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Computers, Complexity,
and Intractability

1.1 Introduction

The subject matter of this book is perhaps best introduced through the
following, somewhat whimsical, example.

Suppose that you, like the authors, are employed in the halls of indus-
try. One day your boss calls you into his office and confides that the com-
pany is about to enter the highly competitive ‘‘bandersnatch’ market. For
this reason, a good method is needed for determining whether or not any
given set of specifications for a new bandersnatch component can be met
and, if so, for constructing a design that meets them. Since you are the
company’s chief algorithm designer, your charge is to find an efficient algo-
rithm for doing this.

After consulting with the bandersnatch department to determine exactly
what the problem is, you eagerly hurry back to your office, pull down your
reference books, and plunge into the task with great enthusiasm. Some
weeks later, your office filled with mountains of crumpled-up scratch paper,
your enthusiasm has lessened considerably. So far you have not been able
to come up with any algorithm substantially better than searching through
all possible designs. This would not particularly endear you to your boss,
since it would involve years of computation time for just one set of
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specifications, and the bandersnatch department is already 13 components
behind schedule. You certainly don’t want to return to his office and re-

port:
7
3
@}

I can’t find an efficient algorithm, I guess I'm just too dumb.”

To avoid serious damage to your position within the company, it would
be much better if you could prove that the bandersnatch problem is in-
herently intractable, that no algorithm could possibly solve it quickly. You
then could stride confidently into the boss’s office and proclaim:

‘I can’t find an efficient algorithm, because no such algorithm is possible!”’

Unfortunately, proving inherent intractability can be just as hard as
finding efficient algorithms. Even the best theoreticians have been stymied
in their attempts to obtain such proofs for commonly encountered hard
problems. However, having read this book, you have discovered something
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almost as good. The theory of NP-completeness provides many straightfor-
ward techniques for proving that a given problem is “‘just as hard” as a
large number of other problems that are widely recognized as being difficult
and that have been confounding the experts for years. Armed with these
techniques, you might be able to prove that the bandersnatch problem is
NP-complete and, hence, that it is equivalent to all these other hard prob-
lems. Then you could march into your boss’s office and announce:

L L L L

¥
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I can’t find an efficient algorithm, but neither can all these famous people.”

At the very least, this would inform your boss that it would do no good to
fire you and hire another expert on algorithms.

Of course, our own bosses would frown upon.our writing this book if
its sole purpose was to protect the jobs of algorithm designers. Indeed, dis-
covering that a problem is NP-complete is usually just the beginning of
work on that problem. The needs of the bandersnatch department won’t
disappear overnight simply because their problem is known to be NP-
complete. However, the knowledge that it is NP-complete does provide
valuable information about what lines of approach have the potential of be-
ing most productive. Certainly the search for an efficient, exact algorithm
should be accorded low priority. It is now more appropriate to concentrate
on other, less ambitious, approaches. For example, you might look for
efficient algorithms that solve various special cases of the general problem.
You might look for algorithms that, though not guaranteed to run quickly,
seem likely to do so most of the time. Or you might even relax the prob-
lem somewhat, looking for a’ fast algorithm that merely finds designs that
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meet most of the component specifications. In short, the primary applica-
tion of the theory of NP-completeness is to assist algorithm designers in
directing their problem-solving efforts toward those approaches that have
the greatest likelihood of leading to useful algorithms.

In the first chapter of this ‘‘guide’ to NP-completeness, we introduce
many of the underlying concepts, discuss their applicability (as well as give
some cautions), and outline the remainder of the book.

1.2 Problems, Algorithms, and Complexity

In order to elaborate on what is meant by ‘‘inherently intractable”
problems and problems having ‘‘equivalent’” difficulty, it is important that
we first agree on the meaning of several more basic terms.

Let us begin with the notion of a problem. For our purposes, a problem
will be a general question to be answered, usually possessing several param-
eters, or free variables, whose values are left unspecified. A problem is
described by giving: (1) a general description of all its parameters, and (2)
a statement of what properties the answer, or solution, is required to satisfy.
An instance of a problem is obtained by specifying particular values for all
the problem parameters.

As an example, consider the classical “‘traveling salesman problem.”
The parameters of this problem consist of a finite set C = {¢y,¢5, . . ., ¢y}
of ““cities” and, for each pair of cities ¢;,¢; in C, the “distance” d{¢;,c;)
between them. A solution is an ordering <¢p(1),Cx(@)s - - - » Cx(m) > Of the
given cities that minimizes

m—|
:i d(cﬂ(i)vcv(/+l))] + dlen(m»Ca)
pr
This expression gives the length of the ‘“‘tour’ that starts at ¢, visits
each city in sequence, and then returns directly to ¢, from the last city
Cr(m)-

One instance of the traveling salesman problem, illustrated in Figure
1.1, is given by C =/|c|,ene3c), dle,c) =10, dlepe3) =5,
d(ci,eq) =9, dleyes) =6, dlcyey) =9, and d(cs.cy) = 3. The ordering
<¢1,€63,¢4,¢3> is a solution for this instance, as the corresponding tour has
the minimum possible tour length of 27.

Algorithms are general, step-by-step procedures for solving problems.
For concreteness, we can think of them simply as being computer programs,
written in some precise computer language. An algorithm is said to solve a
problem II if that algorithm can be applied to any instance / of II and is
guaranteed always to produce a solution for that instance /. We emphasize
that the term ‘‘solution’ is intended here strictly in the sense introduced
above, so that, in particular, an algorithm does not ‘‘solve’” the traveling

1.2 PROBLEMS, ALGORITHMS, AND COMPLEXITY 5

Figure 1.1 An instance of the traveling salesman problem and a tour of length 27,
which is the minimum possible in this case.

salesman problem unless it always constructs an ordering that gives a
minimum length tour.

. In general, we are interested in finding the most “‘efficient” algorithm
for solving a problem. In its broadest sense, the notion of efficiency in-
volves all the various computing resources needed for executing an algo-
rithm. However, by the “most efficient’ algorithm one normally means the
fastest. Since time requirements are often a dominant factor determining
whether or not a particular algorithm is efficient enough to be useful in
practice, we shall concentrate primarily on this single resource.

The time requirements of an algorithm are conveniently expressed in
terms of a single variable, the ‘‘size’” of a problem instance, which is in-
tended to reflect the amount of input data needed to describe the instance.
This is convenient because we would expect the relative difficulty of prob-
lem instances to vary roughly with their size. Often the size of a problem
instance is measured in an informal way. For the traveling salesman prob-
lem, for example, the number of cities is commonly used for this purpose.
However, an m-city problem instance includes, in addition to the labels of
the m cities, a collection of m(m—1)/2 numbers defining the inter-city dis-
tances, and the sizes of these numbers also contribute to the amount of in-
put data. If we are to deal with time requirements in a precise, mathemati-
cal manner, we must take care to-define instance size in such a way that all
these factors are taken into account.

To do this, observe that the description of a problem instance that we
provide as input to the computer can be viewed as a single finite string of
symbols chosen from a finite input alphabet. Although there are many
different ways in which instances of a given problem might be described, let
us assume that one particular way has been chosen in advance and that each
problem has associated with it a fixed encoding scheme, which maps problem
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instances into the strings describing them. The input length for an instance
I of a problem II is defined to be the number of symbols in the description
of I obtained from the encoding scheme for I1. It is this number, the input
length, that is used as the formal measure of instance size.

For example, instances of the traveling salesman problem might be
described using the alphabet {c,[,1,/,0,1,2,3,4,5,6,7,8,9}, with our pre-
vious example of a problem instance being encoded by the string
“cl1lcl2lcl31cl4]l//10/5/9//6/9//3.” More complicated instances would be
encoded in analogous fashion. If this were the encoding scheme associated
with the traveling salesman problem, then the input length for our example
would be 32.

The time complexity function for an algorithm expresses its time require-
ments by giving, for each possible input length, the largest amount of time
needed by the algorithm to solve a problem instance of that size. Of
course, this function is not well-defined until one fixes the encoding scheme
to be used for determining input length and the computer or computer
model to be used for determining execution time. However, as we shall
see, the particular choices made for these will have little effect on the broad
distinctions made in the theory of NP-completeness. Hence, in what fol-
lows, the reader is advised merely to fix in mind a particular encoding
scheme for each problem and a particular computer or computer model, and

to think in terms of time complexity as determined from the corresponding .

input lengths and execution times.

1.3 Polynomial Time Algorithms and Intractable Problems

Different algorithms possess a wide variety of different time complexity
functions, and the characterization of which of these are “‘efficient enough”
and which are ““too inefficient”” will always depend on the situation at hand.
However, computer scientists recognize a simple distinction that offers con-
siderable insight into these matters. This is the distinction between polyno-
mial time algorithms and exponential time algorithms.

Let us say that a function f(n) is O(g(n)) whenever there exists a
constant ¢ such that | f(n)| < c-|g(n)] for all values of n>0. A polynomi-
al time algorithm is defined to be one whose time complexity function is
O(p(n)) for some polynomial function p, where n is used to denote the in-
put length. Any algorithm whose time complexity function cannot be so
bounded is called an exponential time algorithm (aithough it should be noted
that this definition includes certain non-polynomial time complexity func-
tions, like n'%"  which are not normally regarded as exponential functions).

The distinction between these two types of algorithms has particular
significance when considering the solution of large problem instances. Fig-
ure 1.2 illustrates the differences in growth rates among several typical com-
plexity functions of each type, where the functions express execution time
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in terms of microseconds. Notice the much more explosive growth rates
for the two exponential complexity functions.

Size n
Time
complexity 10 20 30 40 50 60
function
.00001 .00002 .00003 .00004 .00005 .00006
n
second | second second second second second
n? .0001 .0004 .0009 .0016 .0025 .0036
second | second second second second second
3 .001 .008 .027 .064 125 216
second | second second second second second
e B 3.2 243 1.7 5.2 "13.0
second | seconds | seconds | minutes minutes minutes
om .001 1.0 17.9 12.7 357 366
second | second | minutes days years centuries
30 059 58 6.5 3855 2x108 1.3x1013
second | minutes years centuries | centuries | centuries

Figure 1.2 Comparison of several polynomial and exponential time complexity
functions.

Even more revealing is an examination of the effects of imgroved com-
puter technology on algorithms having these time complexity functions.
Figure 1.3 shows how the largest problem instance solvable in one hour
would change if we had a computer 100 or 1000 times faster than our
present machine. Observe that with the 2” algorithm a thousand-fold in-
crease in computing speed only adds 10 to the size of the largest problem
instance we can solve in an hour, whereas with the »° algorithm this size al-
most quadruples.

These tables indicate some of the reasons why polynomial time algo-
rithms are generally regarded as being much more desirable than exponen-
tial time algorithms. This view, and the distinction between the two types
of algorithms, is central to our notion of inherent intractability and to the-
theory of NP-completeness.

