subsequent to a measurement of Q7 ...
but that’s a completely different assertion.
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but an = gn fu, SO

(0) =D chengulfirl i) =D D chcuaudn = Y quleal®.  [351]
non noon n

So far, at least, everything looks consistent.

Can we reproduce, in this language, the original statistical interpretation for
position measurements? Sure—it’s real overkill, but worth checking. A measure-
ment of x on a particle in state ¥ must return one of the eigenvalues of the
position operator. Well, in Example 3.3 we found that every (real) number y is an
eigenvalue of x, and the corresponding (Dirac-orthonormalized) eigenfunction is
gy(x) = &(x — y). Evidently

oG

c(y) = (gv|¥) = f S(x — V)W (x.ndx = W¥(y. 1), [3.52]

—-oC

so the probability of getting a result in the range dy is [W(y.)|* dy, which is
precisely the original statistical interpretation.

What about momentum? In Example 3.2 we found that the eigenfunctions of
the momentum operator are f,(x) = (1/+/2mh)exp(ipx/h), so

1
Varh

This is such an important quantity that we give it a special name and symbol: the
momentum space wave function, ®(p. ). It is essentially the Fourier transform
of the (position space) wave function W (x, t)—which, by Plancherel’s theorem,
is its inverse Fourier transform:

c(p) = (f|¥) = f e PNy (x 1) dx. [3.53]

1 e
S(p.1) = / e~ My (x| 1y dix; [3.54]
: —20
S
W(x,t) = m[ e”"‘/ﬁCID([),t)clp. [3.55]
‘ N

According to the generalized statistical interpretation, the probability that a mea-
surement of momentum would yield a result in the range dp is

|®(p, 1)* dp. [3.56]

Example 3.4 A particle of mass m is bound in the delta function well V(x) =
—ad(x). What is the probability that a measurement of its momentum would yield
a value greater than py = ma/h?
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Solution: The (position space) wave function is (Equation 2.129)

Jmo 2
e me|x|/h e iEt/h

W(x, )=
1
(where E = —ma?*/2h%). The momentum space wave function is therefore
3/2 _iEt/h
O(p.1) = 1 VM g f°° oipx/h y—mels| /R g _ \/?Po e FY/
' \/27Th h —00 T p2 + pé

(I looked up the integral). The probability, then, is

2 ® 1 1
—pgf T P = 21?1?0 7 +tan”! (ﬁ)
T po (P7+ pg) T | pTt Py Po

= 0.0908

o

Po

1 |
4 2rm
(again, I looked up the integral).

Problem 3.11 Find the momentum-space wave function, ®(p, 1), for a particle in
the ground state of the harmonic oscillator. What is the probability (to 2 significant
digits) that a measurement of p on a particle in this state would yield a value
outside the classical range (for the same energy)? Hint: Look in a math table
under “Normal Distribution” or “Error Function” for the numerical part—or use
Mathematica.

Problem 3.12 Show that
(x) = f P* (—-rli> Odp. [3.57]

Hint: Notice that x exp(ipx/h) = —ih(d/dp)exp(ipx/h).
In momentum space, then, the position operator is i#d/dp. More generally,

A h o
f v*0 (x, 775;) Wdx,  in position space;
(Q(x. p)) = [3.58]

L/ B3 .
f o*Q (-—l—lg p) ®dp, in momentum space.

In principle you can do all calculations in momentum space just as well (though
not always as easily) as in position space.
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3.5 THE UNCERTAINTY PRINCIPLE

I stated the uncertainty principle (in the form 0,0, > #/2), back in Section 1.6,
and you have checked it several times, in the problems. But we have never actually
proved it. In this section I will prove a more general version of the uncertainty
principle, and explore some of its implications. The argument is beautiful, but
rather abstract, so watch closely.

3.5.1 Proof of the Generalized Uncertainty Principle

For any observable A, we have (Equation 3.21):
o; = (A= (ADWI(A - (ADW) = (fIf),
where f = (A — (A))W. Likewise, for any other observable, B,
op = (glg), where g = (B — (B)WV.
Therefore (invoking the Schwarz inequality, Equation 3.7),

oo = (fIf)glg) = [{flg)*. [3.59]

Now, for any complex number z,
) 1 2
21> = [Re(2)* + [Im(2)]* > [Im(2)]* = [5(2 - z*)] : [3.60]

Therefore, letting z = (f|g),

7 2 1 2
040 = (Z[(ﬂg) — <g|f)]> . [3.61]

But

Similarly,
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SO
(flg) — (g f) = (AB) — (BA) = ([A, B)),
where
[A.B]= AB — BA

is the commutator of the two operators (Equation 2.48). Conclusion:

2 (1,2 a2\
olo > (z—i([A. B])) . [3.62]

This is the (generalized) uncertainty principle. You might think the i makes it
trivial—isn’t the right side negarive? No, for the commutator of two hermitian
operators carries its own factor of i, and the two cancel out.!”