The fundamental nature of this distinction was first discussed in [Cob-
ham, 1964] and [Edmonds, 1965al. Edmonds, in particular, equated poly-
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Size of Largest Problem Instance
Solvable in 1 Hour

Zci:zlexity With present | With computer With computer
function computer 100 times faster | 1000 times faster
n N, 100 N, 1000 ¥,

n? N, 10 N, 31.6 N,
2N 4.64 N, 10 N,

n’ N, 2.5 N,y 3.98 N,
27 N; Ns+6.64 Ns+9.97
3" N Ng+4.19 Ng+6.29

Figure 1.3 Effect of improved technology on several polynomial and exponential
time algorithms.

nomial time algorithms with “‘good’” algorithms and conjectured that certain
integer programming problems might not be solvable by such ‘‘good” algo-
rithms. This reflects the viewpoint that exponential time algorithms should
not be considered ‘‘good’’ algorithms, and indeed this usually is the case.
Most exponential time algorithms are merely variations on exhaustive
search, whereas polynomial time algorithms generally are made possible
only through the gain of some deeper insight into the structure of a prob-
lem. There is wide agreement that a problem has not been ‘‘well-solved”
until a polynomial time algorithm is known for it. Hence, we .shall refer to
a problem as intractable if it is so hard that no polynomial time algorithm
can possibly solve it.

Of course, this formal use of ‘‘intractable™ should be viewed only as a
rough approximation to its dictionary meaning. The distinction between
“efficient’” polynomial time algorithms and ‘‘inefficient’’ exponential time
algorithms admits of many exceptions when the problem instances of in-
terest have limited size. Even in Figure 1.2, the 2" algorithm is faster than
the n° algorithm for n € 20. More extreme examples can be constructed
easily.

Furthermore, there are some exponential time algorithms that have
been quite useful in practice. Time complexity as defined is a worst-case
measure, and the fact that an algorithm has time complexity 2”7 means only
that at least one problem instance of size n requires that much time. Most
problem instances might actually require far less time than that, a situation
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that appears to hold for several well-known algorithms. The simplex algo-
rithm for linear programming has been shown to have exponential time
complexity [Klee and Minty, 1972], [Zadeh, 19731, but it has an impressive
record of running quickly in practice. Likewise, branch-and-bound algo-
rithms for the knapsack problem have been so successful that many consid-
er it to be a ‘“‘well-solved’’ problem, even though these algorithms, too,
have exponential time complexity.

Unfortunately, examples like these are quite rare. Although exponen-
tial time algorithms are known for many problems, few of them are regard-
ed as being very useful in practice. Even the successful exponential time al-
gorithms mentioned above have not stopped researchers from continuing to
search for polynomial time algorithms for solving those problems. In fact,
the very success of these algorithms has led to the suspicion that they
somehow capture a crucial property of the problems whose refinement could
lead to still better methods. So far, little progress has been made toward
explaining this success, and no methods are known for predicting in ad-
vance that a given exponential time algorithm will run quickly in practice.

On the other hand, the much more stringent bounds on execution time
satisfied by polynomial time algorithms often permit such. predictions to be
made. Even though an algorithm having time complexity n!® or 10942
might not be considered likely to run quickly in practice, the polynomially
solvable problems that arise naturally tend to be solvable within polynomial
time bounds that have degree 2 or 3 at worst and that do not involve ex-
tremely large coefficients. Algorithms satisfying such bounds can be con-
sidered to be “‘provably efficient,”” and it is this much-desired property that
makes polynomial time algorithms the preferred way to solve problems.

QOur definition of “‘intractable’” also provides a theoretical framework of
considerable generality and power. The intractability of a problem turns out
to be essentially independent of the particular encoding scheme and com-
puter model used for determining time complexity.

Let us first consider encoding schemes. Suppose for example that we
are dealing with a problem in which each instance is a graph G = (V,E),
where V is the set of vertices and F is the set of edges, each edge being an
unordered pair of vertices. Such an instance might be described (see Figure
1.4) by simply listing all the vertices and edges, or by listing the rows of the
adjacency matrix for the graph, or by listing for each vertex all the other
vertices sharing a common edge with it (a ‘“‘neighbor’’ list). Each of these
encodings can give a different input length for the same graph. However, it
is easy to verify (see Figure 1.5) that the input lengths they determine
differ at most polynomially from one another, so that any algorithm having
polynomial time complexity under one of these encoding schemes also will
have polynomial time complexity under all the others. In fact, the standard
encoding schemes used in practice for any particular problem always seem
to differ at most polynomially from one another. It would be difficult to
imagine a ‘‘reasonable’” encoding scheme for a problem that differs more
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than polynomially from the standard ones. Although what we mean here by
““reasonable” cannot be formalized, the following two conditions capture
much of the notion:

(1) the encoding of an instance / should be concise and not ‘‘pad-
ded’’ with unnecessary information or symbols, and

(2) numbers occurring in / should be represented in binary (or de-
cimal, or octal, or in any fixed base other than 1).

If we restrict ourselves to encoding schemes satisfying these conditions,
then the particular encoding scheme used should not affect the determina-
tion of whether a given problem is intractable.

Encoding Scheme String Length

Vertex list, Edge list VILIVRIVBIVIAI(vIIIVR2ZD (vi2lvi3]) 36

Neighbor list wRDVIVEBHVERDO) 24

Adjacency matrix rows | 0100/1010/0010/0000 19

Figure 1.4 Descriptions of the graph G = (V,E) where V = {V},V,, V3, V,} and
E = {{y,, 1.} [ V5, V3}}, under three different encoding schemes.

Encoding Scheme Lower Bound Upper Bound

Vertex list, Edge list 4y + 10e 4y + 10e + (v +2¢)-[log;p¥}

Neighbor list 2v + 8e 2v + 8e + 2e-flogiVi

Adjacency matrix vidy —1 vidy —1

Figure 1.5 General bounds on input lengths for the three encoding schemes of
Figure 1.4 for graphs G = (V,E) with |V|=v, |E|=e. Since e < 2,
these show that the input lengths differ at most polynomially from each
other. ([x] denotes the least integer not less than x.)

Similar comments can be made concerning the choice of computer
models. All the realistic models of computers studied so far, such as one-
tape Turing machines, multi-tape Turing machines, and random-access
machines (RAMs), are equivalent with respect to polynomial time complex-
ity (for example, see Figure 1.6). One would expect any other ‘‘reason-
able” model to share in this equivalence. The notion of ‘‘reasonable” in-
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tended here is essentially that there is a polynomial bound on the amount of
work that can be done in a single unit of time. Thus, for example, a model
having the capability of performing arbitrarily many operations in parallel
would not be considered ‘‘reasonable,”” and indeed no existing (or planned)
computer has this capability. At any rate, so long as we restrict ourselves to
the standard models of realistic computers, the class of intractable problems
will be unaffected by the particular model used, and we can make our
choice on the basis of convenience without sacrificing the applicability of
our results.

_ Simulating machine A
Simulated machine B 1™ kTM RAM

1-Tape Turing Machine (1TM) - O(T(n)) | O(T(mlogT(n))

k-Tape Turing Machine (kKTM) o(T*(m) - O(T(n)logT(n))

Random Access Machine (RAM) | O(T*(n)) | O(T%(n)) : -

Figure 1.6 Time required by machine A to simulate the execution of an algorithm
of time complexity 7(n) on Machine B (for example, see [Hopcroft
and Ullman, 1969] and {Aho, Hopcroft, and Ullman, 1974]).

1.4 Provably Intractable Problems

Now that we have discussed the formal meaning of ‘‘intractable prob-
lem,”’ it is appropriate that we briefly survey the current state of knowledge
about the existence of intractable problems.

It is useful to begin by distinguishing between two different causes of
intractability allowed by our definition. The first, which is the one we usu-
ally have in mind, is that the problem is so difficult that an exponential
amount of time is needed to discover a solution. The second is that the
solution itself is required to be so extensive that it cannot be described with
an expression having length bounded by a polynomial function of the input
length.

This second cause occurs, for example, in the variant of the traveling
salesman problem that includes a number B as an additional parameter and
that asks for all tours having total length B or less. It is easy to construct
instances of this problem in which exponentially many tours are shorter
than the given bound, so that no polynomial time algorithm could possibly
list them all.

Intractability of this sort is by no means insignificant, and it is impor-
tant to recognize it when it occurs. However, in most cases its existence is
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apparent from the problem definition. In fact, this type of intractability can
be regarded as a signal that the problem is not defined realistically, because
we are asking for more information than we could ever hope to use. Thus,
from now on we shall restrict our attention to the first type of intractability.
Accordingly, only problems for which the solution length is bounded by a
polynomial function of the input length will be considered.

The earliest intractability results for such problems are the classical un-
decidability results of Alan Turing. Over 40 years ago, Turing demonstrated
that certain problems are so hard that they are ‘‘undecidable,” in the sense
that no algorithm at all can be given for solving them. He proved, for ex-
ample, that it is impossible to specify any algorithm which, given an arbi-
trary computcr program and an arbitrary input to that program, can decide
whether or not the program will eventually halt when applied to that input
[Turing, 1936). A variety of other problems are now known to be undecid-
able, including the triviality problem for finitely presented groups [Rabin,
19581, Hilbert’s tenth problem (solvability of polynomial equations in in-
tegers) [Matijasevic, 1970], and several problems of “‘tiling the plane”
[Berger, 1966). Since these undecidable problems cannot be solved by any
algorithm, much less a polynomial time algorithm, they indeed are intract-
able in an especially strong sense.

The first examples of intractable ‘‘decidable’ problems were obtained
in the early 1960’s, as part of work on complexity ‘hierarchies” by Hart-
manis and Stearns [1965]. However, these results involved only “‘artificial”
problems, specifically construcied to have the appropriate properties. It was
not until the early 1970’s that Meyer and Stockmeyer [1972], Fischer and
Rabin [1974], and others finally succeeded in proving some ‘‘natural’’ de-
cidable problems to be intractable. These include a variety of previously
studied problems from automata theory, formal language theory, and
mathematical logic. In fact, the proofs show that these problems cannot be
solved in polynomial time using even a ‘‘nondeterministic’> computer
model, which has the ability to pursue an unbounded number of indepen-
dent computational sequences in parallel. We shall see that this ‘“‘unreason-
able”” computer model plays an important role in the theory of NP-
completeness, and its capabilities will be specified more fully in Chapter 2.

All the provably intractable problems known to date fall into the two
categories we have just mentioned. They are either undecidable or ‘‘non-
deterministically’’ intractable. However, most of the apparently intractable
problems encountered in practice are decidable and can be solved in poly-
nomial time with the aid of a nondeterministic computer. Thus, none of
the proof techniques developed so far is powerful enough to verify the ap-
parent intractability of these problems.

1.5 NP-COMPLETE PROBLEMS i3

1.5 NP-Complete Problems

As theoreticians continue to seek more powerful methods for proving
problems intractable, parallel efforts focus on learning more about the ways
in which various problems are interrelated with respect to their difficulty.
As we suggested earlier, the discovery of such relationships between prob-
lems often can provide information useful to algorithm designers.

The principal technique used for demonstrating that two problems are
related is that of ‘“‘reducing’” one to the other, by giving a constructive
transformation that maps any instance of the first problem into an
equivalent instance of the second. Such a transformation provides the
means for converting any algorithm that solves the second problem into a
corresponding algorithm for solving the first problem.

.Many simple examples of such reductions have been known for some
time. For example, Dantzig [1960] reduced a number of combinatorial op-
timization problems to the general zero-one integer linear programming
problem. Edmonds [1962] reduced the graph theoretic problems of ‘‘cover-
ing all edges with a minimum number of vertices’” and ‘‘finding a max-
imum independent set of vertices’ to the general ‘‘set covering problem.”’
Gimpel [1965] reduced the general set covering problem to the “‘prime im-
plicant covering problem’ of logic design. Dantzig, Blattner, and Rao
[1966] described a ‘‘well-known” reduction from the traveling salesman
problem to the ‘‘shortest path problem’ with negative edge lengths allowed.

These early reductions, although rather isolated and limited in scope,
foreshadow the kind of results proved in the theory of NP-completeness.

The foundations for the theory of NP-completeness were laid in a paper
of Stephen Cook, presented in 1971, entitled ““The Complexity of Theorem
Proving Procedures” [Cook, 1971a]. In this brief but elegant paper Cook
did several important things.

First, he emphasized the significance of ‘‘polynomial time reducibility,”’
that is, reductions for which the required transformation can be executed by
a polynomial time algorithm. If we have a polynomial time reduction from
one problem to another, this ensures that any polynomial time algorithm for
the second problem can be converted into a corresponding polynomial time
algorithm for the first problem.

Second, he focused attention on the class NP of decision problems that
can be solved in polynomial time by a nondeterministic computer. (A deci-
sion problem is one whose solution is either ‘‘yes’” or “no’’.) Most of the
apparently intractable problems encountered in practice, when phrased as
decision problems, belong to this class.

Third, he proved that one particular problem in NP, called the’
“‘satisfiability’’ problem, has the property that every other problem in NP
can be polynomially reduced to it. If the satisfiability problem can be solved
with a polynomial time algorithm, then so can every problem in NP, and if
any problem in NP is intractable, then the satisfiability problem also must
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be intractable. Thus, in a sense, the satisfiability problem is the ‘‘hardest™
problem in NP,

Finally, Cook suggested that other problems in NP might share with
the satisfiability problem this property of being the ‘‘hardest’” member of
NP. He showed this to be the case for the problem “‘Does a given graph G
contain a complete subgraph on a given number k of vertices?”’

Subsequently, Richard Karp presented a collection of results [Karp,
1972} proving that indeed the decision problem versions of many well
known combinatorial problems, including the traveling salesman problem,
are just as ‘‘hard” as the satisfiability problem. Since then a wide variety of
other problems have been proved equivalent in difficulty to these problems,
and this equivalence class, consisting of the ‘‘hardest’ problems in NP, has
been given a name: the class of NP-complete problems.

Cook’s original ideas have turned out to be remarkably powerful. They
have provided the means for combining many individual complexity ques-
tions into the single question: Are the NP-complete problems intractable?
The lists included in the Appendix of this book contain literally hundreds of
different problems now known to be NP-complete. As more and more
problems of independent interest are shown to belong to this equivalence
class, its importance is continually reinforced.

The question of whether or not the NP-complete problems are intract-
able is now considered to be one of the foremost open questions of contem-
porary mathematics and computer science. Despite the willingness of most
researchers to conjecture that the NP-complete problems are all intractable,
little progress has yet been made toward establishing either a proof or a dis-
proof of this far-reaching conjecture. However, even without a proof that
NP-completeness implies intractability, the knowledge that a problem is
NP-complete suggests, at the very least, that a major breakthrough will be
needed to solve it with a polynomial time algorithm.

1.6 An Outline of the Book

Although this book is intended mainly as a primer on how to determine
whether or not any particular problem is NP-complete (either by looking it
up in the lists we present or by proving it yourself), we shall also discuss
some of the options available for dealing with a problem that is known to be
NP-complete. A brief outline of subsequent chapters follows.

In Chapter 2, we present the formal underpinnings of NP-completeness
and prove Cook’s theorem. The central definitions involve certain theoreti-
cal concepts, such as ‘“‘languages” and *Turing machines,”” which we
develop in a straightforward manner, relating them to the notions of prob-
lems and computer models already discussed. This chapter should give the
reader a good understanding of the technical meaning of NP-completeness.
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Chapter 3 is devoted to methods for proving a problem NP-complete.
A number of examples are presented to illustrate the usual structure of
such proofs, and to indicate how one goes about generating one. In
essence, one proves a new problem to be NP-complete by polynomially

reducing a known NP-complete problem to it. We survey the known NP-

complete problems that have been most useful for this purpose and demon-
strate their use.

In Chapter 4, we examine the ways in which the theory of NP-
completeness can be used for conducting a detajled analysis of the complex-
ity of a problem, seeking to determine the “‘boundary’’ between those cases
of the problem that are polynomially solvable and those that are NP-
complete.

In Chapter 5, we show how the techniques used for proving NP-
completeness can be generalized so that problems other than just decision
problems can be proved to be ‘“‘as hard as’ the NP-complete problems. As
an aid to reading the published literature on the theory of NP-completeness,
we also provide a brief historical survey of the development of the main
ideas and the varying terminology that has been used for discussing them.

In Chapter 6, we discuss several approaches for dealing with intractable
problems, especially that of finding near-optimal solutions using fast algo-
rithms. Examples of the successes and failures of each approach are
described, and we illustrate how the theory of NP-completeness can be ap-
plied even here.

Chapter 7 is intended to acquaint the reader with some of the theoreti-
cal issues and ideas that have arisen in parallel with the theory of NP-
completeness. Among other topics we discuss the polynomial hierarchy,
#P-completeness, polynomial space completeness, and the “‘relativization”
of the question of the intractability of the NP-complete problems.

The last third of the book consists of the Appendix, an extensive and
annotated list of problems known to be NP-complete or harder. The list is
divided into sections, each devoted to problems from a particular subject
area, such as graph theory, scheduling, algebra and number theory, covering
and partitioning, mathematical programming, program optimization, auto-
mata and language theory, and, of course, miscellaneous topics. The list in-
cludes references to related problems known to be solvable in polynomial
time and to problems whose status remains open in that neither polynomial
time algorithms nor NP-completeness proofs are known for them.



2

The Theory of NP-Completeness

In this chapter we present the formal details of the theory of NP-
completeness. So that the theory can be defined in a mathematically
rigorous way, it will be necessary to introduce formal counterparts for many
of our informal notions, such as ‘‘problems’ and ‘‘algorithms.” Indeed,
one of the main goals of this chapter is to make explicit the connection
between the formal terminology and the more intuitive, informal shorthand
that is commonly used in its place. Once we have this connection well in
hand, it will be possible for us to- pursue our discussions primarily at the
informal level in later chapters, reverting to the formal level only when
necessary for clarity and rigor.

The chapter begins by discussing decision problems and their represen-
tation as ‘‘languages,’” equating ‘‘solving’’ a decision problem with ‘‘recog-
nizing’’ the corresponding language. The one-tape Turing machine is intro-
duced as our basic model for computation and is used to define the class P
of all languages recognizable deterministically in polynomial time. This
model is then augmented with a hypothetical “‘guessing’’ ability, and the
augmented model is used to define the class NP of all languages recogniz-
able ‘‘nondeterministically’’ in polynomial time. After discussing the rela-
tionship between P and NP, we define the notion of a polynomial transfor-
mation from one language to another and use it to define what will be our
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most important class, the class of NP-complete problems. The chapter con-
cludes with the statement and proof of Cook’s fundamental theorem, which
provides us with our first bona fide NP-complete problem.

2.1 Decision Problems, Languages, and Encoding Schemes

As a matter of convenience, the theory of NP-completeness is designed
to be applied only to decision problems. Such problems, as mentioned in
Chapter 1, have only two possible solutions, either the answer ‘“‘yes’” or the
answer ‘‘no.” Abstractly, a decision problem TI consists simply of a set Dy
of instances and a subset Y Dy, of yes-instances. However, most decision
problems of interest possess a considerable amount of additional structure,
and we will describe them in a way that emphasizes this structure. The
standard format we will use for specifying problems consists of two parts,
the first part specifying a generic instance of the problem in terms of various
components, which are sets, graphs, functions, numbers, etc., and the
second part stating a yes-no guestion asked in terms of the generic instance.
The way in which this specifies Dy and Yy; should be apparent. An instance
belongs to Dy if and only if it can be obtained from the generic instance by
substituting particular objects of the specified types for all the generic com-
ponents, and the instance belongs to Y, if and only if the answer for the
stated question, when particularized to that instance, is “‘yes.”

For example, the following describes a well-known decision problem
from graph theory:

SUBGRAPH ISOMORPHISM

INSTANCE: Two graphs, G, = (V,E;) and G,=(V,,E,).

QUESTION: Does G, contain a subgraph isomorphic to G,, that is, a sub-
set V'C V; and a subset E'CE; such that | V'| =|V,]|, |E'| =|E,|, and there
exists a one-to-one function f:V,—V’ satisfying {u,v}€E, if and only if

(FQD,fON}EE?

A decision problem related to the traveling salesman problem can be
described as follows:

TRAVELING SALESMAN

INSTANCE: A finite set C={c;,c;, ..., c,} of “cities,” a “distance”
d(c;,¢;) €Z* for each pair of cities ¢;,c;€C, and a bound B € Z* (where Z*
denotes the positive integers).

QUESTION: Is there a ““tour” of all the cities in C having total length no
more than B, that is, an ordering <c,(), Cr(2), - - - » Cr(m)> Of C such that

m—1
Y, deriysCrnien) | ¥ dCnimyCay) < B ?

i=1
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The reader will find many more examples of the use of this format
throughout the book, but these two should suffice for now to convey the
basic idea. The second example also serves to illustrate an important point
about how a decision problem can be derived from an optimization prob-
lem. If the optimization problem asks for a structure of a certain type that
has minimum ‘‘cost’’ among all such structures (for example, a tour that
has minimum length among all tours), we can associate with that problem
the decision problem that includes a numerical bound B as an additional
parameter and that asks whether there exists a structure of the required type
having cost no more than B (for example, a tour of length no more than
B). Decision problems can be derived from maximization problems in an
analogous way, simply by replacing ‘‘no more than’’ by ‘‘at least.”

The key point to observe about this correspondence is that, so long as
the cost function is relatively easy to evaluate, the decision problem can be
no harder than the corresponding optimization problem. Clearly, if we
could find a minimum length tour for the traveling salesman problem in po-
lynomial time, then we could also solve the associated decision problem in
polynomial time. All we need do is find the minimum length tour, compute
its length, and compare that length to the given bound B. Thus, if we
could demonstrate that TRAVELING SALESMAN is NP-complete (as
indeed it is), we would know that the traveling salesman optimization prob-
lem is at least as hard. In this way, even though the theory of NP-
completeness restricts attention to only decision problems, we can extend
the implications of the theory to optimization problems as well. (We shall
see in Chapter S that decision problems and optimization problems are often
even more closely tied: Many decision problems, including TRAVELING
SALESMAN, can also be shown to be ‘‘no easier’” than their corresponding
optimization problems.)