As an example, suppose the first observable is position (A = x), and the
second is momentum (1§ = (h/i)d/dx). We worked out their commutator back in
Chapter 2 (Equation 2.51):

So

0202 > (Zm) _ (5) .

or, since standard deviations are by their nature positive,

’-
Gyp > = [3.63]

=S
That’s the original Heisenberg uncertainty principle, but we now see that it is just
one application of a much more general theorem.

There is, in fact, an “uncertainty principle” for every pair of observables whose
operators do not commute—we call them incompatible observables. Incompatible
observables do not have shared eigenfunctions—at least, they cannot have a com-
plete set of common eigenfunctions (see Problem 3.15). By contrast, compatible
(commuting) observables do admit complete sets of simultaneous eigenfunctions. '3

17 More precisely, the commutator of two hermitian operators is itself anti-hermitian Q" =-0.
and ils expectation value is imaginary (Problem 3.26).

18This corresponds to the fact that noncommuting matrices cannot be simultaneously diagonalized
(that is, they cannot both be brought to diagonal form by the same similarity transformation), whereas
commuting hermitian matrices can be simultaneously diagonalized. See Section A.5.
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For example, in the hydrogen atom (as we shall see in Chapter 4) the Hamilto-
nian, the magnitude of the angular momentum, and the z component of angular
momentum are mutually compatible observables, and we will construct simultane-
ous eigenfunctions of all three, labeled by their respective eigenvalues. But there is
no eigenfunction of position that is also an eigenfunction of momentum, because
these operators are irncompatible.

Note that the uncertainty principle is not an exfra assumption in quantum
theory, but rather a consequence of the statistical interpretation. You might wonder
how it is enforced in the laboratory—why can’t you determine (say) both the
position and the momentum of a particle? You can certainly measure the position
of the particle, but the act of measurement collapses the wave function to a narrow
spike, which necessarily carries a broad range of wavelengths (hence momenta)
in its Fourier decomposition. If you now measure the momentum, the state will
collapse to a long sinusoidal wave, with (now) a well-defined wavelength—but
the particle no longer has the position you got in the first measurement.!® The
problem, then, is that the second measurement renders the outcome of the first
measurement obsolete. Only if the wave function were simultaneously an eigenstate
of both observables would it be possible to make the second measurement without
disturbing the state of the particle (the second collapse wouldn’t change anything,
in that case). But this is only possible, in general, if the two observables are
compatible.

*xProblem 3.13
(a) Prove the following commutator identity:
[AB.C]= A[B.C]+[A.C]B. [3.64]

(b) Show that
[x". p]l = ihnx"~".

(c) Show more generally that

d
[f(x), pl=ih [3.65]

_d_.;e

for any function f(x).

'9Niels Bohr was at pains to track down the mechanism by which the measurcment of x (for
instance) destroys the previously existing value of p. The crux of the matter is that in order to determine
the position of a particle you have to poke it with something—shine light on it. say. But these photons
impart to the particle a momentum you cannot control. You now know the position, but you no longer
know the momentum. His famous debates with Einstein include many delightful examples. showing
in detail how experimental constraints enforce the uncertainty principle. For an inspired account see
Bohr's article in Albert Einstein: Philosopher-Scientist. cdited by P. A. Schilpp, Tudor, New York
(1949).
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*Problem 3.14 Prove the famous “(your name) uncertainty principle,” relating the
uncertainty in position (A = x) to the uncertainty in energy (B = p*/2m + V)

. > — .
OxOH = 2m|(p)|

For stationary states this doesn’t tell you much—why not?

Problem 3.15 Show that two noncommuting operators cannot have a complete set
of common eigenfunctions. Hinr: Show that if P and Q have a complete set of
common eigenfunctions, then [P. Q] f = 0 for any function in Hilbert space.

3.5.2 The Minimum-Uncertainty Wave Packet

We have twice encountered wave functions that hir the position-momentum
uncertainty limit (0,0, = fi/2): the ground state of the harmonic oscillator
(Problem 2.11) and the Gaussian wave packet for the free particle (Problem 2.22).
This raises an interesting question: What is the most general minimum-uncertainty
wave packet? Looking back at the proof of the uncertainty principle, we note that
there were two points at which inequalities came into the argument: Equation 3.59
and Equation 3.60. Suppose we require that each of these be an equality, and see
what this tells us about W.