The reason for the restriction to decision problems is that they have a
very natural, formal counterpart, which is a suitable object to study in a
mathematically precise theory of computation. This counterpart is called a
“language’ and is defined in the following way.

For any finite set I of symbols, we denote by T* the set of all finite
strings of symbols from Z. For example, if Z=1{0,1}, then Z* consists of
the empty string ‘‘e,” the strings 0,1,00,01,10,11,000,001, and all other
finite strings of 0’s and 1’s. If L is a subset of I* we say that L is a
language ovér the alphabet L. Thus {01,001,111,1101010} is a language
over {0,1}, as is the set of all binary representations of integers that are per-
fect squares, as is the set {0,1}* itself.

The correspondence between decision problems and languages is
brought about by the encoding schemes we use for specifying problem in-
stances whenever we intend to compute with them. Recall that an encoding
scheme e for a problem II provides a way of describing each instance of IT
by an appropriate string of symbols over some fixed alphabet £. Thus the
problem II and the encoding scheme e for I partition £* into three classes
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of strings: those that are not encodings of instances of [1, those that encode
instances of I1 for which the answer is ‘‘no,”” and those that encode in-
stances of II for which the answer is “‘yes.”” This third class of strings is
the language we associate with [ and e, setting

T is the alphabet used by e, and x is the

-— *.
LlTe} = xex™ encoding under e of an instance 1€Yy

Our formal theory is applied to decision problems by saying that, if a result
holds for the language LI[[1,el, then it holds for the problem [T under the
encoding scheme e.

In fact, we shall usually follow standard practice and be a bit more in-
formal than this. Each time we introduce a new concept in terms of
languages, we will observe that the property is essentially encoding indepen-
dent, so long as we restrict ourselves to ‘‘reasonable’’ encoding schemes.
That is, if ¢ and e’ are any two reasonable encoding schemes for II, then
the property holds either for both L[I1,e] and L[I1,e] or for neither. This
will allow us to say, informally, that the property holds (or does not hold)
for the problem 11, without actually specifying any encoding scheme. How-
ever, whenever we do so, the implicit assertion will be that we could, if re-
quested, specify a particular reasonable encoding scheme e such that the
property holds for L{II,e]. '

Notice that when we operate in this encoding-independent manner, we
lose contact with any precise notion of “‘input length.”” Since we need some
parameter in terms of which time complexity can be expressed, it is con-
venient to assume that every decision problem IT has an associated,
encoding-independent function Length: Dg— Z*, which is ‘‘polynomially
related” to the input lengths we would obtain from a reasonable encoding
scheme. By polynomially related we mean that, for any reasonable encoding
scheme e for TI, there exist two polynomials p and p' such that if 7 € Dy
and x is a string encoding the instance / under e, then Length [71 < p({x])
and |x| < p'(Length [I]), where |x| denotes the length of the string x. In
the SUBGRAPH ISOMORPHISM problem, for example, we might take

Length [71 = | V| + | V,]

where Gy=(V},E}) and G,=(V,,E,) are the graphs making up an in-
stance. In the TRAVELING SALESMAN decision problem we might take

Length (71 = m + [log, Bl + max {[log,d(c;,c))}: ¢;,c; €C}

Since any two reasonable encoding schemes for a problem IT will yield poly-
nomially related input lengths, a wide variety of Length functions are possi-
ble for TI, and all our results will carry through for any such function that
meets the above conditions.

The usefulness of this informal, enc®ding-independent approach
depends, of course, on there being some agreement as to what constitutes a
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“reasonable’” encoding scheme. The generally accepted meaning of ‘‘rea-
sonable’’ includes both the notion of ““conciseness,’’ as captured by the two
conditions mentioned in Chapter 1, and the notion of ‘‘decodability.”” The
intent of ‘‘conciseness’ is that instances of a problem should be described
with the natural brevity we would use in actually specifying those instances
for a computer, without any unnatural ‘‘padding” of the input. Such pad-
ding could be used, for example, to expand the input length so much that
we artificially convert an exponential time algorithm into a polynomial time
algorithm. The intent of ‘*‘decodability’’ is that, given any particular com-
ponent of a generic instance, one should be able to specify a polynomial
time algorithm that is capable of extracting a description of that component
from any given encoded instance.

Of course, these elaborations do not provide a formal definition of
“‘reasonable encoding scheme,” and we know of no satisfactory way of
making such a definition. Even though most people would agree on wheth-
er or not a particular encoding scheme for a given problem is reasonable,
the absence of a formal definition can be somewhat discomforting. One
way of resolving this difficulty would be to require that generic problem in-
stances always be formed from a fixed collection of basic types of set-
theoretic objects. We will not impose such a constraint here, but, as an in-
dication of our intent when we refer to ‘‘reasonable encoding schemes,”” we
now give a brief description (which first time readers may wish to skip) of
how such a standard encoding scheme could be defined.

Our standard encoding scheme will map instances into ‘‘structured
strings” over the alphabet ¥={0,1,—,1,1.(),,}. We define structured
strings recursively, as follows:

(1) The binary representation of an integer k as a string of 0’s and
1’s (preceded by a minus sign ““—>’ if k is negative) is a struc-
tured string representing the integer k.

(2) If x is a structured string representing the integer k, then [x] is a
structured string that can be used as a ‘“‘name’ (for example, for
a vertex in a graph, a set element, or a city in a traveling sales-
man instance).

(3) If x;,x;, ..., X, are structured strings representing the objects
XXy, ..., X, then (x;,x3,...,x,) is a structured string
representing the sequence <Xy, X,, ..., X,>.

To derive an encoding scheme for a particular decision problem
specified in our standard format, we first note that, once we have built up a
representation for each object in an instance as a structured string, the
representation of the entiresinstance is determined using rule (3) above.
Thus we need only specify how the representation for each type of object is
constructed. For this we shall restrict ourselves to integers, ‘‘unstructured
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elements’” (vertices, elements, cities, etc.), sequences, sets, graphs, finite
functions, and rational numbers.

Rules (1) and (3) already tell us how to represent integers and se-
quences. To represent each of the unstructured elements in an instance, we
merely assign it a distinct “‘name,’’ as constructed by rule (2), in such a
way that if the total number of unstructured elements in an instance is N,
then no name with magnitude exceeding A is used. The representations for
the four other object types are as follows:

A set of objects is represented by ordering its elements as a sequence
<X, 4X,;,...,X,> and taking the structured string corresponding to that
sequence.

A graph with vertex set V and edge set F is represented by a structured
string (x,y), where x is a structured string representing the set ¥, and y is
a structured string representing the set £ (the elements of £ being the
two-element subsets of ¥ that are edges).

A finite function f:{U,,U,, ..., U,}— W is represented by a struc-
tured string ((x;,),(x2,52), . . . ,(X,,,Vm)) where x; is a structured string
representing the object U, and y, is a structured string representing the ob-
ject FU)EeW, 1LiSm.

A rational number g is represented by a structured string (x,y) where x
is a structured string representing an integer @, y is a structured string rep-
resenting an integer b, a/b =g, and the greatest common divisor of a and
bis 1.

Although it might be convenient to have a wider collection of object
types at our disposal, the ones above will suffice for most purposes and are
enough to illustrate our notion of a reasonable encoding scheme. Further-
more, there would be no loss of generality in restricting ourselves to just
these types for specifying generic instances, since other types of objects can
always be expressed in terms of the ones above.

Note that our prescriptions are not sufficient to generate a unigue string
for encoding each instance but merely for ensuring that each string that
does encode an instance obeys certain structural restrictions. A different
choice of names for the basic elements or a different choice of order for the
description of a set could lead to different strings that encode the same in-
stance. In fact, it makes no difference how many strings encode an instance
so long as we can decode each to obtain the essential components of the in-
stance. Moreover, our definitions take this into account; for example, in
L, el; the set of all strings that encode ves-instances of II under e, each
instance may be represented many times.

Before going on, we remind the reader that our standard encoding

scheme is intended solely to illustrate how one might define such a standard
scheme, although it also provides a reference point for what we mean by a
*‘reasonable™ encoding scheme. There is no reason why some other gen-
~ eral scheme could not be used, or why we could not merely devise an indi-

vidual encoding scheme for each problem of interest. If the chosen scheme
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is ‘‘equivalent’ to ours, in the sense that there exist polynomial time algo-
rithms for converting an encoding of an instance under either scheme to an
encoding of that instance under the other scheme, then it, 100, will be
called ‘‘reasonable.”” If the chosen scheme is nor equivalent to ours in this
sense, then one can still prove results with respect to that scheme, but the
encoding-independent terminology should not be used for describing them.
Throughout this book we will restrict our attention to reasonable encoding
schemes for problems.

2.2 Deterministic Turing Machines and the Class P

In order to formalize the notion of an algorithm, we will need to fix a
particular model for computation. The model we choose is the dererministic
one-tape Turing machine (abbreviated DTM), which is pictured schematically
in Figure 2.1. It consists of a finite state control, a read-write head, and a tape
made up of a two-way infinite sequence of tape squares, labeled

.,—2,—-1,0,1,2,3, ...

Finite
state
control
Tape Read-write head
. -3~-2-10 1 2 3 4

Figure 2.1 Schematic representation of a deterministic one-tape Turing machine
(DTM).

A program for a DTM specifies the following information:

(1) A finite set T of tape symbols, including a subset TCT of input
symbols and a distinguished blank symbol b€ T —Z;

(2) a finite set Q of states, including a distinguished start-state g, and
two distinguished halt-states gy and gy;

(3) a transition function 8: (Q—{qy,qy}) XTI — O x T x {—1,+1}.
The operation of such a program is straightforward. The input to the

DTM is a string x€ L*. The string x is placed in tape squares 1 through
le, one symbol per square. All other squares initially contain the blank
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symbol. The program starts its operation in state go, with the read-write
head scanning tape square 1. The computation then proceeds in a step-by-
step manner. If the current state g is either gy or gy, then the computa-
tion has ended, with the answer being ‘‘yes’” if ¢ =gy and “‘no” if ¢ =gy.
Otherwise the current state g belongs to Q —{qy,qy}, some symbol s€T is
in the tape square being scanned, and the value of 8(g,s) is defined. Sup-
pose 8(g,s) = (g',s',A). The read-write head then erases s, writes s’ in its
place, and moves one square to the left if A = —1, or one square to the
right if A = +1. At the same time, the finite state control changes its state
from g to ¢g'. This completes one ‘“‘step’” of the computation, and we are
ready to proceed to the next step, if there is one.

r=1{0,1,s}, T=10,1}

Q=190 91,92, 93.9v- an}
q 0 1 b
g0 | (96,0,+D) | (go,1,+1) | (g;.6,—1)
g1 | (g2,6,=D) | (g3,6,—1) | {qn,b,=1)
g2 | {gy,6,=1) | (gn,b,=1) | (gn,b,—1)
a3 | (gn.5,=-1) § (gn,b,—1) | (gy,0,~1)

8(q,s)

Figure 2.2 An example of a DTM program M = (I',Q.5).

An example of a simple DTM program M is shown in Figure 2.2. The
transition function & for M is described in a tabular format, where the entry
in row ¢ and column s is the value of 8(g,s). Figure 2.3 illustrates the
computation of M on the input x=10100, giving the state, head position,
and contents of the non-blank portion of the tape before and after each
step.

Note that this computation halts after eight steps, in state gy, so the
answer for 10100 is “‘yes.”” In general, we say that a DTM program M with
input alphabet ¥ accepts x € L* if and only if M halts in state gy when ap-
plied to input x. The language Ly, recognized by the program M is given by

Ly, = {x€X* M accepts x)

It is not hard to see that the DTM program of Figure 2.2 recognizes the
language

{x € {0,1}*: the rightmost two symbols of x are both 0}
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Figure 2.3 The computation of the program M from Figure 2.2 on input 10100.
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Observe that this definition of language recognition does not require
that M halt for alf input strings in X*, only for those in L. If x belongs
to L*—L,,, then the computation of M on x might halt in state gy, or it
might continue forever without halting. However, for a DTM program to
correspond to our notion of an algorithm, it must halt on all possible strings
over its input alphabet. In this sense, the DTM program of Figure 2.2 is al-
gorithmic, since it will halt for any input string from {0,1}*.

The correspondence between ‘‘recognizing” languages and ‘“‘solving”’
decision problems is straightforward. We say that a DTM program M solves
the decision problem II under encoding scheme e if M halts for all input
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strings over its input alphabet and Ly = L[I,e]. The DTM program'of
Figure 2.2 once more provides an illustration. Consider the following
number-theoretic decision problem:

INTEGER DIVISIBILITY BY FOUR
INSTANCE: A positive integer N.
QUESTION: Is there a positive integer m such that N=4m?

Under our standard encoding scheme, the integer N is represented by the
string of 0’s and 1’s that is its binary representation. Since a positive in-
teger is divisible by four if and only if the last two digits of its binary
representation are 0, this DTM program ‘‘solves” the INTEGER DIVISI-
BILITY BY FOUR problem under our standard encoding scheme.

For future reference, we also point out that a DTM program can be
used to compute functions. Suppose M is a DTM program with input ai-
phabet T and tape alphabet T' that halts for all input strings from Z*. Then
M computes the function fy:Z*—T* where, for each x€ZX*, Sulx) is
defined to be the string obtained by running M on input x until it halts and
then forming a string from the symbols in tape squares 1, 2,3, etc., in se-
quence, up to and including the rightmost non-blank tape square. The pro-
gram M of Figure 2.2 computes the function fy,:{0,1}*—{0,1,6]* that
maps each string x €{0,1}* to the string f,,(x) obtained by deleting the last
two symbols of x (with f,(x) equal to the empty string if |x]<2).

It is well known that DTM programs are capable of performing much
more complicated tasks than those illustrated by our simple example. Even
though a DTM has only a single sequential tape and can perform only a
very limited amount of work in a single step, a DTM program can be
designed to perform any computation that can be performed on an ordinary
computer, albeit more slowly. For the reader interested in how this is done,
there are a number of excellent references, for example [Minsky, 19671 or
[Hoperoft and Ullman, 1969]. For the reader who is not interested in how
this is done, there is the welcome assurance that no expertise at program-
ming DTMs will be required in this book. The reason for our introduction
of the DTM model is to provide us with a formal counterpart of an algo-
rithm upon which to base our definitions.

A formal definition of ‘“‘time complexity’’ is now possible. The time
used in the computation of a DTM program M on an input x is the number
of steps occurring in that computation up until a halt state is entered. For a
DTM program M that halts for all inputs x&X*, its time complexity function
Ty: ZT—Z"* is given by

there is an x€X*, with |x|=n, such that the |

Tyy(n) = max | m: computation of M on input x takes time m
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Such a program M is called a polynomial time DTM program if there exists a
polynomial p such that, for all n€ Z*, Ty, (n) <p(n).

We are now ready to give the formal definition of the first important
class of languages that we will be considering, the class P. It is defined as
follows:

P={L: there is a polynomial time DTM program M for which L = L,,}

We will say that a decision problem IT belongs to P under the encoding
scheme e if L[l e] € P, that is, if there is a polynomial time DTM program
that ‘‘solves’® II under encoding scheme e. In light of the previously men-
tioned equivalence between reasonable encoding schemes, we will usually
omit the specification of a particular reasonable encoding scheme, simply
saying that the decision problem II belongs to P.

We also will be informal in our use of the term “‘polynomial time algo-
rithm.”” Our formal counterpart for a polynomial time algorithm is the po-
lynomial time DTM program. However, because of the equivalence
between ‘‘realistic’’ computer models with respect to polynomial time point-
ed out in Chapter 1, the formal definition of P could have.been rephrased
in terms of programs for any such model and the same class of languages
would have resulted. Thus we need not tie ourselves to the details of the
DTM model when informally demonstrating that certain tasks can be per-
formed by polynomial time algorithms. In fact, we will follow standard
practice and discuss algorithms in an almost model-independent manner,
speaking of them as operating directly on the components of an instance
(the sets, graphs, numbers, etc.) rather than on their encoded descriptions.
Here our implicit assertion is that one could, if one desired and had the pa-
tience, design a polynomial time DTM program corresponding to each poly-
nomial time algorithm we discuss. Our informal demonstrations should be
taken as indicating how this would be done and should be convincing to any
reader familiar with the kinds of basic tasks that can be performed in poly-
nomial time on an ordinary computer.

2.3 Nondeterministic Computation and the Class NP

In this section we introduce our second important class of
languages/decision problems, the class NP. Before we proceed to the for-
mal definitions in terms of languages and Turing machines, however, it will
be useful to provide an intuitive idea of the informal notion this class is in-
tended to capture.

Consider the TRAVELING SALESMAN problem described at the be-
ginning of this chapter: Given a set of cities, the distances between them,
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and a bound B, does there exist a tour of all the cities having total length B
or less? There is no known polynomial time algorithm for solving this
problem. However, suppose someone claimed, for a particular instance of
this problem, that the answer for that instance is “‘yes.”” If we were skepti-
cal, we could demand that they “‘prove’ their claim by providing us with a
tour having the required properties. It would then be a simple matter for us
to verify the truth or falsity of their claim merely by checking that what
they provided us with is actually a tour and, if so, computing its length and
comparing that quantity to the given bound B. Furthermore, we could
specify our ‘‘verification procedure’ as a general algorithm that has time
complexity polynomial in Length [7].

Another example of a problem with this property is the SUBGRAPH
ISOMORPHISM problem of Section 2.1. Given an arbitrary instance / of
this problem, consisting of two graphs G,=(V,E;) and G,=(V,,E)), if
the answer for [ is “‘yes,” then this fact can be “‘proved’’ by giving the re-
quired subsets V'C ¥V, and E'CE; and the required one-to-one function
f:Vo,— V. Again the validity of the claim can be verified easily in time po-
lynomial in Length [/ ], merely by checking that V*, E', and f satisfy all the
stated requirements.

It is this notion of polynomial time *‘verifiability’” that the class NP is
intended to isolate. Notice that polynomial time verifiability does not imply
polynomial time solvability. In saying that one can verify a “‘yes™ answer
for a TRAVELING SALESMAN instance in polynomial time, we are not
counting the time one might have to spend in searching among the ex-
ponentially many possible tours for one of the desired form. We merely as-
sert that, given any tour for an instance /, we can verify in polynomial time
whether or not that tour “‘proves’’ that the answer for [ is ‘‘yes.”

Informally we can define NP in terms of what we shall call a nondeter-
ministic algorithm. We view such an algorithm as being composed of two
separate stages, the first being a guessing stage and the second a checking
stage. Given a problem instance I, the first stage merely ‘“‘guesses’ some
structure S. We then provide both I and S as inputs to the checking stage,
which proceeds to compute in a normal deterministic manner, either even-
tually halting with answer ‘‘yes,” eventually halting with answer ‘‘no,” or
computing forever without halting (as we shall see, the latter two cases
need not be distinguished). A nondeterministic algorithm “‘solves™ a deci-
sion problem II if the following two properties hold for all instances /€ Dy

1. If I¢ Yn', then there exists some structure S that, when guessed for in-
put /, will lead the checking stage to respond ‘“‘yes” for [ and S.

2. If 1¢. Yy, then there exists no structure S that, when guessed for input
I, will lead the checking stage to respond *‘yes’ for [ and S . :
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For example, a nondeterministic algorithm for TRAVELING SALES-
MAN could be constructed using a guessing stage that simply guesses an ar-
bitrary sequence of the given cities and a checking stage that is identical to
the aforementioned polynomial time ‘‘proof verifier’” for TRAVELING
SALESMAN. Clearly, for any instance I, there will exist a guess S that
leads the checking stage to respond “‘yes’ for I and S if and only if there is
a tour of the desired length for 1.

A nondeterministic algorithm that solves a decision problem II is said
to operate in ‘‘polynomial time” if there exists a polynomial p such that,
for every instance I €& Y7y, there is some guess S that leads the deterministic
checking stage to respond ‘‘yes” for I and S within time p(Length [/1]).
Notice that this has the effect of imposing a polynomial bound on the
“size’” of the guessed structure S, since only a polynomially bounded
amount of time can be spent examining that guess.

The class NP is defined informally to be the class of all decision prob-
lems I that, under reasonable encoding schemes, can be solved by polyno-
mial time nondeterministic algorithms. Our example above indicates that
TRAVELING SALESMAN is one member of NP. The reader should have
no difficulty in providing a similar demonstration for SUBGRAPH ISO-
MORPHISM. )

The use of the term ‘‘solve’ in these informal definitions should, of
course, be taken with a grain of salt. It should be evident that a ‘‘polyno-
mial time nondeterministic algorithm’ is basically a definitional device for
capturing the notion of polynomial time verifiability, rather than a realistic
method for solving decision problems. Instead of having just one possible
computation on a given input, it has many different ones, one for each pos-
sible guess.

There is another important way in which the ‘‘solution’ of decision
problems by nondeterministic algorithms differs from that for deterministic
algorithms: the lack of symmetry between ‘‘yes’’ and ‘‘no.”” If the problem
“Given I, is X true for I?” can be solved by a polynomial time (deter-
ministic) algorithm, then so can the complementary problem “‘Given [, is
X false for I ? This is because a deterministic algorithm halts for all in-
puts, so all we need do is interchange the “‘yes’ and ‘‘no’’ responses (inter-
change states gy and gy in a DTM program). It is not at all obvious that
the same holds true for all problems solvable by polynomial time nondeter-
ministic algorithms. Consider, for example, the complement of the TRAV-
ELING SALESMAN problem: Given a set of cities, the intercity distances,
and a bound B, is it true that no tour of all the cities has length B or less?
There is no known way to verify a “‘yes’ answer to this problem short of
examining all possible tours (or a large proportion of them). In other
words, no polynomial time nondeterministic algorithm for this complemen-
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tary problem is known. The same is true of many other problems in NP.
Thus, although membership in P for a problem II implies membership in P
for its complement, the analogous implication is not known to hold for NP.