The Schwarz inequality becomes an equality when one function is a multi-
ple of the other: g(x) = cf(x). for some complex number ¢ (see Problem A.5).
Meanwhile, in Equation 3.60 I threw away the real part of z; equality results if
Re(z) = 0, which is to say, if Re(f|g) = Re(c(f|f)) = 0. Now, (f|f) is certainly
real, so this means the constant ¢ must be purely imaginary—let’s call it ia. The
necessary and sufficient condition for minimum uncertainty, then, is

g(x) =iaf(x), where a is real. [3.66]
For the position-momentum uncertainty principle this criterion becomes:
hd
(l;— _ (p>) W= ia(x — (x))V. [3.67]
[ dx

which is a differential equation for ¥ as a function of x. Its general solution
(Problem 3.16) is
U(x) = Ae-—a(.\‘—(.\‘))z/.‘mei(p),\‘/ﬁ' [368]

Evidently the minimum-uncertainty wave packet is a gaussian—and the two exam-
. . 3 2
ples we encountered earlier were gaussians.20

ONote that it is only the dependence of W on «x that is at issue here—the “constants™ A. a. (v).
and (p) may all be functions of time, and for that matter ¥ may evolve away {rom the minimal form.
All I'm asserting is that if, at some instant. the wave function is gaussian in .. then (at that instant) the
uncertainty product is minimal.



114

deviation of the results of repeated measurements on identically prepared systems.

Chapter 3 Formalism

Problem 3.16 Solve Equation 3.67 for W(x). Note that (x) and (p) are constants.

3.5.3 The Energy-Time Uncertainty Principle
The position-momentum uncertainty principle is often written in the form

,-
Ax Ap > 5’ [3.69]

Ax (the “uncertainty” in x) is loose notation (and sloppy language) for the standard
21

Equation 3.69 is often paired with the energy-time uncertainty principle,

}-
At AE > E’ [3.70]

Indeed, in the context of special relativity the energy-time form might be thought
of as a consequence of the position-momentum version, because x and ¢ (or
rather, ct) go together in the position-time four-vector, while p and E (or rather,
E/c) go together in the energy-momentum four-vector. So in a relativistic theory
Equation 3.70 would be a necessary concomitant to Equation 3.69. But we’re not
doing relativistic quantum mechanics. The Schrédinger equation is explicitly non-
relativistic: It treats + and x on a very unequal footing (as a differential equation
it is first-order in ¢, but second-order in x), and Equation 3.70 is emphatically not
implied by Equation 3.69. My purpose now is to derive the energy-time uncertainty
principle, and in the course of that derivation to persuade you that it is really an
altogether different beast, whose superficial resemblance to the position-momentum
uncertainty principle is actually quite misleading.

After all, position, momentum, and energy are all dynamical variables—
measurable characteristics of the system, at any given time. But time itself is
not a dynamical variable (not, at any rate, in a nonrelativistic theory): You don’t
go out and measure the “time” of a particle, as you might its position or its energy.
Time is the independent variable, of which the dynamical quantities are firnc-
tions. In particular, the At in the energy-time uncertainty principle is not the
standard deviation of a collection of time measurements; roughly speaking (I'll
make this more precise in a moment) it is the time it takes the system to change
substantially.

2 Many casual applications of the uncertainty prineiple are actually based (often inadvertently) on
a completely ditferent—and sometimes quite unjustified—measure of “uncertainty.” Conversely. some
perfectly rigorous arguments use other definitions of “uncertainty.” See Jan Hilgevoord. Am. J. Phys.
70, 983 (2002).
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As a measure of how fast the system is changing, let us compute the time
derivative of the expectation value of some observable, Q(x. p, t):

d d . V| » 30 A QW
— = —(¥V|QV) ={ —| OV v —wv — ).
dr<Q) dr< 12%) <8r\Q >+< ot >+<qj Q81>
Now, the Schrodinger equation says
inlY — A
ot
(where H = p2/2m + V is the Hamiltonian). So
d | I | 30
=(0) = ——(BY|QV) + — HY) +({—=).
dr(Q) ih< |Q )+m(‘I'IQ )+<az>
But H is hermitian, so (ﬁ\IIIQ\II) = (WIﬁQW), and hence
d i~ s 30
E(Q) = E([H~ QI +<8—r> [3.71]

This is an interesting and useful result in its own right (see Problems 3.17 and
3.31). In the typical case where the operator does not depend explicitly on time,??
it tells us that the rate of change of the expectation value is determined by the
commutator of the operator with the Hamiltonian. In particular, if O commutes
with H, then (Q) is constant, and in this sense Q is a conserved quantity.

Now, suppose we pick A = H and B = (., in the generalized uncertainty
principle (Equation 3.62), and assume that Q does not depend explicitly on #:

Loa N2 (1RO (h)? (d(@)\?
(e o) - (5% - () ()

Or, more simply,

Rt

o

W

o

h |d{Q)
— . 3.72
OHOQ Z 5 | = [3.72]
Let’s define AE = oy, and
09
At = ———, [3.73]
ld(Q)/dt|

27'Opemlors that depend explicitly on 1 are quite rare. so almost always 3(:)/31 = 0. As an
example of explicit lime dependence. consider the potential energy of a harmonic oscillator whose
spring constant is changing (perhaps the temperature is rising. so the spring becomes more flexible):

0 = (1/2)mle(n]+>.
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Then

AE At > g [3.74]

and that’s the energy-time uncertainty principle. But notice what is meant by At,
here: Since

d{Q)

op = \—Et— At,

At represents the amount of time it takes the expectation value of Q to change by
one standard deviation.”> In particular, At depends entirely on what observable
(Q) you care to look at—the change might be rapid for one observable and slow
for another. But if AE is small, then the rate of change of all observables must be
very gradual; or, to put it the other way around, if any observable changes rapidly,
the “‘uncertainty” in the energy must be large.