We conclude this section by formalizing our definition in terms of
languages and Turing machines. The formal counterpart of a nondeter-
ministic algorithm is a program for a nondeterministic one-tape Turing
machine NDTM). For simplicity, we will be using a slightly non-standard
NDTM model. (More standard versions are described in [Hopcroft and Ull-
man, 1969] and [Aho, Hopcroft, and Ullman, 1974]. The reader may find
it an interesting exercise to verify the equivalence of our model to these
with respect to polynomial time.)

The NDTM model we will be using has exactly the same structure as a
DTM, except that it is augmented with a guessing module having its own
write-only head, as illustrated schematically in Figure 2.4. The guessing
module provides the means for writing down the ‘‘guess’’ and will be used
solely for this purpose.

Guessing Finite
module state
control
Guessing Read-write
Tape head head

-3-2-10 1 2 3 4

Figure 2.4 Schematic representation of a nondeterministic one-tape Turing
machine (NDTM).

An NDTM program is specified in exactly the same way as a DTM pro-
gram, including the tape alphabet I', input alphabet X, blank symbol &, state
set Q, initial state g, halt states gy and gy, and transition function
8: (Q—{gr.gv) XTI — O xT' x{=1,+1]. The computation of an NDTM
program on an input string x€X* differs from that of a DTM in that it takes
place in two distinct stages.

The first stage is the ‘‘guessing’ stage. Initially, the input string x is
written in tape squares 1 through |x| (while all other squares are blank),
the read-write head is scanning square 1, the write-only head is scanning
square —1, and the finite state control is ““inactive.”” The guessing module
then directs the write-only head, one step at a time, either to write some
symbol from I' in the tape square being scanned and move one square to
the left, or to stop, at which point the guessing module becomes inactive
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and the finite state control is activated in state go. The choice of whether to
remain active, and, if so, which symbol from I' to write, is made by the
guessing module in a totally arbitrary manner. Thus the guessing module
can write any string from I'* before it halts and, indeed, need never halt.

The ‘‘checking’ stage begins when the finite state control is activated
in state go. From this point on, the computation proceeds solely under the
direction of the NDTM program according to exactly the same rules as for a
DTM. The guessing module and its write-only head are no longer involved,
having fulfilled their role by writing the guessed string on the tape. Of
course, the guessed string can (and usually will) be examined during the
checking stage. The computation ceases when and if the finite state control
enters one of the two halt states (either gy or gy) and is said to be an ac-
cepting computation if it halts in state gy. All other computations, halting or
not, are classed together simply as non-accepting computations.

Notice that any NDTM program M will have an infinite number of
possible computations for a given input string x, one for each possible

“guessed string from I'*. We say that the NDTM program M accepts x if at

least one of these is an accepting computation. The language recognized by
M is :
Ly = {x€X* M accepts x}

The time required by an NDTM program M to accept the string x€ Ly,
is defined to be the minimum, over all accepting computations of M for x,
of the number of steps occurring in the guessing and checking stages up un-
til the halt state gy is entered. The time complexity function Tyy: Z¥—Z* for
M is

there is an x € Ly, with |x|=n such

{um: that the time to accept x by M is m

Ty (n) = max

Note that the time complexity function for M dependsxggl)l on the number
of steps occurring in accepting computations, and that, by convention,
T, (n) is set equal to 1 whenever no inputs of length n are accepted by M.

The NDTM program M is a polynomial time NDTM program if there ex-
ists a polynomial p such that Ty, (n) < p(n) for all n21. Finally, the class
NP is formally defined as follows:

NP = {L: there is a polynomial time NDTM program M for which Ly, =L}

It is not hard to see how these formal definitions correspond to the in-
formal definitions that preceded them. The only point deserving special
mention is that, whereas we usually envision a nondeterministic algorithm
as guessing a structure S that in some way depends on the given instance /,
the guessing module of an NDTM entirely disregards the given input.
However, since every string from I'* is a possible guess, we can always



32 THE THEORY OF NP-COMPLETENESS

design our NDTM program so that the checking stage begins by checking
whether or not the guessed string corresponds (under the implicit interpre-
tation our program places on strings) to an appropriate guess for the given
input. If not, the program can immediately enter the halt state gy.

A decision problem IT will be said to belong to NP under encoding
scheme e if the language L([I1,e] € NP. As with P, we shall feel free to say
that II is in NP without giving a specific encoding scheme, so long as it is
clear that some reasonable encoding scheme for I will yield a language that
is in NP.

Furthermore, since any realistic computer model can be augmented
with an analogue of our ‘‘guessing module with write-only head,”’ we could
have rephrased our formal definitions in terms of any of the other standard
models of computation. Since all these models are equivalent with respect
to deterministic polynomial time, the resulting versions of NP would all be
identical. Thus we will be on firm ground when, as already proposed, we
identify our formally defined class NP with the class of all decision prob-
lems ‘‘solvable’’ by polynomial time nondeterministic algorithms.

In the next section we discuss the relationship between the two classes
P and NP as a preliminary to introducing our third and, for this book, most
important class, the class of NP-complete problems.

2.1} The Relationship Between P and NP

The relationship between the classes P and NP is fundamental for the
theory of NP-completeness. Qur first observation, which is implicit in our
earlier discussions but which has not been stated explicitly until now, is that
P C NP. Every decision problem solvable by a polynomial time determinis-
tic algorithm is also solvable by a polynomial time nondeterministic algo-
rithm. To see this, one simply needs to observe that any deterministic algo-
rithm can be used as the checking stage of a nondeterministic algorithm. If
Il €P, and A4 is any polynomial time deterministic algorithm for IT, we can
obtain a polynomial time nondeterministic algorithm for II merely by using
A as the checking stage and ignoring the guess. Thus IT €P implies
T € NP.

As we also hinted in our discussions, there are many reasons to believe
that this inclusion is proper, that is, that P does not equal NP. Polynomial
time nondeterministic algorithms certainly appear to be more powerful than
polynomial time deterministic ones, and we know of no general methods for
converting the former into the latter. In fact, the best general result we can
state at present is given by the following:

Theorem 2.1 1f 11 € NP, then there exists a polynomial p such that I can
be solved by a deterministic algorithm having time complexity O (22(").
Proof: Suppose A4 is a polynomial time nondeterministic algorithm for solv-
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ing I1, and let g{n) be a polynomial bound on the time complexity of A.
(Without loss of generality, we can assume that ¢ can be evaluated in poly-
nomial time, for example, by taking ¢ (n) = c;n? for suitably large integer
constants ¢; and ¢;.) Then we know that, for every accepted input of
length n, there must exist some guessed string (over the tape alphabet I')
of length at most g{n) that leads the checking stage of 4 to respond “‘yes”
for that input in no more than ¢(n) steps. Thus the number of possible
guesses that need be considered is at most k?(, where k=|I|, since
guesses shorter than ¢(n) can be regarded as guesses of length exactly ¢(n)
by filling them out with blanks. We can deterministically discover whether
A has an accepting computation for a given input of length n by applying
the deterministic checking stage of A4, until it halts or makes ¢{n) steps, on
each of the k7™ possible guesses. The simulation responds ‘‘yes” if it en-
counters a guessed string that leads to an accepting computation within the
time bound; otherwise it respends “‘no.”” This clearly yields a deterministic
algorithm for solving II. Furthermore, its time complexity is essentially
q(n)-k%™, which, although .exponential, is 0(2?") for an appropriately
chosen polynomial p. ® .

Of course the simulation in the proof of Theorem 2.1 could be speeded
up somewhat by using branch-and-bound techniques or backtrack search
and by carefully enumerating the guesses so that obviously irrelevant strings
are avoided. Nevertheless, despite the considerable savings that might be
achieved, there is no known way to perform this simulation in less than ex-
ponential time.

Thus the ability of a nondeterministic algorithm to check an exponen-
tial number of possibilities in polynomial time might lead one to suspect -
that polynomial time nondeterministic algorithms are strictly more powerful
than polynomial time deterministic algorithms. Indeed, for many individual
problems in NP, such as TRAVELING SALESMAN, SUBGRAPH ISO-
MORPHISM, agd a wide variety of others, no polynomial time solution al-
gorithms have Been found despite the efforts of many knowledgeable and
persistent researchers.

For these reasons, it is not surprising that there is a widespread belief
that P+ NP, even though no proof of this conjecture appears on the hor-
izon. Of course, a skeptic might say that our failure to find a proof that
P#NP is just as strong an argument in favor of P=NP as our failure to
find polynomial time algorithms is an argument for the opposite view.
Problems always appear to be intractable until we discover efficient algo-
rithms for solving them. Even a skeptic would be likely to agree, however,
that, given our current state of knowledge, it seems more reasonable to
operate under the assumption that P#NP than to devote one’s efforts to
proving the contrary. In any case, we shall adopt a tentative picture of the
world of NP as shown in Figure 2.5, with the expectation (but not the cer-
tainty) that the shaded region denoting NP — P is not totally uninhabited.
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NP

—e)

Figure 2.5 A tentative view of the world of NP.

2.5 Polynomial Transformations and NP-Completeness

If P differs from NP, then the distinction between P and NP—P is
meaningful and important. All problems in P can be solved with polynomi-
al time algorithms, whereas all problems in NP—P are intractable. Thus,
given a decision problem II € NP, if P# NP, we would like to know which
of these two possibilities holds for II.

Of course, until we can prove that P #NP, there is no hope of showing
that any particular problem belongs to NP —P. For this reason, the theory
of NP-completeness focuses on proving results of the weaker form “‘if
P#NP, then IT € NP-P.”” We shall see that, although these conditional
results might appear to be almost as difficult to prove as the corresponding
unconditional results, there are techniques available that often enable us to
prove them in a straightforward way, The extent to which such results
should be regarded as evidence for intractability depends on how strongly
one believes that P differs from NP.

The key idea used in this conditional approach is that of a polynomial
transformation. A polynomial transformation from a language L{ S 2} to a
language L, € I} is a function f:Z}— X that satisfies the following two
conditions:

1. There is a polynomial time DTM program that computes f .
2. Forall x €X}, x€ L, ifand only if f(x) € L,.

If there is a polynomial transformation from L; to L,, we write¢”L;« L,
read ““L, transforms to L,” (dropping the modifier “‘polynomial,” which is
to be understood).

The significance of polynomial transformations comes from the follow-
ing lemma:

Lemma 2.1 If L =L, then L,€P implies L, €P (and, equivalently,
LI ﬁP implies LZ §E P)
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Prooft Let %, and X, be the alphabets of L, and L, respectiyely, let
f:Z{—Z} be a polynomial transformation from L, to L,, let M, denote a
polynomial time DTM program that computes f, and let M, be a polynomi-
al time DTM program that recognizes L,. A polynomial time DTM pro-
gram for recognizing L can be constructed by composing M, with M,. For
an input x € Zf, we first apply the portion corresponding to program M, to
construct f(x) € 3. We then apply the portion corresponding to program
M, to determine if f(x) € L,. Since x € L, if and only if f(x) € L,, this
yields a DTM program that recognizes L;. That this program operates in
polynomial time follows immediately from the fact that M, and M, are po-
lynomial time algorithms. To be specific, if p, and p, are polynomial func-
tions bounding the running times of M, and M, then |f(x)| < p,(|x]),
and the running time of the constructed program is easily seen to be
0(p;(|x]) + pa(p,(|x]))), which is bounded by a polynomial in |x|. =

If TI, and II, are decision problems, with associated encoding schemes
e, and e,, we shall write II; «II, (with respect to.the given encoding
schemes) whenever there exists a polynomial transformation from L [IT,e,]
to L[II,,e;). As usual, we will omit the reference to specific encoding
schemes when we are operating under our standard assumption that only
reasonable encoding schemes are used. Thus, at the problem level, we can
regard a polynomial transformation from the decision problem II, to the de-
cision problem II; as a function f: Dn,_‘Dnz that satisfies the two condi-

tions:
1. f is computable by a polynomial time algorithm; and
2. forall / € Dy, I € Yy, if and only if £(1) € Yy,

Let us obtain a more concrete idea of what this definition means by
considering an example. For a graph G = (V,E) with veriex set V and edge
set £, a simple circuitin G is a sequence < vy,v,, . .., v, > of distinct ver-
tices from V such that { v;,v,.;} € E for 1</ <k and such that {v,,v(} € E.
A Hamiltonian circuitin G is a simple circuit that includes all the vertices of
G. The HAMILTONIAN CIRCUIT problem is defined as follows:

HAMILTONIAN CIRCUIT
INSTANCE: A graph G=(V,E).
QUESTION: Does G contain a Hamiltonian circuit?

The reader will no doubt recognize a certain similarity between this
problem and the TRAVELING SALESMAN decision problem. We shall
show that HAMILTONIAN CIRCUIT (HC) transforms to TRAVELING
SALESMAN (TS). This requires that we specify a function f that maps
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each instance of HC to a corresponding instance of TS and that we prove
that this function satisfies the two properties required of a polynomital
transformation.

The function f is defined quite simply. Suppose G=(V E), with
| V| =m, is a given instance of HC. The corresponding instance of TS has a
set C of cities that is identical to V. For any two cities v;,v; € C, the inter-
city distance d(v;,v;) is defined to be 1 if {v,,»;} € E and 2 otherwise. The
bound B on the desired tour length is set equal to m.

It is easy to see (informally) that this transformation f can be comput-
ed by a polynomial time algorithm. For each of the m(m—1)/2 distances
d(v;,v;) that must be specified, it is necessary only to examine G to see
whether or not {v,-,'vj} is an edge in E£. Thus the first required property is
satisfied. To verify that the second requirement is met, we must show that
G contains a Hamiltonian circuit if and only if there is a tour of all the ci-
ties in f(G) that has total length no more than B. First, suppose that
<V,V2,...,V,> is a Hamiltonian circuit for G. Then
<wv,vy,...,V, > is also a tour in f(G), and this tour has total length
m = B because each intercity distance traveled in the tour corresponds to an
edge of G and hence has length 1. Conversely, suppose that
<w,Vy,...,V, > is a tour in £(G) with total length no more than B.
Since any two cities are either distance 1 or distance 2 apart, and since ex-
actly m such distances are summed in computing the tour length, the fact
that B =m implies that each pair of successively visited cities must be ex-
actly distance 1 apart. By the definition of f(G), it follows that { v, v,y ],
1<i<m, and {v,,v,} are all edges of G, and hence < v,v3, ..., v, > is
a Hamiltonian circuit for G.

Thus we have shown that HC«TS. Although this proof is much
simpler than many we will be describing, it contains all the essential ele-
ments of a proof of polynomial transformability and can serve as a model
for how such proofs are constructed at the informal level.

The significance of Lemma 2.1 for decision problems now can be illus-
trated in terms of what it says about HC and TS. In essence, we conclude
that if TRAVELING SALESMAN can be solved by a polynomial time algo-
rithm, then so can HAMILTONIAN CIRCUIT, and if HC is intractable,
then so is TS. Thus Lemma 2.1 allows us to interpret IT, « [1§ as meaning
that II, is “‘at least as hard” as II,.

The “‘polynomial transformability” relation is especially useful because
it is transitive, a fact captured by our next lemma.

Lemma 2.2 If Ly« Lyand Ly« L;, then L, L.

Proof: Let L;, L,;, and Z; be the alphabets of languages L,, L,, and L,
respectively, let f: Z{'— X3 be a polynomial transformation from L, to L,,
and let f5:ZF— X} be a polynomial transformation from L, to L;. Then
the function f:Zf— X} defined by f(x)=f,(f,(x)) for all x € L} is the
desired transformation from L, to Lj;. Clearly, f(x) € Ly if and only if
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x € Ly, and the fact that f can be computed by a polynomial time DTM
program follows from an argument analogous to that used in the proof of
Lemma 2.1. =

We can define two languages L, and L, (two decision problems II; and
[1,) to be polynomially equivalent whenever both L« L, and Lyx L (both
[y« and I,«1II}). Lemma 2.2 tells us that this is a legitimate
equivalence relation and, furthermore, that the relation ‘=’ imposes a par-
tial order on the resulting equivalence classes of languages (decision prob-
lems). In fact, the class P forms the ‘“‘least’ equivalence class under this
partial order and hence can be viewed as consisting of the computationally
“easiest’” languages (decision problems). The class of NP-complete
languages (problems) will form another such equivalence class, dis-
tinguished by the property that it contains the ‘‘hardest” languages (deci-
sion problems) in NP.

Formally, a language L is defined to be NP-complete if L € NP and, for
all other languages L' € NP, L'« L. Informally, a decision problem II is
NP-complete if 1€ NP and, for all other decision problems IT' € NP,
[I'ecII. Lemma 2.1 then leads us to our identification of the NP-complete
problems as ‘‘the hardest problems in NP.”> If any single NP-complete
problem can be solved in polynomial time, then a// problems in NP can be
so solved. If any problem in NP is intractable, then so are all NP-complete
problems. An NP-complete problem I, therefore, has the property men-
tioned at the beginning of this section: If P+ NP, then IT € NP—-P. More
precisely, IT € P if and only if P=NP.

Assuming that P#NP, we now can give a more detailed picture of ‘‘the
world of NP, as shown in Figure 2.6. Notice that NP is not simply parti-
tioned into “‘the land of P and “‘the land of NP-complete.”” As we shall
see in Chapter 7, if P differs from NP, then there must exist problems in
NP that are neither solvable in polynomial time nor NP-complete.

NP-complete  }

Figure 2.6 The world of NP, revisited.

Our main interest, however, is in the NP-complete problems them-
selves. Although we suggested at the outset of this section that there are
straightforward techniques for proving that a problem is NP-complete, the
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requirements we have just described would appear to be rather demanding.
One must show that every problem in NP transforms to our prospective
NP-complete problem I1. It is not at all obvious how one might go about
doing this. A priori, it is not even apparent that any NP-complete problems
need exist.

The following lemma, which is an immediate consequence of our
definitions and the transitivity of «, shows that matters would be simplified
considerably if we possessed just one problem that we knew to be NP-
complete.

Lemma 2.3 1f L, and L, belong to NP, L, is NP-complete, and Le L,,
then L, is NP-complete.
Proof: Since L, € NP, all we need to do is show that, for every L' € NP,
L'« L;. Consider any L' € NP. Since L, is NP-complete, it must be the
case that L'« L. The transitivity of « and the fact that L, = L, then imply
that L'ec L,. ®

Translated to the decision problem level, this lemma gives us a
straightforward approach for proving new problems NP-complete, once we
have at least one known NP-complete problem available. To prove that Il
is NP-complete, we merely show that

1. TI€NP, and

2. some known NP-complete problem [T’ transforms to II.

Before we can use this approach, however, we still need some first NP-
complete problem. Such a problem is provided by Cook’s fundamental
theorem, which we state and prove in the next section.

’

2.6 Cook’s Theorem

The honor of being the *“first”” NP-complete problem goes to a decision
problem from Boolean logic, which is usually referred to as the SATISFIA-
BILITY problem (SAT, for short). The terms we shall use in describing it
are defined as follows:

Let U={uyu,, ..., u,) be a set of Boolean variables. A truth assign-
ment for U is a function ¢: U— (T, F}. If 1(u) =T we say that u is “‘true”’
under ¢ if 7(u) = F we say that u is “false.”” If u is a variable in U, then
u and # are literals over U. The literal « is true under ¢ if and only if the
variable u is true under ¢; the literal # is true if and only if the variable u
is false.

A clause over U is a set of literals over U, such as {u,us,ug}. It
represents the disjunction of those literals and is satisfied by a truth assign-
ment if and only if at least one of its members is true under that assign-
ment. The clause above will be satisfied by ¢ unless t(u)) =F, t{u) =T,

2.6 COOK’S THEOREM 39

and t(ug) =F. A collection C of clauses over U is satisfiable if and only if
there exists some truth assignment for U that simultaneously satisfies all
the clauses in C. Such a truth assignment is called a satisfying truth assign-
ment for C. The SATISFIABILITY problem is specified as follows:

SATISFIABILITY
INSTANCE: A set U of variables and a collection C of clauses over U.
QUESTION: Is there a satisfying truth assignment for C?

For example, U={uj,u;} and C= {{u,.@,}, {7, u;}} provide an in-
stance of SAT for which the answer is “‘yes.”” A satisfying truth assignment
is given by t(u)=1t(u))=T. On the other hand, replacing C by
C'={{uy,uy}, {u,@), (@)} vields an instance for which the answer is
“no’’; C’is not satisfiable.

The seminal theorem of Cook [1971] can now be stated:

Theorem 2.1 (Cook’s Theorem) SATISFIABILITY is NP-complete.

Proof: SAT is easily seen to be in NP. A nondeterministic algorithm for it
need only guess a truth assignment for the given variables and check to see
whether that assignment satisfies all the clauses in the given collection C.
This is easy to do in (nondeterministic) polynomial time. Thus the first of
the two requirements for NP-completeness is met.

For the second requirement, let us revert to the language level, where
SAT is represented by a language L, = L[SAT,e] for some reasonable
encoding scheme e. We must show that, for all languages L € NP,
L < Lgy7. The languages in NP are a rather diverse lot, and there are
infinitely many of them, so we cannot hope to present a separate transfor-
mation for each one of them. However, each of the languages in NP can be
described in a standard way, simply by giving a polynomial time NDTM
program that recognizes it. This allows us to work with a generic
polynomial time NDTM program and to derive a generic transformation
from the language it recognizes to Lg,r. This generic transformation, when
specialized to a particular NDTM program M recognizing the language L,
will give the desired polynomial transformation from Ly, to Lg,y. Thus, in
essence, we will present a simultaneous proof for all L € NP that L « Lg,r.

To begin, let M denote an arbitrary polynomial time NDTM program,
specified by T', Z, b, Q, 4o, gy, gy, and 3, which recognizes the language
L=1L,. In addition, let p(n) be a polynomial over the integers that
bounds the time complexity function Tj,(n). (Without loss of generality,
we can assume that p(n)>n for all n € Z*.) The generic transformation
f will be derived in terms of M, T, Z, b, @, qq, gy, qy, 5, and p.