Example 3.5 In the extreme case of a stationary state, for which the energy is
uniquely determined, all expectation values are constant in time (AE = 0 =
At = oo)—as in fact we noticed some time ago (see Equation 2.9). To make
something happen you must take a linear combination of at least two stationary
states—say:

W(x, 1) = ay (x)e " EM 4 by (x)e B2 /T,
If a, b, ¥, and Y, are real,

i , ) E, - E
|q1(x‘ D~ = az(wl (\))2 -+ b'(¢2(.\’))~ + 2ab1ﬁ| (x)\ﬁz(x) cos ( 2 h 1 f) .

The period of oscillation is T = 2w/ /(E2— E). Roughly speaking, AE = E;—E)
and At = 7 (for the exact calculation see Problem 3.18), so

AE At =2 h,
which is indeed >4 /2.

Example 3.6 How long does it take a free-particle wave packet to pass by a partic-
ular point (Figure 3.1)? Qualitatively (an exact version is explored in Problem 3.19),
At = Ax/v=mAx/p,but E = p>/2m, so AE = pAp/m. Therefore,

Ap mA:
AE Ar = P2PT2T

= AxAp,
m

which is >/ /2 by the position-momentum uncertainty principle.

23mpee s . " . . . .
="This is sometimes called the “Mandelstam-Tamm” formulation of the energy-time uncertainty
principle. For a review of alternative approaches see Paul Busch, Found. Phys. 20, 1 (1990).
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FIGURE 3.1: A free particle wave packet approaches the point A (Example 3.6).

Example 3.7 The A particle lasts about 1072% seconds, before spontaneously
disintegrating. If you make a histogram of all measurements of its mass, you get
a kind of bell-shaped curve centered at 1232 MeV/c?, with a width of about 120
MeV/c? (Figure 3.2). Why does the rest energy (mc”) sometimes come out higher
than 1232, and sometimes lower? Is this experimental error? No, for

1
AFE At = (%O MeV) (10“23 sec) = 6 x 10722 MeV sec,

whereas /1/2 = 3 x 10722 MeV sec. So the spread in m is about as small as the
uncertainty principle allows—a particle with so short a lifetime just doesn’t have
a very well-defined mass.?*

r

| [ I I
1100 1200 1300 1400

MASS (MeV/c?)

FIGURE 3.2: Histogram of measurements of the A mass (Example 3.7).

24 Actually, Example 3.7 is a bit of a fraud. You can't measure 10~ sec on a stop-watch, and in
practice the lifetime of such a short-lived particle is inferred from the width of the mass plot, using the
uncertainty principle as inpus. However. the point is valid, even if the logic is backwards. Moreover,
if you assume the A is about the same size as @ proton (~10~!3 m), then 1072 sec is roughly the
time it takes light to cross the particle. and it's hard to imagine that the lifetime could be much less
than that.
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Notice the variety of specific meanings attaching to the term At in these
examples: In Example 3.5 it’s a period of oscillation: in Example 3.6 it’s the time
it takes a particle to pass a point; in Example 3.7 it’s the lifetime of an unstable
particle. In every case, however, At is the time it takes for the system to undergo
“substantial” change.

It is often said that the uncertainty principle means energy is not strictly
conserved in quantum mechanics—that you’re allowed to “borrow” energy AE,
as long as you “‘pay it back™ in a time At = #i/(2AE); the greater the violation,
the briefer the period over which it can occur. Now, there are many legitimate
readings of the energy-time uncertainty principle, but this is not one of them.
Nowhere does quantum mechanics license violation of energy conservation, and
certainly no such authorization entered into the derivation of Equation 3.74. But the
uncertainty principle is extraordinarily robust: It can be misused without leading
to seriously incorrect results, and as a consequence physicists are in the habit of
applying it rather carelessly.

xProblem 3.17 Apply Equation 3.71 to the following special cases: (a) 0 = 1,
(b) Q = H;, (c) Q = x; (d Q = p. In each case, comment on the result,
with particular reference to Equations 1.27, 1.33, 1.38, and conservation of energy
(comments following Equation 2.39).

Problem 3.18 Test the energy-time uncertainty principle for the wave function in
Problem 2.5 and the observable x, by calculating oy, oy, and d(x)/dt exactly.

Problem 3.19 Test the energy-time uncertainty principle for the free particle wave
packet in Problem 2.43 and the observable x, by calculating oy, o,, and d(x)/dt
exactly.

Problem 3.20 Show that the energy-time uncertainty principle reduces to the “your
name” uncertainty principle (Problem 3.14), when the observable in question is x.

3.6 DIRAC NOTATION

Imagine an ordinary vector A in two dimensions (Figure 3.3(a)). How would you
describe this vector to someone? The most convenient way is to set up carte-
sian axes, x and y, and specify the components of A: Ay =17 -A. Ay =j-A
(Figure 3.3(b)). Of course, your sister might have drawn a different set of axes,
x’ and y’, and she would report different components: A, =i'-A. A, = j"-A
(Figure 3.3(c)). But it's all the same vector —we’re simply expressing it with
respect to two different bases ({1, j} and {i’, j'}). The vector itself lives “out there
in space,” independent of anybody’s (arbitrary) choice of coordinates.
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A, | X
(@) (b) (c)

FIGURE 3.3: (a) Vector A. (b) Components of A with respect to xy axes.
(c) Components of A with respect to x’y’ axes.

The same is true for the state of a system in quantum mechanics. It is rep-
resented by a vector, |8(t)), that lives “out there in Hilbert space,” but we can
express it with respect to any number of different bases. The wave function W(x. t)
is actually the coefficient in the expansion of |4) in the basis of position eigen-
functions:

W(x,t) = (x]|4(1)). [3.75]

(with |x) standing for the eigenfunction of & with eigenvalue x),2 whereas the
momentum space wavefunction ®(p.r) is the expansion of |§) in the basis of
momentum eigenfunctions:

D(p.t) = (pld®)) [3.76]

(with |p) standing for the eigenfunction of p with eigenvalue p).26 Or we could
expand |4) in the basis of energy eigenfunctions (supposing for simplicity that the
spectrum is discrete):

cn (1) = (n]8(1)) [3.77]

(with |n) standing for the nth eigenfunction of ﬁ)——Equation 3.46. But it’s all the
same state; the functions W and @, and the collection of coefficients {c,}, contain
exactly the same information—they are simply three different ways of describing
the same vector:

W(x. 1) =/qf(y.z)a(.\-—y)d_\: =/<I>(p. r)_—ﬁ'T—he""-"/” dp

=3 eue By (x). [3.78]

351 don’t want to call it &y (Equation 3.39). because that is its form in the position basis, and
the whole point here is to lree ourselves from any particular basis. Indeed. when ! first defined Hilbert
space as the set of squarc-integrable functions—aver x—that was alrcady too restrictive, committing
us 1o a spccific representation (the position basis). | want now to think of it as an abstract vector space.
whose members can be expressed with respect to any basis vou like.

6In position space it would be Jp(x) (Equation 3.32),
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Operators (representing observables) are linear transformations—they “trans-
form” one vector into another;

18) = Ola). [3.79]

Just as vectors are represented, with respect to a particular basis {|e,)},2’ by their
components,

lor) = Zan|en)- with a, = (eyla): |B) = an|en)9 with b, = (e,|B8), [3.80]
n n

operators are represented (with respect to a particular basis) by their matrix ele-

ments”?

(em|Qlen) = Qumn. [3.81]
In this notation Equation 3.79 takes the form

> bulen) =) anQlen). [3.82]

H

or, taking the inner product with |e,,),

an(eln|f’n) = Zan(em|é|en)v [3.83]
n n

and hence

by = Z Qnman- [3-84]
n

Thus the matrix elements tell you how the components transform.

Later on we will encounter systems that admit only a finite number (N) of
linearly independent states. In that case |4(r)) lives in an N-dimensional vector
space; it can be represented as a column of (N) components (with respect to a
given basis), and operators take the form of ordinary (N x N) matrices. These
are the simplest quantum systems—none of the subtleties associated with infinite-
dimensional vector spaces arise. Easiest of all is the two-state system, which we
explore in the following example.

Example 3.8 Imagine a system in which there are just two linearly independent

states: 2
1 0
1) = (0> and |2) = (l)

9 “ . . . . . .
2711 assume the basis is discrete; otherwise n becomes a continuous index and the sums arc
replaced by integrals.

“8This terminology is inspired. obviously. by the finite-dimensional case, but the “matrix” will
now typically have an infinite (maybe even uncountable) number of elements.

:C)Technically. the “equals™ signs here mcan “is represented by.” but I don’t think any confusion
will arise if we adopt the customary informal notatien.
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The most general state is a normalized linear combination:
18) = all) +b[2) = (g) . with |a]® + b = 1.

The Hamiltonian can be expressed as a (hermitian) matrix; suppose it has the

specific form
H= (h g) !
g h

where g and h are real constants. If the system starts out (at + = 0) in state |1),
what is its state at time t?