It will be convenient to describe f, as if it were a mapping from strings
over X to instances of SAT, rather than to strings over the alphabet of our
encoding scheme for SAT, since the details of the encoding scheme could
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be filled in easily. Thus f; will have the property that for all x € £*, x € L
if and only if f; (x) has a satisfying truth assignment. The key to the con-
struction of f; is to show how a set of clauses can be used to check wheth-
er an input x is accepted by the NDTM program M, that is, whether x € L.

If the input x€X* is accepted by M, then we know that there is an ac-
cepting computation for M on x such that both the number of steps in the
checking stage and the number of symbols in the guessed string are bound-
ed by p(n), where n=|x|. Such a computation cannot involve any tape
squares except for those numbered —p(n) through p(n)+1, since the
read-write head begins at square 1 and moves at most one square in any sin-
gle step. The status of the checking computation at any one time can be
specified completely by giving the contents of thesc squares, the current
state, and the position of the read-write head. Furthermore, since there are
no more than p(n) steps in the checking computation, there are at most
p(n)+1 distinct times that must be considered. This will enable us to
describe such a computation completely using only a limited number of
Boolean variables and a truth assignment to them.

The variable set U that f; constructs is intended for just this purpose.
Label the elements of Q as 4, 4¢=4y,¢92=4d~,93, - - -, 4q,, where
r=|0|-1, and label the elements of [ as so=b, 51, 83, . . ., 5,, where

=|T'|~1. There will be three types of variables, each of which has an in-
tended meaning as specified in Figure 2.7. By the phrase ‘‘at time /i’ we
mean ‘‘upon completion of the i step of the checking computation.”

Variable Range Intended meaning
. 0Ligp(n) . .
oli k] 0<k<r | At time 7, M is in state g.
Hi 0<ig<p(n) At time i, the read-write head
’ —p(n) < j<pln)+1 is scanning tape square J.
0<i<p(n) At time /, the contents of tape
Sli,j.kl  —p(n) <j<p(n)+1 square J/ is symbol s,.
0<k<y

Figure 2.7 Variables in f; (x) and their intended meanings.

A computation of M induces a truth assignment on these variables in
the obvious way, under the convention that, if the program halis before
time p(n), the configuration remains static at all later times, maintaining
the same halt-state, head position, and tape contents. The tape contents at
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time O consists of the input x, written in squares 1 through #, and the
guess w, written in squares ~1 through —|w/|, with all other squares blank.

On the other hand, an arbitrary truth assignment for these variables
need not correspond at all to a computation, much less to an accepting com-
putation. According to an arbitrary truth assignment, a given tape square
might contain many symbols at one time, the machine might be simultane-
ously in several different states, and the read-write head could be in any
subset of the positions —p(n) through p(n)+1. The transformation f;
works by constructing a collection of clauses involving these variables such
that a truth assignment is a satisfying truth assignment if and only if it is the
truth assignment induced by an accepting computation for x whose check-
ing stage takes p(n) or fewer steps and whose guessed string has length at
most p(n). We thus will have

x €L <> thereis an accepting computation of M on x

<> there is an accepting computation of M on x with p(n) or
fewer steps.in its checking stage and with a guessed string
w of length exactly p(n)

<> there is a satisfying truth assignment for the collection of
clauses in f; (x).

This will mean that f; satisfies one of the two conditions required of a
polynomial transformation. The other condition, that f; can be computed
in polynomial time, will be verified easily once we have completed our
description of f7 .

The clauses in f; (x) can be divided into six groups, each imposing a
separate type of restriction on any satisfying truth assignment as given in
Figure 2.8.

It is straightforward to observe that if all six clause groups perform
their intended missions, then a satisfying truth assignment will have to
correspond to the desired accepting computation for x. Thus all we need to
show is how clause groups performing these missions can be constructed.

Group G consists of the following clauses:

{oli,o,oli1l, ..., 0li,rl}, 0<i<p(n)
(OTi.JT, 010,y M), 0<i<p(n), 0K </'<r

The first p(n) +1 of these clauses can be simultaneously satisfied if and
only if, for each time i, M is in at least one state. The remaining
(p(n) +1) (r+1) (r/2) clauses can be simultaneously satisfied if and only if
at no time 7 is M in more than one state. Thus G, performs its mission.
Groups G, and G are constructed similarly, and groups G, and Gs are .
both quite simple, each consisting only of one-literal clauses. Figure 2.9
gives a complete specification of the first five groups. Note that the number
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Clause group Restriction imposed

G, At each time /, M is in exactly one state.
G At each time /, the read-write head is
2 scanning exactly one tape square.
At each time 7, each tape square contains
G;
exactly one symbol from T.
G At time 0, the computation is in the initial
4 configuration of its checking stage for input x.
G By time p(n), M has entered state gy
s
and hence has accepted x.
For each time i, 0<i<p(a), the configuration
G of M at time /+1 follows by a single
6

application of the transition function 8
from the configuration at time ;.

Figure 2.8 Clause groups in f; (x) and the restrictions they impose on satlsfymg
truth assignments.

of clauses in these groups, and the maximum number of literals occurring
in each clause, are both bounded by a polynomial function of »n (since r
and v are constants determined by M and hence by L).

The final clause group G, which ensures that each successive
configuration in the computation follows from the previous one by a single
step of program M, is a bit more complicated. It consists of two subgroups
of clauses.

The first subgroup guarantees that if the read-write head is rnot scanning
tape square j at time i/, then the symbol in square j does not change
between times / and /+1. The clauses in this subgroup are as follows:

{SUi,j, 0, Hlij1, SLi+t 7,1}, 0<i<p(m),—p(n)<j<p(n)+1,0<ILy

For any time /, tape square j, and symbol s,, if the read-write head is not
scanning square j at time j, and square j contains s, at time / but not at
time /+1, then the above clause based on /, j, and / will fail to be satisfied
(otherwise it will be satisfied). Thus the 2(p(n) +1)2 (v +1) clauses in this
subgroup perform their mission.
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Clause group Clauses in group

G, {oli,01,01i.11, ..., 0li,rl}, 0<i<p(n)
oTi 1,01, 0<igp(n), 0K <j'<r
G, {HlU,—p(m,HUi,—p(n)+1], . .., Hli,p(n)+11}, 0<i<pln)
{(HUGTLHLL T, 0<i<p(n),—p(n) <j<j'<p(n)+1
G ($1i,7,08,80i,4,1), . .., ST, j,v]}, 0<igp(n),—p(n) <j<pln)+1
(ST kL, ST,/ kLo i< p (), —p (M) < <pm)+1,0Kk<k'Sy
G, {Q10,01},{H10,11},{S(0,0,0},
{$10,1,k1),{S00,2, &0}, - - - (S0, n, k1), .
{S10,n+1,01},{S10,2+2,01}, . . . ,{S[0,p(m)+1,01},
where X= Sk Sk, Sk,
Gs {Qlp(n), 11}

Figure 2.9 The first five clause groups in f; {x).

The remaining subgroup of Gg guarantees that the changes from one
configuration to the next are in accord with the transition function & for M.
For each quadruple (i,j,k,D, 0<i<p(n), —p(n)<j<p(n) +1, O<k<r
and 0< /< v, this subgroup contains the following three clauses:

{HLi j1, Qli,k1, SUi,j, 01, HLi+1, j+Al)
{HT1i,j1, OLi k1, STi.j, 1T, Qli+1,k')
{H1i 1, oli,k), SLi,j. 11, SLi+1,4,01)

where if g, € Q—{qy,qN}, then the values of A, k', and /' are such that
8(qx,s) = (gy»sp,A), and if g € {qy,qy}), then A=0, K'=k, and I'=/1.

Although it may require a few minutes of thought, it is not difficult to
see that these 6(p(n)) (p(n) +1) (r+1) (v+1) clauses impose the desired
restriction on satisfying truth assignments.

Thus we have shown how to construct clause groups G, through Gy
performing the previously stated missions. If x € L, then there is an
accepting computation of M on x of length p(#n) or less, and this computa-
tion, given the interpretation of the variables, imposes a truth assignment
that satisfies all the clauses in C=G U G,UG3;U G,U G5U Gy
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Conversely, the construction of C is such that any satisfying truth assign-
ment for C must correspond to an accepting computation of M on x. It
follows that f; (x) has a satisfying truth assignment if and only if x € L.

All that remains to be shown is that, for any fixed language L, f; (x)
can be constructed from x in time bounded by a polynomial function of
n=|x|. Given L, we choose a particular NDTM M that recognizes L in
time bounded by a polynomial p (we need not find this NDTM itself in
polynomial time, since we are only proving that the desired transformation
fi exists), Once we have a specific NDTM M and a specific polynomial p,
the construction of the set U of variables and collection C of clauses
amounts to little more than filling in the blanks in a standard (though com-
plicated) formula. The polynomial boundedness of this computation wilt
follow immediately once we show that Length [/, (x)] is bounded above by
a polynomial function of n, where Length [/] reflects the length of a string
encoding the instance / under a reasonable encoding scheme, as discussed
in Section 2.1. Such a ‘‘reasonable’ Length function for SAT is given, for
example, by |U|-|C|. No clause can contain more than 2-|U| literals
(that’s all the literals there are), and the number of symbols required to
describe an individual literal need only add an additional log| U] factor,
which can be ignored when all that is at issue is polynomial boundedness.
Since r and v are fixed in advance and can contribute only constant factors
to |U| and |C|, we have |U| = 0(p(n)?) and |C| = O(p(n)?). Hence
Length [f, (x)]1 = |U|-|C| = O(p(n)*), and is bounded by a polynomial
function of n as desired.

Thus the transformation f; can be computed by a polynomial time
algorithm (although the particular polynomial bound it obeys will depend on
L and on our choices for M and pJ, and we conclude that, for every
L €NP, £, is a polynomial transformation from L to SAT (technically, of
course, from L to Lg,r). It follows, as claimed, that SAT is NP-complete.
]

3

Proving NP-Completeness Results

If every NP-completeness proof had to be as complicated as that for
SATISFIABILITY, it is doubtful that the class of known NP-complete prob-
lems would have grown as fast as it has. However, as discussed in Section
2.4, once we have proved a single problem NP-complete, the procedure for
proving additional problems NP-compiete is greatly simplified. Given a
problem II € NP, all we need do is show that some already known NP-
complete problem IT' can be transformed to II. Thus, from now on, the
process of devising an NP-completeness proof for a decision problem IT will
consist of the following four steps:

(1) showing that II is in NP,

(2) selecting a known NP-complete problem IT',

(3) constructing a transformation f from IT' to I1, and
(4) proving that f is a (polynomial) transformation.

In this chapter, we intend not only to acquaint readers with the end
results of this process (the finished NP-completeness proofs) but also to
prepare them for the task of constructing such proofs on their own. In Sec-
tion 3.1 we present six problems that are commonly used as the ‘‘known
NP-complete problem’’ in proofs of NP-completeness, and we prove that