Solution: The (time-dependent) Schrédinger equation says
1 d |8) = H|8) [3.85]
ih—|8) = : .
dt
As always, we begin by solving the time-independent Schrédinger equation:
H|s) = E|s); [3.86]

that is, we look for the eigenvectors and eigenvalues of H. The characteristic
equation determines the eigenvalues:

det(h;E h_gE)=(11—E)2—g2=0=>h—E=¥8=>Ei=”ig-

Evidently the allowed energies are (7 + g) and (i — g). To determine the eigen-
vectors, we write

(Z ‘2) (Z):(hi‘g)(g)=>ha+gﬁ=(hi‘g)a:ﬁ=i‘a.

so the normalized eigenvectors are

1 (1
=55 ()

Next we expand the initial state as a linear combination of eigenvectors of the
Hamiltonian:

1
1800 = (5) = 75 Ge4) + 1.

Finally, we tack on the standard time-dependence exp(—i E,t/h):

1 —i —i(th— i
18(0) = —5le M4 ) e T4y
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_ Y i | —igyn 1 igryn ]
—5_6’ e 1 +e -1

— le—ilﬂ/h e—ljgr/h + e':g’/h _ e_,'],,/h cos(gt/h)
2 e81/h — gist/h —isin(gt/h) )"

If you doubt this result, by all means check it: Does it satisfy the time-dependent
Schrédinger equation? Does it match the initial state when + = 0?

This is a crude model for (among other things) neutrino oscillations. In
that case |1) represents the electron neutrino, and |2) the muon neutrino; if the
Hamiltonian has a nonvanishing off-diagonal term (g) then in the course of time
the electron neutrino will turn into a muon neutrino (and back again).

Dirac proposed to chop the bracket notation for the inner product, («|8), into
two pieces, which he called bra, («|, and ket, |8) (I don’t know what happened to
the ¢). The latter is a vector, but what exactly is the former? It’s a linear function
of vectors, in the sense that when it hits a vector (to its right) it yields a (complex)
number—the inner product. (When an operator hits a vector, it delivers another
vector; when a bra hits a vector, it delivers a number.) In a function space, the bra
can be thought of as an instruction to integrate:

(1= [ 7114

with the ellipsis [- - - ] waiting to be filled by whatever function the bra encounters in
the ket to its right. In a finite-dimensional vector space, with the vectors expressed
as columns,

a
a
l)=1 . |- [3.87]
ay
the corresponding bra is a row vector:
(| = (afa} ... af). [3.88]

The collection of all bras constitutes another vector space—the so-called dual
Space.

The license to treat bras as separate entities in their own right allows for
some powerful and pretty notation (though I shall not exploit it in this book). For
example, if |&) is a normalized vector, the operator

P =a) (| [3.89]
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picks out the portion of any other vector that “lies along” |a):

P|B) = (a|B)la);

we call it the projection operator onto the one-dimensional subspace spanned by
|). If {|en)} is a discrete orthonormal basis,

(emlen) = Smn. [3.90]
then
Z len){en| =1 [3.91]
n

(the identity operator). For if we let this operator act on any vector |&), we recover
the expansion of |«) in the {|e,)} basis:

> lea)enlar) = |). [3.92]

Similarly, if {|e;)} is a Dirac orthonormalized continuous basis,
(ezle-) =8(z — ). [3.93]

then
/ lez)(e-|dz = 1. [3.94]

Equations 3.91 and 3.94 are the tidiest ways to express completeness.

Problem 3.21 Show that projection operators are idempotent: P? = P. Determine
the eigenvalues of P, and characterize its eigenvectors.

Problem 3.22 Consider a three-dimensional vector space spanned by an orthonor-
mal basis |1), |2), |3). Kets |@) and |B) are given by

lo) =i[1) —22) = i[3), |B) =ill) +23).

(a) Construct («| and (8| (in terms of the dual basis (1], (2|, (3]).
(b) Find («|B) and (B|a), and confirm that (8|a) = (a|B)*.

(c) Find all nine matrix elements of the operator A= |a){B|, in this basis, and
construct the matrix A. Is it hermitian?
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Problem 3.23 The Hamiltonian for a certain two-level system is
H = e (11)(1] = 12)(2] + [1){(2] + 2)(1]) .

where |1), |2} is an orthonormal basis and € is a number with the dimensions of
energy. Find its eigenvalues and eigenvectors (as linear combinations of |1) and
|2)). What is the matrix H representing H with respect to this basis?

Problem 3.24 Let O be an operator with a complete set of orthonormal eigenvec-
tors:

A

Oley) =quley) (n=1,2.3,...).

Show that Q can be written in terms of its spectral decomposition:

Q = Z qnlen){enl.
n

Hint: An operator is characterized by its action on all possible vectors, so what
you must show is that

Ola) = {anwn)(eu] o).

for any vector |a).

FURTHER PROBLEMS FOR CHAPTER 3

Problem 3.25 Legendre polynomials. Use the Gram-Schmidt procedure (Prob-
lem A.4) to orthonormalize the functions 1, x, x2, and x3, on the interval —1 <
x < 1. You may recognize the results—they are (apart from the normalization)?°
Legendre polynomials (Table 4.1).

Problem 3.26 An anti-hermitian (or skew-hermitian) operator is equal to minus
its hermitian conjugate:

0"'=-0. [3.95]
(a) Show that the expectation value of an anti-hermitian operator is imaginary.

(b) Show that the commutator of two hermitian operators is anti-hermitian. How
about the commutator of two anti-hermitian operators?

3”Legendrc didn’t know what the best convention would be: he picked the overall factor so that

all his functions would go to | at v = 1. and we're stuck with his unfortunate choice.
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Problem 3.27 Sequential measurements. An operator A, representing observ-
able A, has two normalized eigenstates | and v, with eigenvalues ¢ and aa,
respectively. Operator B, representing observable B, has two normalized eigen-
states ¢; and ¢, with eigenvalues b and by. The eigenstates are related by

Y1 = 1 +4¢2)/5. Y2 = (461 — 3¢2)/5.

(a) Observable A is measured, and the value a; is obtained. What is the state of
the system (immediately) after this measurement?

(b) If B is now measured, what are the possible results, and what are their
probabilities?

(c) Right after the measurement of B, A is measured again. What is the proba-
bility of getting a;? (Note that the answer would be quite different if I had
told you the outcome of the B measurement.)

* *xProblem 3.28 Find the momentum-space wave function ®,(p. t) for the nth sta-
tionary state of the infinite square well. Graph |®(p.1)|> and |®2(p.1)|%, as
functions of p (pay particular attention to the points p = *axh/a). Use @, (p. 1)
to calculate the expectation value of p2. Compare your answer to Problem 2.4.

Problem 3.29 Consider the wave function

1
—c

V(x.0) =1 V2ni

0. otherwise,

s
2mx/h - _ph < x < nA.

where n is some positive integer. This function is purely sinusoidal (with wavelength
A) on the interval —nA < x < nA, but it still carries a range of momenta, because
the oscillations do not continue out to infinity. Find the momentum space wave
function ®(p.0). Sketch the graphs of |W(x,0)|? and |®(p. 0)|?, and determine
their widths, w, and w), (the distance between zeros on either side of the main
peak). Note what happens to each width as n — co. Using w, and w, as estimates
of Ax and Ap, check that the uncertainty principle is satisfied. Warning: If you try
calculating o), you're in for a rude surprise. Can you diagnose the problem?

Problem 3.30 Suppose

Y(x.0) = SR L (—00 < x < 00)

X

for constants A and a.
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(a) Determine A, by normalizing W (x, 0).
(b) Find (x), (x2), and o, (at time t = 0).

(c) Find the momentum space wave function ®(p.0), and check that it is nor-
malized.

(d) Use ®(p, 0) to calculate (p), (p?), and op (at time t = 0).

(e) Check the Heisenberg uncertainty principle for this state.

*Problem 3.31 Virial theorem. Use Equation 3.71 to show that

d dv

where T is the kinetic energy (H = T + V). In a stationary state the left side is
zero (why?) so

2T) = <rﬂ> [3.97]

dx

This is called the virial theorem. Use it to prove that (T') = (V) for stationary
states of the harmonic oscillator, and check that this is consistent with the results
you got in Problems 2.11 and 2.12.

Problem 3.32 In an interesting version of the energy-time uncertainty principle?!
At = 1/, where 7 is the time it takes W(x.t) to evolve into a state orthogo-
nal to W(x.0). Test this out, using a wave function that is an equal admixture
of two (orthonormal) stationary states of some (arbitrary) potential: ¥(x,0) =

(L/VD[Y1 (x) + Pa(x)].

* %*Problem 3.33 Find the matrix elements (n|x|n’) and (n|p|n’) in the (orthonormal)
basis of stationary states for the harmonic oscillator (Equation 2.67). You already
calculated the “diagonal” elements (n = n’) in Problem 2.12; use the same tech-
nique for the general case. Construct the corresponding (infinite) matrices, X and P.
Show that (1/2m)P? + (mw?/2)X* = H is diagonal, in this basis. Are its diagonal
elements what you would expect? Partial answer:

| h
(n|x|n"y = o (‘/”_,Srl.n’—l + '\/Esn',n—l) . [3.98]

HSee Lev Vaidman, Am. J. Phys. 60. 182 (1992) for a proof.
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Problem 3.34 A harmonic oscillator is in a state such that a measurement of the
energy would yield either (1/2)hw or (3/2)hw, with equal probability. What is the
largest possible value of (p) in such a state? If it assumes this maximal value at
time t = 0, what is W (x,1)?

* % xProblem 3.35 Coherent states of the harmonic oscillator. Among the stationary
states of the harmonic oscillator (|n) = v, (x), Equation 2.67) only n = 0 hits the
uncertainty limit (ox0, = /i/2); in general, oyo, = (2n-+ 1)i/2, as you found
in Problem 2.12. But certain linear combinations (known as coherent states) also
minimize the uncertainty product. They are (as it turns out) eigenfunctions of the
lowering operator:>?

a_|a) = ala)
(the eigenvalue @ can be any complex number).

(a) Calculate (x), (x2), (p), (p?) in the state |«). Hint: Use the technique in

Example 2.5, and remember that a4 is the hermitian conjugate of a—. Do not
assume « is real.

(b) Find o, and op; show that oy0, = fi/2.

(c) Like any other wave function, a coherent state can be expanded in terms of
energy eigenstates:

) =) culn).

n=0
Show that the expansion coefficients are
an
—0p.
vn!

(d) Determine cy by normalizing |a). Answer: exp(—|a|?/2).

Cp =

(e) Now put in the time dependence:
|n) — e~ TEnt/R yy,
and show that |« (¢#)) remains an eigenstate of a_, but the eigenvalue evolves
in time:
—iwt

a(t)y=¢e o.

So a coherent state stays coherent, and continues to minimize the uncertainty
product.

2 . . . ..
3 There are no normalizable eigenfunctions of the raising operator.
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(f) Is the ground state (|n. = 0)) itself a coherent state? If so, what is the eigen-
value?

Problem 3.36 Extended uncertainty principle.’*> The generalized uncertainty
principle (Equation 3.62) states that

1

22
4(C),

2 2
Op0g =

where C = —-l'[A. 1§].
(a) Show that it can be strengthened to read

2 2
Op0p =

1

(€ +(D)), [3.99]
where D = AB+ BA—2(A)(B). Hint: Keep the Re(z) term in Equation 3.60.

(b) Check Equation 3.99 for the case B = A (the standard uncertainty principle
is trivial, in this case, since C = 0; unfortunately, the extended uncertainty
principle doesn’t help much either).

Problem 3.37 The Hamiltonian for a certain three-level system is represented by

the matrix
‘@ 0 b
H=|0 ¢ 0},
b 0 a

where a, b, and c are real numbers (assume a — ¢ # =+ b).

(a) If the system starts out in the state

0
180)=|1]),
0
what is |4(1))?
(b) If the system starts out in the state
0
14(0)) =10

what is |4(1))?

33For interesting commentary and references, see R. R. Puri, Phys. Rev. A 49, 2178 (1994).



Further Problems for Chapter 3 129

Problem 3.38 The Hamiltonian for a certain three-level system is represented by
the matrix

1 00
H=hw|0 2 O
0 0 2

Two other observables, A and B, are represented by the matrices

010 2 00
A=irl1 0 0], B=u|0 0 1},
0 0 2 01 0

where w, A, and u are positive real numbers.

(a) Find the eigenvalues and (normalized) eigenvectors of H, A, and B.

(b) Suppose the system starts out in the generic state

A
14(0)) = | c2
€3

with |c1|2 + |c2]* + |e3]* = 1. Find the expectation values (at t = 0) of H,
A, and B.

(c) What is |4(t))? If you measured the energy of this state (at time t), what
values might you get, and what is the probability of each? Answer the same
questions for A and for B.

* *Problem 3.39
(a) For a function f(x) that can be expanded in a Taylor series, show that
£x +x0) = el P/ £ (x)

(where xq is any constant distance). For this reason, p/# is called the genera-
tor of translations in space. Note: The exponential of an operator is defined

by the power series expansion: ¢ =1 + O+ 120+ 130 +....
(b) If W(x,r) satisfies the (time-dependent) Schrédinger equation, show that

W(x,t 4 10) = e~ HOMG(x 1)

(where g is any constant time); —H /Hh is called the generator of translations
in time.
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(c)

Show that the expectation value of a dynamical variable Q(x, p, t), at time
t + g, can be written3*

(D) r41y = (P(x, I)Iem"‘/hé(&. p.r+ ro)e“”’;’"’/ﬁlkll(x, ).

Use this to recover Equation 3.71. Hint: Let ty = dt, and expand to first
order in dt.

* xProblem 3.40

(a)

(b)

(c)

(d)

Write down the time-dependent “Schrodinger equation” in momentum space,
for a free particle, and solve it. Answer: exp(—ip?t/2mh) ®(p. 0).

Find ®(p.0) for the traveling gaussian wave packet (Problem 2.43), and
construct ®(p, f) for this case. Also construct [P (p. 1)|%, and note that it is
independent of time.

Calculate (p) and (p?) by evaluating the appropriate integrals involving @,
and compare your answers to Problem 2.43.

Show that (H) = (p)?/2m + (H)o (where the subscript O denotes the sta-
tionary gaussian), and comment on this result.

31n particular. if we set 7 = 0. and drop the subscript on .

(@) = (W(x, NIOI¥(x. D) = (W (x. )T~ QT W (x. 0)).

where U = exp(—i Hi/h). This says that you can calculate expectation values of Q either by sand-
wiching Q between ¥ (v, r)* and W(x.r), as we have always done (letting the wave functions carry
the time dependence), or else by sandwiching U~'QU between W(x.0)* and W(x.0). letting the
operator carry the time dependence. The former is called the Schrodinger picture, and the latter the
Heisenberg picture.



